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INTERTWINING OPERATOR AND h-HARMONICS
ASSOCIATED WITH REFLECTION GROUPS

YUAN XU

ABSTRACT. We study the intertwining operator and h-harmonics in Dunkl’s theory
on h-harmonics associated with reflection groups. Based on a biorthogonality between
the ordinary harmonics and the action of the intertwining operator V on the harmonics,
the main result provides a method to compute the action of the intertwining operator V
on polynomials and to construct an orthonormal basis for the space of h-harmonics.

0. Introduction. With respect to a family of measures on Sd�1 that are invariant
under a finite reflection group, a theory analogous to spherical harmonics has been de-
veloped by Dunkl [2–6] recently. The key ingredient of the theory is a family of com-
mutative differential-difference operators, which play the role of the partial differentials
in the classical theory. These Dunkl’s operators lead to a structure based on the connec-
tion between a Laplacian operator and orthogonality with respect to the group-invariant
measure. Among its many applications, this structure offers a way to study orthogonal
polynomials on Sd�1 with respect to a large family of measures. One important tool in the
theory is the linear isomorphism on polynomials that intertwines the algebra generated
by Dunkl’s operators with the algebra of partial differential operators. This intertwin-
ing operator allows the transfer of results about ordinary harmonic polynomials to the
h-harmonics associated to reflection groups. Closed formula of the intertwining operator
is known only in a few cases; to find such a formula is a challenging problem.

The purpose of this paper is to study the relation between the intertwining operator and
the h-harmonics. The study is based on a biorthogonality, previously unnoticed, between
the ordinary harmonics Sn,i and VSn,i, the action of the intertwining operators on the
ordinary harmonics. This relation allows one to compute the inner product of VSn,i and
leads to a method to compute VSn,i in terms of an expansion in Sn,i. The results offer
a simple formula for the action of V on polynomials when an orthonormal basis of the
h-harmonic polynomials is known.

The paper is organized as follows. In Section 1 we review the basic definitions and
present the preliminary materials. In Section 2 we prove the fundamental formula and
study the action of the intertwining operator V on ordinary harmonic polynomials. In
Section 3 we consider the action of V when an orthonormal basis of the h-harmonics is
known. In Section 4 we discuss examples that illustrate the results.
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194 YUAN XU

1. Background and preliminary. For x, y 2 Rd we let hx, yi denote the usual inner
product of Rd and jxj ≥ hx, xi1Û2 the Euclidean norm. Let Bd ≥ fx : jxj � 1g be the unit
ball in Rd and let Sd�1 ≥ fx : jxj ≥ 1g be the unit sphere in Rd. We denote by d° the
surface measure on Sd�1 and write °d�1 ≥ R

Sd�1 d° ≥ 2ôdÛ2ÛΓ(dÛ2).
For a nonzero vector v 2 Rd define the reflection õv by

xõv :≥ x � 2(hx, viÛjvj2)v, x 2 Rd.

Suppose that G is a finite reflection group on Rd with the set fvi : i ≥ 1, 2, . . . , mg of
positive roots; assume that jvij ≥ jvjjwheneverõi is conjugate to õj in G, where we write
õi ≥ õvi , 1 � i � m. Then G is a subgroup of the orthogonal group generated by the
reflections fõi : 1 � i � mg. We consider weight functions of the form h2

ãd° on Sd�1,
where

(1. 1) hã(x) :≥
mY

i≥1
jhx, viijãi , ãi ½ 0,

with ãi ≥ ãj whenever õi is conjugate to õj in G. Then hã is a positively homogeneous
G-invariant function of degree jãj1 ≥ ã1 + Ð Ð Ð +ãm. We denote by Hã the normalization
constant defined by H�1

ã ≥ R
Sd�1 h2

ã d°. Notice that if ã ≥ 0, then hã ≥ 1; in particular,
H�1

0 ≥ °d�1.
The h-harmonics are orthogonal homogeneous polynomials on Sd�1 with respect to

h2
ãd°. The key ingredient of the theory is a family of commuting first-order differential-

difference operators, Di (Dunkl’s operators), defined by

(1. 2) Dif (x) :≥ ∂i +
mX

j≥1
ãj

f (x) � f (xõj)
hx, vji hvj, eii, 1 � i � d,

where ∂i is the ordinary partial derivative with respect to xi and e1, . . . , ed are the standard
unit vectors of Rd. The h-Laplacian, which plays the role similar to that of the ordinary
Laplacian, is defined by

(1. 3) ∆h ≥ D2
1 + Ð Ð Ð + D2

d .

