
UNITARY GROUPS GENERATED BY REFLECTIONS 

G. C. SHEPHARD 

1. Introduction. A reflection in Euclidean ^-dimensional space is a 
particular type of congruent transformation which is of period two and leaves a 
prime (i.e., hyperplane) invariant. Groups generated by a number of these 
reflections have been extensively studied [5, pp. 187-212]. They are of interest 
since, with very few exceptions, the symmetry groups of uniform polytopes are of 
this type. Coxeter has also shown [4] that it is possible, by WythofFs construction, 
to derive a number of uniform polytopes from any group generated by reflections. 
His discussion of this construction is elegantly illustrated by the use of a graphi
cal notation [4, p. 328; 5, p. 84] whereby the properties of the polytopes can 
be read off from a simple graph of nodes, branches, and rings. 

The idea of a reflection may be generalized to unitary space Un [11, p. 82]; 
a p-fold reflection is a unitary transformation of finite period p which leaves a 
prime invariant (2.1). The object of this paper is to discuss a particular type of 
unitary group, denoted here by [p q; r]m, generated by these reflections. These 
groups are generalizations of the real groups with fundamental regions Bn, 
Et, E7, Es, Ti, Ts, T$ [5, pp. 195, 297]. Associated with each group are a number 
of complex polytopes, some of which are described in §6. In order to facilitate 
the discussion and to emphasise the analogy with the real groups, a graphical 
notation is employed (§3) which reduces to the Coxeter graph if the group is 
real. 

Every polytope nn , whether real or complex, is associated with a configuration 
in projective space Pn-u which may be derived by taking the centre of the 
polytope as origin and then interpreting the coordinates of the vertices as 
homogeneous coordinates in Pn-\. (The collineation group associated with the 
configuration is the group that corresponds to the symmetry group of the poly
tope [11, p. 84].) Many well-known and interesting configurations are associated 
with the polytopes whose symmetry groups are of the type [p q; r]m such as the 
configuration of 126 points in five dimensions recently investigated by Todd 
[13; 14], Hamill [8], and Hartley [9]. We shall refer to this as the Mitchell-Hamill 
configuration. 

Some of the polytopes discussed are degenerate, that is, analogous to the 
honeycombs of Euclidean space [5, p. 127]. One of these is of particular interest 
since its vertices are the points of a lattice associated with the extreme duode
nary form K12 [7]. 

Throughout the paper the definitions and notation of the author's Regular 
Complex Polytopes [11] are assumed, but a table of notations is added for refer
ence. 
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Symbol 

En 

P . 
n„ 
® (n.) 
<Mn«) or 

n„+v 
n„+' 

trUn 

Pi(qi)p2. 

iu(nn) 

[pq;r]" 
[3P- a- r] 

• .(g»-l)/>n 

(Ptq;r)m 

Meaning 

Euclidean space of n dimensions. 
Unitary space of n dimensions [11, p. 82]. 
Projective space of n dimensions. 
Any poly tope in En or Un. 
The symmetry group of IIn [11, p. 84]. 
The group of (orthogonal or unitary) symmetry matrices 

of n». 
A polytope whose vertex figure is Un [11, pp. 85, 87]. 
A polytope whose vertex figure is nn

+(r""1). 
The real regular polytopes of En (see §6 and [2, p. 344]). 
The generalized cross-poly tope and orthotope (§6). 
The rth truncation of Un (§6). 
The extended Schlâfli symbol for a regular polytope 

[11, p. 88]. 
See §4. 
See [5, p. 200]. 
See 2,3. 

I must express my indebtedness to J. A. Todd and H. S. M. Coxeter for their 
advice and suggestions in carrying out the investigations described in this paper. 
I am especially grateful to the former for undertaking the formidable task of 
checking the abstract definitions in 4.12. 

2. Reflections. Every real non-degenerate uniform polytope Un in En 

has a symmetry group &(Un) which is generated by at most n elements. In 
®#(nn), the group of orthogonal symmetry matrices, it is generally possible to 
choose these generators as reflection matrices, that is, matrices whose charac
teristic roots are 1 (repeated n — 1 times) and —1. By reducing to diagonal 
form in the usual manner, a reflection matrix may be written S'AS where S 
is orthogonal and A is the matrix diag(lw_1, —1). 

The choice of the generators as reflections is not possible in a few anomalous 
cases, of which the most familiar are the two "snub" polyhedra [4, pp. 336-337]. 

The idea of a reflection can be extended to Un. A p-îold reflection matrix is 
defined as a matrix of period p which leaves a prime of Un invariant. 

2.1. A p-fold reflection matrix is a unitary matrix with characteristic roots 1 
{repeated n — \ times) and 6, a primitive pth root of unity. 

It may be written in the form S'AS where S is unitary and A is the matrix 
diag (l""1, 6). If the invariant prime has the equation 

22 a&i = a'x = 0, 
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then the equation of the p-iold reflection is 

2.2 x* = (I - ba')x 

where b is chosen so as to make the transformation unitary, and 

b 'a = 1 - exp (2iri/p). 

Regular complex polygons [11, pp. 89-93] have symmetry groups generated 
by two reflections of this type; the polygon whose extended Schlâfli symbol is 
pi(qi)p2 [11, p. 88] has a symmetry group generated by two elements S, T 
corresponding to the matrices: 

S which is a £i-fold reflection permuting the vertices on an edge of the polygon 
cyclically, and 

T which is a £2-fold reflection permuting the vertices of a vertex figure of the 
polygon cyclically [cf. I l , p. 90]. 

It will be readily verified that all the symmetry groups of complex regular 
polytopes in Un may be generated in a similar manner by n />-fold reflections. 

