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GLEASON PARTS OF REAL FUNCTION ALGEBRAS
S. H. KULKARNI AND B. V. LIMAYE

Introduction. Although the theory of complex Banach algebras is by
now classical, the first systematic exposition of the theory of real Banach
algebras was given by Ingelstam [5] as late as 1965. More recently,
further attention to real Banach algebras was paid in 1970 [1], where,
among other things, the (real) standard algebras on finite open Klein
surfaces were introduced. Generalizing these considerations, real uniform
algebras were studied in [7] and [6].

In the present paper, an attempt is made to develop the theory of real
function algebras (see Section 1 for the definition) along the lines of the
complex function algebras. Although the real function algebras are not
structurally different from the real uniform algebras introduced in [7],
they are easier to deal with since their elements are actually (complex-
valued) functions. In the first section, we define a real-part representing
measure for an element ¢ of the carrier space ®, of a real function
algebra 4 and prove that the statement

supl[(¢(f) —w(fN@(f) —v(fNIfed, [[fl <1} <4

is an equivalence relation for ¢ and ¢ in &, (Theorem 1.3). This relation
decomposes ®, into ‘Gleason parts’ of 4. It naturally descends to the
maximal ideal space M4 of 4. The theory of complex function algebras is
thus obtained as a special case.

The second section deals with the complexification B of a real function
algebra 4. If a is the natural bijection from &, to the space ®5 of all
non-zero complex homomorphisms of B, then it is shown that ||¢ —
¥|| < 2if and only if [ja(¢) — a(¥)|| < 2 (Theorem 2.2). This enables us
to relate the Gleason parts of 4 to those of its complexification B.
Several examples of real function algebras are studied giving information
about the parts of 4 in terms of the parts of B, and conversely. They
include the (real) standard algebras on finite open Klein surfaces
(Example 2.6) and certain real algebras obtained by requiring that the
functions in a given complex function algebra U be real-valued at a
finite number of points of the maximal ideal space of U and some con-
tinuous point derivations on U at these points be also real-valued
(Example 2.7). These latter algebras were introduced and studied in
[7]; our Theorems 2.8 and 2.9 complete this study.
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The presence of analytic structure in ®, and harmonic structure in M4
is discussed in the third section. Using well known results for the com-
plexification B of A4, sufficient conditions are given for the sets

Wy = {66 &,:]0 — ¢ <2}
and
Wy =10 € ®,:]0 — @] <2}

to carry the structure of a connected finite open Riemann surface. Under
these conditions, we show that the map 70(8) = 8 from W, to W, is anti-
analytic and that the part in A/, containing ¢—'(0) becomes a connected
finite open Riemann surface if ||¢ — @|| =2 and a connected finite
Klein surface if {|¢ — &/l < 2 in such a way that the real parts of
functions in 4 are bounded harmonic functions on it. It would be in-
teresting to find weaker conditions which would give harmonic structure
in M, without necessarily implying any analytic structure in &,.

We shall denote the set of all real numbers by R and the set of all
complex numbers by C.

1. Characterizations of parts. Let X be a compact Hausdorff space.
By C(X) (respectively, Cr(X)) we denote the complex (respectively,
real) Banach algebra of all continuous complex-valued (respectively,
real-valued) functions on X, with the supremum norm.

Let 7: X — X be a homeomorphism such that 72 = 7 o 7 is the iden-
tity map on X. Such a map will be called an involution on X. Let

CX,7) =1{f€ CX):f(r(x)) = f(x) forallx € X|.

Then C(X, 7) is a real commutative Banach algebra with the identity 1.
Also, it is not difficult to see that for any x; # x.in X, thereisf € C(X, 7)
such that f(x1) # f(xs2); that is, C(X, r) separates the points of X.
(Unlike in the case of C(X) and its complex subalgebras, we cannot
assert the existence of an f in C(X, ) with f(x;) = 0 and f(x;) =1
whenever x; # x, in X.)

Definition. Let X be a compact Hausdorff space and 7 an involution
on X. A real function algebra on (X, 1) is a (real) subalgebra 4 of C(x, 7)
that

(i) is uniformly closed in C(X, 7),
(i1) contains real constants, and
(iii) separates the points of X.

Note that every real function algebra is a real uniform algebra as
defined in [7], that is, it is a real commutative Banach algebra with
identity such that || f?|| = || f]|? for every f € 4. Conversely, a real
uniform algebra 4 can be viewed as a real function algebra as follows:
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Consider the carrier space
&, = {¢:4 — C, ¢ anon-zero real linear homomorphism of 4}

of A. Let 79(¢) = & for ¢ € ®,. Let X be any closed subset of &, such
that 79(X) = X and for every f € 4,

sup{|¢(f)]:¢ € ®a} = sup{|e(f)]:¢ € X}.

Then the Gelfand transforms of elements in A constitutes a real function
algebra on (X, 79), which is isometrically isomorphic to 4. (See [5],
Section 4.)

We remark that a complex function algebra U on a compact Hausdorff
space X is not, in general, a real function algebra on X with 7 the identity
map on X. But since a complex function algebra U is, in particular, a
real uniform algebra, U can be regarded as a real function algebra on
the disjoint union of two copies of X in the manner described above.

At this point, it is natural to ask when a real function algebra 4 on
(X, 7) is the whole of C(X, 7). The following version of the Stone-
Weierstrass theorem provides an answer.

ProrosiTiON 1.1. Let A be a real function algebra on (X, 7) such that
f€Aforeveryf e A. Then A = C(X, 7).

Proof. Let Ar = {Ref + Imf:f € A}. Then Az is a real subalgebra
of Cr(X), since for f, ¢ € A, we have

(Ref+ Imf)(Reg +Img) = Reh + Im#h
with

h=3(f¢e+fg+fg—f2) € A
Moreover, for f€ C(X,7) and x € X, Ref(r(x)) = Ref(x) and
Im f(r(x)) = —Im f(x). Hence for f € C(X, 7),

[Ref+ Imf| = sup{|Ref(x) + Im f(x)|:x € X}

= sup{|Re f(r(x)) + Im f(r(x))|:x € X}

sup {|Re f(x) — Im f(x)|:x € X}
= [[Ref — Imf].

