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ON THE DEFINITION OF C*-ALGEBRAS II 

ZOLTAN MAGYAR AND ZOLTAN SEBESTYEN 

0. Introduction. The theory of noncommutative involutive Banach 
algebras (briefly Banach *-algebras) owes its origin to Gelfand and 
Naimark, who proved in 1943 the fundamental representation theorem 
that a Banach *-algebra Se with C*-condition 

( C ) \\a*a\\ = \\a\\2 Va e a 

is *-isomorphic and isometric to a norm-closed self-adjoint subalgebra of 
all bounded operators on a suitable Hilbert space. 

At the same time they conjectured that the C*-condition can be 
replaced by the 5*-condition. 

(B*) ||a*fl|| = ||fl*|| ||a|| Va G SU. 

In other words any 2?*-algebra is actually a C*-algebra. This was shown by 
Glimm and Kadison [5] in 1960. 

Further weakening of the axioms appeared in a paper [2] by Araki and 
Elliott in 1973 by proving that the C*-condition and the 2?*-condition 
also, if continuity on involution assumed, imply the submultiplicativity of 
a linear and complete norm on a *-algebra. They asked if it is enough to 
assume (C*) and (B*) only for normal elements and the continuity of * in 
the second case. A recent survey of some developments is presented by 
Doran and Wichmann in [4]. 

The second named author proved in [9] that 

(SC*) \\a*a\\ ^ IWI2 Va e S 

together with (C*) for normal elements imply (C*); in [11, 12] that every 
C*-seminorm is automatically submultiplicative. For further weakening 
( [11] ) see Theorem 5. It was also claimed to prove ( [10] ) that continuity 
of the involution can be dropped with respect to the (B*) assumption and 
that 

(SB*) \\a*a\\ ^ |k*|| |M| V Û G ^ 
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C*-ALGEBRAS 665 

together with (B*) for normal elements are enough as well. However, G. A. 
Elliott has pointed out in his review an error in the proof in [10], namely 
on line 4 of page 212. 

Our purpose is to give a complete proof of these statements in a rarely 
detailed manner so that this paper serves as a continuation of [10] without 
any reference to that. The ground of our treatment is [11] where further 
localization of these properties appeared, namely to commutative 
selfadjoint *-subalgebras, which are generated by one selfadjoint element, 
say h = h* G B, denoted by (h). Denote by ^ t h e complex polynomials in 
one variable and without constant term, thus 

(LC*) \\a*a\\ = \\a\\2 Va = P(h), h = h* G @, P G ^ 

(LB*) \\a*a\\ = \\a*\\ \\a\\ Va = P(h)9 h = h* G ai, P G » 

are the corresponding local (C*) and local (B*) properties of a norm (or 
seminorm) on a *-algebra 9S. Note that a norm (or seminorm) on a 
*-algebra denotes always a linear norm (or seminorm) except its 
submultiplicativity is assumed separately, for example in case of a Banach 
(or C*)-algebra. Moreover, we use [3] without any reference. 

The remainder of this paper consists of five distinct sections. Section 1 
is due to the first named author and contains a detailed analysis on the 
spectrum of a selfadjoint element h, actually that it is purely real, in a 
Banach *-algebra provided such a norm p exists for which 

p(a*)p(a) = r(a*a) 

holds for any a in (/*), where r denotes the spectral radius (Theorem 1). 
Section 2 is a simple reformulation of results in [2] with some 
simplification in its proof (in Theorem 2). 

Theorem 3 of Section 3 is taken from [11] and is a strengthened version 
of a statement included in [2] which serves as a ground for our main result 
obtained in Theorem 4 of Section 4. Section 5 is an application of 
Theorem 4 to the seminorm case and contains a simple counterexample 
for #*-seminorms. 

1. Hermiticity in a Banach *-algebra. 

THEOREM 1. Let h be a selfadjoint element in a Banach * -algebra @ with 
spectral radius r. Assume there is a norm p on (h), the *-subalgebra 
generated by h in 9S, such that 

(i) p(a*)p(a) = r(a*a) Va G (h). 

