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A SCHILDER TYPE THEOREM FOR 
SUPER-BROWNIAN MOTION 

KLAUS FLEISCHMANN, JURGEN GARTNER AND INGEMAR KAJ 

ABSTRACT. Let X be a ^/-dimensional continuous super-Brownian motion with 
branching rate e, which might be described symbolically by the "stochastic equation" 
dXt = A*Xt dt + yj2eXt dWt with dWtj dt a space-time white noise. A Schilder type 
theorem is established concerning large deviation probabilities of X on path space as 
e —> 0, with a representation of the rate functional via an L2 -functional on a generalized 
"Cameron-Martin space" of measure-valued paths. 

0. Introduction. 
0.1 Super-Brownian motion. By an J-dimensional (continuous) super-Brownian motion 
with branching rate g > 0, fixed diffusion constant K > 0 and initial measure /i we mean 
the continuous random process t •—» Xt on the time interval / := [0,7], T > 0, with 
values in a set 9A. of measures on Rd (specified below) and with distribution P^ = F^Q 

defined as the solution of the following well-posed 
0.1.1 Martingale problem. 

(i) At initial time t = 0:P^[X0 = fi] = \. 
(ii) For each sufficiently regular map t\—*ft withyj in a set of smooth test functions 

(specified below), there is a continuous zero mean P^-martingale Mt = Mt(f), 
t E 7, such that i^-a.s. 

(Xhft) = (/i,/0) + £(XS9fs + KlSf8) ds + Mt, te I, 

and with quadratic variation (M) given by 

(M)t = 2Q£(Xs,f?)ds, tel, /Va.s. • 

In the boundary case g = 0 the solution of the martingale problem is the degenerate 
distribution Fjf = 6^ concentrated on the heat flow 77. In the present framework this 
is the (deterministic) f7V7-valued continuous function t *—+ rjt, t E I, which solves the 
equation 

(0.1.2) (mJt) = M) + f0(flsjs + Ktfs)ds9 tEL 

Received by the editors November 23, 1994; revised December 9, 1994. 
AMS subject classification: Primary: 60J80; secondary: 60F10, 60G57. 
Key words and phrases: Schilder's Theorem, super-Brownian motion, superprocess, large deviations, 

rate functional, Cameron-Martin space, cumulant equation, complete blow-up. 
© Canadian Mathematical Society 1996. 

542 

https://doi.org/10.4153/CJM-1996-028-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-028-2


A SCHILDER TYPE THEOREM FOR SUPER-BROWNIAN MOTION 543 

Now we replace the branching rate g by eg with e > 0, and let e —> 0. Then the formu­
las above suggest that the corresponding super-Brownian motions J&^ with distribution 
P^eQ converge in law towards the heat flow rj starting at /i. 

Our purpose is to find a nice description of the rate functional S^ = S1^0 in a related 
large deviation principle (LDP), which roughly says that 

(0.1.3) e log fF0E) G A] ^ - inf SJv) 

for each ^-continuity set ,4 of continuous measure-valued paths. 

0.2 Schilder s Theorem for Brownian motion. Let us first recall Schilder s Theorem for 
Brownian motion 1*—* £, on I = [0, T\ with values in Rd, starting at the origin and with 
generator «A, K > 0. 

Let Ho denote the set of all absolutely continuous functions t \—> xt G Rd on I starting 
at JCO = 0 and with square integrable derivative x {Cameron-Martin space). Then the 
family of (scaled) Brownian motions £(£) := y/e^ satisfies a large deviation principle as 
in (0.1.3), but with rate functional 

(0.2.1, S ^ s ^ j i / . W * « * j j e ) v ^ 

0.3 Schilder type theorem for super-Brownian motion. Next we want to introduce the 
rate functional S^ in the super-Brownian motion case in an informal way (precise defi­
nitions are given in Subsection 1.3 below). 

Let H^ = H^ denote the set of all paths f»—• vt G fW, t G I = [0,7], 
(i) with z/0 = /i, 

(ii) which are absolutely continuous (in time) with derivative denoted by z> and with 
Laplacian AV both in a generalized sense, 

(iii) such that the (generalized) Radon-Nikodym derivative d(i/t — K,A*i/t)/di/t exists 
for almost all t G I, and, moreover, 

(iv) such that the following functional 7 = fK of v is finite: 

TO:= \Mvt-^vtldvt\\1{Vt)dt 
(0.3.1) J

 2 

= fat, {d{i/t - KA*vt)/di/t) ) dt. 

Here L2(m) denotes the usual Lebesgue space of functions square-integrable with respect 
to a measure m. In formal analogy to (0.2.1) the rate functional for the family ^ will 
be proportional to this functional jF. Indeed, setting (for K,Q > 0) 

(0.3.2) SM(I/) = S ^ ( I / ) : = U J ( I / ) ' 

loo, otherwise, 

we can loosely formulate our result as follows: 
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THEOREM 0.3.3 (SCHILDER TYPE THEOREM FOR SUPER-BROWNIAN MOTION). Let K, 

Q > 0. The family of super-Brownian motions ^ with branching rate eg and starting 
at /i 7̂  0 satisfies the following large deviation principle: For all S^-continuity sets A of 
continuous M-valuedpaths 

e log ¥[]& G A] ^ - inf S„(i/). 
v€A 

A large deviation principle for XSe^ but with attention restricted to a fixed time point 
t > 0 (instead of looking at whole paths), was already derived in Fleischmann and Kaj 
(1994), hereafter referred to as [FK]. Of course, the representation (0.3.2) of the rate 
functional S^ is only possible in the path-valued setting. 

Our concept for the proof of Theorem 0.3.3 is as follows. First a weak LDP is es­
tablished in a weak topology along the lines of [FK]. Opposed to our original preprint 
[9], an extension to a full LDP in a stronger topology is provided based on a nice expo­
nential tightness result recently due to Schied (1994, 1996). Following again [FK], the 
rate functional S^ is identified as Legendre transform of the log-Laplace functional of X 
via an infinite-dimensional version of Cramer's Theorem in the present situation where 
exponential moments are infinite as a rule. For the derivation of the final representation 
as written in (0.3.2) we then apply some methods from Dawson and Gartner (1987). 

So far we said that X is a ^-dimensional super-Brownian motion. But actually we 
distinguish between several cases: 

(i) X is defined on the whole Rd where certain infinite (tempered) measures are ad­
mitted as states; 

(ii) X is defined only on the closure G of a bounded domain G C Rd with either 
reflecting or killing boundary dG. 

For simplicity, we call (i) the non-compact and (ii) the compact case. 
We have to stress the fact that in the non-compact case we prove the formula (0.3.2) 

for the rate functional S^ only up to a statement on a "local" blow-up property of some 
exponential moments ofX(or equivalently, of solutions of the cumulant equation) which 
we include as a hypothesis; see 1.2.4 below. 

Of course this introductory presentation is a bit vague. The next section contains more 
concise formulations. There we present first in detail the more complicated non-compact 
case (Subsections 1.1—1.4), whereas modifications which apply to the compact case are 
sketched in Subsections 1.5—1.6. In Section 2 we state some results for the relevant non­
linear cumulant equation and engage in the identification of its solutions with the ap­
propriate log-Laplace transition functional of X, both topics again for the non-compact 
case. Here the behaviour at blow-up complicates the picture. We prove a complete blow­
up statement (under K, Q > 0) closely related to a corresponding property of the solutions 
of the cumulant equation. For this we use the local blow-up Hypothesis 1.2.4 just men­
tioned. The weak LDP, its mentioned strengthening, and the representation of the rate 
functional as a Legendre transform are given in Section 3. The subsequent section is de­
voted to the identification of the rate functional as indicated in (0.3.2). Only in the final 
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Section 5 we come back to the more simple compact case sketching aspects different 
from the given development. 

Our standard reference for the general theory of large deviations is Dembo and 
Zeitouni (1993). For the theory of superprocesses we refer to Dawson (1993). Concern­
ing classical differential equation theory, see Friedman (1964). 

1. Statement of results. 
1.1 Preliminaries: Spaces (non-compact case). Fix a dimension d > 1. Fix also a 
constant a > 0 and let (pa denote the reference function 

( l . i . i ) <paty) := (l + \y\2Ta,\ yeR*, 

(in practice we are going to take a> d). 
Let O = Q>(Rd) denote the set of continuous real-valued functions (p on Rd with the 

property that the ratio ip(y)/<pa(y) has a finite limit as \y\ —> oo. Equip this linear space 
O with the norm 

|M|:=supkM , € o . 

The separable Banach space {0, || • ||} serves as our basic space of test functions. 
The set <D7 := C{U <&) of continuous maps t »-» ipt of the interval / = [0, T\, T > 0, 

into O with the supremum norm ||-0||/ := sup,G/1|^/|| is also a Banach space. We denote 
by i/>a the "constant" element of 0 / defined by i$ := <pa, t E /, (with the reference 
function^ of (1.1.1)) and remark that ||V>1|/= \\<Pa\\ = 1. Note also that || • || and || • ||7 

are not smaller than the corresponding supremum norms on Rd and / x Rd, respectively, 
since 0 < cpa < 1. 