Suppose that 
n « 

Pi = X) aiXi ^ °» P2 = 13 kiXi = 0 
i = l jwi 

are two primes of Un. Then we define 
n 

2.3 {pi, p2} = I S &ibi\-

This is an invariant under unitary transformations. If {pi, pi} = 1, we say that 
pi is normalizedy the normalization being unaffected by multiplying the equation 
pi by any complex number of unit modulus. For two real normalized primes, 
{pi, p2} is the cosine of the angle between the primes. 

2.4 In Un, the group generated by 2-fold reflections in two normalized primes 
Pi, p2 is of finite order if and only if {pi, p2} is the cosine of a rational angle, that 
is, a rational multiple of ir. Further, if {pi, p2} = cos irh/k where h and k have no 
common divisor, then the order of the group is 2k. 

If the primes are real, the result is familiar, for reflections in two primes 
inclined at an angle hir/k generate a group of order 2k. The proof of the result 
depends upon showing that the statement can be reduced to that of a property 
of real primes in En, by suitable choice of coordinate system. 

Choose the coordinate system so that pi is Xi = 0, and p2 is b± xi + b% x2 = 0. 
(To do this we have only to ensure that the intersection p i . p 2 is X\ = Xi = 0.) 
Since the equation of p2 may be multiplied by any complex number of unit 
modulus without altering the normalization, we do this in such a manner 
that b\ is real. If we now change the coordinate system by writing 

Xi — xt (i = 1, 3, 4, . . . , n), 

*s «= (62/ I b2 1 )x2i 
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then the equations of pi and p2 are both real, the matrices 2.2 are real» and the 
theorem follows from the result for En. 

In order to discuss the group generated by a set of reflections it is convenient 
to introduce a notation for a set of reflecting primes which characterizes their 
geometrical relationships, but is independent of the coordinate system. The 
notation is the graph defined in §3. 

3. Graphs. An elegant graphical notation for groups generated by 
reflections in En and the associated poly topes was invented by Coxeter [5, p. 84]. 
Briefly, the graph for a group consists of a number of nodes and branches (called 
dots and links in [4]) constructed according to the rules: 

3.1 Each reflecting prime is symbolized by a node of the graph. 

3.2 If the angle between two primes is ir/k then the corresponding nodes are 
joined by a branch if k > 2, and the branch is labelled "k" if k > 4. 

Conventionally branches are not numbered 3 since this type occurs most 
frequently. 

Thus the graph for a finite group in En has n nodes. It may be disconnected, 
that is to say, consist of two or more separate parts which have no interconnect
ing branches, and then the corresponding group is the direct product of the 
groups represented by each part. 

As an example of the graphical notation, the symmetry group of the cube 
is generated by reflections in three planes inclined at angles \-K, \TT, and \TT to 
each other. It is denoted graphically by 

3.3 - 4 — • 

So that the graph corresponding to a given group is uniquely defined, we 
specify that the reflecting primes must bound a fundamental region of the 
group. 

Suppose now that a unitary group is generated by reflections in a number of 
primes. More precisely suppose that each generator is a pi-iold reflection in 
p< (i = 1 , 2 , . . . , N). If these primes are concurrent it is convenient to take the 
point of concurrency as the origin of the coordinate system. In any case, the 
graph is constructed according to the following rules : 

3.4 Each of the reflecting primes p* is symbolized by a node P* of the graph, 
and this node is labelled "p" if pi > 2. 

3.5 Each pair of nodes PiPj is connected by a branch labelled \k, where k is the 
order of the group generated by reflections in pi and pjr except that: 

if {Pu Pjl = 0> the branch is omitted, 
if k = 6, the branch is left unlabelled. 
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These conventions are adopted so that 3.4 and 3.5 reduce to rules 3.1 and 3.2 
if all the primes are real. 

As an example, the group generated by reflections in the n primes 

m-fold: xi = 0, 

2-fold: Xt-Xt-i^Q (* = 2,3, . . . , » ) , 

3.7 •' ma • • • • (n nodes). 

More generally, the graph of a set of reflecting primes that generate the 
symmetry group of the regular polytope with extended Schlâfli symbol 

Pi(gi)p2(q2) . . • (qn-i)!>„ 

is a simple chain 

• »£ , » 
29, Hi-, 

A unitary group is said to be false if all the matrices can be reduced to ortho
gonal form by suitable change of coordinate system. Otherwise the group is a 
true unitary group. Thus the group generated by two reflections in 2.4 is false, 
and the proof of the result depended upon this fact. 

Let Ai, A2, . . . , Am be m nodes of a graph representing a set of primes. If the 
pairs of nodes Ai A2, A2 A3, . . . , A.OT_i Am, Am Ai are joined by branches, then the 
nodes Ai A2 . . . Am are said to form a circuit [4, p. 328]. All finite orthogonal 
groups (and therefore all false unitary groups) have graphs that do not contain 
any circuits [5, p. 297]. A connected graph without any circuits is called a tree 
[4, p. 328]. 

3.8 The graph of a set of primes that generate a true unitary group has either a 
numbered node {that is to say, there is a p-fold reflection with p > 2) or a 
circuit. 

A graph with a numbered node necessarily represents a true unitary group 
since a matrix of type 2.2 with p > 2 cannot be real in any coordinate system. 
Suppose therefore that the group is generated by 2-fold reflections in the primes 
Pi, p2, . • • , P;v> where 

0 (i = 1 , 2 , . . . ,n ) f 

ct (i = n + 1, . . . ,N). 