Then h has purely real spectrum, that is 

Sp(A) Ç R. 

The proof will consist of two different parts. Part I contains 
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666 Z. MAGYAR AND Z. SEBESTYÉN 

independent propositions, while in Part II we shall prove the statement 
utilizing the result of Part I. 

In what follows we shall say that a set K in C, the complex plane, is a 
cross if there is a real number s so that 

K ç R u {s + iv.t e R}. 

A set K of C is said to be symmetric if it is stable under conjugation, that 
i s z G ^ V z G ^ . 

Part I. Let K be throughout this part a symmetric non-void compact 
subset of the complex plain. Denote the customary sup-norm in C(K) the 
complex valued continuous functions on K, by r. Define an involution (*) 
on C(K) by setting 

f*(z) = J(F) Vz e K 

which is correct because of the symmetry of K and norm-preserving as 
well. Let 

A = {PlK:p e &} 

be the *-subalgebra in C(K) of the complex polynomials on K without 
constant term. Suppose further that a seminorm p is given on A with 

(P\) p(f*)p(f) = r(f*f) VfeA. 

We shall prove that the existence of such a seminorm implies that the 
shape of K is very special. 

PROPOSITION 1.1. Let B be the norm-closure of A in C(K) then p has a 
unique continuous extension to By denoted by p too such that (PI) remains 
valid and 

{PI) p(h) = r(h) \fh = h* e B 

(P3) p(a) ^ 2r(a) Va e B 

will also hold. 

The easy proof is omitted. 

PROPOSITION 1.2. K is a cross. 

Proof. Suppose the contrary. We shall show 

P(f) + P(g) < P(f + g) f o r s o m e / g in B 

contradicting the subadditivity of p. Denote by C (resp. ft) the maximum 
of K of \z\ (resp. Im z). Note that C, /? > 0 because AT is symmetric and is 
not a cross. Let a G R be such that a + ifi ^ K and denote Wj = a 4- //}, 
vv2 = vvj & K, m = \wA. 
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LEMMA 1.3. For any « e R there are a, b in B such that 

(1) r(a*a), r(b*b) ^ C2 

(2) r(a) = r(b) > n 

(3) \b(w,)\ = \b(w2)\ = m 

YYl 

(4) \a{w,)\^-r(a) 

YYl 

(5) \a(w2) | < - . 

Proof. Put 

at(z) = z • exp( —zï(z — a)) , 

bt(z) = z • exp( —//(z — a)2), 

where / is real. Then at\K, bt\K are in 5 for any t. Since Â  is not a cross there 
are real 7 and S ¥* 0 such that 

a * 7, 0 ^ w1 = y + /S G K, 

\bt(ux) | = |Ml|exp(2/(7 - cc)8) 

while 

|6 r(«,)| = 1̂ 1 exp(-2/(Y - a)S) 

where (7 — a)8 ¥= 0 and ûx e Â . Hence there is a / G R with r{bt\K) > n 
and let 6 = bt\K with such a /. Since 

\at(wx) \ = m - exp(//3), 

|a,(w2)| = m - exp(- r^) 

there is a real / with 

YYI 

\a,(wl) I < y . r(a,\K) > r(b)-

With such a ?, let 

'(«riff) 

It is easy to prove (1) - (5) for these a, b because of 

r(al]K) ^ C exp(*jB). 

LEMMA 1.4. Assume for an a e 5 ?/ÎÛ/ 

https://doi.org/10.4153/CJM-1985-035-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-035-7


668 Z. MAGYAR AND Z. SEBESTYÉN 

holds. Then we have 

(7) mm(p(a),p(a*))^ 
AC2 

r{a) 

Proof. Since p is seminorm (P2) implies 

p(a) + p(a*) è p(a + a*) = r(a + a*). 

