
STABLE LATTICES 
PART II 

HARVEY COHN 

10. Introduction to Part II. The most interesting cases of stable lattices, 
introduced in an earlier volume of this journal (12), were the (algebraic) mod­
ules of stable norm, or modules whose ratio of minimum absolute non-zero 
norm to lattice determinant (i.e., to the square root of module-discriminant) 
is a local maximum for small variations of the basis. We soon found that these 
modules were perhaps more numerous than we should have desired if we were 
interested only in finding an absolute maximum. Nevertheless stable lattices 
acquire a certain amount of intrinsic interest once we reach the stage where the 
continuous variable concept of "neighborhood of a lattice" leads to algebraic 
criteria of stability. In both these respects the situation displays some similarity 
to the more classical subject of extremal (quadratic) forms (2). 

If the module in question is the module of all integers (i.e., the so-called 
integer-modulé) of a totally real field of degree n, then the criterion of stability 
depends on the relative signs of the conjugates of the units. This is a specializa­
tion, (weaker when n > 3), of the classical concept of " (maximum) signature 
rank 2W," used by Weber (13) for instance. We shall merely show, as a significant 
illustration, that the integer-module of the totally real field KN = R (cos 2ir/N), 
over the rationals R, has stable norm (except for a few small N). 

If we consider fields that are not totally real, the classical problem of signature 
rank becomes vacuous for the imaginary (conjugate) fields while the stability 
criterion that we use becomes more complicated. We shall, however, demon­
strate a refinement of the "unit star" method of Part I (12; p. 265), to obtain a 
criterion that can be readily used to test more general modules. We shall carry 
this through the cubic case. 

The big difficulty arises when "too many" roots of unity occur. We shall, 
therefore, consider as a final example the integer-module of the cyclotomic 
field KN = R(exp 2-iri/N). This module turns out to have a stable norm if and 
only if N is square-free. This result, which essentially uses the presence or ab­
sence of a normal basis for KN, should further attest to the algebraic aspect of 
stability. 

11. A totally-real illustration. If we specialize somewhat to integer-
modules of a totally real normal field K, then the criterion of stability (of the 
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norm), given in Part I (12, p. 269), reduces to the following: For any non-
identical automorphism S of K> (over the rationals), at least one unit u exists for 
which u/us is negative. 

For instance, consider the totally real field KN = R(cos 2T/N) of degree 
n = §0(iV) (when N > 2). Here 4>(N) is the Euler totient function (not to be 
confused with the gauge function of Part I (12, p. 261), which has a vector 
argument). The field KN is the maximal totally real field in the cyclotomic 
field KN = R(exp 2-iri/N). We shall show that the integer-module of KN has 
stable norm if 
(11.1) N ^ 1 ,2 ,3 ,4 ,6 , 12. 

For the first five exceptional values of N, KN is rational; while for N = 12, 
K\2 = i?(V3), which is unstable by the unsolvability (12, p. 267) of the dio-
phantine equation x2 — 3y2 = — 1. 

For the field KN, the Galois group consists of the %<I>(N) operations 

(11.2) S : f - > r ± ' , (g,A0 = l. 
(11.3) (cos 2TTM/N) S = cos 2irMg/N. 

To prove stability we make use of the following types of units: 

(11.4) 0 = 2 cos 2TM/N N S* 2\ 4pk (k > 0), 
(11.5) yp = 1 + 2 cos 2<irM/N N 9* 3pk (k > 0), 

where (M, N) = 1 and p is a prime. (We note that this choice of units of KN 

accounts for all N except the values (11.1).) 
Now first of all we assert that for the special values of N: 

(11.41) Nx = p*(9*S), N2 = pq 

the units 6 are sufficient to establish stability; while for the special values: 

(11.51) Nz = 4.2*, N, = 4p (9* 12) 

the units \[/ are sufficient. In these cases p and q are odd primes and k > 1. 
We shall verify this just in a typical case, N = iV\. Here all we need to show is 
that for a given non-trivial automorphism 5, a M = Mi exists for which 
6 = 61 is positive and 0is is negative. Thus all we need show is that for any 
g ?£ dz 1 mod Niy (for which (g, iVi) = 1), there exists an Mi (for which 
(Afi, iVi) = 1), such that Mi lies in the range ( - i /Vi , i/Vi), while Mig is 
congruent (mod iVi) to a value in the range {\N\, fiVi). The existence of such 
an Mi is assured from the fact that the possible values of M (i.e., the non-
multiples of p), have such few gaps (i.e., the multiples of p), that the values of Mg 
cannot always "straddle" the range (INi, fTVi) modulo Ni. Thus some value of 
Mg must lie in this range when M = Mi, a non-multiple of p. A similar argu­
ment holds for N2l N$, and N4 (which were singled out for simplicity of proof, 
since they have few prime divisors and hence "small gaps"). 