Il

This implies that A4  is uniformly closed in Cg(X). It is easy to see that
A g separates the points of X. Since 4 p also contains real constants, the
Stone-Weierstrass theorem shows that Ap = Cx(X). Now let f €
C(X, 7). Then

Ref+ Imf € Cr(X) = 4p.
Hence there is g € 4 such that
Ref+ Imf = Reg+ Img.
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Since f, g € C(X, 1), we see that Re f = Re g, Im f = Im g and, in turn,
f=g Thus 4 = C(X, r).

Definition. Let A be a real function algebra on (X, 7) and let ¢ be an
element of the carrier space ®, of A. A real-part representing measure
(r.p.r. measure) for ¢ is a regular Borel (positive) measure u on X such
that fX Re fdu = Re ¢(f) for all f € 4 and p(E) = p(r(E)) for all
Borel subsets E of X.

Let Re4 = {Ref:f € A}. Then Re A4 is a subspace of Cr(X) and if
we define Re ¢ by Re ¢(Re f) = Reo¢(f), f € A, then Reo is a
bounded linear functional on Re 4. Hence by applying the Riesz repre-
sentation theorem to any Hahn-Banach extension of Re ¢ to Cr(X), we
can get a regular Borel measure uo such that fX Re fdu, = Re ¢(f) for
all f € 4 and ||Re ¢|| = ||uol|, where ||uo/l denotes the total variation of
po. We may define u by

w(E) = 3 (mo(E) + po(r(E))

for every Borel subset E of X. Then u is a r.p.r. measure for ¢.
Note that, since ¢ is a homomorphism, we have

Il = suptle(N]:f € 4, [fIl <1} =1,

so that |[Re ¢|| = 1. Hence a r.p.r. measure for ¢ is a probability measure.
Also, p is a r.p.r. measure for ¢ if and only if it is a r.p.r. measure for ¢.
We shall use the following notation throughout:
For ¢,y € @,
l¢ — ¥l = suplle(f) —w(NI:f €4, [[fll <1},
[6 — ¢l = supl|é(f) —¥(NHl:fed, [[fIl <1}

and
[ =)@ — W =supl[(e(f) — () B(f) — ¥
fed, Iflh <1y
Since [|¢] = [[¢l = 1, we see that
6 —vll =206 —¢ll =2 and [[(¢ —¥)(E —¥)| =4

LeEmma 1.2, (Cf. Theorem 2.2, Chapter VI of [4].) Let A be a real func-
tion algebra on (X, 7). Suppose ¢, ¢ € 4 such that || (¢ — ) (¢ — ¥)|| = 4.
Then there are disjoint Borel subsets Ey and Es of X such that v(E,) = E,,
1(Es) = E,, every r.p.r. measure for ¢ is supported on E, and every r.p.r.
measure for  is supported on Es; in particular, any r.p.r. measure for ¢
and any r.p.r. measure for  are mutually singular.

Proof. There exist f, € 4 such that || f,]| < 1 for all » and
(o —¥)(@ — ¥ (fu)| > dasn—o0.
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Passing to subsequences, if necessary, we may assume that ¢(f,) — «
and ¥(f,) = basn— oo, where |a| £ 1, [b] £ 1 and

[(a —b)@—">) =4=|a—0la—0b

It can be easily seen that we must have |[¢ — b| = 2 and |@ — 0| = 2.
Hence either a = 1and b = —1,0ora = —1 and b = 1. We assume the
former. Therefore, we can choose f, in 4 with || f,| < 1 such that

1 —¢(f)] < 1/n
and

1+ ¢(fo)l < 1/n?
for all n. Now let

E, = {x € X:Ref,(x) > 1}
and

E, ={x € X:Ref,(x) > —1}.
Then E, and E; are disjoint Borel subsets of X, and clearly, 7(E,) = E,
and 7(E;) = E,. Also, it follows, as in the proof of Theorem 2.2, Chapter
VI of (4], that if u is a r.p.r. measure for ¢, then f, — 1 a.e.(u). Hence

Ref, — 1 a.e.(u), so that u is supported on E,. Similarly every r.p.r.
measure for ¢ is supported on E,.

We shall now take up the question of partitioning the carrier space
®, of A with a view to seeking analytic structure in it. Just as in the
complex case, the Blaschke factors will play a prominent role. But since
A is only a real algebra, one has to consider a joint Blaschke factor as
follows. For f € 4 with || f]| £ 1 and « € C with |a] < 1, let

(- (f—a) = (@taf+ e
B =G =an U =ap "W~ @+ar+1

Note that 8(f,a) € 4 and |B(f,a)|| < 1.

THEOREM 1.3. Let A be a real function algebra on (X, 1), and ¢, ¢ € ®4.
Then the following statements are equivalent:
) 6 — 9@ — )| < 4.
(i) o — ¥l <2 or [ld =y <2
(i) sup{[¥ (N):f € 4, [ f]| < 1,6(f) =0} <1
(iv) If (fo) is a sequence in A such that || f,|| < 1for allnand ¢(f,) —a
as n — oo with |a| = 1, then every convergent subsequence of (Y (f.)) con-
verges to a or @.
) If (fn) is a sequence in A such that || f,|| < 1 for all n and
(6(f)| — Lasn— o0, then [¥(f,)] — 1 asn—co.
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(vi) There 1s k > 0 such that for all f € A with Ref > 0, we have
k' Re ¢(f) = Rey(f) < k Reo(f).

(vil) There are r.p.r. measures u and o on X for ¢ and y respectively such
that k='u < o = ku for some kB > 0.