For the purposes of the proof we take ct — 0 (all i). This corresponds to a "paral-

3.6 

has the graph 

3.9 
Pi = J^dtjXj = 

> - i 

Pi = X) UijXj 
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lei displacement" of the prime and this does not affect the proof. Let Pi be the 
node of the graph corresponding to the prime p* and suppose that the graph is a 
tree T. We prove, by induction on the number of nodes that the corresponding 
unitary group is false. 

If there is only one node the group is certainly false, so we assume shat the 
result has been established for the group generated by reflections in r — 1 
primes pi, p2, . . . , pr-i such that the corresponding nodes Pi, P2, . . . , Pr_i 
and branches form a sub-tree T\ of T. Choose a new coordinate system so that 
Pi is the prime Xi = 0, the intersection pi • p2 is X\ = x2 = 0, and generally 
the intersection pi- p2 . . . • p* is Xi = x2 = • • • = xt = 0. In this system 

r - 1 

P< = ] £ btjXj = 0, 

where b^ = 0 (j > i) and, by the induction hypothesis all the other coefficients 
are real. Regarding these primes as normalized, 

and 
r— 1 n 

Add to the tree T\ another node P r of T in such a manner that the nodes 
Pi, P2, . . . , P r and the associated branches form another sub-tree of T. P r is 
connected by one and only one branch to a node of T for if there were more 
than one branch the resultant graph would contain a circuit. Suppose that the 
nodes are numbered so that P r is joined to Pi only. Then if 

r 

Pr = ]C brjXj = 0 

is the normalized equation of the prime, it follows that 

r n 

3.10 I XI 5r; bij\ = I X &rj all\> 

3.11 ibrjbij =0 (i = 2 f 3 f . . . , r - 1). 
j~i 

But 3.10 determines bT\ as a real quantity since the only non-vanishing term on 
the left is brib\\ and the right-hand side is real. Equations 3.11 determine 
bT2, bT%, . . . , 6r(r_i) successively as real quantities, and brr may be made real 
by multiplying the xr coordinate by a suitable complex number of unit 
modulus. 

Hence the result is established for connected graphs. It follows for disconnec
ted graphs since the different parts of the graph are independent, representing 
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primes whose intersections are absolutely orthogonal subspaces of Un. The 
theorem is therefore t rue. 

The converse of the result is false, since a graph with a circuit may represent 
an infinite discrete reflection group in En. For example the graph 

A 
is P 3 , a subgroup of index 2 in the symmetry group of the degenerate polyhedron 
forming the plane honeycomb of hexagons. This example also shows t ha t 
a graph with a circuit may represent two or more different sets of reflecting 
primes. (By the proof of 3.8, a graph with no circuit represents a unique set of 
real primes, within a parallel displacement.) In order to make the correspondence 
between the graphs and sets of primes unique it is necessary to label the circuits 
of the graph according to the rule: 

3.12 If the nodes Pi , P2 , . . . , P r of a graph form a circuit and P t corresponds to 
the prime p f , where 

Vi = H QijXj = 0 (i = 1,2, . . . , r ) , 
J 

then the circuit is labelled with the number k where 

3.13 « '"* = n ( I f l „ « ( t t . ) i ) / r i I P - Pi+i}-

Here, for convenience of notation a ( r + i ) : / = a^ (all j). In the cases we consider 
in §4, k will be an integer. If k — 1 the circuit will be left unlabelled. 

T h e meaning of 3.13 is more easily understood if we arrange tha t ^ a ^ ' a + i ^ 
is real for all i except possibly i = r, and then 

3.14 2 > r , â i i = {PnPi} et,h. 
j 

Determining the equations of the primes as in the proof of 3.8, it will be seen 
tha t a graph with nodes, branches, and circuits labelled according to rules 3.4, 
3.5, and 3.12 now represents a set of reflecting primes uniquely (within a parallel 
displacement) and so represents a uni tary group completely. I t is not, however, 
always possible to find a set of primes corresponding to any given graph. 

If the normalized equations of the primes pt are taken as in 3.9, we write A 
for the matr ix {atj) and then 

3.15 D - det (A A') = j det A \2 > 0. 

This is evidently a necessary condition for the set of primes to exist. T h e deter
minant D is called the Schldfli determinant [3, p . 137; 5, pp. 134-135] and its 
importance lies in the fact t ha t if all the reflections are 2-fold it can be writ ten 
down from the graph. If dtj is the (i, j)th term of D, then 
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3.16 du = 1 (alii), 
dij = 0 if the corresponding nodes P^P^ of the graph are 

not connected by a branch, 
dij — cos (w/k) if the corresponding nodes P»P^ of the graph are 

connected by a branch labelled uk". 

The only other condition is that where the nodes Pi, P2, . . . , P r form a circuit 
labelled A, the factor eTi/h must be put before one of the terms du, d2z, . . . , dr\ 
and the factor e~*i/h must be put before the corresponding term with suffixes 
reversed (see equation 3.14). 

By way of an example, consider the graph 

A 
The Schlâfli determinant is then 

I i \ - i « | 
} i * 

I — 2°* 2 1 1 

and its value is | , and so the graph satisfies the condition 3.15. 