We are now prepared to handle the general N in the following way : Suppose 
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that for the given 5, g ^ ± 1 mod iVi, for Ni (of type (11.41)) dividing N. 
Then the very same 0i used earlier is a unit of KNx (hence of KN) for which 
6i/6is is negative. Thus we see that the difficult case becomes the one in which, 
for each pki in the factorization N = Tip*' the congruence 

g ^ ± 1 mod piki 

is satisfied. In order that S still not be the identity, it is necessary that these 
=bl be "mixed" (e.g., that g not be congruent to (say) + 1 for each pki. Thus 
g ^ ± 1 for some composite modulus dividing N, of the type N2 (see (11.41)) 
or N4 (see (11.51)). Hence, once more, as in the preceding paragraph, a unit 02 

or ^4 is determined for which 62/d2
s or ^A/^^S is negative. Q.E.D. 

12. The stability configuration. In the last section, we obtained only an 
existence proof, i.e. a proof that Q + 1 ( = n(n — 1) + 1) positively dependent 
"gradient" vectors (12, pp. 263, 266). 

(12.1) R[u] = ( . . . , «, /«„ . . .) (IJ = 1, 2, . . . , n; l*j), 

exist, where u = (u\, . . . , un) is a vector of the module formed from each of 
Q + 1 properly chosen units U\ of 2£#. The set of Q + 1 vectors R[u] will be 
called a stability configuration. The actual choice of the (? + 1 units Ui, as we 
shall indicate, is not only extremely difficult, but it accentuates irregularities 
in the infinitesimal behavior of the units of KN for different N. 

Nevertheless the finding of these Q + 1 vectors u or R[u] would be desirable 
in view of the fact that a modular reduction theorem automatically enlarges the 
"neighborhood" of a stable lattice (possibly to the whole lattice space, thus 
establishing a critical lattice, as in the quadratic case (12, p. 268)). For instance, 
take the following simple-looking set of n units of KN (for N prime > 5) : 

(12.2) «1 

where f = exp 2iri/N. Each of the first n — 1 units listed above is taken with 
its conjugates and the last (rational) unit is taken once, forming Q + 1 = 
n(n — 1) + 1 units. 

It is found by very laborious calculations (which we omit) that the resulting 
Q + 1 vectors R[u] provide a stability configuration when N = 5, 7, 13 but 
that these vectors are not even of rank Q when N = 11. The question of whether 
or not the integer-module of KN provides a critical lattice for the norm in n real 
dimensions is answered positively for N = 5, 7 (3), and negatively for N = 13 
(11), while for N = 11 the answer is still unknown. It would probably be wise 
to exhibit a sufficiently simple stability configuration for the integer-module in 
Ku before trying to establish it as a critical lattice. 

/*• + r 1 

if3 +t + r1 + r* 
r_4 + r-6 +... + r + r1 + • . + r*r+,+r*r+4 
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13. Stability criterion for complex modules. Going to the complex case, 
we return to greater generality by considering as in §9 (above) any (non-
degenerate) module 9K (not necessarily consisting of all the integers of a field). 
The elements of W are algebraic integers z with r real and 2s complex conjugates: 

Zj = xj (j = 1,2, . . . ,r), 

(13.1) Zj = Xj + i xj+s (j = r + 1, . . . , r+s), 

making a total of r + 2s = n conjugates. Then we are interested in stable 
modules for the norm (gauge) function 

I X\ . . . XT \XT-\-\ ~T~ Xr-\-s) . . . ^Xr-j_s-j-i ~t~ XT^-2s) \' 

We consider the vector of Q = n{n — 1) generally complex components: 

(13.2) R[z] = ( . . . , * , / * „ . . . ) (/,j = 1,2, ...,n;l*j). 

Then the criterion for stability is that the set of vectors R[z] positively span 
a space of dimension Q as z varies over the set of module elements of minimum 
non-zero absolute norm. This criterion was established earlier (12, p. 266), 
using 2Q real components, but the present form will prove simpler to use. As in 
the totally real case, the finding of Q + 1 positively dependent vectors R[z] is 
so difficult that we must establish a new criterion relating to projections of R[z]. 