Let {0*, || • ||*} and {0; , || • ||J} refer to the dual spaces of {0, || • ||} and {07, || • | | /} , 
respectively. In addition to the norm topologies in 0* and 0 j \ we also consider these 
spaces equipped with their weak*-topologies generated by 0 and 0/ , respectively. 

We always let a measure on a topological space be defined on the relevant Borel a-
algebra, and let (/x, ip) stand for the integral J (p(y)fi(dy). The set 9A.a = Ma(Rd) of all 
(locally finite non-negative) measures /i on Rd with the property that (/i, (pa) < 00 can 
be considered as a subset of 0*. In particular, 

10^)1 < IMKM,</>< 00, jzefM*, <pe<s>, 

hence ||/i||* = (fi,^pa). The induced weak*-topology in Ma, the so-called a-vague topol­
ogy, is just the coarsest topology such that for each (p € 0 the mapping /x 1—> (/x, (p) is 
continuous. 

Note that /i 1—» (pa(y)n(dy) is a homeomorphism of Ma onto the set Mf = Mf(Rd) 
of all finite measures on Rd equipped with the topology of weak convergence. Using 
the (Levy-) Prohorov metric in Mf, via this homeomorphism we define a metric pa on 
fftfa (making the homeomorphism to an isometry). This way, fW* inherits the following 
properties: {Ma, pa} is Polish, i.e., separable and complete, pa is "subinvariant", that is 
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pa(H, v) > pa(/i + u, v + u\ /x, z/, a; G fA/*a, and bounded by the image of the variational 
distance, that is pfl(/i, i/) < ||/x — i/||*, and, moreover, the open balls £e(/i) in fWa with 
center /x and pa-radius £ > 0 are convex. 

Let fWJ? := C(I, Ma) denote the set of continuous maps v\t\-^vt from / to fWa. We 
regard 9A.f as a convex subset of O^ via the pairing 

(1.1.2) (v^f^lK^ds, veMf, V £<*>/. 

Since 

\(v,*l>)i\ < U\\i(v,r)i, veMj2, ^e o7, 
we have 

(1.1.3) \W\\i = W,r)i, v^M?. 

The subset topology inherited from the weak*-topology in O* is the coarsest topology 
on 9A.i such that all functions v \—> (v, ijj)j9 if; G O/, are continuous. 

There is a metric pj on 9A.f which generates this topology, is subinvariant, satisfies 

(1.1.4) p / (p , i / )< | | / / - i / | | ; , ^veM^ 

and is such that the open balls in Wff are convex. For the construction of such a metric, 
regard a weakly continuous finite-measure-valued path on / as a finite measure on / x Rd, 
and proceed as explained above in the case Ma (Prohorov metric on Mf{IxRd), isometry, 
etc.). 

Note that 9A.f is separable (use the set of polygons on suitable equidistant partitions 
of/ with corner points in a dense countable subset of fW°). 

Additionally, we endow fftff = C(I, Ma) also with the compact-open topology. To 
distinguish symbolically between the two topologies we adopt the convention that the 
notation 9A.f always refers to the case of the first, weaker topology, whereas C(I9 Ma) 
refers to the path space equipped with the compact-open topology. But note that the Borel 
cr-fields of both spaces coincide (recall that {Ma, pa} is separable). 

We finish this subsection by introducing some spaces of smooth functions. Denote by 
C°° = C°°(Rd) and Cf° = Cr(IxRd) the sets of real-valued functions/ on Rd or IxRd, 
respectively, possessing continuous derivatives of all orders and put 

3>°° = ®°°(^) := {f G C°° :f,Af G O}, 

o7°° = oy°(/ x Rd) :={fe cr :f,f,¥ e o7}, 

where again/ = £ / , and the Laplacian A acts on the /^-variable of/ 

1.2 Super-Brownian motion in Rd and the local blow-up hypothesis. In line with stan­
dard settings we restrict from now on the parameter a entering into the reference function 
(fa of (1.1.1) by assuming a> d. (In the context of a more general model, it was assumed 
in [FK] that in addition a < d + 2; but this is not needed in the present super-Brownian 
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case.) We then introduce formally the super-Brownian motion with state space Ma and 
paths realized in 9^if (by no means the only option) as follows. 

DEFINITION 1.2.1 (SUPER-BROWNIAN MOTION IN Rd). For given diffusion and 
branching parameters K, g > 0, respectively, and for any \i E Ma, we define the dis­
tribution P^ = F^e on C(L Ma) of a continuous super-Brownian motion X in Rd with 
Xo — \i as the unique solution of the Martingale problem 0.1.1 with the functions/taken 
from <Dy° defined in (1.1.5) (and fAf = 9V[a). We may easily extend the process X from 
/ to all of R+, keeping the notation P^ = P^Q for its laws. Occasionally we choose an 
initial time s £ R instead of 0, in which case we write PStti = P%£ for the distributions. 
Finally, if X starts off with a unit mass ji = 8y,y G Rd, we write Ps^ for simplicity (and 
ESy in the case of expectations). • 

Next we want to introduce the log-Laplace functional A = AK>Q of the pair (XT,X) 

related to the joint law of the process X and its value Xj at the "terminal" time T. For 
(< ,̂V0 G O x O/, set 

(1.2.2) Ate,tf]fojO := log£ 'sy expl(XT,v) + Js
T{Xr,^r)dr 

(s,y) G / x Rd. Note that A[<p, V>] maps I x Rd into (—oo, +oo]. Define the following set 
of "uniform boundedness from above": 

(1.2.3) ^ = ^ : = L ^ ) G O X O / : sup % , * j ) < + o o ) . 

As mentioned above our result in the present non-compact case is partly based on a 
hypothetical statement. (We have no doubts that this statement is true.) It concerns the 
blow-up behaviour of A[<p, ip] for (<p9 ip) in the boundary dV of V. Indeed, a basic tool in 
the study of super-Brownian motion is that A[(p, V>] (at least for (p, ?/> < 0) represents the 
solution of a nonlinear parabolic equation, often called the cumulant equation. From this 
connection we can and will infer the following facts (taken from [FK], see Lemma 2.1.3 
and Proposition 2.2.2 below): V defined in (1.2.3) is an open subset of O x O/, and if 
(if, ijj) belongs to dV then the supremum of A[0((p, ?/;)+ — (<p91/;)~] on all of I x Rd blows 
up as 9 / 1. (Here the usual conventions x+ := x V 0 and x~ := (—x)+ are applied 
coordinate- and point-wise.) Intuitively it is clear that this blow-up should occur in a 
bounded region (recall that </? and t/> have a power decay as \y\ —* oo). In particular, the 
following hypothesis should be true: 

HYPOTHESIS 1.2.4 (LOCAL BLOW-UP IN I/0- Fix ^ e O/ such that (0, VO belongs 
to the boundary dV of V (defined in (1.2.3)). Then there is a compact subset K ofRd 

(depending on i/j) such that 

sup A[0,6^ - ^~](s9y) —^+oo as 0 / 1 . • 

The study of local blow-up properties for solutions of related nonlinear equations 
is prevalent in the literature; see, for instance, Friedman (1986), Bebernes and Bricher 
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(1992), Velazquez (1994), and references therein. (But we could not find a statement in 
the generality as formulated in the hypothesis.) Recall that this hypothesis is superflous 
in the compact phase space case we deal with in Subsections 1.5—1.6 below. 

1.3 Distribution-valued functions and absolute continuity (non-compact case). Con­
sider the Schwartz space 2) of test functions (p with compact support supp (p in Rd and 
continuous derivatives of all orders. As usual, 2) is furnished with its inductive topology 
via the subspaces *DK = {(f £ (D : supp ip C K}, where the sets K C Rd are compact. 
Let 2)* denote the dual space of real distributions (generalized functions) on Rd. Since 
<Ma can be considered as a subset of 2)*, we extend the notation (p \—* (#, (p) used for 
tf = / iE Ma to any i? G 2)*. 

A map t H-» fit G 2)* defined on / is said to be absolutely continuous if for each 
compact set K C Rd there exists a neighborhood UK of the zero function 0 in (DK and an 
absolutely continuous real-valued function k& on / such that 

|(0„ ip) - (0„(^)| < |M0 - fr(*)|, s,tei,<pe uK. 

For such an absolutely continuous map t \—+ tit the derivatives #, G 2)* at r exist in 
the distribution sense for Lebesgue almost all t G /. Moreover, the integration by parts 
formula 

(1.3.1) (tf„/) - (*„/,) = j\$rJr)dr + J\tirjr)dr, 0<s<t<T, 

holds for each/ G ^>
/°°'

comP9 the set of all those functions/ G C/°° having compact 
support. For these definitions and facts, see Dawson and Gartner (1987), Subsection 4.1, 
in particular their Lemma 4.3. 