Choosing z in K with /-(a) = |a(z) | we have by (6) 

\a*(z)\r(a) = \a*(z)\\a(z)\ = \(a*a)(z)\ ^ C2, 

a*(z) â ^ — ^ , 
r(a) 2 4 

and thus 

r(a + a*) ê |Û(Z) + 0*(z) | g |fl(z) | - \a*(z) \ 

We have then 

r(a) > r(a) 

/>(*) + />(**) â —,p(a*)p(a) = r(a*û) ë C2 

by using (PI) and (6) too. Hence 

C2 _ 4C2 

min(p(a), p(a*) ) ^ — 
max(/>(a ),/>(**)) ' ( a ) 

since 

max(/?(û),/?(û*)) g r-^-
4 

follows from the first inequality. 
To prove Proposition 1.2 let Û, Z? G B be such that (1) - (5) hold with 

n = 2 • C 4- (IOC)3 • m~2. 

Let further/(resp. g) be that from « and a* (resp. 6 and b*) for which/? is 
less. Lemma 1.4 implies then 

/ ^ ^ 4C2 ^ 8m2 m1 

P(f) + /Kg) = 2 • ^ < . 
J y 3 n 1000C 100C 

On the other hand (PI) and (2) - (5) give us 

P(f+ g)P(f* + g*) = r( ( /* + g*)(f + g) ) 
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§ ! ( / * + g*)(f + gXw,) I 

* (-r<J) - m)[m - - ) è —r(f) 

while (P3) and (2) imply 

p(f* + g*) ^ 2 r ( /* + g*) ^ 4 r ( / ) 

and thus 

' , , / + 8 ) a ^ > i ^ > " < / , + ' ' w ' 
the desired contradiction follows. The proof of Proposition 1.2 is 
complete. 

PROPOSITION 1.5. 7^card(AT \ R) = 2 then 

K n R ç {0}. 

Pr6>o/. Suppose AT \ R = {w, w}. Since C \ K is connected, by Runge's 

theorem there are polynomials P. converging in C(K) to — • l/w\, where 
w l 

lrwj denotes the characteristic function of the one point set {w}. Hence 
zPk(z) converges in C(K) to l jw j , l ^ j is in £. 

Then by (PI) 

0 = r(0) = r(\{w}\fw}) = p(\{w])p(\fw]) 

and hence one of the functions lr j and ljL}, say/, is such that/?(/) = 0. 
This implies 

P(f+g) =P(g) Vg G # . 

Applying this to g = / * we infer by (P2) that/?(/*) = 1. Let h(z) = z on 
AT and 

k = 3 ^ ) ( / Z " Wl{w] " S ? 1^> )" 

Then /c is self-adjoint and r(/c) ^ 1/3. Further, 

kf=k-f* = 0. 

Thus 

r( (* + / ) * ( * 4- / ) ) = r(/:2) = r(kf ^ X- • r(k). 

On the other hand by the above observation 
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670 Z. MAGYAR AND Z. SEBESTYÉN 

p(k + / ) =p(k) = r(k) 

while 

p(k + / * ) ^ />(/*) - />(*) = 1 - r(k) > ^. 

Thus we infer by (PI) that r(k) = 0. But it is equivalent to K n R c {0} 
(by the definition of K). 

COROLLARY. 1.6. If p is a norm and 

card(^ \ R) â 2 

/Aew # ç R. 

Proof. Suppose to the contrary that 

K\ R = {w, vv}. 

Then by Proposition 1.5, K is finite and therefore there is an / in A 
(namely/ = \{w]) such t h a t / ¥= 0 , / * ^ 0 but ff* = 0 contradicting (PI) 
in case of a norm. 

Part II. Observe that if g e (h), g* = g then (g) Q (h) and therefore 
the conditions assumed for /* (in the theorem) also hold for g. Thus the 
consequences of these conditions (formulated with h) remain true for g, 
too. 

If P e &>, we write 

(8) P*(z) =~W). 

In other words if 

n 

i 

then 

n 

i 

Hence it is clear that P(h)* = P*(h). 
In each *-algebra Sp(a*) = Sp(#) for any a\ hence Sp(/z) is symmetric, 

(i) easily implies that/?(g) = r(g) if g* = g e (/z) and/? ^ 2r on (/i) 
because (*) is isometric with respect to r. Hence r is a norm on (h). Let 

<t>:(h) ^ C(Sp(/0 ), W O ) = P|Sp(A). 