Now every vector R[z] can be expressed in terms oin{n — 1) real coordinates 
if we break the vector up into the following projections: Take any pair of 
distinct fields chosen from the first r + s conjugate fields (conjugate complex 
repetitions being excluded). For every such pair, denoted by unequal subscripts 
l,j(Kr + s)y a projection is determined. Specifically for /, j both real, there are 
r(r — 1) projections 
(13.31) R,.,[z] = (s,/*,), 

for l,j both complex, there are s(s — 1) projections 

(13.32) R^[z] = (z,/z„ zl+s/z3) 

for l,j mixed (i.e., one real and the other complex), there are 2rs projections 

(13.33) R,.,[z] = («,/*,). 

Now, clearly, the projections of type (13.31) are of real dimension one; the 
projections of type (13.32) and (13.33) having two and one complex components, 
are of real dimension four and two respectively. We write this as dim [/, j] = 1, 4, 
and 2 respectively. If we were to sum the number of coordinates, we should find 
it accounts for 

r(r - 1) • 1 + s{s - 1) • 4 + 2rs • 2 = Q - 2s 

coordinates. The remaining 2s coordinates are accounted for by a single projec­
tion called the u2s" projection, 

(13.34) R2s[z] = (zr+l/z 

of s complex components and of (real) dimension 25. 
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For some purposes it will be necessary to visualize all the real and imaginary 
parts written out as Q cartesian coordinates of a cartesian space @e with 
projections ©dim[z>fl and ©2s. Thus we may introduce a (real) scalar product 
and with it length and angle. Furthermore any one of the projections may be 
imbedded (in the natural way) in <&Q by setting the Q — dim[/,j] or Q — 2s 
remaining coordinates equal to zero. Thus we may speak of the angle between 
R[z] and any one of its projections, Rz,,-[z] or R.25[z]. 

The significance of the subspaces is then derived from the following fact: 
Let any z0 (^0) be given. Then a Zi of equal norm exists for which R[zi] is arbit­
rarily close in direction to any preassigned [I, j] projection RZi;[z0]. To see this, 
take Zi = z0u where u is a unit of £) the order of 9K, so chosen (by Dirichlet's 
Theorem on units (12, p. 269)), that \up/uq\ has the largest order of magnitude 
for the choice of sub-scripts p — I, q = j (p, q < r + s), and so that Ui/uj lies 
arbitrarily close in argument to a positive real number. The main stability 
criterion will be a more complicated version of the "unit star" method of Part I 
(12, p. 265), (which dealt entirely with one-dimensional [/, j] projections). 
It is as follows: 

The necessary and sufficient condition that the module SD? have a stable norm is 
that for z a variable element of minimum absolute non-zero norm in 2)?, the projec­
tions RZiy[z] or R2S[z] each positively span a space of dim[/, j] or 2s dimensions. 

The necessity is immediate since a projection of a set of vectors positively 
spanning a space must necessarily positively span the projection. The sufficiency 
proof is the difficult one. 

14. Sufficiency proof of stability criterion. We-let z be a general element 
of SO? of minimum absolute non-zero norm and we assume, as our hypothesis, 
that for certain values of z, namely 

(14.1) z\h)
j} zff ( 1 < h < 1 + dim[/,j], 1 < k < 1 + 2s), 

the sets of projection vectors {v}, consisting of the subsets 

(14.2) R ^ z ( " ] = M U ( 1 < A < 1 + diml/J]), 

RiJzS] = {v}2s (Kk< l + 2 s ) , 

are positively dependent. The object is to show that for properly chosen units 
{Uj of the order © the vectors {Wj, consisting of the subsets 

( M 3 ) R[Zft] = {W},., ( 1 < h < 1 + dim[/,j]), 

RfZff] = {W}„ ( 1 < * < 1 + 2 S ) , 

positively span the real cartesian space <SG, where 

(14.4) Z<w, = z(«U<",, Zff = z£> Vt 

The positive span will be established by means of the projection and independence 
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properties (12, p. 265). We use the further set {V} to represent the projections 
of {W}: 

( 1 4 > 5 ) Ri.i[Z(,?}] = {V} ,,, ( 1 < h < 1 + dim[/, j])f 

Ru[Zg] = {V}25 (l<k<l + 2s). 

The arguments used will be quite general (e.g., the values of the dimensionalities 
are of no importance). 