DEFINITION 1.3.2 (RADON-NIKODYM DERIVATIVE). We say that the generalized 
function i9 G (D* is absolutely continuous with respect to the measure \i G <Ma if there 
exists a function g > 0 which is locally /x-integrable and satisfies (#, ip) = (/x,g^), 
<p G 2). In this case we write g= dti/d^i and call g the Radon-Nikodym derivative of # 
with respect to the measure /i. • 

Note that this is a natural generalization of a notion in the measure case (if besides \x 
also # belongs to Ma). 

1.4 Main result (non-compact case). For n G Ma let A*/x denote the element in 2)* 
defined by (A*/i, </?) = (//, Ay>), (/? G 2). By the Definition 1.3.2, given t, the Radon-
Nikodym derivative d(yt — K^i/t)/dvt appearing in the functional *} of (0.3.1) entering 
into the representation (0.3.2) of the rate functional should be an element ht in L2(/i), 
which satisfies 

(1.4.1) (i,t - «AV„ ip) = (i/t9ht<p)9 ipetD. 

To put this and hence (0.3.2) on a firm base, for each /x G <M.a we introduce a subset 
H^ = H^ of fW/* which will play the same role as the Cameron-Martin space Ho in 
Schilder's Theorem for Brownian motion. 
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DEFINITION 1.4.2 ("CAMERON-MARTIN SPACE" H^). Fix \x E <Ma. Let H^ = H^ 

denote the set of all paths v E Mf having the following properties: 
(i) 1/0 = \i. 

(ii) The 2)*-valued map t\—*vt defined on / = [0, J] is absolutely continuous, 
(iii) i/t — K,A*i/t E 2)* is absolutely continuous with respect to vu for almost all 

t £ I; the related Radon-Nikodym derivatives are denoted by ht (recall the Defi­
nition 1.3.2). 

(iv) t\-*ht = dipt - nA*i/t)/di/t belongs to L2(v) := L2(l x Rd\ dri/r(dy)), that is 

<f(y) = f ( . ) := I \\d(v, - KA*vt)/dvt\\
2

L2{l/() dt 

= fi(i/hh
2)dt=(is,h2)J<oo. 

We call h the Radon-Nikodym derivative of i>—KAV with respect to the measure-
valued path v. • 

Note that v E H^ implies (by definition) that (1.4.1) holds for almost all t E /. Now 
we are in a position to restate Theorem 0.3.3 in the non-compact case. (For the compact 
case, see Theorem 1.6.1.) 

THEOREM 1.4.3 (SCHILDER TYPE THEOREM FOR SUPER-BROWNIAN MOTION IN Rd). 

LetK>0, g>0, \i E <Ma, [i ^ 0. Then the laws P^e on C(I, Ma\ equipped with the 
compact-open topology, satisfy a large deviation principle as e —> 0 with a good convex 
rate functional S^ = SK/: C(I, Ma) \-> [0, oo]. That is, 

(i) liminf£^o £ logP^e[X GA]>- W£V£A S^{v\for all open A C C(I, Ma), 
(ii) limsupe_0 E \o%P^\X eA]<- inf^A S^iyXfor all closed A C C(I, Ma), 

(iii) the level sets {v E C(I, Ma) : S^v) <N},N> 0, are compact in C(I, Ma). 
IfK > 0 and under Hypothesis 1.2.4, the rate functional is given by 

(1.4.4, W-{4™ "V1' 
[ oo, v E C(l aiMa)\H». 

REMARK 1.4.5. (i) By projection, the theorem implies in particular Theorem 4.1.1 
of[FK]. 

(ii) Our main objective is the proof of the representation formula (1.4.4), the validity 
of the LDP in the compact-open topology is due to Schied (1996). 

(iii) It has meanwhile been verified that the representation (1.4.4) of the rate functional 
also holds in the case K = 0 (branching without motion component); see Schied (1996), 
Theorem 4, which is a clarification and extension to paths of the fixed time point result 
Theorem 1.5.4 in [FK]. We prove (1.4.4) only in the case of a positive diffusion constant 
K, since our method of proof is limited to that case. In fact, under n = 0 a local blow-up 
does not imply a complete blow-up, not even in the compact case. 

(iv) S^i/) — 0 if and only if v equals the heat flow 77 on the time interval I = [0,T] 
with degenerate law P^°. • 
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1.5 Preliminaries: Spaces (compact case). The purpose of this subsection is to adapt 
the framework introduced in the Subsections 1.1-1.4 to the compact case. 

Let G be a bounded domain in Rd with smooth boundary dG. With this we mean a 
bounded connected (non-empty) open set G C Rd where we impose that its boundary 
dG belongs to the Holder class C2+1, for a fixed index 7 £ (0,1). 

As the basic function space O = O(G), we take the Banach space C(G) of all contin­
uous functions ip on the closure G = G U dG of G, equipped with the supremum norm 
|| • ||. Formally this fits into the constructions of the non-compact case by setting a — 0 
in the definition of the reference function (pa of (1.1.1) (and restricting to G). Define 
0 / = 0/(G) analogously, i.e., as C(I,Q>) with the supremum norm, and let O* and ®; 
denote the dual Banach spaces, respectively. 

The now relevant set fW° = M®{G) ofall finite measures on G is again to be consid­
ered as a subset of O* endowed with the induced weak*-topology. This is the topology of 
weak convergence generated by the Prohorov metric po- Note that fW° is a locally com­
pact Polish space. Define fWj° = C(I, fW°) analogously, keeping our convention how to 
refer to the two needed topologies. 

Next we prepare for a replacement of the space O00 of smooth functions. For our 
purpose, it is convenient to work with Holder continuous functions. Recall the constant 
0 < 7 < 1, used for the definition of G. Consider the usual Holder space C2+1 = C2+1{G) 
with norm || • H2+7, defined with respect to Euclidean distance on G, see, for instance, 
Friedman (1964), Section 3.2, (dropping there the time coordinate). Roughly speaking, 
C2+1 consists of all continuous functions ^ on G with continuous first and second order 
partial derivatives, and moreover with 7-Holder continuous second order derivatives. 

Aimed to the two cases of boundary behavior of the desired super-Brownian motion 
X in G, we let Ĵ  refer to the normal derivative at dG and impose on <p £ C2+1 always 
one of the following boundary conditions: 

(i) (f = 0 on dG (Dirichlet boundary condition), 

(ii) -^ ip — 0 on dG (Neumann boundary condition). 
Write (02 + 7 , || • || 2+7) for the Banach space of those functions <p in C2+1 which are 

such that, either, all functions satisfy condition (i), or, all functions satisfy condition (ii). 
Note that we use the same symbol for both separable Banach spaces. 

In place of Of3 we take (02 + 7 , || • H^) . This is the separable Banach space of all 
those functions/ of the usual Holder space C2+1 = C2+7(/ x G) relative to the metric 
(|f - f\ + |JC - x'l2)1/2 on / x G (see Friedman (1964), Section 3.2), which additionally 
satisfy the Dirichlet boundary condition (i) at every time t. Alternatively, the Neumann 
boundary condition (ii) is imposed on all functions/at all times. (Recall that in defining 
the Holder space C2+1 the ^-Holder continuous first derivative with respect to the time 
variable t E / = [0, T\ has to be taken into account.) 

The space (02+7)* is the topological dual of C>2+7, but equipped with the weak*-
topology. Of course, it depends on the choice of the boundary condition (i) or (ii) in 
the definition of 02 + 7 . 
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We consider the Laplacian A as operator on <I>2+7, that is, the domain of A essentially 
depends on the chosen boundary condition. Its dual operator A*, defined on (02+7)* by 

(A*tf, <p) = (0, Ay>), 0 G (<D2+7)*, ip G 0>2+7, 

then also depends on the original choice of the boundary condition. 
We regard the set fW° of finite measures on G also as a topological subset of (®2+7)*. 

For # G (02+7)* and /i G 5tf°, we define the absolute continuity of ft with respect 
to \i and the Radon-Nikodym derivative dti/dp just as in Definition 1.3.2 (with 2), ©* 
replaced by <D2+7,(02+7)*). 

Similarly as in Subsection 1.3, a map #: /1—* (02+7)* is said to be absolutely contin­
uous, if there is an absolutely continuous real-valued function Icon I such that 

| ( ^ > - ( < W } | < \Kt)-k(s)\, s9tei, ^ G ^ , IM|2+7<i. 

An absolutely continuous map # possesses a time derivative jftt = #, G (02+7)* (in the 
weak* sense), for almost all t el. (This is due to the fact that the polar of the unit ball in 
02 + 7 is sequentially weak* compact.) As a consequence, for such maps # the integration 
by parts formula (1.3.1) holds for each/ G 02+7 . 

Now we can introduce the "Cameron-Martin space" H^ = H1^, // G fM°9 and for 
v G H^ the functional ^(i/) = J-K(v) in exactly the same way as in Definition 1.4.2, 
only replacing £>* by (<D2+7)*. 