Proof. (i) implies (ii): Let (i) hold. If (ii) does not hold, then since
lo — ¢l = 2and [[¢]| = 1 = [Ilyll, there is a sequence ( f,) in 4 such that
I £l < 1foralln, ¢(f,) — aand ¢(f,) > —a asn — 0, where |a] = 1.

First assume that ¢ # +1, 2. Forn =1,2,...and 0 <7r < 1, let
fur = B(fo,ra). Then f, , € A and || f, ]| < 1 for all #, r. Also,

ra a — ra at—r

d)(fnr)'_)la_— — =

* 5 = 3
raa 1 — ra’ 1 —ra”

as n — o0, which, in turn, tends to —1 as 7 — 1. (Note that a # &+ 1.)
On the other hand,
— 2
—a —ra —a — ra a +r
V) 2T Tt 14
as n — oo, which, in turn, tends to 1 as r — 1. (Note that a # +1.) It
now follows that

asn — o0 and » — 1, which is a contradiction to (i).
Next, let « = 41. Then

(0 — )6 —¥)(f)] >4

as n — o0, which is also a contradiction to (i).

Finally, let « = ==1. Since ||¢ — ¢| = 2, we may find g, € 4 such that
gl < 1forall »and ¢(g,) — b, ¥(g,) > —b as n — o0, where |b| = 1.
The casesh # =41, &1 and b = =1 can be treated as above. [f b = =1,
then let #, = f,g,. Since ¢ = =1, we can easily verify that

[ — ¥)(d — ¥)(h,)| — 4
as n — o0. Note that #, € A and [ 4,]] < 1. This again contradicts (i).

(i) implies (iii): Suppose |l¢ — ¢|| = 2¢, where 0 < ¢ < 1. If (iii) does
not hold, there exists a sequence ( f,) in 4 such that || f,]| < 1, ¢(f,) =0
for all #» and ¢ ( f,) — @ as n — oo, where |a| = 1.

First, suppose « # Z1. Define for n =1,2,... and 0 <7 < 1,
for=B(fo,ra). Then f,,€ A and |[f,,| <1 for all n,r. Also,
¢(fn.;) = r*— 1lasr— 1, and as we have earlier seen, ¢(f,,) — —1 as
n — o0 and » — 1. This contradicts (ii).

Now, let @ = £1. Considering (—f,) in place of (f,), if necessary, we

can assume thata = 1. Forn = 1,2, ..., define
c —
pom it
— ¢f,
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Then g, € 4 and |g,|| < 1 for all #. Hence

ie.,

c — [ \b(fn)

for all n. Letting n — o0, we see that 1 + ¢ = 2¢, or 1 = ¢, which is a
contradiction to our assumption ¢ < 1.

Similar proof holds if || — ¢|| = 2c with0 £ ¢ < 1.

(iii) implies (iv): Let (f,) be a sequence in 4 such that || f,J| < 1 for
all » and ¢(f,) > a as n— 0, where |a| = 1. If a subsequence of
W (f,)) (which we shall denote by (¢( f,)) only) converges to b, where b
is different from a and @, then let g, = 8(f., ¢(fx)). Now, g, € 4,
llg.ll < 1and ¢(g,) = 0 for all n, while

lIA

2¢

b—a b—a
V@) 21— T w

as n — o0, since b # «,d. Thus, |¢(g,)] = 1 as »— 0, which contradicts
(iii).

(iv) implies (v): The proof follows by passing to subsequences suffi-
ciently many times.

(v) implies (vi): If (vi) does not hold, then there is a sequence (k,) in
A with Re &k, > 0 for all # such that either

Re ¢ (k)

Re ¢k~ °F
Re ¢(k.)

Re ¢ (k) "

as n — 0. In the first case, we may find a sequence («,) of positive real
numbers such that o, — 0 but

Re ¢ (k)
“"Re ¢ (k,)

and let

— 0,

ankn
I = Re ol

In the second case, we may find a sequence (8,) of positive real numbers
such that 8, — 0 but

"Re ¢ (k,)

0,
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and let

_ Bk
"= Reylo)
Thus, there is a sequence (f,) in A with Re f, > 0 for all #» such that
either (1) Re ¢( f,) — 0, Re ¢/(f,) — o0 asn — o, or (2) Re ¢( f,) — 0,
Re ¢ (f,) — 0asn — . Define g, = exp (—f,). Then g, € 4, [|gl <1,

|¢(¢.)| = exp(—Re ¢(f,)) and [¥(g)| = exp(—=Re ¢ (f.)).

In case alternative (1) holds, we have |¢(g,)| — 1 with [¢(g,)| =0 as
n — o0, in contradiction to (v). In case alternative (2) holds, let
hy = B(gn, ¥(g.)). Then ¢(h,) = 0 and |¢(h,)| — 1 as n — ©, again in
contradiction to (v).

(vi) implies (vii): Let (vi) hold. Since Re ¢ and Re ¢ are continuous
linear functionals on Re 4 = {Re f:f € 4} and since

[Re ¢l = Re¢(1) = 1 = Rey(1) = [[Re ¥,

there exist representing measures po for Re ¢ and ¢ for Re ¢ such that
k'uo < o9 = kuo (Theorem 2.6.5 of [3]). Define, for each Borel subset
Eof X,

w(E) = $[mo(E) + wo(r(E))]
and
(L) = 3[oo(E) + ao(r(E))].

Then u and o are r.p.r. measures for ¢ and ¢ respectively such that
By £ 0 < ku.
(vii) implies (i): This follows from Lemma 1.2.

Definition. For a real function algebra A on (X, 7) and ¢,¢ € d,,
define ¢ ~ y if any one of the equivalent statements (i)—(vii) of Theorem
1.3 holds. From the statement (vi), it can be seen that ~ is an equiva-
lence relation on ®,. We call the equivalence classes under ~ the
Gleason parts of A. We shall denote the equivalence class in ®, containing

¢ by Qa (o).