First of all choose the U2s
(fc) (1 < k < 1 + 2s) so that the 2s + 1 projection 

vectors of the set {V}2* are (still) positively dependent (in ©2s) while the 
vectors {W}2s are independent (in the larger space ©Q). This can be done by 
the approximation technique of §13 (above), since the proper choice of the 
U2s

(*° for each k will render each vector of {v}25 arbitrarily close in direction 
to the corresponding vector in {V}2s while some one [l,j] projection of one 
vector of {W}2s can be made much larger than this projection of all the other 
vectors of {W}2s. By this double condition on the U2s

(A;), (1 < k < 1 + 2s), 
we preserve the positive dependence of the set {V}2s in ©2s without having the 
positive dependence relation remain valid for the set {W}2s in © g . Once these 
U2s

(fc) are chosen we keep them fixed for the remainder of the proof. 
Next we assign a positive angle €. Then for this e we can choose units Uj i ;

( /°, 
(1 < h < 1 + dim[/, j]), such that {\}i,j are still positively dependent (for 
each [lyj]) in the smaller space ©dlm^-^ while {W} ltJ are linearly independent 
in the larger space ©Q. At the same time, each vector of the set {W} itj is to make 
an angle <e with the corresponding vector of the set {V} ttj. This can be done, 
as in the preceding paragraph by the approximation technique of §13 (above). 

We now show that for e small enough the projection property is valid, or that 
any arbitrary (say) unit vector T of ©Q has a positive projection on one or 
more vectors of the total set {W}. For if T lies wholly in the ©2s projection, 
the positive dependence of {V}2s is sufficient. On the other hand if T has a 
non-zero projection in some other space (&û]mll>n then for e small enough some 
element of {Wj ltj (being sufficiently close in direction to an element of {V} hj), 
must have a positive projection on T. By compactness, a single e should achieve 
this uniformly for all directions of T. 

We next show that for e small enough, the independence property is valid, 
or any Q vectors of the set {W} are linearly independent. Consider first the 
projection vectors {V}. Clearly any linear relationship among vectors in {V} 
must be decomposable into the sum of linear relationships among vectors of the 
individual sets {V} hj and {V}2s (lying wholly in the corresponding projections 
(gdimfz.j] a n ( j (gp) Now by continuity this will be true for vectors sufficiently 
close in direction to the vectors of {V}. The {W}zi:?- immediately meet this 
condition when e is small enough (by our choice of the units U). The {W}2s 

will also meet this condition if at the same time that we make e small we stretch 
each of the 25 coordinates in ©2s to infinity sufficiently slowly so as not to ruin 
the approximation of {W} hj to {V} hj. This will accentuate the ©2s projection 
of the fixed vectors {W}2s and (effectively) permit them to approximate {V}2<s. 
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Thus any linear relationship among vectors of the set {W} will imply such 
relationships among vectors in the individual sets {W}2S or { W } ^ which, as 
we saw earlier, are trivial, by choice of {U}, for e small enough. Q.E.D. 

Now the existence of Q + 1 positively dependent vectors, chosen from the 
]£(1 + dim[/, j]) + (2s + 1) vectors {W}, is assured by a general convexity 
argument (12, p. 265), but in practice the difficulties in exhibiting these Q + I 
vectors are, as in the real case, almost prohibitive. (Regrettably, our earlier 
bibliography failed to list the work of Carathéodory (10) and Steinitz (15) 
who seem to have used similar convexity arguments, in a different context. 
The method of approximating projections, so natural with Dirichlet's theory of 
units (5), seems to have not been used previously.) 

15. Quadratic and cubic modules. The question of stability in a totally 
real module has already been answered in Part I (12, p. 269). For complex 
modules the answer becomes extremely involved as the degree n increases. 
We carry the investigation only as far as n = 3. 

Starting with quadratic (complex) modules, we find that stability requires 
first of all that the norm assume its minimum at three ( = (? + 1) values (and 
their negatives), lying on a circle with center at the origin. This shows the 
lattice to be equivalent under rotation to the equilateral lattice. Thus the 
only stable quadratic (complex) modules are given by the module pO, where p is a 
fixed integer and O is the set of all integers, in R(exp 2wi/3). 

In the case of cubic modules with one real and two complex conjugates (n = 3, 
r = 1, s = 1), we find, as indicated earlier without proof (12 p. 269), that all 
such modules have stable norms. To see this we start with the observation that 
the order O of 9J? has one fundamental unit w = (wh w2, Wz). Now w2 is not 
real nor is any power of w2 real, since the only real numbers in a complex cubic 
field are rational. This shows that the argument of w2 is incommensurable 
with 2iry and therefore the directions of the complex vectors w2

m, (m — 0, 
± 1 , ± 2 , . . .) are everywhere dense mod 2w. Thus for every z0 of minimal 
norm, the set z = z0w

w has the same norm while the projections Ri,2[z], R2,i[z], 
R2s[z], each in two-dimensional space, are everywhere dense with respect to 
direction, thus establishing the positive span and stability. (For an illustrative 
stability configuration see (7).) 