4. The groups [p q; r]m. Consider the group generated by p + q + r 
2-fold reflections: 

p nodes 

• —# • 

4.1 m 
• • —« 

q nodes 

It is denoted by the symbol [p q; r]m, noting that when m = 2, the graph becomes 

• • • «L 

4.2 ^ > •— • • 
• • • IT 

so that \p q; r]2 = [&-*-T-1] in the notation of [5, p. 200]. This alternative 
notation is useful since it exhibits the symmetry between the numbers /?, q, 
r — 1. That is to say, the group is the same whatever the order of the indices. 
In general 

\pq;rr=[qp;rr 

and if m = 3, the p, q, r may be permuted in any way. 
A necessary condition for [p q\ r]m to exist is given by the Schlâfli determinant. 

r nodes 

S~ 

-#— » « 

y 
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Writing 0 = e* 

D = 

p-ï 
rows • 

q-l 
rows 

r — i 

rows 

1 ^ c o s ^ h 
m -

0COS!,- 1 A 

1 * 1 

1 
2 

i 
2 

1 
2 

2 1 1 
1 1 I 
2 x 2 

1 
2 • 

1 
• 2 

i l 
1 

! 2 1 1 
1 
2 

1 
2 

i 1 
1 

X 

\ i 

Direct evaluation gives (within a positive factor) 

4.3 1 - pq\r + 4 cos2 (v/m) -l]+p + q + r>Q. 

When m = 2 this reduces to 

p#(r - 1) < p + q + r + 1, 

which is the condition for group [37M/,r~1] to exist in a Euclidean space [3, 
P. 143]. 

When D == 0, the primes are linearly dependent, for this implies (3.15) that 
det A = 0. Two cases arise according to whether we take the primes as con
current or not. Apart from an anomalous case mentioned in a footnote to table 
4.4, there are no new groups defined by concurrent primes, and so we take 
their equations as in 3.9 with all the ct zero except cn+i = 1 (or any other non
zero constant). 

Table 4.4 lists all possible values of p, q, r and m satisfying 4.3. The table also 
gives suitable sets of reflecting primes (not necessarily in the smallest possible 
number of dimensions) and the order of each of the groups (computed from the 
abstract definitions in table 4.12). 

By applying the rules 4.5-4.9, the abstract definition of each of these 
groups may be written down from its graph. The definitions are given in full 
in table-4.12. 
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4.4 Table of groups [p q; r] 

m group reflecting primes order 

2 [3«.«.-»]=B. 
[31'2'2] ^ £ 6 

[ 3 ^ 3 ] = E7 

[32.2,2] = Tl 

(a)„, (b) 
(a) 6, (c) 
(a) 7, (c) 
(a) s, (c) 
(a)., (c)', (d) 
(a) 8, (e) 
(a)., (c)' 

2*-1.»! 
72.6! 
8.9! 

"192.10! 
CO 

00 

00 

3 [1 1; « - 2]3 

[2 1; 2]8 

[2 1; 3]» 
[2 1; 4]3 

(a)., (0 
(a)4, (f), (g) 
(a)5, (f), (g) 
(a) 6, (0, (g)' 

.. 72.6! 
108.9! 

00 j 

i 4 [1 I; « - 2]4 

[2 1; 1]« 
[2 1; 2]" 
[3 1; 1]* 

(a)», (h) 
(a) a, (h), (k) 
(a)4, (h), (k)' 
(a) 3, (h), (k), (1)' 

64.5! 
: CO 

00 j 

m [1 1; » - 2 f (a)„, (m) m^'Knl | 

(a)., xt — XÏ_I = 0 (i = 2, 3, . . .•, s), 
(b) x2 + Xi = 0, 
(c) 2(xi + x2 + x3) ~ (x4 + x5 + x6 + x7 + x8 + x9) = 0f 
(c)' 2(xi + x2 + x3) — (x4 + x5 + x6 + x7 + Xs + x9) = 1, 
(d) (xi + x2 + x3 + x4 + x5 + x6) — 2(x7 + xs + x9) = 0, 
(e) (xi + x2 + x3 + XA) — (x5 + x6 + x7 + xs) = 1, 
(f) Xi — OJX2 = 0 (a? a primitive cube root of unity), 
(g) Xx + X2 + X3 + X4 + X& + X6 = 0, 
(g)' Xi + X2 + X3 + X4 + X5 + X6 = 1, 
(h) Xi — ix2 = 0, 
(k) xi + x2 + x3 + x4 = 0, 
(k)' xi + x2 + x3 + XA = 1, 
(1) X4 = 1, 
(m) Xi — 6x2 = 0 (0 a primitive rath root of unity). 

Denote the nodes of the graph by Pi, P>, . . . , P r , the node P* being labelled 
pu that is, corresponding to a £ rfold reflection. Let Pt denote the operation in 

xIf the primes are concurrent, that is, we take xi — 0 instead of (1), then this is a finite group 
of order 64.6!. It is the symmetry group of the polytope (lYs4)"*"1 described later (6.13). 
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@ corresponding to reflection in the prime pu and let E be the identity of ©. 
Then ® is generated by Pu Pi, . • • , Pr subject to the relations: 

4.5 (Pt)>< = 1 (i = 1 , 2 , . . . , » ) . 

4.6 PiPj = PjPifor every pair of nodes Pu Pj not connected by a branch. 

4.7 (PiPj)* = 1 for every pair of nodes Pu Pi connected by a branch labelled k, 
and with pi — pj = 2. 

4.8 A relation is required connecting PiPj when pi or pj is not 2. This cannot 
be read off from the graph immediately, but the required relation for 

m 
P. mZ p. 

* 3 

isiPiP,)*- (PjPi)2. 

4.9 If Pi, P2, . . . , Pi form a circuit, one further relation is required connecting 
the operations Pu P2, . . . , P\. In the case of a circuit of the form 

À *?- m 

a suitable relation is (P2 Pz Pi)2 = (P3 Pi P-)2-

Table 4.12 gives the abstract definitions of the groups ®(jS"») (see §6) and the 
finite groups [p q; r]m; 4.10 and 4.11 indicate the method of labelling the nodes. 
Abstract definitions for the groups [3p,<7'r] are given in [3, pp, 144-151]. 