The above definition of Gleason parts is analogous to the usual defini-
tion of Gleason parts for a complex function algebra. (See, e.g., p. 142 of
[4]). In this case, the equivalence of statements (iii), (v), (vi) and (vii)
is well known. (See, e.g., Theorems 1.1 and 2.1, Chapter VI of [4].)

Let M, be the maximal ideal space of a real uniform algebra 4. Then
for each f € 4, Ref and | ]| are well defined real-valued functions on
M 4. It was shown in Proposition 1.1 of [6] that the smallest topology on
M4, making Refr continuous for all f € 4, is the same as the smallest
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topology on M, making | f | continuous for all f € A. Let T: &, — M,
be defined by T(¢) = ¢~1(0).

COROLLARY 1.4. Let A be a real uniform algebra and x,y € M4. Then
the following are equivalent: )
(@) sup{| f1():f € 4, [[fIl <1, [f](x) =0} <L )
(ii) If (f,) is a sequence in A suchthat || f,|| < 1for allnand| f,|(x) — 1
asn— o0, then | J/(y) > 1asn— 0.
(iii) There is a constant k > O such that for all f € A with Ref > 0,
we have

k' Ref(x) £ Ref(y) < k Ref(x).

~

(iv) There exust regular Borel probability measures fi and & on the Silov
boundary S, of A and a constant k& > 0 such that

Refda = Ref(x) and fs Refdfr=Ref(y)

S4q
forall f € A and k~'p = & < kR

Proof. Let ¢, Y€ 2y be such that X = ¢~ 1(0), y = zﬁ“Al(O). Since for
every f€ A4, Ref(x) = Reo(f), Re f(y) = Rey(f), [f[() = |¢(f)]
and | f|(y) = |¢(f)], the equivalence of statements (i), (ii) and (iii)
follows from the equivalence of statements of (iii), (v) and (vi) of
Theorem 1.3. Next, (iv) obviously implies (iii), while (iii) implies (iv)
by Theorem 2.6.5 of [3].

For a real uniform algebra 4 and x,y € M,, we see that statement
(iii) of Corollary 1.4 defines an equivalence relation on M 4. The equiv-
alence class of x in M, under this relation will be denoted by P, (x).

It is then clear that 7(Q4(¢)) = P4(T(¢)) for every ¢ € &,.

Remark 1.5. It is easy to see that the well known characterizations of
Gleason parts of a complex uniform algebra U (given, for example, in
Theorems 2.1 and 2.2, Chapter VI of [4]) can be derived from Theorem
1.3 and Corollary 1.4 by regarding U as a real uniform algebra. In addi-
tion, we have the following result for a complex uniform algebra U.

Let ¢ and ¢ belong to the same part of U. If f, € U, || .|l < 1 for all
n and ¢(f,) = a as n — o0 with |a¢] = 1, then every convergent sub-
sequence of (Y(f,)) converges to a. This follows from (iv) of Theorem
1.3, since ¢(af,) = a¢(f,) — 1 whenever ¢(f,) — a with |a| = 1, so that
v(af,) = ay(f) > 1, 0r ¢(f,) > aasn— .

2. Parts of the complexification. Let A be a real function algebra
on (X, 7). Define

B ={f+1gfgc A}
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It can be easily seen that for f, g € 4,

| f+ gl =1 f — 4l
so that

Il = 0 f gl S 170+ el

This shows that B is uniformly closed in C(X). B is thus a complex func-
tion algebra on X and can be regarded as the complexification of 4. As
usual, the maximal ideal space M of B will be identified with the space
&5 of all non-zero complex homomorphisms of B. Define a: ®, — &5 by

a(@)(f +1g) = o(f) + 16(g)

for ¢ € ®, and f, g € A. Then « is a bijection, and a(¢)|, = ¢. Also,
since for ¢,y € ®,and f, ¢ € 4,

la(¢) (f +ig) —a@)(f +1ig9)] = |a(@)(f —18) —a@)(f — 1),
we see that
la(d) —a@)| = la(@) — a@)].

Let Pp(a(e)) denote the Gleason partof a(¢) in ®5. Then it follows that
a(y) € Pgla(e)) if and only if a(¥) € Pr(a($)).

LeEmMmaA 2.1. For ¢ € @,
a(Qa(¢)) = Ppla(¢)) \J Ppa(d)).

Proof. 1f a(¥) € Pyla(¢)) \J Pr(a($)), then
la(@) —a@) <2 or [a(@) —a@) <2

Hence |[¢ — ¢l| < 20r [|¢ — || < 2;i.e., ¢ € Q4(¢p) by (ii) of Theorem
1.3.

Now assume that a(¥) ¢ Pp(a(é)) \J Ppla(é)). We shall show that
¥ 7 Qald).

First we assert that there is a sequence (u, + 1v,) in B such that
lun 4+ 2w, < 1,
a(e) (u, + 12,) = 0 = a(¢) (4, — 1v,) for all # and
le(¥) (g + 10,)| =1 asn — 0.
Since a(y) ¢ Pp(a(¢)), there is a sequence (f, + 1g,) in B, such that
| fo + gl < 1,
a(p)(frn +1g,) =0 forallz and
() (fo + 1g,)| 1 asn— 0.
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Similarly, since a(y) ¢ Pp(a(@)), there is a sequence (h, + tk,) in B
such that

h, + k)| < 1,
(@) (h, + tk,) =0 forall n and
la(¥)(h, + ik,)| =1 asn— 0.

Now let

Uy + W, = (fu + 1€:) (hy + 1ky).
Then

Uy — Wy = (fo — 182) (b — 1ky),
and

it + 0] < | fu + gl [|Bn + k)| < 1.

