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ON THE DEFINITION OF C*-ALGEBRAS 11
ZOLTAN MAGYAR AND ZOLTAN SEBESTYEN

0. Introduction. The theory of noncommutative involutive Banach
algebras (briefly Banach *-algebras) owes its origin to Gelfand and
Naimark, who proved in 1943 the fundamental representation theorem
that a Banach *-algebra # with C*-condition

(C*)  lla*all = llal* Va € %

is *-isomorphic and isometric to a norm-closed self-adjoint subalgebra of
all bounded operators on a suitable Hilbert space.

At the same time they conjectured that the C*-condition can be
replaced by the B*-condition.

(B*)  lla*all = [la*||llall Va € &.

In other words any B*-algebra is actually a C*-algebra. This was shown by
Glimm and Kadison [5] in 1960.

Further weakening of the axioms appeared in a paper [2] by Araki and
Elliott in 1973 by proving that the C*-condition and the B*-condition
also, if continuity on involution assumed, imply the submultiplicativity of
a linear and complete norm on a *-algebra. They asked if it is enough to
assume (C*) and (B*) only for normal elements and the continuity of * in
the second case. A recent survey of some developments is presented by
Doran and Wichmann in [4].

The second named author proved in [9] that

(SC*) la*al| = |lal? Va € #

together with (C*) for normal elements imply (C*); in [11, 12] that every
C*-seminorm is automatically submultiplicative. For further weakening
([11] ) see Theorem 5. It was also claimed to prove ( [10] ) that continuity
of the involution can be dropped with respect to the (B*) assumption and
that

(SB*) lla*all = lla*|| llall Va € %
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together with (B*) for normal elements are enough as well. However, G. A.
Elliott has pointed out in his review an error in the proof in [10], namely
on line 4 of page 212.

Our purpose is to give a complete proof of these statements in a rarely
detailed manner so that this paper serves as a continuation of [10] without
any reference to that. The ground of our treatment is [11] where further
localization of these properties appeared, namely to commutative
selfadjoint *-subalgebras, which are generated by one selfadjoint element,
say h = h* € B, denoted by (h). Denote by £ the complex polynomials in
one variable and without constant term, thus

(LC*) lla*dll = llal*> Ya = P(h),h = h* € B, P € P,
(LB*) |la*dl| = |la*|| llall Va = P(h),h = h* € B, P € P

are the corresponding local (C*) and local (B*) properties of a norm (or
seminorm) on a *-algebra #4. Note that a norm (or seminorm) on a
*-algebra denotes always a linear norm (or seminorm) except its
submultiplicativity is assumed separately, for example in case of a Banach
(or C¥*)-algebra. Moreover, we use [3] without any reference.

The remainder of this paper consists of five distinct sections. Section 1
is due to the first named author and contains a detailed analysis on the
spectrum of a selfadjoint element 4, actually that it is purely real, in a
Banach *-algebra provided such a norm p exists for which

p(a*)p(a) = r(a*a)

holds for any a in (h), where r denotes the spectral radius (Theorem 1).
Section 2 is a simple reformulation of results in [2] with some
simplification in its proof (in Theorem 2).

Theorem 3 of Section 3 is taken from [11] and is a strengthened version
of a statement included in [2] which serves as a ground for our main result
obtained in Theorem 4 of Section 4. Section 5 is an application of
Theorem 4 to the seminorm case and contains a simple counterexample
for B*-seminorms.

1. Hermiticity in a Banach *-algebra.

THEOREM 1. Let h be a selfadjoint element in a Banach *-algebra 8 with
spectral radius r. Assume there is a norm p on {(h), the *-subalgebra
generated by h in %, such that

(1) p(a*)p(a) = r(a*a) Va € (h).
Then h has purely real spectrum, that is
Sp(h) € R.

The proof will consist of two different parts. Part I contains
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independent propositions, while in Part II we shall prove the statement
utilizing the result of Part L.