We keep the notation ∆ for the ordinary Laplacian. The fundamental relation between the
h-Laplacian and the orthogonality is as follows. Let P d

n denote the space of homogeneous
polynomials of degree n in x ≥ (x1, . . . , xd). If P 2 P d

n , then

Z
Sd�1

PQh2
ã d° ≥ 0, 8Q 2

n�1[
k≥0

P d
k

if and only if ∆hP ≥ 0. The polynomials P in P d
n that satisfy ∆hP ≥ 0 are called h-

harmonic polynomials. When hã ≥ 1 the h-harmonics become the ordinary harmonics,
which satisfy the classical Laplacian equation ∆P ≥ 0. We denote by

Hn ≥ P d
n \ ker ∆ and H h

n ≥ P d
n \ ker ∆h,
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respectively, the space of ordinary harmonic polynomials and the spaces of h-harmonic
polynomials of degree n. Here and in the following we take the dimension d as fixed,
and we omit the parameter d from the notation of Hn and H h

n . We shall also write Pn in
place of P d

n whenever there is no danger of confusion. The dimension of H h
n is the same

as that of Hn, which we denote by Nn ≥ N(n, d); thus,

Nn ≥ dim H h
n ≥ dim Pn � dim Pn�2 ≥

0
@n + d � 1

n

1
A�

0
@n + d � 3

n � 2

1
A.

Analogous to the classical theory, it is shown in [2, p. 37] that there is a decomposition
Pn ≥ L[nÛ2]

k≥0 jxj2kH h
n�2k; that is, if P 2 Pn, then there is a unique decomposition

(1. 4) P(x) ≥
[nÛ2]X
k≥0

jxj2kPn�2k(x), Pn�2k 2 H h
n�2k.

The intertwining operator V is a linear operator uniquely defined by ([5])

(1. 5) VPn ² Pn, V1 ≥ 1, DiV ≥ V∂i, 1 � i � d.

Note that VHn ² H h
n . In particular, if fSn,1, . . . , Sn,Nng is an orthonormal basis of Hn,

then fVSn,1, . . . , VSn,Nng is a basis of H h
n , although no longer an orthonormal one in

general. A closed form of V is known only for hã(x) ≥ jx1jã1 Ð Ð Ð jxdjãd , associated with
the group Z2 ð Ð Ð Ð ð Z2 ([13], the case d ≥ 1 appeared early in [5]), and for hã(x) ≥
j(x1 � x2)(x2 � x3)(x1 � x3)jã, associated with the symmetric group S3 ([6]). The formula
of V in the first case will be given later in Section 4.1. The formula in [6] for S3 is rather
complicated. In general, the problem of finding a closed formula of V is very difficult.
In [14], it is shown that one can get rid of V if one takes the integral of Vf with respect
to h2

ãd°.
Next let us recall a bilinear form on Pn that plays an important role in the study of the

intertwining operator. It is defined by ([5, p. 1220]),

(1. 6) [p, q]h ≥ p(D)q(x), p, q 2 Pn,

where D ≥ (D1, . . . , Dd) is a tuple of Dunkl’s operators and p(D) is acted on q(x). In
case hã ≥ 1, the bilinear form is written as [p, q], which is classical (cf. [8, p. 139]), and
D in its definition is replaced by ∂ ≥ (∂1, . . . , ∂d). The bilinear form is symmetric; that
is, [p, q]h ≥ [q, p]h. We state one of its important property in the following lemma ([5,
Theorem 3.8, p. 1222]).

LEMMA 1.1. If p 2 Pn and q 2 H h
n , then

(1. 7) [p, q]h ≥ 2n(jãj1 + dÛ2)nHã

Z
Sd�1

pqh2
ã d°.