Also,
a(¢) (u, + 1v,) =0,
since
a(e)(fu + 1) = 0,
and
a(¢) (u, — 1,) = 0,
since
(@) (hy — ik,) = a(8) (b, + ik,) = 0.
Lastly,

() (1 + 19,)| = (@) (fu + 1g.)] l@(¥) (b, + ik,)| — 1

as n — 0. This proves our assertion.
Now, let s, = a({) (#, + 12,,). Then [s,| < 1. Define

= un+ivn—§n U = W = S

Pl = 5 Fav,) 1 — sy (i — dny)

Then h, € 4, ||l < 1,¥ () = a@)(h,) = 0 for all #» and
o(h) = a(@) (k) = |s? =1 asn—w.

Hence ¢ ¢ Q4(¢) by (iii) of Theorem 1.3.

We are now in a position to discuss the relationship between the parts
of A and those of its complexification B.

THEOREM 2.2. (a) Let ¢, ¢ € ®4. Then |¢p — ¥|| < 2 if and only if
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la(¢) — a(@)| < 2. In particular, ||¢ — ¢|| < 2 1s an equivalence relation
on &,.
(b) Let ¢ € 4. Then
Pa(a(¢)) = {a(‘l/):*l‘ € P4, H¢ - ‘l’” < 2}-
Proof. (a) If ||a(¢) — a(y)]| < 2, then
o — ¥ = lla(e) —a@)] <2

Now let ||¢ — ¢|| < 2, and assume for a moment that [la(¢) — a(¥)| = 2.
Then there exists a sequence ( f, + g,) in B such that || f, + ig,|| < 1 for
all » and

Since ||¢ — ¢|| < 2, Lemma 2.1 shows that

a(y) € Ppla(d)) \J Py(a(d)).
But [la(¢) — a@)]| = 2, so that
a(y) € Ppla(é)) and a(f) € Ppla(s)).
By passing to a subsequence, we can assume by Remark 1.5 that

a(@)(fu +1g,) = —1 and a@)(f, +1g,) —1 asn— 0.

Thus, we have

o(fu) +id(g) =1, ¥(fo) + () — —1,

as n — 0. Hence ¢(g,) — —7 and ¥ (g,) — 7 as n — 0. This contradicts
lo — ¢l < 2,since gl = Il f, + 1gl| < 1 for all n.

Since [ja(¢) — a(¥)]] < 2 is an equivalence relation on &5, we now see
that [[¢ — ¢|l < 2 is an equivalence relation on &,.

(b) Prla(ed)) = la(¥):y € @4, [a@) — ale)] < 2
= {a():y € P4, [l — ¢l <2},
by (a) above.

COROLLARY 2.3. Let ¢ € &4 such that ||¢p — @|| = 2. Then ||y — ¢|| = 2
for all ¢ € Q4(9).

Proof. Let ¢ € Q4(¢), and assume for a moment that ||y — | < 2.
Then by (ii) of Theorem 1.3, |¢ — ¢|| < 2o0r |6 — ¢l < 2. If [[¢ — ¥/
<2, then clearly, ||¢ — ¥|| < 2. This together with ||[¢ — ¢|| < 2 implies
that ||¢ — @|| < 2 by the transitivity guaranteed in Theorem 2.2(a).
Hence |[¢ — ¢|| cannot be less than 2. A similar argument shows that
| — ¢|| cannot be less than 2. Thus, ||y — ¢|| = 2.
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COROLLARY 2.4, Let ¢ € ®4. Then
(@) l¢ — ¢l < 2if and only if Qa(¢) = (¥ € Pa:ll¢ — ¢l < 2}.

In this case, Pp(a(¢)) = a(Qs(¢)) = Prla(d)).
(bl — @Il = 2 if and only if Q4(¢) is the disjoint union of

(W€ il — ¥l <2} and (Y€ @46 — ¢l <2}
In this case, a(Q4(¢)) s the disjoint union of Pg(a(p)) and Pgla(d)).

Proof. (a) Let ||¢ — || < 2, and ¢ € Q.(¢). By (ii) of Theorem 1.3,
lo — ¢l < 2o0r ¢ — ¢l <2 If |l — ¢l <2, then by the transitivity
guaranteed in Theorem 2.2(a), [l¢ — ¢|| < 2 implies that ||¢ — ¢|| < 2.
Hence

Qa(9) = {y € 24:llp — ¢l <2}

The converse is obvious since ¢ € Q4 (¢) always.
(b) follows by (ii) of Theorem 1.3, Corollary 2.3 and Theorem 2.2(a).

Using the above results, we shall now compute the parts of some real
function algebras. A part of a real function algebra having more than two
points will be called a nontrivial part. We may recall that a part of a
complex function algebra is said to be nontrivial if it has more than one
point.

Example 2.5. Let ¥V be a compact subset of G which is symmetric
about the x-axis (thatis, 2 € Y for all 2 € V) and whose complement in
C has a finite number of components. Let X be the boundary of V. Let 4
be the algebra of all functions on X which are uniform limits of sequences
of rational functions p/g, where p and ¢ are polynomials with real coeffi-
cients and ¢ has no zeros on Y. Then A4 is a real function algebra on
(X, 7), where 7: X — X is defined by r(z) = 2. The complexification
B ={f+1g:f,g € A} of 4 is the algebra of all functions on X which
are limits of sequences of rational functions with poles off ¥. The non-
trivial Gleason parts of B are the components of the interior of Y,
whereas each point on X is a trivial part. (See Theorem 4.4, Chapter VI
of [4].) Hence, by Lemma 2.1, we see that for any component E of the
interior of ¥, E\UJ E is a nontrivial part of 4, where E = {3:2 € E},
{z,2} are two-point parts for s € X — R and the points in X "R
are one-point parts. In particular, if X is the unit circle, then the open
unit disc is a nontrivial part, {z,2} are two-point parts for |z| = 1,
z # =1, while {1} and {—1} are one-point parts.