In what follows we shall say that a set K in C, the complex plane, is a
cross if there is a real number s so that

K< RU{s+ irrt € R}

A set K of C is said to be symmetric if it is stable under conjugation, that
isze€ KVz € K.

Part I. Let K be throughout this part a symmetric non-void compact
subset of the complex plain. Denote the customary sup-norm in C(K) the
complex valued continuous functions on K, by r. Define an involution (*)
on C(K) by setting

f*z) =fz) VzeKkK

which is correct because of the symmetry of K and norm-preserving as
well. Let

A ={pygpr € %}

be the *-subalgebra in C(K) of the complex polynomials on K without
constant term. Suppose further that a seminorm p is given on A with

Py p(f*p(f) = r(f¥) Vf € A

We shall prove that the existence of such a seminorm implies that the
shape of K is very special.

ProrosITION 1.1. Let B be the norm-closure of A in C(K) then p has a
unique continuous extension to B, denoted by p too such that (P1) remains
valid and

(P2) p(h) =rth) Vh=h* € B
(P3) p(a) =2r(a) Va € B
will also hold.
The easy proof is omitted.
ProrosiTION 1.2. K is a cross.
Proof. Suppose the contrary. We shall show

p(f) + p(g) <p(f+ g) forsomef ginB

contradicting the subadditivity of p. Denote by C (resp. 8) the maximum
of K of |z| (resp. Im z). Note that C, 8 > 0 because K is symmetric and is
not a cross. Let « € R be such that & + i € K and denote w; = a + if,
w, = w, € K, m = |w|l.
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LEMMA 1.3. For any n € R there are a, b in B such that
(1) r(a*a), r(b*b) = C*
2) r(a) = r(b) > n
(3)  Ibw) | = 1b(wy) | = m

@ Jaw)| = %r(a)

5)  laoe)| <.
Proof. Put
a(z) = z - exp(—it(z — a)),
b(z) = z - exp(—it(z — a)?),

where 7 is real. Then a,, b, are in B for any ¢. Since K is not a cross there
are real y and § # 0 such that

a*v,0%*u =y +i8 €K,

b,(u)) | = lujlexp2t(y — @)d)
while

b)) | = |u,| exp(—2t(y — a)8)

where (y — @) # 0 and %, € K. Hence thereis at € R with r(b,x) > n
and let b = b, with such a 7. Since

la,(w)) | = m - exp(tB),
la,(wy) | = m - exp(—1B)

there is a real r with
m
la,(wy) | < 3 r(ayg) > r(b).

With such a ¢, let
_r(b)

a=——"—a,.
r(arlk) 1K
It is easy to prove (1) - (5) for these a, b because of
r(a x) = C exp(tp).
LEMMA 1.4. Assume for an a € B that

(6) r(a*a)”2 =C= La)
2
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holds. Then we have

) 4C?
(7N min(p(a), p(a*)) = —

r(a)
Proof. Since p is seminorm (P2) implies
p(a) + p(a*) Z p(a + a*) = r(a + a*).
Choosing z in K with r(a) = la(z) | we have by (6)
la*(2) Ir(@) = la*(2) la@@) | = | (a*a)(2)| = C*,

¢ _C_ra
r@) 2 4

la*(z) | =

k)

and thus

r@ + a*) Z la(z) + a*(2)| Z la(2)| — la*(2) |

= r(a) — o =5
We have then
pa) + p(a*) = ’(2—“),ma*)p(a) = r(a*a) = C°
by using (P1) and (6) too. Hence
- C? _ ac?

(@) P = @ p@) - @)

since

r@)

max(p(a), p(a*)) = 2

follows from the first inequality.
To prove Proposition 1.2 let a, b € B be such that (1) - (5) hold with
n=2-C+ (10Cy m 2

Let further f (resp. g) be that from a and a* (resp. b and b*) for which p is
less. Lemma 1.4 implies then
4C? 8m? m*
+ =E2-— = < .
Py pe) n ~ 1000C  100C

On the other hand (P1) and (2) - (5) give us
p(f+ gp(f* + 8% =r((f* + g/ + &)
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Z[(f* + g+ W)

m

(gr(f) - m)(m ~ 5) = Z’—Czr(f)

I

while (P3) and (2) imply
p(f* + g% = 2r(f* + g*) = 4r(f)

and thus
m2 2
+g)=—> > + ,

PU+8) = 12> Tooe = P T
the desired contradiction follows. The proof of Proposition 1.2 is
complete.