1.6 Main result (compact case). We introduce the super-Brownian motion X in G with 
either killing or reflection at the boundary dG of G just as in Definition 1.2.1, but by using 
02 + 7 as the class of test functions/ (depending on the choice of boundary condition in 
the definition of 02+7). For the existence of a unique solution to martingale problems of 
such kind, see Dawson (1978), Theorem 3.1. (Note that in the case of killing the total 
mass process t»—> Xt(G) is no more a martingale; but the function constantly 1 on G does 
also not satisfy the killing boundary condition.) 

Without any additional hypothesis, our result in the compact case now reads more 
carefully as follows. Recall we assume Q > 0 and /i G Wla \ {0}. 

THEOREM 1.6.1 (SCHILDER TYPE THEOREM FOR SUPER-BROWNIAN MOTION IN G). 

The super-Brownian motion X in G with either killing or reflection at the boundary dG 
satisfies a large deviation principle as in Theorem 1.4.3 with a good convex rate func­
tional S^. Under K, > 0, it takes the form 

,1.6.2) W := ( * « * . - * • • ' . > / * . & „ * •>*»* 
[ oo, v G C(I, Ma) \ H^ 

where A* is the dual to the Laplacian in G with either killing or reflecting boundary 
condition. 

REMARK. Also in the earlier non-compact case it is not really necessary to work with 
spaces of infinitely differentiable functions. On the other hand, countably many normed 
spaces are needed there, and so it is convenient to use the Schwartz distributions. • 
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1.7 Two examples. The first example concerns a LDP for a scaled version of the so-
called occupation time process {Yt := $Xrdr : t > 0} related to the super-Brownian 
motion X in Rd. Suppose d > 3 (when X has a steady state X^ which satisfies 
£[Xoo(//x)] = dx with dx denoting the Lebesgue measure). Apply for the moment our 
notation of function and path spaces in the non-compact case also to the infinite interval 
I' := [0,oo). Given x/j E O// and v E fWj? as well as a natural number w, define the 
rescaled function i/i" E O// by ^J(x) := n~d/^s(x/n) and the mass-time-space scaled path 
i/n E fW/1 by (l/g^s) '•= (^V^V^), s £ I. We use the notation /i" for analogously 
defined scaled measures. Set £ := n~^d~2\ By the identity 

e l o g ^ [ X E •] - #i-(</-2> l o g ^ [ T E •] 

(see for instance formula (4.6.4) in [FK]), the large deviation system {X^£\ e} with re­
spect to F^£& as e —> 0 along this particular ^-sequence is equivalent to the system 
{X1, n-{d~2)} with respect to P%? as w —* oo. 

For a fixed I/J E O// and a Borel subsets ofR we obtain (recall the notation (1.1.2)) 

= PK;?[n-2£T(Xs,rs)dsGA 

For simplicity, suppose // = dx, which is scaling invariant: (dx)n = dx. Take T = 1 and 
set«2 =: t. Then 

r(*-2)/2 , o g / « L-l j*{Xs9 tft) dseA 

= elogP%Q[(X,tl>)IeA] 

—• - inf{^(i/) : i/ E fW?, (z/, V>)/ E A} as f —• oo 

(if A is a ^-continuity set). Compare this with the large deviation principles derived in 
Iscoe and Lee (1993) (d = 3,4) and Lee (1993) (d > 5) for the sequences 

i o g ^ : f (XS9ip)ds eA at 

where (p E O. Hence, opposed to our case, their results concern the unsealed ergodic 
limits t~x Yt as t —» oo. 

We turn to the second example. It is devoted to the total mass process t\—> \Xt\ of the 
super-Brownian motionXin Rd

9 or in G with reflecting boundary, where \m\ := /w(/^) = 
(m, 1) denotes the total mass of a measure m. Assume that \i ^ 0 is finite. Recall that 
the total mass process \X\ is a critical Feller branching diffusion. Since the total mass 
process is independent of the dimension we can formally set d = 0. Actually, throughout 
the paper we may admit this boundary case d = 0 with the obvious conventions as 
R° = {0}, dy — So, etc. In this case Hypothesis 1.2.4 is trivially true and the condition 
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K > 0 is irrelevant. Now O/ is the set of continuous functions ip on / endowed with 
supremum norm. Moreover, Mf is the set of continuous nonnegative functions A on / 
equipped with the weakest topology such that A \—> J} \jjtXt dt is continuous for all ij; G 
O/. Furthermore, the Cameron-Martin space H^ consists of all nonnegative, absolutely 
continuous functions A on / with Ao = \i > 0 and such that ft <f\t belongs to L2(I; dt). 
In this special case, jF in the rate functional S^ of (1.4.4) takes the form 

J(A) = Ji{jtx')2*lliwdt=4/(^)2du x eH»-
By Jensen's inequality, for A G H^ we have the estimate S^{\) > (y/\r — y/JPf/gT. 

But this lower bound is attained at the particular path in H^ which is given by the parabola 
piece t \—> ut := [y/JI + (y/Xr — y/fi)t/T]2. Hence, if we are interested only in large 
deviations of \XT\ (for T fixed) then the rate functional simplifies to 

(Of course, this also follows from the representation Theorem 1.5.4 in [FK] concerning 
the case n = 0.) In particular 

e \ogPF'[\XT\ <c]^> -W~c - y/jff/gT, 0 < c < fi. 

1.8 Remark on Sanov s Theorem. Here we discuss the question of deriving the Schilder 
type theorem by use of the contraction principle starting from a Sanov Theorem for super-
Brownian motion in Rd. 

Let M = M{Mf) denote the vector space of finite signed measures Q on {Mf, p/} 
(the metric pj was introduced before (1.1.4)) and M\ = M\ (fMf) the subset of probability 
measures in M. Furthermore, let Cb = Cbiftff) denote the collection of bounded continu­
ous functions F on Mf equipped with the supremum norm ||F|| = sup{|F(z/)| : v G ftff} 
and topologize M with the weak topology. Then M\ is a closed subspace of /Wand its rel­
ative topology is metrized by the Prohorov metric. 

Let X1, X2,... denote a sequence of independent super-Brownian motions in Rd iden­
tically distributed according to P^ G M\. Then the associated empirical distributions 
converge weakly towards P^, that is, 

n 

n~l Y^^x* = =^ Pv&sn—* oo. 

As in standard results as e.g., stated in Dembo and Zeitouni (1993), Theorems 6.2.10 
and 4.5.14, the sequence of empirical distributions should satisfy a full large deviation 
principle with rate functional 

MQ) = 3 ^ ( 0 - sup{<&F)~ios(p^eF)-F^ G>h Qe w,. 
Moreover, by taking averages in the empirical distributions (evaluating at the identity 
map H(u) = v on Ma\ one expects the law of large numbers 

n 

n-\ ^ x = > E^X] as n -> oo 
/=i 

https://doi.org/10.4153/CJM-1996-028-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-028-2


554 KLAUS FLEISCHMANN, JURGEN GARTNER AND INGEMAR KAJ 

for the empirical means. But it is clear from the Martingale problem 0.1.1 that the ex­
pression on the left side in the preceding relation has distribution p^Qln and that the 
deterministic measure on the right side is the heat flow r\. Formally we are then back at 
studying the limit of XS£>} along e = \/n. However, the projection map 

TT:MI 3Qy—^EQ[X\= \ t ^ jvtQ{dv)\ e Mf 

(projection to expectations) is not continuous, for the set-up chosen. This prevents the 
conclusion of a Schilder type LDP with S^(i/) = inf{5^(0 : EQ[X] = i/}. 

A related situation is when one expects that the family of marginal distributions of X 
appears as limit of the empirical process, i.e. 

{ n \ 

11—> n~l ^2 ^A*(0 f = ^ {t i-^ Pp o X^~1} as n —* oo. 
Again the appropriate projection mapping may not be continuous. For a discussion of 
such problems, see Dawson and Gartner (1987) and Feng (1995). 
1.9 Further remark. In contrast to the fixed time LDP in [FK], in this work we restrict 
to the super-Brownian motion rather than working with the class of continuous super-a-
stable motions in Rd, 0 < a < 2. Originally, this was motivated by the fact that in the 
proof of Lemma 4.1.2 below we use that infinite differentiability of ip and \j) in the partial 
differential equation (2.1.4) (cumulant equation) implies that the corresponding classical 
solution Up^ is also infinitely differentiate. However, (under the additional restriction 
d<a<d + a on a) equation (2.1.4) makes sense also with A replaced by the fractional 
Laplacian Aa := — (—A)a/2 (see, for instance, Yosida (1978), formula (9.11.5)), if it is 
understood as an ordinary differential equation in a Banach space. Then the mentioned 
C°°-property carries over, and the representation formula (1.4.4) of the rate functional 
(in the non-compact case and under a local blow-up hypothesis) is valid for a < 2 when 
replacing A* by A* and working from the beginning with the a-setting of [FK] instead 
of restricting to a = 2. 