This definition is correct, moreover <f> is norm-preserving with respect to 
( (h), r). Indeed, it follows from the well-known fact 
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Sp(P(h)) = P(Sp(h)). 

Furthermore <f> is a *-homomorphism onto 

(endowed with involution (8) ). 
Thus/? o <#>-1 is a norm on A satisfying (.PI). Therefore Proposition 1.2 

and Corollary 1.6 are available and we have 

(9) Sp(/j) is a cross 

(10) if card(Sp(/z) \ R) ) ë 2 then Sp(/z) Q R. 

Suppose that Sp(/i) 5 R. Then by (9) and (10) there are w,, 
w2 G Sp(/*) \ R so that vv2 ^ w,, vv2 ¥= wv and Re w, = Re w2. Then Vs G 
R \ { 0 } 

Re(su^) # Re(su^) 

and if s is small enough then 

Wj + SWj, H>2 + ^W2 G C \ R. 

Thus Sp(/z + sh2) is not a cross with suitable real s, contradicting (9) 
(which is available to g = h 4- sh1). Thus Sp(/z) Q R, and the proof of 
Theorem 1 is complete. 

2. The commutative case. 

THEOREM 2. Let (sZ, r) be a commutative C*-algebra, and let p be a 
seminorm on it satisfying 

(PI) p(a*)p(a) = r(a*a) Va G jtf. 

Then p = r. 

Proof. It is easy to infer from (PI) that 

(P2) p(h) = r(h) VA = h* G J ^ 

(P3) />(tf) ^ 2r(û) V û G i 

We treat first the finite dimensional case. Consider C" as a C*-algebra 
C(T), where T = {1, . . . , « } is a discrete space. In this special case we 
write q (resp. s) instead of/? (resp. r) and one bracket instead of double 
bracket, e.g., 

s(x, , . . . ,xn) = r((xv . . . , * „ ) ) = max{ |xf.|; / = 1,. . . , « } . 

Case \.jtf= C2. Let 

D = {z G C; |z| ^ 1} and 

/ : Z ) ^ R + , f(z) = q(z,\). 
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It is enough to prove that/(z) = 1 Vz & D, because that implies 

q(x, y) = s(x,y) for |x| ^ \y\ 

(since q is a seminorm) and it is enough by the symmetry. Let O ^ À ^ 1, 
/x = 1 — X, then 

f(Xzl + /AZ2) = q(\z] + JUZ2, A + /x) 

^X/(z,) + «/"(z^ {zvz2 e D). 

By (/>2) ?(1, 0) = J ( 1 , 0) = 1 and hence 

q(z, 0) = \z\ for every z e C; 

thus 

/(z,) +/(22) = 9(z„ 1) + q(-z2, - 1 ) 

= <?(zl ~ *2' °) = lZl ~ Z2l-

From (PI) we have/(z) • f(I) = 1. Thus the following situation stands: 

( l ) / i s a non-negative convex function on D 
( 2 ) / ( z , ) + / ( z 2 ) ^ | z , -z2\ 
(3)/(F)-/(z) = 1. 

We will show that (1), (2), (3) imply/ = 1. 
Step l./(z) = 1 if z is real. This is clear from (3) and the non-negativity 

of/ 
Step 2./(z) ^ 1 4- 2(Im zf if |Im z\ is small (e.g. |Im z\ ^ 1/2 is 

enough). Let 

Imz = b ( | i | ^ 1 ) , 

z, = - Vl - Z>2 + /ft, 

z2 = Vl ~ b1 + /'/?. 

Let d = |1 — z,|. Then by (2) and step 1, 

/ ( i , ) ^ J - i, 

as well as 

f(z2) è |z2 + l\-f(-\) = d- 1, 

and hence by (3) 

/(z,),/(z2) =1 7 ^ T . 