Example 2.6 (Standard algebras on Klein surface). Let ¥ be a compact
nonorientable Klein surface with nonempty boundary 0Y. Then VY
admits an orienting double (X, p, 7), where X is a compact Riemann
surface with boundary 0X, p: X — Y is a two to one covering map such
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that p(0X) = 0V, p~1(0Y) = 0X and 7: X — X is an antianalytic in-
volution of X such that p o r = p. (For definitions, see p. 40 of [2].) Let
B = {f € C(0X):f admits an analytic extension to the interior X° of X}.
LetA = {h € B:h(x) = h(r(x)) for all x € X}. Then 4 is a real function
algebra on (90X, 7) and B is the complexification of 4. The only non-
trivial Gleason part of B is X° and each point in 0X is a trivial part.
(This follows from Theorem 3 of [8] and Corollary 1V.3 of [9].) Hence, by
Lemma 2.1, a nontrivial Gleason part of 4 is X° and {x, 7(x)} are two-
point parts for x € 0X. As a concrete example, let ¥ be a Mobius
strip. Then X = {z € C,7 < |z| £ r~'} for some r with 0 < r < 1 and
7(z) = —1/2. Now X° = {2z € C,» < |z| < r~!} is a nontrivial Gleason
part of 4, and {2, —1/2} are two-point parts for |z| = 7.

So far we have considered examples of real function algebras whose
complexifications are well known complex function algebras. Now, we
consider an example of the opposite nature.

Example 2.7. (Cf. Section 2 of [7].) Let U be a complex function algebra
with the maximal ideal space Z. Let {z;,...,2,} be a specified finite
subset of ¢ points in Z and let D; be a continuous point derivation of U
atzyforeach k. Let 4, = { f € U:f(3x) and D;(f) arerealfor1 £ k < g}.
Then A4, is a real uniform algebra. Let ¥ be its maximal ideal space. The
restriction map j:Z — YV given by j(z) = z/M A4, is one-one and onto
(Proposition 2.2 of [7]). Hence we can and shall identify ¥ with Z.

THEOREM 2.8. For every z € Z, P,,(2) = Py(2).
Proof. If 2 € Py(z), then

sup{| f(2)|:f € 4,, [ fII <1, f(z') = 0}
ssupl[f@If €U, [fII<1, f@) =0} <L

Hence 2’ € P4, (z) by (i) of Corollary 1.4. Thus,
PU(Z) C PAQ(Z)-

Now, consider ' ¢ Py(z). Then by renaming the z,’s, if necessary, we
can assume that the first p points belong to Py (z) while 2,44, ..., 2, do
not belong to Py(z), where 0 = p < ¢. Then there exist sequences
(far), p+ 1=k =< ¢, and a sequence (f,’) in U such that | f,.l,
N <1, far(z) =f/ (&) =0 for all w and E=p+1,...,q, and
| fax@)| 2L p+1=sk=gq |f/(z) >1asn— 0.

Letfn = f¢21m+1 . -fz,qfn,- Then ||fn“ < 1:fn<zk) = fn(z/) = 0 for all

andk=p+1,...,qand|f,(3)| > 1asn — 0. Also,
Di(fa?) = 2fu(z)Dx(fa) = 0
forallmand e =p+1,...,q.
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Now, if p = 0, then f,2 € 4, || f.2l <1, f.2(z") = 0 for all #» and
| fu2(z)| — 1 as n — 00, and it follows that 2’ ¢ P4 ().

If 0 < p =g, we construct functions k, € 4, such that |4,/ < 1,
h.(z’) = 0 for all #» and |k, (2)| > 1 as n — 0. Let f,2(z;) = a,,; for

i=1,2...,p. Then |a, ;] <1 and |a,,;/—1 as n— o0, because
| fo2(z)] > 1asn —o0,and z; € Py(z) for1 <7 = p.
Define
fn an]

&n,j = O, ]1 — &y, ]fn
forallzandj=1,2,...,p. Thenforp + 1 £ &k = g,
Dk(gn,]‘) = an.j[(fnZ - an,j) (Zk)Dk((l — Oy, ]'fn2)_1)
+ Dk((fn Oy, ]))(1 - an an ) l(zk)
= an,j[_(fnz(zk) - an,]‘) (1 - an.]’fn (Zk)) Z(Dk(l)
= 8, Di(f2?)) + (Di(fa?) — o, ;Dx(1)) (1 = &,,;£,%(2:)) 7] =

because D (1) = Dy(f,2) = Oforallnand p +1 =k = q.
Let g, = gu1- .. gy Then g <1 for all n. Let 1 < j £ p. Then
g.(z;) = 0, and hence

D;(g,?) = 2g,(2;)D,;(g,) = 0 for all n.

Let p4+ 1=k = gq. Since Dy(g,;) =0 forall wand j=1,...,p, it
follows that

Di(gu) = 0 = Di(g?).
Thus, we see that g,2(z;) = Oforallmandj = 1,...,pand D;(g2) =0

forallwandj =1,...,q. Next,forallwand e =p+1,...,¢q,
gn(zk) = gn(z/)
= <_1)plan.l‘2 s |an.1)|2
= oy, say.

Then |o,| < 1, a, isreal and |a,| — 1 asn — 0. Let

Then for all n, h, € U, ||k,)| < 1 and

2 .
ho(s,) ={—an fory=1,2,...,p

0 forj=p+1,...,¢q
Also, since D;(g,?) =0 for j=1,...,q, it follows as before that
D;h,) =0 for j=1,...,q. Hence h, € 4, for all n. Note that

h,(z') = 0, and |k,(z)] = 1 as n — 00, because |h,(z1)] = a,2 — 1 as
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n— 0 and z; € Py(z). Hence 2’ ¢ P,,(2). This proves P, (z) C Py(z).
Hence Py (z) = Py, (2).