2. Cumulant equation and exponential moments. Recall that in the Sections 2-4 
we are only concerned with the non-compact case. 

2.1 Cumulant equation. For K, > 0 let ?t
K, t > 0, denote the Brownian evolution 

semigroup on O = <&(Rd) defined for t > 0 by 

(2.1.1) %Ky{x) = (4™t)-d/2 je-\x-y\2l*Kty(y)dy, x£Rd, <p G <D, 

and for t = 0 by %K(f = (p. Extend to K = 0 by setting T®(p = ip, t > 0. 
For given «, g > 0, consider the nonlinear integral equation 

(2.1.2) us = %«_sy + [%K_s^rdr + Q j'<Tr
K_s(u

2
r) dr, s G /, ( ^ G O x O / , 

(in backward time formulation and terminal time condition UT = <p). It is well-known that 
such equations can be solved at least for </?, i/> < 0, and that their solutions have prob­
abilistic interpretations in terms of certain Laplace functionals of the super-Brownian 
motion in Rd. Here we restate some results on the existence of solutions of (2.1.2) and 
their properties, taken from [KF]. 
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LEMMA 2.1.3 (CUMULANT EQUATION). 

(i) (uniqueness). For each («, g, (p, ijj) G R\ x Q> x O/ there is at most one solution 

u^^ = u^Q, G O/ of the integral equation (2.1.2). 

(ii) (existence). The set U of all those («, Q,(p,ip) E Rl x Q> x O/ such that there 
exists a solution uK'Q, of (2.1.2) in <£/ is open and includes {(</?, VO < 0} and 
{Q = 0}. In particular, UQ'Q = 0. 

(Hi) (continuity). The solutions uK'Q, are continuous in (/c, £,(/?, 1/;) G U. 

(iv) (blow-up). The set 11 is different from R\ x O x O/ and if(Kn, Q„,ipn,il>n) € U 
converges to a boundary point ofU as n —• oo, then 

SUP u^H^y) -> +°°-
sa^eRd 

(v) (regularity). For fixed (K, Q) G R\, if (if, VO in the (open) section 

V[K,Q] '= {(</></>') € O x O/ : (K9Q,<p',tl>') G *Z} 

o/ 1/ belongs to O00 x Oy° (defined in (1.1.5)), then u^ is also an element of 
Oy° and solves the partial differential equation 

(2. 1.4) ~Tus = «Al/5 + 0«J + ̂ , W* \s=T-= <f. 
OS 

PROOF. The statements (i) to (iv) follow from the corresponding parts (i) to (iv) of 
Theorem 2.4.3 in [FK], (which concerns the cumulant equation for the more general 
super-stable processes in Rd). Regularity, as in (v), is known from classical differential 
equation theory. • 

2.2 Log-Laplace functional. Recall the definition (1.2.2) of the log-Laplace functional 
A and the related set V of uniform boundedness from above, introduced in (1.2.3). For 
the sake of completeness we work in this section also with the following stronger version 
of the local blow-up hypothesis: 

HYPOTHESIS 2.2.1 (LOCAL BLOW-UP). Fix (</?, ip) in the boundary dV of V. Then 
there is a compact subset K ofRd (depending ornp,^) such that 

sup A[0((p, i/0+ - (<p, il>)~](s,y) —• +oo as 0 / 1. • 

PROPOSITION 2.2.2 (LOG-LAPLACE FUNCTIONAL). Fix K,Q>0. 

(i) (identification). The set V = V^q coincides with U[K,Q\ defined in 
Lemma 2.1.3 (v), and u^ = A[ip, 1JJ] on this set. 

(ii) ("star shape"). #*(</?, VO € dV andQ < 1, then (w^e) := #(</?, t/;)+ - (</>, V)~ 
belongs to the open set V. 
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(Hi) (complete blow-up). Let n > 0. Under Hypothesis 2.2.1, if {if, VO does not belong 
to the closure ofV in O x O / then A[(p, ip](0,y) — +oo for ally G Rd, whereas 
under Hypothesis 1.2.4 this statement is true in the special case (p = 0. 

Clearly, such complete blow-up statements are closely related to corresponding no­
tions expressed in terms of the cumulant equation; see e.g., Baras and Cohen (1987), 
Lacey and Tzanetis (1988). 

PROOF. Part (i) of the proposition is a consequence of Theorem 3.3.1 in [FK] (see 
also Corollary 3.3.4 there), specialized to the present situation. 

As a preliminary for the proof of (ii), note that for the moment we can allude to the 
case d = 0 as in the second example in Subsection 1.5 and apply (i) to the total mass 
process \X\. First, by time-homogeneity and monotonicity, for 6 > 0 we have 

(2.2.3) ~>sy exp d[\Xr\ dr = -Eb,o exp oJ0
T-s\xr\ dr 

<E0,o[exp{0\YT\}l 

Here again Y denotes the occupation time process related to X. But in dimension 0 the 
partial differential equation (2.1.4) simplifies to 

-ue(i) = gu2
e(t) + 0, t > 0, u9(0+) = 0, 

where 0 G R (for convenience we passed to a forward time setting). For Q > 0 its solution 
is 

_ J -\I~QIQ t a n h ^ V 3 ^ ] , if 0 < 0, t > 0, 
l)/^ton[ty/UQ], if 0 > 0, 0 < ty/Ug < TT/2. •{ ueif) 

Hence, with this ue(t), 

(2.2.4) £o,o[exp{0|7r|}] = 

Recall at this place that 

(2.2.5) £o,o[exp{0|Ai|}] = 

exp{w0(O} < oo, if P-OQ < 7^/4, 
(oo, otherwise. 

( exp{0/(l - WQ)} < oo, if t9g < 1, 
oo, otherwise, 

(cf e.g., step 1° of proof of Theorem 5.2.1 in [FK]). 
Going back to any dimension d, we are now ready to prove (ii). For notational ease, 

as an extension of (1.1.2) and by an abuse of notation, from now on we write 

(2.2.6) (X, (^, rl>))M := (Xt, ip) + f (Xr, Vv) dr, 

(ip, VO G O x O7, 0 < s < t < T. We have to show that for (ip, ^) G dV and 0 < 0 < 1, 

(2.2.7) sup Es,y[exp(X, (ye, ^e))[sj\[ < oo. 
seiyeRd 
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Fix e G (0,1 - 0) and set/7 := l/e andq := 1/(1 - e). Note that/?-1 + q~x = 1 and 
0 < 8q < 1. Select ((fn,^n) G V such that (<£„, ^«) -> (<£> VO as w —> oo, and put 
(</V> VwO : = %>«> V>«)+ - (Wn, V>«)_- Decompose (<pe, ^ ) = [ ( ^ , ^ ) - (</V> VwO]+ 
(<̂ „9<9, V̂w,6») in (2.2.7), and apply Holder's inequality to get 

ESj[exp(X9(ipe,tl>e))[s,TJ\ <AX^BXI\ 

where 

A := ESy[exp(X,p((p9 - (pnfi, i/>0 - i>n,e))[s,r]l 

B := ESy[exp(X,q(ipnf,\l)„to))[StT\l 

First of all, p((pe-<pn,9)+p(^e-^n,e) < 2£~l(\\<p-<Pn\\+\\il)-'il)n\\i) =: £w —> 0as« —> oo. 
Then by (2.2.3) the term ^ is bounded from above by £b,o[exp{£„(|JLr| + \YT\}], which 
is finite for a sufficiently small en by (2.2.4) and (2.2.5) (apply the Cauchy-Schwarz 
inequality). On the other hand, q^fnjd^nji) < (<£«> V̂ X hence the quantity B is finite 
uniformly in s and y for each fixed n. Thus (ii) is verified. 

The proof of (iii) will be postponed to Subsection 2.4 below. • 

2.3 Estimates involving exponential moments. The purpose of this subsection is to 
prepare for the proof of the complete blow-up statements (iii) of Proposition 2.2.2. Recall 
the notation (2.2.6). First of all, "enlarging" the test function, the exponential moments 
"grow" uniformly on a sufficiently small "time-space ball": 

LEMMA 2.3.1. Fix (<£>,T/0 G O X O/ and 8 > 1. Then there exist positive constants 
e, C such that 

ESy[exp(X9(ip,xl)))M] < C{Es+h^z[cxp(X,0(ip,i)))y+h^h]]y ° 

for ally, z G Rd and s, t, s +h, t +h € I with s < t, whenever \h\, \z\ < e. 

PROOF. Choose first q such that 0~x + q~x = 1 and then 8 > 0 for which (recall 
(2.2.4) and (2.2.5)) 

C : = ( sup Esfi[Qxp{8q(\Xt\ + \Yt\)}])
l/q <oo. 

o<s<t<T 

Moreover, by uniform continuity, select e > 0 such that ip < tp(- — z) + 5 and 1/; < 
ij){.-h){' — z) + 8 provided that \h\, \z\ < e. Then the statement follows from Holder's 
inequality. • 

Next we give an estimate concerning a small change at the upper end of the interval 
of time integration. 