ProrosiTioN 1.5. If card(K \ R) = 2 then
K n R C {0}.

Proof. Suppose K \ R = {w, w}. Since C \ K is connected, by Runge’s
1

theorem there are polynomials P, converging in C(K) to — - Iy, y, where
w

l¢,,y denotes the characteristic function of the one point set {w}. Hence
2P, (z) converges in C(K) to 1g,y, 1¢,y 1s in B.
Then by (P1)

0 = r(0) = r(1g,y1t.y = pUgp(E,y)

and hence one of the functions 1y, and 1f, 3, say f, is such that p(f) = 0.
This implies

p(f+ g =p(g VgeE X
Applying this to g = f* we infer by (P2) that p(f*) = 1. Let h(z) = z on

K and
= ——I—(h — wlg,y — WIE, -
3r(h)
Then k is self-adjoint and r(k) = 1/3. Further,
k-f=k-f*=0.
Thus

r((k + )*k + £)) = r(k) = r(k)* = < - r(k).

W | =

On the other hand by the above observation
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ptk + f) = p(k) = r(k)
while
plk + f*) = p(f*) — pk) =1 = r(k) > %
Thus we infer by (P1) that r(k) = 0. But it is equivalent to K N R € {0}
(by the definition of K).
CoroLLARY. 1.6. If p is a norm and
card(K \ R) = 2
then K € R.
Proof. Suppose to the contrary that
K\ R = {w, w}.

Then by Proposition 1.5, K is finite and therefore there is an f in A4
(namely f = 1;,y) such that f # 0, f* # 0 but ff* = 0 contradicting (P1)
in case of a norm.

Part I1. Observe that if g € (h), g* = g then (g) € (h) and therefore
the conditions assumed for 4 (in the theorem) also hold for g. Thus the
consequences of these conditions (formulated with #) remain true for g,
too.

If P € & we write

®)  P*z) = P(2).

In other words if
n .
P(z) = 2 az'
1
then
n )
P*z) = 2, az'.
1
Hence it is clear that P(h)* = P*(h).
In each *-algebra Sp(a*) = Sp(a) for any a; hence Sp(#) is symmetric.

(i) easily implies that p(g) = r(g) if g* = g € (h) and p = 2r on (h)
because (*) is isometric with respect to r. Hence r is a norm on (k). Let

¢:(h) = C(Sp(h)), $(P(h)) = Pigyp),

This definition is correct, moreover ¢ is norm-preserving with respect to
( (h), r). Indeed, it follows from the well-known fact
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Sp(P(h)) = P(Sp(h)).

Furthermore ¢ is a *-homomorphism onto

A = {Psypy P € 7}

(endowed with involution (8) ).
Thus p o ¢ ' is a norm on A satisfying (P1). Therefore Proposition 1.2
and Corollary 1.6 are available and we have

9) Sp(h) is a cross
(10)  if card(Sp(h) \ R)) = 2 then Sp(k) € R.

Suppose that Sp(h) & R. Then by (9) and (10) there are w,
w, € Sp(h) \ Rsothatw, # w,w, # w,and Rew, = Rew,. ThenVs €

R\ {0}

Re(sw%) #* Re(sw%)
and if s is small enough then

W, +sw%, wy + sw% € C\ R
Thus Sp(h + sh?) is not a cross with suitable real s, contradicting (9)
(which is available to g = h + sh?). Thus Sp(h) S R, and the proof of
Theorem 1 is complete.

2. The commutative case.

THEOREM 2. Let (&, r) be a commutative C*-algebra, and let p be a
seminorm on it satisfying

(P1)  p(a*)p(a) = r(a*a) Va € .
Thenp = r.