But z is a convex combination of z, and z2, hence 
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/ (* ) ^ — — • 
d- 1 

Thus our statement follows from 

^ 1 + lb1 

d - 1 

which is true for small b. 
Step 3./=£ 1. Suppose to the contrary that/(n>) < 1 where w = a + ib. 

By step 1, b ¥* 0. Then by the convexity and f(a) = 1 (step 1) we infer 

f(a - i\b) g l + A(l - / ( H 0 ) (A e [0, 1]) 

and this contradicts step 2 for small positive X. 
(3) and step 3 clearly imply/ = 1. 

Case 2.s/ = C". If 

t = ( / „ . . . , / „ _ , ) e R""1 and 

r = (/•„...,#•„_,) e [0, l ] " " 1 

then we write 

fit, r) = q(rx exp(/7,), . . . , rn_x exp(/7w_,), 1). 

It is enough to prove t h a t / = 1. Since q is a seminorm/is convex in r. By 
(PI) we have 

f(t,r)f(-t,r) = 1. 

It follows from these facts that the set 

H, = {re [0, i r " ' ; / ( / , / • ) = 1} 

is convex. Indeed, if 

/(/ ,!*) = 1 = / ( * , v ) , 

then 

/ ( - / , n ) = / ( - / , v) = 1 

and hence if w = À/ 4- /xv then 

/ ( - M v ) ^ 1, / ( / , w) ^ 1, 

thus/(r, w) = 1. 
We will show that if r e [0, I f _ 1 and \r e Ht (0 < A ^ 1) then 

r e Ht. Suppose the contrary. Then one of/(f, r) a n d / ( —/, r) is less than 
1. On the other hand/( / , 0) = 1 for every / (by (PI) ). Thus, by convexity, 

f(t, Xr) o r / ( — t, Xr) is less than 1 contradicting Xr e Hr 

Let 
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< = Sjk> aJ = « . . - , < - i ) . 

We know from Case 1 that aJ e Ht for every t,j. Now if r = (r,, . . 
rn_x) e [0, I f" 1 then 

r = (1 - 2 ry)0 + 2 rytf 
n-\ 

J 

1 

shows r G //^ if 2 r = 1, and 
7 

2 0 ' 2 / ) 
shows it if 2 f, > 1. 

General case. By the commutative Gelfand-Naimark theorem we 
consider j / a s C0(T), where T is locally compact T2 space. Let y},. . . , 
>>„ e j / s o that 

^ 0 , r(yj)= 1, r ( 2 ^ - ) = 1. 

Fixing them let 

? ( * , , . . . , * „ ) = /?(2 Xjyj) 

where x, G C. This q is a seminorm on Cn. We assert that 

s(x\>- • •>-*„) = r ( 2 *,>)). 

From the conditions about v.'s it follows that 

2 Xjyj(t) G co(0, x]9...,xn) 

in C for every / and that there is tk such that y-(tk) = 8-k and hence 

2 Xjyj(tk) = xk. 

Thus 

r(2 Xjyj) = max{ \xj\J = 1, . . . , /i} 

= *(*„...,*„). 
Since v is self-adjoint, 

2 xjyj = ( 2 */.)>;)*• 

Thus 

$(x )?(**) = /?(2 ^ ^ ) / ? ( ( 2 -x^)*) 

= r ( 2 *,->>/2 *,>>,•)*) 

= K 2 •x/^y)
2 = ^(*)2 = s(x*x). 
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Therefore by case 2, q(x) = s(x), that is 

p(2 Xjyj) = q(x) = s(x) = r(2 ̂ ) . 

Because of the continuity of p it is enough to show that Ve and 

Vw G C0(T) 3x-, >>. (with properties above) for which 

Let G0, . . . , Gn be an open covering of the compact set Sp(vv) in C so 
that 

(a) 0 G G0, 0 € G^ for A: > 0 
(b) 3xf. G G,-, JC0 = 0 such that if z G G; then |z - xf\ ^ € 
(c) VA: > 0 3zk G Sp(w) zk £ U {G,; / * A:} 

(that is, each G^ is "necessary"). Let /0 , . . . ,/„ be a partition of unity 
under the covering G0, . . . , Gn on Sp(vv), and 

yk =fk o w (k = 1 , . . . , « ) . 