In [5] the formula (1.7) is stated for both p and q in H h
n , but the proof of the theorem

there shows that one of the polynomial only has to be in Pn.
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The ordinary harmonics have been under extensive studies because their many distin-
guished applications (cf. [8, 10]). An orthonormal basis of Hn has been given explicitly.
For later use we present the formulae here. Let C(ï)

n denote the standard Gegenbauer
polynomial of degree n (cf. [9, p. 80], where the notation P(ï)

n is used). The special cases
of ï ≥ 0 and ï ≥ 1 correspond to the Chebyshev polynomials of the first and the sec-
ond kind, usually denoted by Tn and Un, respectively; these polynomials are defined by
Tn(x) ≥ cos ní and Un(x) ≥ sin(n + 1)íÛ sin í, where x ≥ cos í in [�1, 1]. For d ≥ 2,
the ordinary harmonic polynomials are given as

(1. 8) Y(1)
n (x1, x2) ≥ rnTn(x1Ûr) and Y(2)

n (x1, x2) ≥ rnx2Un�1(x1Ûr),

where r ≥ (x2
1 + x2

2)1Û2. For d ½ 2 and each n 2 N0, an orthonormal basis of Hn is given
by (cf. [10, p. 466])

(1. 9) Y(i)
k,n(x) ≥ An

k

d�3Y
j≥0

jxd�jjkj�kj+1 C
(kj+1+ d�j�2

2 )
kj�kj+1

 
xd�j

jxd�jj
!

Y(i)
kd�2

(x1, x2)

where jxd�jj2 ≥ x2
1 +Ð Ð Ð+x2

d�j, n ≥ k0 ½ k1 ½ Ð Ð Ð ½ kd�2. The symbol k here denotes the
sequence k ≥ (k1, . . . , kd�2), and An

k denotes a normalization constant. It is shown in [15]
that Y(i)

k,n, i ≥ 1, 2, are related to the orthogonal polynomials with respect to 1Û
q

1 � jxj2
and

q
1 � jxj2, respectively, on the unit ball Bd�1. We will discuss this connection in

Section 3.

2. Action of intertwining operator on ordinary harmonics. Throughout this sec-
tion we assume that an orthonormal basis for the space Hn of ordinary harmonics of
degree n is given by fSn,1, . . . , Sn,Nng. For example, we can give an order among the
ordinary harmonics in (1.9) and rename them as Sn,i.

We start with a simple formula which is fundamental to the forthcoming development
in the entire paper.

THEOREM 2.1. For p 2 Pn and q 2 Hn,

(2. 1)
Z

Sd�1
p(Vq)h2

ã d° ≥ Eã,n

Z
Sd�1

pq d°.

where

Eã,n ≥ Ed
ã,n ≥

(dÛ2)nH0

(jãj1 + dÛ2)nHã

.

PROOF. We use the pairing (1.6) and Lemma 1.1. Since q 2 Hn implies that Vq 2
H h

n , the assumption of Lemma 1.1 is satisfied with Vq in place of q. Hence,

2n(jãj1 + dÛ2)nHã

Z
Sd�1

p(Vq)h2
ã d° ≥ p(D)Vq(x)

≥ Vp(∂)q(x)

≥ p(∂)q(x)

≥ 2n(dÛ2)nH0

Z
Sd�1

pq d°
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where the first equality follows from (1.6) and (1.7), the second one follows from the
intertwining property of V, the third follows from the fact that p(∂)q(x) is a constant and
V1 ≥ 1, and the fourth follows from (1.6) and (1.7) with ã ≥ 0.

An immediate consequenceof the formula (2.1) is the following biorthogonal relation.

COROLLARY 2.2. Let fSn,ig be an orthonormal basis of Hn. Then fVSn,ig and fSn,ig
are biorthogonal. More precisely,

(2. 2)
Z

Sd�1
(VSn,i)Sn,jh

2
ã d° ≥ Eã,néi,j, 1 � i, j � Nn.

The equation (2.2) follows from (2.1) by setting p ≥ Sn,j and q ≥ Sn,i. It should be
pointed out that the biorthogonality is restricted to elements of Hn and H h

n for the same
n. In general, Sn,i is not orthogonal to VSm,i with respect to h2

ãd° if m Ú n since Sn,i is
not an element of H h

n .
The following analog of the fundamental formula (2.1) turns out to be useful as well.