Proof. It is easy to infer from (P1) that
(P2) p(h) =rth) Vh=h* e
(P3) p(a) = 2r(a) Va € A

We treat first the finite dimensional case. Consider C" as a C*-algebra
C(T), where T = {1,...,n} is a discrete space. In this special case we
write g (resp. s) instead of p (resp. r) and one bracket instead of double
bracket, e.g.,

s, oy x,) = r((xyp...,x,)) =max{|x;i=1...,n}
Case 1. = C% Let
D={zeC;lzl =1} and

D RY, f(z) = q(z, ).
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It is enough to prove that f(z) = 1 Vz € D, because that implies

q(x,y) = s(x, ) for|x| = [yl

(since g is a seminorm) and it is enough by the symmetry. Let0 = A = 1,
p =1 — A, then

Sz, + pzy)) = gAz; + pzy, A + p)
= M@) + () (24,2, € D).
By (P2) ¢(1, 0) = s(1, 0) = 1 and hence
q(z, 0) = |z| for every z € C;

thus

@) + f(z)

q(zy, 1) t q(—z5, —1)
Zq(zy — 2, 0) = |z, — z,].
From (P1) we have f(z) - f(Z) = 1. Thus the following situation stands:

(1) f is a non-negative convex function on D
Q) @) + f(z) Z Iz — 2z,
GV f@) - fz) = 1.
We will show that (1), (2), (3) imply f = 1.
Step 1. f(z) = 1if z is real. This is clear from (3) and the non-negativity

of f.
Step 2. f(z) = 1 + 2(Im z)? if |Im 2| is small (e.g. [Im z| = 1/2 is
enough). Let

1
Imz =5 (Iblé—),
2

z, = —V1 — b +ib,

= V1-8 + .

Let d = |1 — Z||. Then by (2) and step 1,
f@)zd—1,

as well as

f@zEh+ 1 —f(-)=d-1,
and hence by (3)
< |
f(zl)’f(zz) = ﬁ

But z is a convex combination of z; and z,, hence
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< |
f6) S —.

Thus our statement follows from
1 2
— =1+ 2
d— 1

which is true for small b.
Step 3. f = 1. Suppose to the contrary that f(w) < 1 wherew = a + ib.
By step 1, b # 0. Then by the convexity and f(a) = 1 (step 1) we infer

fla—iAb)y 21+ X1 —f(w)) (A €]0,1])

and this contradicts step 2 for small positive A.
(3) and step 3 clearly imply f = 1.

Case 2. o/ = C". If
t=1(,....1,_) € R and
r=(ry,....r,_) €10, 1"}
then we write
f(t, r) = q(r, exp(it)), ..., r,_, exp(it,_,), 1).

It is enough to prove that f = 1. Since q is a seminorm fis convex in r. By
(P1) we have

f@, nf(—tr)=1
It follows from these facts that the set
H ={re[0, 11" f(,r) =1}
1s convex. Indeed, if
fu)y =1=f@v),
then
S(=tu) =f(—1,v) =1
and hence if w = At + pv then
f(—=t,w)y=1, f@t,w) =1,

thus f(z, w) = 1.

We will show that if » € [0, 1" ' and \r € H, (0 < A\ = 1) then
r € H,. Suppose the contrary. Then one of f(z, r) and f(—1, r) is less than
1. On the other hand f(z, 0) = 1 for every ¢ (by (P2) ). Thus, by convexity,
f(t, Ar) or f(—1t, Ar) is less than 1 contradicting Ar € H,.

Let
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aj =8, a’ =(a) ....a,_ ).

We know from Case 1 that ¢/ € H, for every t, j. Now if r = (r|,...,
r,—) € [0, 1" ! then

n—1

r=0-2r)0+ Erja/
|

shows r € H, if 2 r =1, and
1 n—1

Vg
=2 oa
2 T2

shows it if >, > 1.