Then it is clear j ^ G j / for k > 0 (from (a) ) yk ^ 0, 

2 ^ i, 

and, for /c > 0, r(yk) = 1 (from (c) ), 

w - 2 * ^ * = (z ~ 2**/*) o w 

and 

2**// \ n / n **// 

= 2/*(* - **) 
1 0 

(from (b) ). 

3. Continuity of seminorms on C*-algebras. 

THEOREM 3. Let (J%, ||-|| ) be a C*-algebra and let p be a seminorm on it 
satisfying 

(i) p(P(h) ) ^ \\P(h) || VA = A* G # , P G # 

77iert /? w contractive on &, that is 

(ii) />(û) ^ ||a|| Va G # . 
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Proof. Consider a new norm on SS defined by 

(iii) q(a) = max(/?(a), ||a|| ) Va G S8, 

and observe that 

(i)' q(P{h) ) = \\P(h) || Vh = h* Œ SS, P <E 0>. 

Furthermore we can state 

(1) |W| ë q(a) fk 2\\a\\ Va e #, 

in other words that q and ||-|| are equivalent norms on SS. Our goal is to 
prove that q and ||-|| are the same. For this reason fix an element a in 38 
and denote by si the C*-subalgebra in Si generated by a and a*. Taking 
(si**, |H| ) and (si**, q) we get isomorphic Banach spaces being the 
norms ||-|| and q equivalent. Moreover, (si**, ||-|| ) as the second dual of 
the C*-algebra (si, ||-|| ) is a JP-algebra and isomorphic to the weak 
closure U(si)w of U(si) where [/is the universal ^representation of j / o n 
a Hilbert space, say & Here the weak operator topology on U(si)w is 
identical with the weak* topology of si** (see [8] ). 

On the other hand we shall consider q as a norm on (si**, ||-|| ) 
equivalent to the ground norm ||-||. To prove the identity of these norms on 
si** (and hence on si) it is enough to show (see [6] ) this: 

(iv) q(exp(ih)) ^ 1 Vh = h* e si**. 

Assume first 0 ^ / I G j / and consider 

a*a -f aa* 

n 

a sequence of strictly positive elements in si with a being a generating 
element. Hence Uh has a dense range in J$?[l] and U\/m converges as 
m —» oo strongly (hence weakly) to the identity operator (as well identity 
element 1 in si**) of the Hilbert space & Now ( ( <7̂ > )**, |H|) is identi­
cal with the weak* closure of (hn) in si**, whence 1 is in ( (hn) )**, the 
norms |||| and q are identical on which such that 

q(zxp(ihn)) = 1 

follows for any n = 1,2, . . . . Since 

q(h — hn) = -q(a*a 4- aa*) —> 0 as n —» oo 

we have 

q(zxp(ih)) = lim q(exp(ihn) ) = 1. 
rc-»oo 

If 0 ^ h e J*/** we can choose a net /r in si with strong limit /* and such 
that 
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0 g Ay S \\h\\ • 1. 

Thus cxp(ih-) tends to exp(ih) strongly, hence weakly and thus finally in 
the weak* topology. 

Since q(txp(ih-) ) ê 1 as before, we have 

q(cxp(ih)) ^ 1 

also. 
Finally in case h = h* G J / * * , we write 

k = h + 2mr • 1, 

with such integer n for which 

-2mr ^ min(f; / G Sp(A) ). 

Then we have 

O ^ ^ G i * * and exp(zTi) = exp(/7c) 

whence 

q(txp(ih)) = q(zxp(ik)) ^ 1. 

Proving (iv) we get q(a) = \\a\\ and thus the equality of q and | | | | since a 
was an arbitrary chosen element in 38. The proof is complete. 