THEOREM 2.3. For p 2 Pn and qh 2 H h
n ,

(2. 3)
Z

Sd�1
(Vp)qhh2

ã d° ≥ Eã,n

Z
Sd�1

pqh d°.

The proof of (2.3) follows in the same line as that of (2.1), we leave the detail to the
reader. We note that the requirement qh 2 H h

n is needed in order to use Lemma 1.1.
From the intertwining property of V it follows that VSn,i 2 H h

n provided that Sn,i 2
Hn. Hence, the biorthogonality may help us to construct a basis for H h

n using VSn,j. For
that purpose, it is essential to be able to compute the inner product of VSn,i and VSn,j. In
order to do so we need some notations first.

Let us denote by Sn and VSn, respectively, the column vectors defined by

Sn ≥ (Sn,1, . . . , Sn,Nn)
T and VSn ≥ (VSn,1, . . . , VSn,Nn)

T .

The use of vector notation is suggested by the recent study of orthogonal polynomials
in several variables (cf. [11]). We also define matrices Mi,j whose elements are inner
products of the ordinary harmonics with respect to h2

ãd°,

Mi,j :≥ Z
Sd�1

SiST
j h2

ã d°,

where ST
j means the transpose of Sj so that SiST

j is a matrix of Ni ðNj and the integral is
acted entry by entry. Similarly we define

MV
n ≥

Z
Sd�1

VSn(VSn)Th2
ã d° ≥

�Z
Sd�1

VSn,iVSn,jh2
ã d°

�

whose elements are inner products of VSn,i. Furthermore, we use Mi,j as building blocks

to define a square matrix Mn of size
P[nÛ2]

i≥0 Nn�2i,

Mn ≥ (Mn�2i,n�2j)
[nÛ2]
i,j≥0 , and M �1

n ≥ (M̃n�2i,n�2j)
[nÛ2]
i,j≥0
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where M̃i,j are matrices of the same size as Mi,j. Evidently, Mn is symmetric and positive
definite; hence it is invertible.

Since Sn,i, as elements of an orthonormal basis for the ordinary harmonics of degree
n, can be written down explicitly as in (1.9), the matrix Mij and Mn can be considered
as known. The matrix MV

n whose elements are inner products of VSn,i is what we need to
figure out. Since VSn,i is homogeneous of degree n, by the unique decomposition of Pn

in terms of Hn we can write it as

VSn,i ≥
NnX
j≥1

an
ijSn,j + jxj2

Nn�2X
j≥1

an�2
ij Sn�2,j + Ð Ð Ð ,

where ak
i,j are real numbers. Using the notation Sk we can write the above expansion in

vector-matrix form as

(2. 4) VSn ≥ An,nSn + An�2,njxj2Sn�2 + Ð Ð Ð ≥
[nÛ2]X
k≥0

An�2k,njxj2kSn�2k ,

where An�2k,n are matrices of the size Nn ð Nn�2k. The basic formula (2.1) allows us to
determine these matrices as follows.

THEOREM 2.4. The coefficient matrices An,n�2j in (2.4) are given by

(2. 5) An,n�2j ≥ Eã,nM̃n,n�2j, 0 � j � [nÛ2].

Moreover, MV
n ≥ An,n ≥ Eã,nM̃n,n.

PROOF. Since VSn,i 2 H h
n is orthogonal to all polynomials of lower degree with

respect to h2
ãd°, we have by (2.2) thatZ

Sd�1
(VSn,i)Sn�2k,jh

2
ã d° ≥ ék,0Eã,n

for k ½ 0. Therefore, multiplying (2.4) by (Sn�2k)T and integrating with respect to h2
ãd°,

it follows that

ék,0Eã,n ≥
[nÛ2]X
j≥0

An�2j,nMn�2j,n�2k

for 0 � k � [nÛ2]. We can rewrite these equations as

(An, An�2,n, . . . , An�2[nÛ2],n)Mn ≥ (Eã,nI, 0, . . . , 0),

from which (2.5) follows upon using M �1
n . Moreover, by the basic formula (2.1),

MV
n ≥

Z
Sd�1

VSn(VSn)Th2
ã d° ≥ Eã,n

Z
Sd�1

Sn(VSn)T d°.