General case. By the commutative Gelfand-Naimark theorem we
consider &/ as C(T'), where T is locally compact T, space. Let y|,...,
», € & so that

Y =0, r(yj) =1, r2 y) =1L
Fixing them let

q(xp, ..., x,) = p(2 X))

where x; € C. This ¢ is a seminorm on C". We assert that

s(xp,...x,) = r(2 X, ;)
From the conditions about yj’s it follows that
> x;y;(t) € co(0, xy, ..., x,)
in C for every ¢ and that there is ¢, such that yj(tk) = SJ-k and hence
2 xjyj'(tk) = Xg-
Thus
re x;y;) = max{ lle,j =1,...,n}
= 5(x},...,X,).
Since y; is self-adjoint,
2 )ijj = (E xjyj)*-
Thus
q(x)q(x*) = p(Z x,y,)p((Z x;y))*)
= r(z xjy/'(z ijj)*)

=rC )cjyj)2 = s(x)* = s(x*x).
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Therefore by case 2, g(x) = s(x), that is
P xy) = q0x) = s(x) = 1 x,p)).
Because of the continuity of p it is enough to show that Ve and
Yw € Cy(T) 3x, y; (with properties above) for which
riw — 2 xy) Se

Let G, ..., G, be an open covering of the compact set Sp(w) in C so
that

(a) 0€G,0&G, fork>0
(b) 3Ix;, € G, x; = O such thatif z € G, then |z — x| = ¢
(¢) Vk>03z, € Sp(w) z, & U {G;i # k}

(that is, each G, is “necessary”). Let f;,...,f, be a partition of unity
under the covering G, ..., G, on Sp(w), and

Ve =frow (k=1...,n).
Then it is clear y, € &/ for k > 0 (from (a) ) y, = 0,
and, for k > 0, r(y,) = 1 (from (c)),

w—ixkyk=(z—éxkfk)ow

1

and
> xJi| = Z(Efk) -2 xS
1 0 0
= %fk(z — X)| S e
(from (b) ).

3. Continuity of seminorms on C*-algebras.

THEOREM 3. Let (%, ||| ) be a C*-algebra and let p be a seminorm on it
satisfying

i pPHm) =PI Yh=h*e€ BPecP
Then p is contractive on %, that is

(i) pQ@) = |ld| Va € %
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Proof. Consider a new norm on % defined by
(i) g(a) = max(p(a), llall) Va € %,
and observe that
(i) q(P(h)) =IlIP(W)|| VYh =h* € B P € P
Furthermore we can state
()  lldl = q(a) = 2llall Va € %,

in other words that ¢ and |||| are equivalent norms on 4. Our goal is to
prove that ¢ and ||| are the same. For this reason fix an element a in %
and denote by &/ the C*-subalgebra in & generated by a and a*. Taking
@**, |Ill) and (&/**, q) we get isomorphic Banach spaces being the
norms ||| and ¢ equivalent. Moreover, (&/**, ||/| ) as the second dual of
the C*-algebra (& ||'||) is a W*-algebra and isomorphic to the weak
closure U(«/)" of U(«/) where U is the universal *-representation of 2/ on
a Hilbert space, say /# Here the weak operator topology on U(#)" is
identical with the weak* topology of &/ ** (see [8]).

On the other hand we shall consider g as a norm on (&**, |I)
equivalent to the ground norm ||-||. To prove the identity of these norms on
&/ ** (and hence on &) it is enough to show (see [6] ) this:

(iv) qlexp(th)) =1 Vh = h* € o/ **,
Assume first 0 = h € &/ and consider

a*a + aa*
h,=h+ ———
n

a sequence of strictly positive elements in & with a being a generating

element. Hence U, has a dense range in 5 [1] and U,l,/ " converges as

m — oo strongly (hence weakly) to the identity operator (as well identity
element 1 in &/ **) of the Hilbert space £ Now ( ( (h,) )**, ||l]) is identi-
cal with the weak* closure of (%) in.&/**, whence 1 is in ( (h,) )**, the
norms ||-|| and g are identical on which such that

q(exp(ih,)) =1
follows for any n = 1,2, .... Since

1
q(h — h,) = —q(a*a + aa*) > 0 as n —> oo
n

we have

g(exp(ih)) = lim g(exp(ih,)) = 1.