COROLLARY 3.1. Let p be a seminorm on the C*-algebra {38, ||-|| ) 
satisfying (i) with equality for P(h) = h and 

(SC*) p(a*a) ^ p(af Va e ®. 

Then p = ||-||. 

Proof. Using Theorem 3 we have at once 

p(af ^ ||a||2 = \\a*a\\ = p(a*a) ^ p(a)2 Va e ^ 

proving the statement. 

4. The general case. 

THEOREM 4. Let s/be a *-algebra, and let p be a norm on it satisfying 

(SB*) p(a*a) ^ p(a*) • p(a) V û G i 

(ZJ?*) /?(a*û) = p(a*) - p(a) Va = P(h), h = A*, P e ^ . 

77ze« (^ /? ) w a pre-C*-algebra (that is, its completion is a C*-algebra). 

Proof The following identity holds in a *-algebra: 

(1) 4yx = (JC + >>*)*(* + j * ) + /(JC + iy*)*(x + />*) 

— (x — >>*)*(JC — y*) — i(x — iy*)*(x — iy*). 
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This and (SB*) and the subadditivity of/? imply 

(2) 4p(yx) =£ 4(p(x*) + p(y) ){p(x) + p(y*) ). 

Writing 

* = (p(v*)U2 + l)(p(v)U2 + l)u, 

y = (p(u*)"2 + l)(p(u)U2 + l)v 

in (2), we get by n —» oo 

(3) p(vu) ^ (p(u*)w2p(v*)]/2 + p(u)l/2p(v)U2)2. 

Define a new norm o n ^ b y setting 

(4) |H|: - 4 max(p(a),p(a*)) Va e se, 

such that we infer 

(5) ||*6|| s ||a|| • IN , | M | = \\a\\,p(a) è \\a\\ Va e jrf 

Let â?be the completion of s/with respect to ||-||. There are then unique 
continuous extensions of * and/7 to &. Denote these extensions by * and/?, 
too. This p is now a seminorm on &. The multiplication, the involution 
and/? are continuous on (^, ||-|| ). (SB*), (LB*) and (4) remain valid on 3&\ 
furthermore we can sharpen (LB*) into 

(LB\) p(a*a) = p(a*)p(a) Va <= <Â>, A = /z* e ^ . 

Let r be the spectral radius in ^ . Since 31 is a Banach algebra, we 
have 

(6) r(fl) = lim \\an\\x,n Va e # . 

Consider a self-adjoint A in ^ . Then by (L5*) 

/?(/z2) =p(h2 f =...=p(h)2, 

and hence (by (4) ) 

\\h2"\\ = 4-p(hf 

so that by (6) we have 

(7) r(h) = p(h) Vh = h* e ». 

This and (LB\) give 

(8) p(a*)p(a) = r(a*a) if a e <Â>, h = h* G @. 

U h = h* G ja/then /? is a norm on (A) and hence by (8) we can apply 
Theorem 1, and infer that Sp(h) Q R. 
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Therefore r(sin A) ^ 1, r(cos A - 1) ^ 2 via the functional calculus. 

But sin A, cos A - 1 are selfadjoint since 98 is a star-normed algebra and 

hence by (7), (4) we have 

||sinA|| ^ 4, HcosA - 1|| ^ 8, 

hence also 

(9) \\elh - 1|| â 12 VA = A* e S#. 

Since the selfadjoint part of j^ i s dense in that of 36, (9) remains valid for 36 
too. This implies that ||a||c = r(a*a)]/2 (a e 3d) is a C*-norm on ^ , 
equivalent to ||-|| (see [7] ). But 

r(a*a) = /?(fl*a) Va G ^ 

by (7) and hence 

(10) ||û||c = /?(a*a)1/2 Va G J>. 

If A = h* e ^ , ( (/z), ||-||c) is a commutative C*-algebra and Theorem 
2 is available by (8) and hence we have/? = ||-||c. on (A). Thus Theorem 
3 shows that 

(11) p(a) ë |W|C Va G 36. 