Therefore, using (2.4) to replace VSn it follows from the orthogonality of Sn,i that MV
n ≥

Eã,nAn. The last statement on An is evident from (2.5).

The importance of this result lies in the fact that it shows a way to compute VSn,i and
the inner product of VSn,i and VSn,j, even though the closed formula of V is not known in
general. Once VSn,i is known, an orthonormal basis for H h

n can be constructed from them
right away. Indeed, since (MV

n )�1 is positive definite, we can define its unique positive
definite square root matrix (MV

n )�1Û2. Then, we have
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THEOREM 2.5. Let Sh
n :≥ (Sh

n,1, . . . , Sh
n,Nn

)T be defined by Sh
n ≥ (MV

n )�1Û2VSn. Then
the homogeneous polynomials Sh

n,i form an orthonormal basis for H h
n .

PROOF. From the definition
Z

Sd�1
Sh

n(Sh
n)Th2

ã d° ≥ (MV
n )�1Û2

Z
Sd�1

VSn(VSn)Th2
ã d°(MV

n )�1Û2

≥ (MV
n )�1Û2MV

n (MV
n )�1Û2 ≥ I,

which gives the desired result.

The Theorem 2.4 deals with the action of V on the ordinary harmonic polynomials.
In order to understand the action of V on other polynomials, we need to know the action
of V on polynomials jxj2kSn�2k,i, according to the unique decomposition (1.4). Using the
formula (2.3), one may find the expansion of V(j Ð j2kSn�2k) in terms of Sk as in (2.4). In
stead of deriving a formula for the coefficients in such an expansion, which will be of
little use in actual computation, we will deal with a more practical case in the following
section.

Together, Theorems 2.4 and 2.5 offer a way to compute the action of V on the ordinary
harmonics and an orthonormal basis for H h

n . It should be pointed out, however, that the
formula (2.5) may not be very useful in practical computation, since it may be difficult
to compute the integrals in Mi,j, not to say the inverse of Mn, for even moderate size of
n. For a given reflection group, one may use these formulae to generate, perhaps with the
help of a computer, h-harmonics of lower degree.

3. Intertwining operator and h-harmonics. In the previous section we write VSn,i

in terms of the ordinary harmonics Sn,i and use VSn,i to construct an orthonormal basis
for h-harmonics. For some weight functions h2

ã, one may be able to find a basis for H h
n

by some other means. For example, if h2
ã is also S-symmetric, then an orthonormal basis

for H h
n may be given in terms of orthonormal polynomials on Bd�1 (see discussion after

Corollary 3.3 below). In such a case, the basic formula (2.1) allows us to write down the
action of V on the ordinary harmonics rather easily. We discuss the related formula in
this section.

Let us assume that fSh
n1

, . . . , Sh
n,Nn

g is an orthonormal basis of H h
n . We also use Sh

n to
denote the column vector with components Sh

n,i.

THEOREM 3.1. If fSh
n1

, . . . , Sh
n,Nn

g forms an orthonormal basis of H h
n , then the action

of V on the ordinary harmonics is given by the formula

(3. 1) VSn ≥ Mh
nSh

n, where Mh
n ≥ Eã,n

Z
Sd�1

Sn(Sh
n)T d°,

and Mh
n is a matrix of size Nn ð Nn. Furthermore,

(3. 2) (Mh
n)�1 ≥ E�1

ã,n

Z
Sd�1

Sh
n(Sn)Th2

ã d°.
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PROOF. Since the components of Sh
n form an orthonormal basis for H h

n , we can write
VSn,i in terms of them. Hence, there exists a matrix Mh

n such that VSn ≥ Mh
nSh

n. The
orthonormality of Sh

n implies that

Mh
n ≥

Z
Sd�1

VSn(Sh
n)Th2

ã d° ≥ Eã,n

Z
Sd�1

Sn(Sh
n)T d°

where the second equality follows from (2.1). Multiplying (3.1) by ST
n and integrating

with respect to h2
ãd°, it follows from the biorthogonality (2.3) that

Eã,nI ≥ Mh
n

Z
Sd�1

Sh
n(Sn)Th2

ã d°,

from which the desired formula (3.2) follows.