4.10 mc 
Û, Q2 *°V7-2 ^*/7-l 

PP- , 

4.11 m 

Oa Q?-, Q2 Û, 

!fa »r 

4.12 Table of abstract definitions. 

group generators relations 

®(7?) P, Qi (a) \ 
1 ®(7T) P, Qu Qt &- i (a), (b) 
! ® ( i 7 ? ) ^ [ i i ; i ] " Pu Qu Ri (C)m 

i ® W ) ^ [1 l ; » - 2 ] - Px, Qu Rlt R, R„_2 (c)„, (d) 
[2 1; 2]8 Pi, Pu Qu Ru R* (c)i, (e) 
[3 1; 2]* P», Pt, Pu Qu Ru Rt (c)„ (e), (f) 

i [2 1; l]4 Pt, Pu Qu Ri (C)4, (g) 
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(a) P» = Qx2 = 1; (PQ1Y = (QrPy, 
(b) Qi*= (<2<<2<-i)3 = 1 (* = 2 , 3 , . . . , » - l ) ; 

PQt = QiP (* = 2 , 3 , . . . , n - l ) ; 
((?<&)* = 1 (*, J = 1, 2 » - 1; I t - j I > 2), 

(c)m Pt8 = Qi2 = i?!2 = (Qi«i)« = CRxPx)3 = (PiQi)» = 1; 
ÇPiQiRi)*= (RiPiQi)\ 

(d) fl,2 = (PxRty = (Çii?i)2 = (RiRi-iY = 1 (* = 2, 3 « - 2); 
RtRj = RjRi ( t , j = 1, 2 « — 2; j * — j | > 2), 

(e) P2* = i?2
2 = ( P ^ ) 3 = (P2<2i)2 = (PtRi)* = U W = (P1R2)2 = (<2i^2)

2 

= (i?li?2)
s = 1, 

(f) p,* = (P3P2)3 = (PzPi)2 = (P3Ç1)2 = (P3i?i)2 = (P3i?2)2 = l , 
(g) P 2

2 = (P 2PX) 3 = (P2Q1Y = (P2R1)2 = 1. 

The above definitions have been checked by the Todd-Coxeter method [15]. 
In the case of the larger groups the work can be simplified by considering a 
poly tope IIn whose symmetry group is being examined, and taking as the 
generating subgroup, the symmetry group of one of the vertex figures of Un. 
The vertices of IIn are then in 1-1 correspondence with the cosets of this sub
group, and the work in the coset tables can be continually checked. 

I am indebted to J. A. Todd for the following remark about the group 
[3 1; 2]*, The given relations (c)3, (e), (f) imply 

If, however, we postulate {PzP^PiQRiR^)1 — 1, the resulting factor group is of 
order 18 • 9!, being the collineation group [11, p. 84] corresponding to [3 1; 2]3, 
viz, the group of the Mitchell-Hamill configuration in five dimensions [8]. 

5. Graphs for polytopes. In order to represent a poly tope graphically we 
add to the graph of its symmetry group one or more rings round the nodes 
[4, p. 329]. Of particular interest are the polytopes denoted by a graph with 
only one ring, and we define these in 5.1. 

First, we suppose that the reflecting primes lie in space of n dimensions, are 
n in number and are linearly independent. Let O be the point of concurrency 
of the primes. Define Gt (i = 1, 2, . . , n) as being any point at unit distance 
from O and lying on the line of intersection of pi, p2, . . . , p*_i, p*+i, . . . , p„, 
and let P* be the node corresponding to p*. 

5.1 If the node P* of the graph is ringed, then the new graph represents the 
poly tope of which one vertex is Gf and the other vertices are the images of G* under 
the operations of the group. 

For example, 3.3 represents a cube if the left node is ringed, and an octahedron 
if the right node is ringed. 

If, on the other hand, the group is generated by reflections in n + 1 non-
concurrent primes, then G* is defined as the point of intersection of all the primes 
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except the z'th, and rule 5.1 still applies. Only in these two cases will the graphical 
notation for a poly tope be employed. 

So far, the choice of reflecting primes for a given uni tary group has not been 
restricted in any way, so t ha t a number of different graphs may correspond to 
the same group. I t is now convenient to discuss some of the restrictions tha t 
may be imposed, so tha t the graph of the poly tope has a number of additional 
properties. Select the primes so tha t : 

5.2 Reflections in Pi, p 2 , . . . , pn (or p i , Ps, . . . , p«+i) generate the group. 

5.3 The points Gi , G2, . . . , Gn (or Gi, G2, . . . , G»+1) are not equivalent, that 
is to say, one cannot be transformed into another by an operation of the group. 

5.4 If there is more than one set of primes satisfying 5.3, choose that set which 
makes as many as possible of the poly topes given by ringing one node-different. 

5.5 The image of Gt under reflection in pt is at least as near Gt as any other 
point equivalent to Gt. T h u s the vertex Gf of the poly tope with the ith node 
ringed is transformed by reflection in p i into a point of its vertex figure. 

The primes denoted by the graphs 4.1 have all these properties, and con
versely for a group of this type, the set of primes satisfying 5.2, 5.3, 5.4, and 5.5 
is unique, within an operation of the group. There is reason to suppose tha t 
selection according to the above rules is possible for any finite «-dimensional 
uni tary group generated by n reflections, or any discrete infinite group generated 
by n + 1 reflections in non-concurrent primes, bu t this has not been proved. 

Wi th this choice of primes the rule given by Coxeter [5, p . 198] for obtaining 
the graph of the vertex figure of a polytope still holds: 

5.6 If the ringed node belongs to only one branch, we obtain the vertex figure by 
removing that node (along with its branch) and transferring the ring to the node to 
which that branch was connected. 