Now, let B be the complexification of 4,. It was shown in Proposition
2.3 of [7] that the maximal ideal space X of B is homeomorphic to two

copies of the maximal ideal space Z of U pasted together at {z1, ..., 2,}.
We now show that a similar situation exists for the Gleason parts of B
and U.
Let cx* = T o a™! so that the following diagram commutes:
@AqL,X
r Tx*
Z
THEOREM 2.9. Let x € X and z = cx*(x).
(i) If Py(z) N {z1, ..., 3, is empty, then Py(x) s homeomorphic to
Py(2).
(1) If Py(2) N {z1, ..., 3.} 1is nonempty, then Py(x) is homeomorphic

to two copies of Py(z) identified as follows: if z; € Py(2), let the two points
over it be identified.

Proof. Let ¢ € &4, with a(¢) = x. Then T'(¢) = 2, and ¢(f) = f(2)

forallf € A,or¢(f) = f(z) forall f € 4, We can assume without loss
of generality that ¢(f) = f(z) forall f € 4,. Now, by Theorem 2.8,

Py(z) = Pa,(z) = Pa,(T(9)),
while
Pa (T(9)) = T(Qay(d)).
But, by Lemma 2.1,
Qa,(¢) = a7 (Ppla(¢)) Y Ppal(d))).

Hence we see that

Py(z) = cx*(Ppla(e)) \J Pplal(d))).

(1) Let z; € Py(z) forall j = 1, ..., ¢g. Then there exists a sequence
of functions (f,) in U such that || f,|| < 1, f.(z;,) = 0 for all » and
j=1,...,¢ and f,(2) »1 as n—o0. Then it follows that for
j=1,...,gandn =1,2,...,

1fa*(z;) = 0 = D,;(if,?).

Hence if,2 € 4, for all n. Also, ||7f,%]| < 1 and if,%(z) — i. Hence ¢ (if,?)
— ¢ and ¢(#f,2) — —i. This shows that ||¢ — &|| = 2. By Theorem
22(@), lla(¢) —a(@)|| =2 so that Pgy(a(é)) N Ppla(d)) is empty.
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Thus, ex* |p (s is one to one. Also, cx*(Pp(a(¢)) = Py(z). Since
cx* is continuous and open (Cf. Addendum in [6]), it follows that Py (x)
is homeomorphic to Py (z) under cx*.

(ii) Let z; € Py(z) for some j = 1,...,q. If ¢y € ®,, is such that
Y(f) = f(z;) for f € A, then ¢y = ¢, so that 0 = ||y — ¥|| < 2. Since
Y € Qu,(9), it follows by Corollary 2.3 that |[¢ — ¢|| < 2. Hence by
Corollary 2.4(a), Pg(a(p)) = Pp(a(é)). Now, as in the proof of Propo-
sition 2.3 of [7], there is a continuous section s of cx* over Py (z) such
that Pg(x) is the union of s(Py(z)) and {a(¥) :a(@¥) € s(Py(z))}. Hence
we conclude that Pg(x) is homeomorphic to two copies of Py (z) pasted
together at those z,'s which belong to Py (z).

3. Parts, analyticity and harmonicity. Let 4 be a real function
algebra and B = { f + 1g:f, g € A} its complexification. In this section,
we employ a well known result (see, e.g., p. 161 of [4]) about the existence
of an analytic structure in ®5 to obtain a similar result for ®,. This, in
turn, implies the presence of harmonic structure in M, in the form of a
connected finite Klein surface, which can be orientable or nonorientable
(Examples 3.4, 3.5). This section heavily uses concepts appearing in the
monograph [2].

THEOREM 3.1. Let A be a real function algebra on (X, 7) and ¢ € &,.
Suppose that there is a Y # ¢ in b, such that ||¢ — ¢|| < 2. Also, assume
that the linear span of the set of regular Borel probability measures u on X
satisfying fodu = o¢(f) for all f € A 1is finite dimensional, and that there
extists a unique regular Borel probability measure ¢ on X satisfying

log [¢(f) +i6(¢)l = [xlog |f + igldo
for all pairs of functions f, g € A with f* + g® invertible in A. Let

W=1{6¢ &,:/|06 — ¢|| <2} and
W=1{0¢c d,:)6 — | <2}.

Then W and W can be given the structures of connected finite open Riemann
surfaces in such a way that for every f € A4, 1 is a bounded holomorphic
function in W as well as on W. Moreover, with respect to these structures, the
map ro: W — W given by 70(6) = 8 is antianalytic.

In particular, if there is a unique probability measure u on X satisfying
fodp. = ¢(f) for all f € A, then W and W can, in fact, be given the
structure of an open unit disc in C.

Proof. Since ||¢ — ¢|| < 2, P = Pg(a(¢)) is nontrivial by Theorem
2.2(b). The assumed conditions imply that the set of representing mea-
sures for a(¢) is finite dimensional and «(¢) has a unique logmodular
measure. (For definitions, see p. 31 and p. 110 of [4].) Hence by Theorem
7.5, Chapter VI of [4], P can be given the structure of a connected finite
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—

open Riemann surface such that (f + 7g) is a bounded holomorphic
function for every f 4+ ig € B. Hence W = a~'(P) can be given the
structure of a connected finite open Riemann surface such that for every
fE A,f"is a bounded holomorphic function on W.

Note that for any a(y) € ®p, o is a representing (respectively, log-
modular) measure for a(¢) if and only if ¢ is a representing (respectively,
logmodular) measure for a(¢), where ¢ is defined by

(E) = o({a@):a(f) € E}).

This shows that a(é) also has a unique logmodular measure and the
dimension of the set of representing measures for a(¢) is the same as that
for a(¢); hence it is finite.

Thus, W = {6 € &,:]|0 — ¢|| < 2} can be given the structure of a
finite open Riemann surface in exactly the same fashion as above.