Then by (10), (11), (SB*) we have 

IW|2 = p(a*a) ^p(a*)p(a) ^ \\a%\\a\\c = Ml? 

that is 

(12) />(**)/>(«) = \\a*\\-c\\a\\c. 

This shows that/?(a) < ||a||c would imply ||a*||c = 0, but 

ll**llc = \\a\\c>p(a) gO, 

a contradiction. 

5. Applications to seminorms. 

THEOREM 5. Let p be a seminorm on the *-algebra 36 satisfying 

(SC*) p(a*a) ^ p(a)2 Va e 38 

(LC*) p(a*a) = /7(a)2 Va e (A), A = A* e ^ . 

77ze« /? w a (submultiplicative) C*-seminorm. 

Proof. Define a new seminorm by 

(1) q(a) = max(/7 (a), p (a*)) Va G ^ 

we have at once (SC*), (LC*) for a because/; = q locally (see [12] ) and 
moreover 
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(2) q(a*) = q(a) Va e SS. 

The polarization identity (1) in Section 4 gives now 

4q(yx) ^ 4(q(y) + q(x*))2 = 4{q(x) + q(y))2 

such that replacing^ (and x) with 

/and 

9 (a ) + - ( q(b) + -
n \ n 

and tending with n to infinity, we get 

(3) q(ab) ^ 4q(a)q(b) Va, i e « 

The kernel 

Kq = {a G <^(a) = 0} 

is now a *-ideal of 38 such that the quotient space 38 = $ / £ is a 
*-algebra with norm 

(4) \\a + K\\ = q(a) Va G 38 
y 

preserving (SC*\ (LC*) and (2) such that (SB*) and (LB*) are trivially 
satisfied. Theorem 4 says that 38 is a pre-C*-algebra and in other words 
that q has the C*-property and is submultiplicative. But 

p(af ^ q{af = q(a*a) = p(a*a) ^ p(a)2 Va e 9t 

implies that p = q and the theorem is proved. 

THEOREM 6. Let p be a seminorm on the *-algebra & satisfying 

(SB*) p(a*a) ^ p(a*)p(a) Va e ai 

(LB*) p(a*a) = p(a*)p(a) Va e </*>, /i = A* G # 

(W) /?(#) = 0 implies p(a*) = 0 VU £ « 

77zetf /? w tf (submultiplicative) C*-seminorm. 

Proof. The polarization identity gives us as before (3) in Section 4 

(5) p(ab)l/2 S /?(tf*)I/2/?(£*)1/2 4- /?(tf)1/2/?(£)1/2 

VU, i G ^ . 

It follows thatp(tf) = 0 or p(b) = 0 implies p(ab) = 0 and thus 

* , = {*€= #:/>(*) = 0} 

the kernel of p is a *-ideal in de. The quotient space ai = 381 Kp has a norm 
by defining 

(6) \\a + A: || = />(*) V Û G J 
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which preserves (SB*) and (LB*). Theorem 4 shows that 3) is a 
pre-C*-algebra, that is/? is a (submultiplicative) C*-seminorm. 

The following example shows that Theorem 6 does not remain true 
without (NI). 

Example 1. C2 is *-algebra with coordinate-wise multiplication and with 
involution defined by 

(7) (w, z)* = (z, w) Vw, z G C. 

Then 

(8) p(w, z) = \w\ Vw, z G C 

defines a multiplicative i?*-seminorm which is not a C*-seminorm. 

Proof. Since /> is trivially multiplicative it is 2?*-seminorm too, but 

p( (1, 0)*(1, 0) ) = />( (0, 1)(1, 0) ) = 0 * 1 = p( (1, 0) )2 

p( ( l , 0 )* ) = />((0, 1)) = 0 * 1 = / > ( ( l , 0 ) ) . 

Remark. The above example shows also that Theorem 1 can not be 
sharpened by writing "/? is a seminorm" instead of "/? is a norm". Indeed, 
the above example satisfies these weaker conditions, but ( — /, /) is a 
self-adjoint in it however its spectrum is not real. 
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