When n > 3 the criteria are dominated by the occurrence of units and 
combinations of units whose arguments are commensurable with 2TT. Here, 
the subject of the geometry of numbers must await more results in algebra. 
We shall, however, give such a case as the final illustration. 

16. Cyclotomic field. We conclude by proving the stability of the integer 
module in KN = R (exp 2-iri/N) if and only if N is square-free. Here we note that 
the arguments of all units u are commensurable with 2w (14, p. 334). In fact, 
denoting the conjugate-complex of u by u, we find u/u is always a root of unity 
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lying in KN hence a positive or negative power of (f = ) exp2iri/N. In this 
section <£(iV) = nt the degree of KN over R. 

First we dispose of the case where N has a square factor, say p2, for £ a prime. 
Consider any n + 1 ( = 2s + 1) projection vectors R2s[u] for n + 1 units u ; 
we shall show that such a set of vectors can never be positively dependent. 
For the 5 complex coordinates of R2s[u] (see equation (13.34)) are the con­
jugates of some positive or negative power of f. Thus if we write out any n + 1 
powers of f we find that some (n/p) + 1 of them belong to the same residue 
class module p and are therefore linearly dependent (with rational coefficients), 
by virtue of the fact that the cyclotomic equation of degree n, defining f, is 
really an equation of degree n/p in fp. Hence, by conjugates, a linear (rational) 
dependence exists among a proper subset of any n -f- 1 vectors R2s[u], excluding 
positive dependence. 

From now on, we assume N is square-free, hence necessarily odd (and greater 
than 3 for convenience). We build the positive dependence from the relation 

(16.1) E r - n(N) = 0 

where the ak are the n( = <l>(N)) residue classes relatively prime to N, and 
v(N) is the Moebius inversion function. We then take the 2s + 1 units (of which 
one conjugate is indicated) : 

U\ = r (6 = 1, 2, . . . , n), 

(16.2) u[n+1) = 1 Un(N) = - 1, 

= ( i - r ) " i f M W = + 1 , 

(since 1 — f is a unit now if and only if N is no prime power). We further see 
that 

u[k)/uf = r (* = 1 , 2 , . . . , » ) , 

tt?+i)/w(r+i) = - p(N), 
(16.3) 

, ( J f e ) l 

and hence from (16.1) 

(16.4) S R2 5[ua )] = 0. 

Now equation (16.4) asserts positive span in the u2s11 projection once we 
know that all linear relations among R2<s[u

(*)] are proportional to the relation 
(16.4). Otherwise expressed, we assert there is only a trivial relationship among 
the R2s[u

(À°] if k takes the values 1 < k < n. Assume, to the contrary, that the 
system 

(16.5) Ê Akr
ai = 0 l<k, j<n, 

has a real non-trivial solution in Ak. Then a relation must exist where the Ak 

belong to KN and (say) A\ = 1. By applying the Galois group operations to 
(16.5) we derive a system in which the Ak are rational and not all zero. Thus 
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the relationship (16.5) contradicts the fact that f and its conjugates fa* (k = 1, 
2, . . . , n) provide a (normal) basis of KN. (This last result is best known 
(14, p. 351) when TV is prime; when N is composite but square-free, the direct-
product field decomposition extends the result). 

Having disposed of the u2s" projection, we must show that the [I, j] pro­
jections, (see equation (13.32) above), are positively spanned. As in the begin­
ning of §11 (above), we can reduce the problem to the following: 

Let S be any non-identical automorphism of KN over the rationals, distinct from 
i—* — i, then five units u{h) (1 < h < 5) can be found for which the five vectors 
Rs ( /° = (uih)/u(h)S, u{h)/u{h)S) are positively dependent. Here 5 is given by the 
transformation : 
(16.6) S: f -> f ' (g, N) = 1, g ^ ± 1 (mod N). 

Then we can take as the five units u{h) = f, f_1, fa, f_a, 1 respectively, where a 
is chosen as a function of g in such a manner that Ks

(h) are positively dependent. 
The specific details are tedious and are omitted as they have no bearing on the 
square-free nature of N but rather depend on the "small gap" type of argument 
used to determine Mi in §11. 
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