For example the vertex figure of 6.7 is 6.9 and the vertex figure of 6.9 is 

5.7 

If the polytope is a polygon, application of this rule leaves us with a single 
ringed node, labelled "p" say. This is to be interpreted as a />-line [11, p. 85]. 

5.8 In order to determine the number of vertices of any given polytope \ln, consider 
the group ©* which corresponds to the graph formed by removing the ringed node 
(and any branches connected to it) from the graph of Jln. The number of vertices 
is then the quotient of the order of ($(IIn) by the order of @* [cf. 4, p. 329]., 

For example, in the case of the polytope 6.10, the group ®* has the graph 

^ 
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This is the symmetry group of the regular simplex au, and so is of order 5!. 
The symmetry group of 6.10 is [2 1; 2]3 of order 72.6!, and so the number of 
vertices is 72.6 !/5! = 432. 

Some of the bounding figures of a complex polytope may be determined 
from its graph in the same manner as for a real polytope [4, p. 334]. There are, 
however, other bounding figures not given by this procedure. A simple example 
is the icosahedron 2{6)2{10)2, which, in addition to twenty triangles contains 
twelve pentagons of the same edge length. These are not counted as bounding 
figures of the real polyhedron since they lie inside the figure. There is no distinc
tion between interior and exterior of a complex polyhedron [11, p. 83] and 
so in this case these pentagons (which are not given by the graph) must be 
included. 

In order to facilitate reference, it is convenient to define a symbol for the 
polytope whose graph is given by ringing one of the nodes of the graph of 
\p q; r]m. Referring to 4.11, if P f is ringed, the polytope is denoted by {ptq\ r)m 

and similarly, suffixes are added to the q or r if nodes Q* or R* are ringed 
[cf. 4, p. 331]. For example, (2 1 ; 3a)3, which is the same as (33 2; I)3, is the poly
tope represented by graph 6.7. 

6. Fractional y polytopes. In n dimensions {n > 4) there are three real 
regular non-degenerate polytopes [2, p. 344]. These are the regular simplex, 
the cross polytope, and the measure polytope or orthotope. They are denoted 
by ani pni and yn respectively. In Un {n > 4), in addition to the simplex there 
are two series of regular polytopes: the generalized cross polytopes and the 
generalized orthotopes [11, p. 96]. The first of these, which is denoted by (3m

VJ 

has mn vertices : 

( m i f o f o , . . . f o y 

in the abbreviated notation. (The pre-suffix m implies that the 1 may be multi
plied by any rath root of unity, and the prime means that the coordinates are 
to be permuted in every way. For a fuller explanation see [11, p. 96].) The exten
ded Schlâfli symbol for this polytope is 2 {6)2{6) . . . {6)2{2m2)m. 

The reciprocal polytope is the generalized orthotope denoted by ym
n and 

first described by Coxeter [4a, p. 287]. It has mn vertices: 

6.1 {ek\ek\ . . . ,ekn) 

where ki, &2, . . . , kn take any integral values and 6 is a primitive rath root of 
unity. The symmetry groups of pm

n and ym
n are identical, of order mn.nl, and 

their abstract definitions are given as &{/3m
n) in table 4.12. The group is gene

rated by reflections in the primes 3.6 and so may be represented by the graph 
3.7. The polytope fim

n is denoted by ringing the node furthest to the right, and 
ym

n is denoted by ringing the node on the left. 
Polytopes corresponding to the same graph but with any other node ringed 

are what may be called truncations of fim
n or ym

n. If the node Qp (see 4.10} is 
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ringed we may denote the resulting polytope by tpy
m

n or tn^p^$m
n by analogy 

with the corresponding notation in the theory of real poly topes [2, p. 354; 5, 
pp. 145-148]. The vertices of this polytope are 

6.2 ( m l f m l , . . . , r o l , 0 > 0 , . . . , 0 ) / 

with p terms zero and n coordinates in all. They are the centres of the aw„„_i 
that bound (3m

n or of the ym
p that bound ym

n. 
Evidently /32

n and y\ are the real polytopes £w and yn respectively, so that we 
conventionally omit the superscript if its value is 2. 

The eight vertices of 73 may be divided into two sets of four such that each 
set consists of the vertices of a regular tetrahedron a 3. The same process may 
be applied to real y polytopes of higher dimension, and we write \yn (which is the 
hyn of Coxeter [2, p. 362]) for the polytope whose vertices are the "alternate" 
vertices of yn\ that is, we select half the vertices of yn in such a manner that no 
two are joined by an edge of yn. For example Jy4 = Pi and in general in the 
notation of Coxeter [4, p. 331; 2, p. 372], 

hn = 1(»-3)1 = (ll 1 0 ~ 3)). 

In a similar manner we can select a subset of the vertices of ym
n so that the 

points of this subset are equivalent. Writing the coordinates of the vertices as 
in 6.1, instead of allowing ku &2, . . . , kn to take any integral values we consider 
the points for which 

J2 kt == 0 (mod m). 
There are precisely mn~l such vertices and there are m similar subsets in all, 
given by the m congruence classes of X)&t modulo m. Taking these ra*-1 points 
as vertices, and lines joining pairs of vertices whose distance apart is \/2 as 
edges we obtain a polytope which will be denoted by ^ym

n-
For example, |-y3a has nine vertices: 

( « , CO , CO ) 

where eo3 = 1, ki + k2 + &3 = 0 (mod 3), or 

3(1,1,1), (l,co,co2)'. 