If 0 = h € &/** we can choose a net 4, in &/ with strong limit 4 and such
that
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0=h =|All-1

Thus exp(ihj) tends to exp(ih) strongly, hence weakly and thus finally in
the weak* topology.
Since g(exp(ih;)) = 1 as before, we have

q(exp(ih)) = 1

also.
Finally in case h = h* € o/** we write

k =h+ 2n7 - 1,
with such integer n for which

—2nm = min(¢; ¢t € Sp(h) ).
Then we have

0=k eL* and exp(ih) = exp(ik)
whence

q(exp(ih) ) = q(exp(ik)) = 1.

Proving (iv) we get g(a) = |lal| and thus the equality of ¢ and ||| since a
was an arbitrary chosen element in %. The proof is complete.

CoroLLARY 3.1. Let p be a seminorm on the C*-algebra (%, ||'ll)
satisfying (i) with equality for P(h) = h and

(SC*) p(a*a) = p(a)* Va € %.
Thenp = |||.
Proof. Using Theorem 3 we have at once
p@a)? = |lal® = lla*all = p(a*a) = p(a)’ Va € B

proving the statement.

4. The general case.

THEOREM 4. Let o/ be a *-algebra, and let p be a norm on it satisfying
(SB*) p(a*a) = p(a*) - p(a) Va € o
(LB*) p(a*a) = p(a*) -p(a) Va = P(h),h = h*, P € &

Then (4, p) is a pre-C*-algebra (that is, its completion is a C*-algebra).

Proof. The following identity holds in a *-algebra:
(1) dpx = (x + y)*x + ¥ + i(x + PR+ iy?)

~(x = Y — yY) = ix = iy)Hx — iv¥).
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This and (SB*) and the subadditivity of p imply

(2)  4p(yx) = Apx*) + p(»))p(x) + p(y*)).
Writing

X = (p(v*)l/z + l)(p(v)]/z + l)u’
n n

y = (p(u*)”2 + l)(p(u)”2 + l)v
n n

in (2), we get by n — oo
B3)  pOuw) = (p)' PP + p)Ip ).
Define a new norm on &/ by setting
4) llall: = 4 max(p(a), p(a*)) Va € &,
such that we infer
(5)  llabll = llall - 116ll, lla*|l = llall, p(a) = llall Va € o

Let % be the completion of &/ with respect to ||||. There are then unique
continuous extensions of * and p to #4. Denote these extensions by * and p,
too. This p 1s now a seminorm on %. The multiplication, the involution
and p are continuous on (%, ||| ). (SB*), (LB*) and (4) remain valid on %,
furthermore we can sharpen (LB*) into

(LB1) p(a*a) = p(a*)p(a) VYa € (h),h = h* € .

Let r be the spectral radius in %. Since % is a Banach algebra, we
have

6) r(a) = lim ||d"]|'""" Va € %.
Consider a self-adjoint 4 in 4. Then by (LB*)
Py = p¥ Y = .. = ph),
and hence (by (4) )
W1l = 4 - p(ny”
so that by (6) we have
7 rth)y = p(h) VYh = h* € @
This and (LB1) give
(8) p(a*)p(a) = r(a*a) ifa € (h),h = h* € %

If h = h* € &/ then p is a norm on (k) and hence by (8) we can apply
Theorem 1, and infer that Sp(h) € R.
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Therefore r(sin h) = 1, r(cos h — 1) = 2 via the functional calculus.
But sin h, cos h — 1 are selfadjoint since % is a star-normed algebra and
hence by (7), (4) we have

Isin hl| = 4, [lcos h — 1]| = 8,
hence also
9 " =1 =12 Vh=h* e«

Since the selfadjoint part of &/is dense in that of 4, (9) remains valid for #
too. This implies that |la||, = r(a*a)'’? (a € #) is a C*-norm on %,
equivalent to ||| (see [7]). But

r(a*a) = p(a*a) VYa € %
by (7) and hence
(10)  llall, = p(a*a)'* Va € &.