LEMMA 2.3.2. Fix (</?, i/0 G O x O/ and 0 > 1. Then there exist positive constants 
ho and C such that 

£„,[exp<*,(¥>,^)}M] < C{Es^xV{X,e^,^)){s,+h]\)'19, 
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for ally eRd andO<s<t, t + h <Twhere\h\ < h0. 

PROOF. Again set 9~l + q~x = 1. By (2.2.5) we may choose e > 0 with 

(2.3.3) O := sup£0,o[exp{£|Xr|}] < oo, 

and then by (2.2.4) a time point ho > 0 such that 

(2.3.4) log sup £o,0[expte|M|(l + \Xlhl\) + q\\i>\\,\Yho\}] < e. 
W<ho 

LetO< \h\ < ho. Clearly, 

(xh<p)<(xl+h,v) + M(\xt\ + \xt+h\), 
rtV(t+h) 

(X,1>)M < < * V > W A ]
 + I I V - I I / L 1*1 dr-7/A(f+/i) 

Hence, 

•//A(f+A) 
(X,(y,, i/0>M < (*(V. VOW*] + IMKI*I + %+h\) + ||Vll// 1*1 rfr. 

Together with this estimate we apply Holder's inequality. To see that the claim comes out, 
let Xf be an independent copy of X and Y' the related occupation time process. Condition 
on time t A (t + h) and use 

EtA(t+h)JCtHt+h) exp 9llvll(W + |A^ | ) + « M / L ' \K\dr\ 
Jt/\(t+h) ) 

< ^A ( ,+ A )[exp{? | |^ | |( |X| + I 4 | | ) + <7||V||/KI}]-

By the branching property we may continue with 

< e x p y X ^ ^ l o g E o . o t e x p i t f l M K l + I 4 | | ) + * M / | 4 I } ] 

and by (2.3.4) in a second step with < exp{|^A(r+/,)|e}. Then by time-homogeneity and 
the choice of e in (2.3.3), the proof is complete. • 

An infinite exponential moment becomes uniformly infinite if X starts earlier and the 
test function is simultaneously magnified by a factor 9 > 1: 

LEMMA 2.3.5. Ifn > 0 and Es^[exp(X,((f,i(j))[sj]] = oo for some if G O, if; G £>/, 
0 < s < t < Tandy G Rd, then 

(2.3.6) Eoj[exp(X,6(<p,^))m] = oo, zeRd, 6>l. 

PROOF. Choose e, C > 0 as in Lemma 2.3.1. By the Markov property the expectation 
expression in (2.3.6) has the lower bound 

^ [ e x p ( X , ^ ) [ o ^ ^ [ e x p ( ^ / , ^ , ^ ) ) M ] ; ^ ( 5 E ( > ) ) > 0] 
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where B£(y) denotes the open ball in Rd with radius e and centery. But 

^ [ e x p ( ^ , 0((p, V0)[V]] > exp ( Xs (dx)log£5f3C[exp(Aj, %>, i/0)[*,/]] 

by the branching property. Then, by Lemma 2.3.1 (with h = 0), the assumption implies 
that the logarithmic term is infinite for x G B£(y). Therefore the integral is infinite if 

using the Brownian semigroup TK introduced in (2.1.1), we get 

Eo;\X,(B£<yj)] = %\\Bm)(y-z) > 0, 

since s, e, K, > 0 by assumption. Hence the event {Xs(Be(y)\ > 0} has positive i m ­
probability, and the claim follows. • 

2.4 Proof of the complete blow-up statements. We now prove Proposition 2.2.2 (iii), 
restricting our attention to the more general Hypothesis 2.2.1 case. To overcome unpleas­
ant boundary effects, we choose f := [0, T'] with T > T, and count each ^ G O / also 
as an element of the corresponding function space O//, by setting ijjs = I/JT on [T, T']. In 
the following we will apply the results of Subsection 2.3 with I replaced by / . 

Let K > 0 and suppose that ((/?, \jj) does not belong to the closure of the convex 
open set V. Then there exists a 6C G (0,1) such that 0c(<p, V0+ - (<P, i>)~ £ dV. By 
Hypothesis 2.2.1, we may choose 6„ / 6C and in I x Rd a point (s,j>) as well as a 
sequence (5„,j;„) —> (̂ , j ) as « —> oo such that 

(2.4.1) A[0w(y?, V0+ ~ (<P, 1>)~](sn,yn) —> +°° as n -> oo. 

From (2.2.3) and (2.2.4) we know that s < T. 
Choose constants 61,62,63 satisfying 6C < 6\ < 62 < 63 < 1. From (2.4.1) and 

6n < 6C we conclude that 

£wJexp(X, (6c(p
+ - (p~96c^

+ - VO)[5„,r|] —> 00 as « —• 00. 

Apply Lemma 2.3.1 with (</?, x/j) replaced by 6c((p9-0)+ — (ip, I/J)~, with 0 = 6\ /6C, with 
(sw,.yw) instead of (s,y), and with z — y —yn and /* = 5 + s — sn. By monotonicity at a 
final step, there exists an e > 0 such that for all 6 G (0, e) 

^+^[exp(X, (0i ( / - <p~, 0ii/>+ - VOW,™**-*,]] —• 00 as n —» 00. 

Then Lemma 2.3.2 with h = sn—s yields 

£s+^[exp(Jf,(02^
+ - <P~,62IIJ

+ - VO)[s+<5,™>]] = 00 

for all sufficiently small 5 > 0. (Here and in the remaining steps again some obvious 
monotonicities are applied.) Now we exploit Lemma 2.3.5 to obtain 

^ [exp(X, (03</ - <p-9 03^+ - VOW+*]] = 00, z G if, 

for sufficiently small 5 > 0. Finally, use Lemma 2.3.2 (with h = —6) to get 

E0j[exp(X, ((f, VO)/] = °°> z ^ #*> 

that is, A[(/?, V>](0,z) = +00. This verifies part (iii) of Proposition 2.2.2, hence completes 
the proof of that proposition. • 
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3. Existence and first representation of the rate functional. Parts of the existence 
proof and the identification of the rate functional as the Legendre transform of a log-
Laplace functional are developed for the fixed time case in Sections 4 and 5 of [FK] 
in such a way that with some modifications they carry over to the path-valued setting. 
Therefore, at this place we only sketch the corresponding arguments. In this section we 
take K > 0 and g > 0. 

3.1 Large deviation principle. First we mention the following simple scaling property 
of super-Brownian motion: 

(3.1.1) I fXhas the lawP^, 

then cX, c > 0 is distributed according to P%£0. 

This implies that rather than studying the limit elogP^£Q[X G •] as e —* 0, we may 
equivalently consider r~x \ogPrfi[r~lX G •] as r —> oo. 

LEMMA 3.1.2 (SUPERMULTIPLICATIVITY). Fix [i G Ma and a convex Borel subset A 
offMf. The function 

f(r):=Prfl[r~lXeAl r > 0, 

is supermultiplicative: f(r + s) >f(rY(s), r, s > 0. 

PROOF. Exploit the assumed convexity of A and the branching property; see [FK], 
proof of Lemma 4.2.1. • 

LEMMMA 3.1.3. If, in addition, A is open and iff if) > Ofor some r > 0, thenf is 
bounded away from 0 on some nonempty open interval. 

PROOF. Follow the proof of Lemma 4.2.3 in [FK] by using the separability of fM/*, 
the inequality (1.1.4), subinvariance of the metric pi, convexity of balls in tMf, the su­
permultiplicativity Lemma 3.1.2, the identity (1.1.3) and an exponential inequality in 
connection with the fact that A[0,9^a] < oo for 9 > 0 sufficiently small, which holds 
via the identification (i) in Proposition 2.2.2. • 

For the fixed [i G 9A.a and convex open A C <M.f in the preceding lemmas, by pass­
ing to the subadditive function g(r) := — log/(r), r > 0, as in [FK], Subsection 4.3, 
we conclude for the existence of linv^oo r~xg{r) in [0, +oo], which we denote by S^{A). 
Applying this to open balls A = B£(i/) in fM/\ we obtain in the monotone limit as e —+ 0 
a lower semicontinuous convex functional denoted by S^(i/\ v G Mf, serving as rate 
functional in the desired weak LDP (taking into account the equivalent setting as indi­
cated after (3.1.1)). 

To get the LDP in the strong version as formulated in Theorem 1.4.3 (i)—(iil), we first 
apply an exponential tightness result due to Schied, which is carried out in Subsection 9.1 
of [17] and based on [16]: To each N < oo there is a compact set KM C C(I, Ma) such 
that 

limsupr"1 logPr^[r~lX £ KN] < -N. 
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But the embedding of C(I, Ma) onto Mf is continuous, hence the KM are also com­
pact in Mja, and we get exponential tightness in M". Consequently we have the (full) 
LDP in 9A.f with the good rate functional S^, (see e.g., Dembo and Zeitouni (1993), 
Lemma 1.2.18). Using again the continuous embedding and the exponential tightness 
in C(I, Ma), by the inverse contraction principle {e.g., [7], Theorem 4.2.4) we get the 
desired LDP in C(I, ?h(a) with good convex rate functional S^. We are left to prove the 
representation of S^ as stated in (1.4.4). 