These nine points are the vertices of /53
3, and may be reduced to the more 

familiar form (31, 0, 0)' [11, p. 96] by the transformation 

\ 1 CO CO / 

In general ^ym
n will not be regular, but there are four exceptional cases: 

1 1 % o% 

I ra = «s, iY 3 = P 3, 

where \m) is the real regular w-gon. 
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The symmetry group of ±ym
n is of order mn~x . n ! and is generated by reflections 

in n primes, 

6.4 2-fold: Xi - dx2 = 0 ((T = 1), 

2-fold: Xi - xt-i = 0 (i = 2, 3, . . . , n), 

from which we deduce that it is the group [1 1; n — 2]m. Hence ±ym
n is the 

polytope (li 1; n — 2)m and its graph is 

T 
m m 

with n nodes. The polytopes corresponding to the same graph but with other 
nodes ringed are identical with the truncations of ym

n or &m
n, with vertices 6.2. 

This may be stated in the form of a rule: 

6.5 A polytope is unaltered if its graph is changed by replacing 

m m 

by * - ^ r * • • or ^ ^ ® . 

respectively, 

When m = 2 the rule is already known [4, p. 333]. It is only the polytope 
which is unchanged by the above replacements; the order of the group is 
increased by a factor m. 

Another polytope whose vertices are a selection of the vertices of a 7 polytope 
is that which we shall denote by | Y V It has 2.4W_1 vertices: 

(**\ ik\ . . . , ikn), T,kj^0 (mod 2), 

where i2 = —1. The symmetry group of this polytope is not generated by n 
reflections (see the note to table 4.4), and so cannot be symbolized graphically. 
We shall refer to this polytope later as the vertex figure of a lattice. 

Polytopes associated with the groups [p q ; r]m may be derived from the poly
topes ~ymn by using the latter as their vertex figures. In fact, 

(fi,l;n-2r= (hy\)+p-1. 

For example, (22 1; 3)3, with graph 
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has, as its vertex ligure (see 5.6), the polytope ( l j .1 ; 3)3 == §735, and so we may 
write 

( 2 2 1 ; 3 ) 8 = (*7%)+1. 

I t has 4032 vertices (by 5.8), whose coordinates, in the abbreviated notation, 
are 

6 (3 , 0 , 0 , 0 , 0 , 0 ) ' ; ± A ( 8 1 , si, 8 1 , 0 , 0 , 0 ) ' ; 

6 . 6 «(2, -co"1, - « * ' , - c / \ -<o*\ - « * ' ) T,kt^0 (mod 3) , 

where X = 1 -co. T h e edge length is \ / 6 and the vertex distance is 3. T h e related 
projective configuration (in which the coordinates of the vertices are interpreted 
as homogeneous coordinates in P5) consists of the 672 points known as the 
/ / -points (the vertices of 112 a-hexahedra) of the Mitchell-Hamill configuration 
[8; 9; 13; 14]. 

Another polytope having the same symmetry group is (3s I ; 2)3 or (2 1 ; 3;t)
3 

or (i734)+ 2 , with the graph 

6.7 ^ ^ 

ft has 756 vertices, r̂ 
± X(31, ~ »!, 0,0, 0 ,0) ' ; 

6 8 
-Jz (co/Cl , (Jc*, a/1 *, c/ *, t/'", c/'"" ), ^ k -, ̂ = 0 (mod 3 ), 

and its edge length and vertex distance are both V 6 . The related projective 
configuration consists of the 1.26 centres of homologies of the Mitchell-Hamill 
configuration. 

Polytopes symbolized by ringing other single nodes of the graph, have the 
same symmetry group, [3 1; 2]3 or [2 1; 3]3 , so t ha t the related projective 
configuration will again be connected with the Mitchell-Hamill configurai ion. 
For example, (2 1 ; 3s)3 or 

® m 

has 30,240 vertices: 

db (33, 33, 0, 0, 0, 0) ' ; =fc \ ( 82, - 3 l t - 3 1 , 0, 0, 0) '; 

, \ / ki fca kf. k* k* fcew 1 
db A(co , co , co , — co , — co , — co ) , j 

± (2co*\ 2co/Ca, 2co*\ 2w*\ -co*\ -co*6)', [ E *< = 0 (mod 3) . 

zfc ( ^ — OOjCO , ( Z — CO jCO , CO , CO , CO , CO } , J 

I t s edge length and circumradius are 3 \ / 2 . The related projective configuration 
consists of 5040 points lying by threes on the 1680 K-lines [8, p. 403) of the 
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Mitchell-Hamill configuration. Each point is the harmonic conjugate of one of 
the 126 points with respect to the other two that lie on the *-line. 

The symmetry group of (2 1; 22)3 is [2 1; 2]3 of order 51,840. Its graph is 

• % f ® 
6.9 

and so it may be written ( JT 3 4) + 1 . It has 80 vertices, the points 6.8 that lie on 
]•>< = 3. Evidently the points 6.6 or 6.8 lying on primes parallel to this will 
have the same symmetry group. In particular (2 11 ; 2)3 or 

6.10 V 
has 432 vertices, the points 6.6 on J^xt = 3. 

The collineation group corresponding to [2 1; 2]3 is the simple group of order 
25,920 which is familiar as the collineation group of the Baker configuration 
[1; 12]. Consequently the related projective configurations are associated with 
the Baker figure. For example the intersections of the 40 /c-lines through any 
point of the Mitchell-Hamill configuration meet the prime polar to that point 
[8, p. 402] in 40 points forming the projective figure related to (2 1; 22)

3. 