If h = h* € %, ((h), IIll,) is a commutative C*-algebra and Theorem
2 is available by (8) and hence we have p = ||||. on (h). Thus Theorem
3 shows that

(1) p(a) = llall, Va € %.
Then by (10), (11), (SB*) we have
lall} = p(a*a) = p(a*)p(a) = lla*Il,llall, = llall?
that is
(12)  p(a*)p(a) = lla*|| lall -
This shows that p(a) < |al|, would imply |la*||. = 0, but
lla*|l. = llall, > p(a) = 0,

a contradiction.

5. Applications to seminorms.
THEOREM 5. Let p be a seminorm on the *-algebra & satisfying
(SC*) p(a*a) = p(a)* VYa € B
(LC*) p(a*a) = p(a)’> Va € (h), h = h* € B.
Then p is a (submultiplicative) C*-seminorm.
Proof. Define a new seminorm by
(1) q(a) = max(p(a), p(a*)) Va € X

we have at once (SC¥*), (LC*) for q because p = ¢ locally (see [12] ) and
moreover
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) 4@ = qa) Yae B

The polarization identity (1) in Section 4 gives now
4g(yx) = 4q(y) + q(x*))* = 4(q(x) + q(») )

such that replacing y (and x) with

b
%  faa—2

1 1
q(a) + - qb) + -
n n

and tending with » to infinity, we get
(3) q(ab) = 4q(a)q(b) Va, b € %.
The kernel
K, = {a € %#4(a) = 0}
is now a *-ideal of % such that the quotient space B, = B/K, s a
*-algebra with norm
@) la+ qul =gqa) Yae 4

preserving (SC*), (LC*) and (2) such that (§B*) and (LB*) are trivially
satisfied. Theorem 4 says that %, is a pre-C*-algebra and in other words
that ¢ has the C*-property and is submultiplicative. But

p(a)’ = q(a)’ = q(a*a) = p(a*a) = p(a)’ Va € B
implies that p = ¢ and the theorem is proved.
THEOREM 6. Let p be a seminorm on the *-algebra % satisfying
(SB*) p(a*a) = p(a*)p(a) Va € B
(LB*) p(a*a) = p(a*)p(a) Va € (h),h = h* € #
(NI) p(a) = 0impliesp(a*) =0 Va € %
Then p is a (submultiplicative) C*-seminorm.
Proof. The polarization identity gives us as before (3) in Section 4
() p@h)’? = p@)p®")? + pa)p®)'"?
Va, b € %.
It follows that p(a) = 0 or p(b) = 0 implies p(ab) = 0 and thus
K, = {a € #p(a) = 0}

the kernel of p is a *-ideal in %. The quotient space %, = %/K, has a norm
by defining

©) lla+ Kl =pa) Vac%
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which preserves (SB*) and (LB*). Theorem 4 shows that %’p 1s a
pre-C*-algebra, that is p is a (submultiplicative) C*-seminorm.

The following example shows that Theorem 6 does not remain true
without (NI).

Example 7. C* is *-algebra with coordinate-wise multiplication and with
involution defined by

7 w, z2)* = (z, w) Vw,z € C.
Then
®)  pw,z) = VwzeC
defines a multiplicative B*-seminorm which is not a C*-seminorm.
Proof. Since p is trivially multiplicative it is B*-seminorm too, but
p((1,00%(1,0)) = p((0, 1)(1,0)) = 0 # 1 = p((1,0))’
p((1,0)*) = p((0, 1)) =0+ 1=p((,0)).

Remark. The above example shows also that Theorem 1 can not be
sharpened by writing “p is a seminorm” instead of “p is a norm”. Indeed,
the above example satisfies these weaker conditions, but (—i, i) is a
self-adjoint in it however its spectrum is not real.
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