3.2 Representation ofS^ as Legendre transform. The purpose of this subsection is to 
express as an intermediate result the rate functional S^ in terms of exponential moments 
ofX 

Recalling (1.2.2) and (1.1.2), for [i G Ma and $ € O/, set 

(3.2.1) A„(V0 := JA[09m,y)tidy) = l o g ^ [ e x p ( ^ > / ] . 

Note that the latter identity holds by the branching property of X, and that A/i(^) > — oo 
by Jensen's inequality since E^[X] = 77 G Mf. 

LEMMA 3.2.2 (REPRESENTATION AS LEGENDRE TRANSFORM). For [i e Ma, 

S»(v) = A > ) := sup{(*/, $), - A„«0 : ^ ( D / } , v G Mf. 

PROOF. By the contraction principle, from Theorem 1.4.3 (i) and (ii) we conclude 
(appealing again to the reformulation using the scaling (3.1.1)) that for fixed /i G Ma, 
the sequence 

{Pn»[n-lXe-]:n = \,2,...} 

of laws on ftff satisfies an LDP with rate functional S^. If in this LDP we can replace S^ 
by A*, the claim will be true by uniqueness of the rate functional. 

Fix for the moment i / ) G % From (3.2.1), 

AM0/0 = rTx log£^[exp(Jf,T/>)/]. 

Then the (weak) LDP implies, for the continuous functional (•, xjj) on tMf, 

(see e.g., [7], Lemma 4.3.4). Hence, —S^ < —A* giving the desired large deviation upper 
bound. It remains to demonstrate that for each non-empty open G C 96? 

(3.2.3) liminf n~x \o%Pnii\rTxX£G]> - A > 0 ) , i/0 G G. 

But for 1/0 G G we can find a finite sequence i/^i,..., ipn G O/ and an £ > 0 such that 

[ / ^ { i / e ^ i K ^ - M i ^ M ^ i « } c c . 
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On the other hand, note that by the definition of A* in Lemma 3.2.2, 

A>o)>sup{( i / 0 ,E^ 

where we abbreviate the r.h.s. by A*([(i/o, i>\)/,..., (vo, ̂ m)i])- Therefore we get (3.2.3) 
if we show that already 

liminffl * log 7^ 
7=1 

> - ^ ( [ ( ^ o , t/;i)/,..., (I/Q9 i)m)i}\ 

where Xl,X2,... are independent copies of X distributed according to P^. (In fact, by 
uniqueness in the Martingale problem 0.1.1, the process X with law Pnfl coincides in 
distribution with X1 + • • • + JP1.) But the latter estimate follows from the lower large 
deviation bound of the classical Cramer Theorem in Rm, since the exponential moments 
of E/ 0j(Xl, ipi)i are finite for all 0 in a neigbourhood of 0. (See e.g., [7], Corollary 6.1.6.) 
This finishes the proof. • 

REMARK. Note that we just established an infinite dimensional version of Cramer s 
Theorem for some i.i.d. elementsX l,X2,... in the "half-space" fM/*, having finite expo­
nential moments ofe(Xl,ipa)j only if £ > 0 is sufficiently small. (Compare with Theo­
rem 4.5.14 of [7].) • 

3.3 Some consequences. To get an immediate consequence of Lemma 3.2.2, apply 
Jensen's inequality to (3.2.1) to obtain S^(r]) < 0. Hence S^rj) = 0, proving one of 
the statements in Remark 1.4.5 (iv). That 77 is the single v where S^ disappears will be 
proved in the end of Subsection 4.3. 

Next we formulate a simple time scaling property of super-Brownian motion X, which 
follows immediately from its definition via the Martingale problem 0.1.1. 

LEMMA 3.3.1 (SCALING). For E > 0 fixed, the time scaled process X1 defined by 
X*s = Xes, 0 <s <T/E, is a super-Brownian motion on [0, T/e] with diffusion constant 
EK and branching rate EQ. 

A further consequence of Lemma 3.2.2 is now the following fact. 

LEMMA 3.3.2. S^v) = 00 for v e 9Af with i/0 ^ p £ Ma. 

PROOF. Fix E E (0,1). Consider a continuous function g defined on R+ with support 
in I. Define ^(£) by ^>(y) := e~lg(s/e)(pa(y)9 s El,yeRd. Clearly ^ belongs to 0>7 

(and is approximately <$o-shaped in the ^-coordinate). For v E Mf, 

(z/,V(£)>/ = s~l fo
Tg(s/E)(iss,ip

a)ds = Jo
Tg(s)(vES,^)ds 

converges to (I/Q, tpa) Sig(s)ds as e —» 0, by continuity and bounded convergence. 
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By the scaling Lemma 3.3.\,X,
S =XES,s E I, defines a super-Brownian motion.Y* on 

/with parameters EK and eg. Hence, as above, 

^[exp(X,V;(£)>/] = £;4exp{ j f ^ ) ^ , ^ ) * } ] 

By Lemma 2.1.3 (ii), {g = K = 0} belongs to the open set 11 of solutions of the cumulant 
equation. Thus, for sufficiently small e the quadruple (en,, eg, 0, V>(1)) belongs to U and 
so by the identification statement (i) of Proposition 2.2.2, 

A ^ O , ^ ] = log^ K ^[exp(^ , V(1))/] = 0 i ,<$(0)> . 

But the continuity property (iii) of Lemma 2.1.3 implies that this expression converges 
to 

(M,C.,(0)) = ( / i , ^ > / g ( J ) & 

as e —• 0. In summary, starting with the identity in Lemma 3.2.2, we have for all v G 9Af 

Syiy) > (u9 V>(£)>/ - A„[0, V(£)] ^ (i/o - M, Va) lg(s)ds. 

Now it suffices to vary g appropriately in order to finish the proof. • 

4. Identification of the rate functional S^. We assume in this section again that 
g > 0, and consider a fixed non-vanishing \i G cM.a. If v G Mj1 is such that vo ^ //, then 
it does not belong to our Cameron-Martin space H^ defined in 1.4.2. Hence, it satisfies 
(1.4.4) by Lemma 3.3.2. For the rest of this section we therefore restrict all considerations 
to paths v G 9Af with i/o = [i ^ 0, which we call admissible for convenience. 

4.1 A further representation ofS^. Let 0£J denote the subspace of all functions/ in 0^° 
(introduced in (1.1.5)) which satisfyfy = 0. For an admissible path v and for/ G O^J 
define 

(4.1.1) rst(f) := (*/„/) - (ysJs) - \\vrjr + *4fr + g/?) rfr, 0 < s < t < T. 

As an intermediate step we are going to prove 

LEMMA 4.1.2. For each admissible path v G ftff, 

W>sup{JS,7</):/e<Dg}. 

whereas under K > 0 and Hypothesis 1.2.4 also the opposite inequality holds. 

PROOF. Let v G 9A.f be admissible. By Lemma 3.2.2, we start with 

S^u) = sup{(z/, \l>)j - log^[exp(JT,\l>)i] : V € O/}. 
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For fixed/ E <J>7o> set i/y := —/ — nAf — g/2 E O/. In the notation of the Martingale 
problem 0.1.1 we then have P^-a.s. 

(X^f), = -(Xj+ KAf), - g(X,f2)l = {nJo)+MT - \(M)T. 

Since Mu t E /, is a zero mean P^-martingale, the process t \—> Lt := exp{Mt — j(M)t}, 
t E /, is a positive P^-local martingale, hence a P^-supermartingale with Lo = 1. But 
then 

log^[exp(X,Vy)/] = (//,/0> + log^[Lr] < (MJO)-

So for/ E O^0 

W > (^f)i ~ (M,/o) - -(/i,/o) - <!/,/+«4T+ e/2)/ = Ar(/)> 

hence, we get the first of the claimed inequalities. 

For an arbitrary ip E 0^° such that (0, t/0 E *Zi|/c, Q] we have w0,i/; € <3>™0 and 

w0,v; + «Awo^ + Qu1^ = -\l)9 

according to the regularity statement (v) of Lemma 2.1.3. Hence (recalling the notations 
introduced in (4.1.1) and (3.2.1)), 

(4.1.3) JO,T(UO,I>) = (v, *l>)i ~ (M, wo,v(°)) = (^ V>)/ ~ A/iW» 

where we also used the identification part (i) of Proposition 2.2.2. Thus, for such t/;, 

(4.1.4) sup{J5t7</) : / G Oft} > (^ V>)/ ~ A„M>). 