The only other group with m = 3 to be discussed is the degenerate group 
generated by reflections in n + 1 primes, [2 1; 4]3. The degenerate polytope 
(2 l ;4 4 ) 3 or (h^)+z or 

3 / 
HD 

is of exceptional interest since its vertices form the lattice associated with the 
extreme duodenary form Ku of [7]. The simplest way of exhibiting the vertices 
(discovered by Todd and Coxeter) is 

6.11 (*li #2, X*, X*, *5, XQ) 

where the xt are integers of the field R(w) mutually congruent modulo X, and 
whose sum is congruent to zero modulo 3. 

The polytope (22 1 ; 4)3 or (h\)+1 with graph 

<§> -

V has vertices which do not form a lattice but are a subset of the points 6.11. 
The coordinate vectors of the vertices are the aggregate of vectors 

a + Xb 

where b is any vector of the set 6.11 and a may be any one of 

https://doi.org/10.4153/CJM-1953-042-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1953-042-7


382 G. C. SHEPHARD 

(0 ,0 ,0 ,0 ,0 ,0 ) ; X( , l , , l ,» l , 0 ,0 ,0 ) ' 
/ ki ka fc3 ki. ks ka\ 
(" '" '" >M '" '<° }' [ Z * . - 0 ( m o d 8 ) . 
(Zco , Zco , — co , — c o , — c o , — co ) , J 

Now consider polytopes associated with the groups [p q; r]A. The only finite 
group is [2 1; I]4, and the polytope (22 1; I)4 has the graph 

It is ( Ï 7 4 3 ) + 1 and has 80 vertices: 

4(2,0,0,0) ' ; 
6 . 1 2 (i*\ A i*'f **'), E jfe, s 0 (mod 4). 

The edge length and vertex distance are both 2. The related projective con
figuration consists of 20 points in three dimensions which form the vertices of 
five tetrahedra selected out of the 15 tetrahedra that form the Klein configuration 
[10, p. 48], the selection being made in such a manner that no three of the five 
belong to a desmic system. 

The 60 vertices of the complete Klein configuration are related to the 240 
vertices of the polytope (JT^)"1"1: 

4(2,0,0,0) ' ; 

6.13 (4(l + i ) , 4 ( l + *) ,0 ,0) ' ; 

(i*\ ik\ ik\ **•), Z kj s 0 (mod 2). 

The symmetry group of this figure is of order 46,080. The corresponding real 
8-dimensional polytope is (PA)s or 42i [2, p. 385; 5, pp. 201, 204]. 

The polytope (%y4*)+2 is degenerate with vertices 

6.14 (xi, x2, xz, XA) 

where the Xj are integers of the field R(i) mutually congruent modulo (1 — i) 
and whose sum is congruent to zero modulo 2. The vertices form a lattice. 
(Both this and the lattice (^Y34)+ 3 bear a remarkable resemblance to the lattices 
33i, 521, and 222 of [6, pp. 420-421].) 

The degenerate polytope (22 1; 2)4, {\JAA)^\ or 

has vertices with coordinate vectors 

6.15 a + (1 - i)b 
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where b is any coordinate vector of type 6.14 and a is any vector 

(0, 0, 0, 0), (i*\ ik\ ik\ ik'), Y^kj^O (mod 4). 

The degenerate polytope (33 1; l)4, (ÏY43)+2> or 

® • -*v. 

4 4^> 

has coordinates of type 6.15 with b of type 6.14 and a any vector of the set 
6.12. 

REFERENCES 

1. H. F . Baker, À locus with 25,920 linear self-transformations (Cambridge, 1936). 
2 . H. S. M. Coxeter, The polytopes with regular-prismatic vertex figures, Phil. Trans. Royal 

Soc, Ser. A, 229 (1930), 329-425. 
3 . , The polytopes with regular-prismatic vertex figures II , Proc. London Math. Soc. (2), 

84 (1932), 126-189. 
4. , Wythoff's construction for uniform polytopes, Proc. London Math. Soc. (2), 38 

(1935), 327-339. 
4a . , The abstract groups Rm = Sm = (RjSj)pi = 1 , Sm = T2 = (SjT)2pi = 1, and 

5 ^ = 2 ^ = (S-jTSjT)p> = 1, Proc. London Math. Soc. (2), 41 (1936), 278-301. 
5. -, Regular polytopes (London, 1948; New York, 1949). 
6. f Extreme forms, Can. J . Math., 3 (1951), 391-441. 
7. H. S. M. Coxeter and J. A. Todd, An extreme duodenary form, Can. J . Math., 5 (1953), 

384-392. 
8. C. M. Hamill, On a finite group of order 6,531,840, Proc. London Math. Soc. (2), 52 

(1951), 401-454. 
9. E. M. Hartley, A sextic primal in five dimensions, Proc. Cambridge Phil. Soc, 4@ (1950), 

91-105. 
10. R. W. H. T. Hudson, Rummer's Quartic Surface (Cambridge, 1905). 
1 1 . G. C. Shephard, Regular Complex Polytopes, Proc. London Math. Soc. (3), 2 (1952), 

82-97. 
12. J . A. Todd, On the simple group of order 25,920, Proc. Royal Soc. London, Ser. A, 189 

(1947), 326-358. 
13. , The characters of a collineation group in five dimensions, Proc. Royal Soc. London, 

Ser. A, 200 (1949) 320-336. 
14. , The invariants of a finite collineation group in five dimensions, Proc. Cambridge 

Phil. Soc , 40 (1950), 73-90. 
15. J . A. Todd and H. S. M. Coxeter, A practical method for enumerating cosets of a finite 

abstract group, Proc. Edinburgh Math. Soc (2), 5 (1936), 26-36. 

University of Birmingham 

https://doi.org/10.4153/CJM-1953-042-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1953-042-7