To prove that the map 7o:W — W is antianalytic, let U =
(U;, a;)jes and V = (Vy, Br)rex be analytic atlases over W and W. (For
definition, see p. 5 of [2].) Let 8 € W be such thatf € U;and 7,(0) € V,.
We can find a bounded holomorphic function ¥ on W whose ramification
index at 7¢(0) is one. (For definition, see p. 27 of [2].) By Theorem 7.5,
Clﬁpte\r VI of [4], there exists a sequence (f, + 7g,) in B such that
(fa + 1g,) converges to F uniformly on compact sul)setS}fZ Since fn
and g, are bounded holomorphic functions on W, (f, + ig,) o7o =
fn + i, is antianalytic on W for each n. Hence F o 7, is antianalytic.
Now, let

=Bro07100a;,7!, ¢g= FopB ' and
J

h=Foroa;/1=gof.
Then g is analytic and % is antianalytic. Let w = f(z). Then

oh  dg dof  og of

dz Ow Oz dw Oz

by Lemma 1.1.2 of [2]. Since 4 is antianalytic, 0/ 0z = 0 and since ¢ is
analytic 0g/0w = 0. Thus,

But 0g/0w # 0 as the ramification index of F at 7¢(f) is 1. Hence
Of/0z = 0; that is, 8; 0 79 0 ;7! is antianalytic. Hence 7y is antianalytic.

Finally, if a(¢) has a unique representing measure on X, then
P = Py(a(¢)) can be given the structure of an open unitdisc. (See Theo-
rem 7.2, Chapter VI of [4].) Hence W and W can also be given the struc-
ture of an open unit disc.

https://doi.org/10.4153/CJM-1981-016-x Published online by Cambridge University Press


Ag.Pl_i_PK.pl
https://doi.org/10.4153/CJM-1981-016-x

GLEASON PARTS 199

Remark 3.2. The conditions of Theorem 3.1 are satisfied if the
Dirichlet-deficiency and the Imaginary Dirichlet-deficiency of 4 are
finite, and the Arens-Singer deficiency and the Inverse Arens-Singer
deficiency are zero. (See [7] for definitions and examples.)

COROLLARY 3.3. Assume that the hypotheses in Theorem 3.1 hold.

Q) If o — @l| = 2, then Q4 () is the disjoint union of the two connected
finite open Riemann surfaces W and W. Also, V = P4 (T (¢)) C M4 can
be given the structure of a connected finite open Riemann surface in such a
way that Re J is a bounded harmowic function on V for every f € A.

(i) If |l — @ll <2, then V = P,(T(¢)) C My can be given the
structure of a finite connected Klien surface without boundary in such a way
that for every f € 4, Re f’ is a bounded harmonic function on V. (For
definition, see p. 6 of [2].) W is canonically isomorphic to the complex
double V, of V. (For definition, see p. 40 of [2].) If 7y has no fixed points
in W (that is, there is noy € W such that y = ), then V is nonorientable
and W = Vs also the orienting double Vy of V.

Proof. (1) If ||¢ — ¢|| = 2, then by Corollary 2.4(b), Q4(¢) is the dis-
joint union of the connected finite open Riemann surfaces

W =1{0¢ ®,:/0 — || <2} and
W=1{6¢ a,:/6 — 3| <2}

Since Ty is one to one and onto V = P, (T(¢)), V is also a connected
finite open Riemann surface.

(ii) Let now ||¢ — &|| < 2. Then by Corollary 2.4(a), W = W. Now,
7o is an antianalytic involution on W. The quotient space W /7y can be
identified with 7 via the quotient map 7. By Theorem 1.8.4 of [2],
has a unique dianalytic structure such that the map 7" of W onto Vis a
morphism of Klien surfaces. (For definition, see p. 17 of [2]. Theorem
1.8.4 of [2] is proved for a group G of automorphisms on a Klein surface
which act discontinuously on it. In the present case, W can be regarded
as a Klein surface, and G = {4, 7o}, where 7, denotes the identity map
on W.) Since T is a morphism, V is finite and connected. It also follows
that Ref, f € 4, is a bounded harmonic function on V. By Proposition
1.9.1 of [2], W is canonically isomorphic to the complex double V, of V.
Scanning carefully through the proof of Theorem 1.8.4 of [2], it can be
seen that only fixed points of 7, are sent to the boundary of V' by T (as
W has no boundary points). Hence if 7o does not have any fixed point,
then the boundary of 1 is empty. That V is nonorientable follows from
Lemma 1.6.3 of [2]. In this case, the orienting double V, of V is the same
as the complex double V. of V' which is isomorphic to W.

Finally, we give two examples to show that if the involution 7o does
have fixed points, then the Klein surface V can be either orientable or
nonorientable.
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Example 3.4. Let A be the algebra of continuous functions on the closed
unit disc which are analytic in the open unit disc and are real on the real
axis. Let ¢ be the evaluation functional at 0. Then W = Q4 (¢) is the
open unit disc and 7o: W — W is given by 7¢(z) = 2. The set F of fixed
points of 7y is the open interval (—1,1) and P,(0) = V' = W/ry is

{z:]z] <1, Imz = 0},
which is orientable.

Example 3.5. Let w = 1 + 7 and L = {n 4+ mw:n, m integers}. Since
@w=1—1=2—w¢€ L, the map z — Z descends to the complex torus
S = G/L. Let 7:.5S — S be the map induced by 5 — —12. Then 7 is anti-
analytic. The set F of fixed points of 7 is given by F = {tw:¢t € R}.
Hence F is a circle in S. Let D be an open disc in S such that D N Fis
empty. Then X =S — {D\U r(D)} is a compact bordered Riemann
surface and 7| is an antianalytic involution on X. Let 0X be the bound-
ary of X and A be the real function algebra on (90X, 7) as described in
Example 2.6. Let ¢ be the evaluation functional at an interior point of X.
Then W = Q4(¢) = X% and 7o = 7|x0. In this case, P4(T(¢)) = V =
W /7y is a Mobius strip with one disc removed, which is nonorientable.
(Cf. Example 1.6.3, Proposition 1.9.1 and Corollary 1.9.3 of [2].)

The authors wish to thank the referee for making several suggestions
to improve the presentation of this paper.
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