Since 0^° is a dense subset of <!>/, by continuity (recall (4.1.3) and Lemma 2.1.3 (in)) this 
inequality even holds for all (0, xjj) E £/[«;, Q] = V. Moreover, by Proposition 2.2.2 (ii) 
we may pass monotonously to any (0, VO E d*V, and (4.1.4) is still valid. Finally, under 
K > 0 and Hypothesis 1.2.4, the complete blow-up property (iii) in Proposition 2.2.2 
implies A/i(^) = +oo if (0, V7) ^ ^ U dV (since [i ^ 0). Consequently, (4.1.4) is true 
for any t/; E ®/, and we get 

sup r0J(f) > sup{(i/,^)7 - A,(V0} = A » = ^(i / ) , 

finishing the proof. • 

4.2 Properties of the latter representation ofS^. To study properties of the supremum 
expression appearing in Lemma 4.1.2, we use techniques similar to those in the proof 
of Lemma 4.8 in Dawson and Gartner (1987). Recall Definition 1.4.2 of our Cameron-
Martin space H^. 
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LEMMA 4.2.1. Ifv belongs to H^ /i ^ 0, then 

sup{SOJ(0:f£®?o} = }6Kv) 

(which is finite by the definition ofH^). 

PROOF. Set C%comp := <B$ n C™'comv (the latter defined after (1.3.1)). By (4.1.1) 
and the integration by parts formula (1.3.1), 

JojiO = jj&r ~ «AVrj/r> - <i/r, Qf?)] dr 

for / € C^comp. Assume v belongs to H^. By Definition 1.4.2, the Radon-Nikodym 
derivative g of z> — /sAV with respect to z/ exists, and we can proceed as in (1.4.1) to get 

(4.2.2) Jfotf) = l(vr,grfr -Qf*)dr=(v,gf- of2), 

where (^g2) / < oo. Since each/ G O ^ is a limit in L2(u) of a sequence of £^'comP_ 
functions, the identity (4.2.2) even holds for a l l / in O^Q. Hence, rewriting (4.2.2), 

Because g G £2(V) can in Z,2(i/) be approximated by functions in O ^ we have 

mf{(u9(g-2Qf)2)i:fe^0} = 09 

and then 

SUPKT</) =/ € *S> = ^ ( " . A = ^ ( " ) -

LEMMA 4.2.3. Each admissible v £ fMf with the property that 

su P Kr( / ) : /GOf 0 }<oo 

belongs to H^. 

PROOF. Approximating the indicator function of the interval [s, t] C / by a decreas­
ing sequence of smooth functions 6„ from / to [0,1], we conclude that for any v with 
properties as in the lemma, J^jiOrf) —* J"s/f) as w —> oo. (Note in particular, that 
(fhft) ~ {vs&) will be "created" by a term involving (i/n 0n(r)fr).) Hence 

sup J"st(f) < sup J^jiOrf) < sup J^ r(/) < oo, 0 < s < t < T. 

Next we introduce the functions 

W : = <"/J!> ~ M > - \\vrjr + *4fr> ^ , ^ € O f t , 
Js 

so that 

rs,{f)=ts,(f)-ef{Vr,fi)dr. 

https://doi.org/10.4153/CJM-1996-028-2 Published online by Cambridge University Press

file:////vrjr
https://doi.org/10.4153/CJM-1996-028-2


566 KLAUS FLEISCHMANN, JURGEN GARTNER AND INGEMAR KAJ 

Moreover, 

(4.2.4) < , ( / ) - c 2 g \\vrJ
2

r)dr = f^t(cf) < sup fs,(f) < oo, 

for all 0 < s < t < 7, c G R, and/ <E <D^. If Jj(i/ r,^) dr > 0, by maximizing the l.h.s. 
over all c G R we obtain 

(4.2.5) ts,(f)
2 < *Q sup Jfatf) \\vr£) dr. 

On the other hand, if £(i/ r,/?) dr = 0, then (4.2.4) can hold for all c G # only if lv
sJf) = 

0. Hence, (4.2.5) is true in both cases. Therefore, we may consider Vst as a linear bounded 
functional on the closure O ^ of O ^ in L^(i/) := L2([s, t] x /^ ; dri/r(dy)). 

By the J?/esz representation Theorem there exists an element hSJ in the Hilbert space 
0>°° such that 

ts;(D= f(vr,h*/fr)dr, fe<s>™. 

Next we use the additivity 

(4.2.6) W + ^ / ( / ) = C ' ( / ) > 0 < ^ < r < / < r , 

with s = 0 and f = 7 to get 

flu(/) = fQ("r, h°/fr) dr + j f V * ( / ^ - / ^ / r ) ^ / € Oft. 

But here the last integral must vanish since the other two terms are independent of the 
"remainder" \fr : r G [t, 7]}. Hence, 

%Jf) = fftr,h«Jfr)dr9 0<t<T, 

and combining with the additivity (4.2.6), 

C ( / ) = / V , A?r/r> * , 0 < s < t < T. 
Js 

In other words, abbreviating h := h°>T, 

M ) - ("sjs) = f\vrjr + *Afr + ^ / . ) ^ , / ^ ^ 0 < J < t < T. 
Js 

In particular, for elements/ in <&]°0 satisfying/ = <p E (D on [0, T — e] for 0 < e < T, 

(4.2.7) (i/,, <p) - (i/59 cp) = J (i/r, KA(p +hr(p)dr, 0 < s < t < T - e. 

This shows that i/:I \—+ IT is absolutely continuous. Furthermore, divide the previous 
relation by t — s and let t —»s G (0,7) to obtain for Lebesgue almost all s G I 

(i/s — KA*I/S, ip) = (z/5, A5<p), (p e(D. 
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Therefore by the Definition 1.3.2 the L2(i/) element h we have constructed yields that 
i/s — KA*I/S is absolutely continuous with respect to vs with Radon-Nikodym derivative 
hs = d(i/s—KA*i/s)/dvs for almost every s. Consequently v is an element of the Cameron-
Martin space//M. • 

4.3 Completion of proof of Theorem 1.4.3. Suppose K > 0 and Hypothesis 1.2.4. By 
combining Lemma 4.1.2 and Lemma 4.2.1 we obtain that S^(u) = J:(I/)/4Q < oo for 
all v in H^, [i ^ 0. On the other hand, the Lemmas 4.1.2 and 4.2.3 together show that 
each admissible v in Mj1 with S^(i/) < oo belongs to H^. Thus we have completed the 
proof of the representation formula (1.4.4) hence the proof of Theorem 1.4.3. • 

As announced, we finally want to show that S^v) = 0 implies v — r\. Since in 
the derivation of (1.4.4) the assumption K > 0 was used only for the second part of 
Lemma 4.1.2, in the case K = 0 the r.h.s. of (1.4.4) still gives a lower bound for S^(i/). 
Hence, for general K > 0, the assumption S^v) = 0 yields v £ H^ and 7iy) — 0. 
Consequently, v solves the heat flow equation i/ — KA*V = 0 in an L2(u) sense. More 
precisely, under J-{y) = 0, the L2(v) element h in the Definition 1.4.2 (iv) vanishes, and 
the identity (4.2.7) implies 

(i/h if) - (i/0, (f) = J (i/r, «A<p) dr, t Gl, cp E <D. 

But this is a version of the heat flow equation (recall (0.1.2)) which has the unique solu­
tion v = 77, finishing the proof of the statement in Remark 1.4.5 (iv). 

5. Modification of proof in the compact case. 
5.1 Cumulant equation and exponential moments. Let %K, t > 0, denote the Feller 
semigroup onO = $>{G) = C(G), related to the multiple KA of the Laplacian A in 
G with either Dirichlet boundary condition (killing) or Neumann boundary condition 
(reflection) at dG. In other words, TK is the evolution semigroup of a Brownian motion 
in G with either killing or reflection at dG. 

With this modification of (Tli, the integral equation (2.1.2) makes sense, and the cumu­
lant equation Lemma 2.1.3 remains valid. Here in the regularity property (v) we replaced 
O00 x O^ by 02 + 7 x 02 + 7 , and we have to add either of the boundary conditions 

(i) (p = 0 on / x dG (Dirichlet boundary condition), 
(ii) ^ (f = 0 on / x dG (Neumann boundary condition), 

to the partial differential equation (2.1.4). (Actually, concerning 1/; it suffices to assume 
only the smoothness Q to get the solution u^ in 02+7.) 

Similarly, the log-Laplace functional Proposition 2.2.2 is true in the present compact 
case (clearly, without the additional local blow-up Hypothesis 1.2.4). 

5.2 Existence and identification of the rate functional. With these modifications, the 
existence and representation proof of the rate functional S^ in Section 3 turns over to 
the present compact case. (Note in particular, that the scaling statements (3.1.1) and 
Lemma 3.3.1 are valid also in the compact case.) 
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Finally, also all the arguments for the identification of S^i/) for v E M® with 1/0 = 
[i ^ 0 of Section 4 carry over to the compact case. Here we only have to replace ®f by 
Of7. 

Altogether, Theorem 1.6.1 is verified. • 
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