As we mentioned in the end of the previous section, in order to understand the action
of V on other polynomials than ordinary harmonics, it is essential to know the action of
V on polynomials of the form jxj2kSn�2k,i. If a basis for H h

n is known, then this action
can be computed rather easily.

THEOREM 3.2. If fSh
n1

, . . . , Sh
n,Nn

g forms an orthonormal basis of H h
n , then

(3. 3) V(j Ð j2kSn�2k) ≥ Bk
n,nSh

n + Bk
n�2,njxj2Sh

n�2 + Ð Ð Ð + Bk
n�2k,njxj2kSh

n�2k

where Bk
n�2i,n are matrices of the size Nn�2k ðNn�2i; moreover, these matrices are given

by

Bk
n�2j,n ≥

0
@k

j

1
A (n � k � j + dÛ2)j

(jã1j + n � 2j + dÛ2)j
Eã,n�2j

Z
Sd�1

Sn�2k(Sh
n�2j)

T d°.

PROOF. Since V(j Ð j2kSn�2k,i) is a homogeneous polynomial of degree n, it follows
from the decomposition (1.4) that there exist matrices Bk

n,n�2j such that

V(j Ð j2kSn�2k) ≥ Bk
n,nSh

n + Bk
n�2,njxj2Sh

n�2 + Ð Ð Ð ≥
[nÛ2]X
j≥0

Bk
n�2j,njxj2jSh

n�2j

by the unique decomposition (1.4). We will prove that Bk
n�2j,n are given by the stated

formulae for j � k and that Bn�2j,n ≥ 0 for j Ù k. From the orthogonality of Sh
n and the

formula (2.3), the first coefficient matrix is determined by the formula

(3. 4) Bk
n,n ≥

Z
Sd�1

V(j Ð j2kSn�2k)(Sh
n)Th2

ã d° ≥ Eã,n

Z
Sd�1

Sn�2k(Sh
n)T d°

which is the desired formula for j ≥ 0. Moreover, it follows from the orthogonality of
Sh

n�2j,l that

Bk
n�2j,n ≥

Z
Sd�1

V(j Ð j2kSn�2k)(Sh
n�2j)

Th2
ã d°.

We note that the formula (2.3) cannot be used to remove the intertwining operator V in
the above integral, since j Ù 0 means that the degree of Sh

n�2j,l is less than the degree of
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V(j Ð j2kSn�2k,i). To evaluate the last integral, let projH h
n

be the projection operator from
Pn to H h

n . From [2, p. 38] we have that for g 2 Pn

g(x) ≥
[nÛ2]X
p≥0

jxj2p 1
4pp! (jãj1 + n � 2p + dÛ2)p

projH h
n�2p

∆p
hg.

Using this formula with g ≥ V(j Ð j2kSn�2k,i) and the orthogonality of Sh
n�2j,l with respect

to h2
ãd°, we obtain that

Z
Sd�1

V(j Ð j2kSn�2k,i)S
h
n�2j,lh

2
ã d° ≥

1
4jj! (jãj1 + n � 2j + dÛ2)j

Z
Sd�1

projH h
n�2j

�
∆j

hV(j Ð j2kSn�2k,i)
�
Sh

n�2j,lh
2
ã d°

Moreover, from [2, p. 38] we have that for f 2 Pm

projH h
m

f ≥
[nÛ2]X
p≥0

1
4pp! (�jãj1 �m + 2 � dÛ2)p

jxj2p∆p
hf (x).

Therefore, using this formula with m ≥ n � 2j and f ≥ ∆j
hV(j Ð j2kSn�2k,i) and using the

orthogonality of Sn�2j,l again, we obtain

Z
Sd�1

V(j Ð j2kSn�2k)(Sh
n�2j)

Th2
ã d°

≥ 1
4jj! (jãj1 + n � 2j + dÛ2)j

Z
Sd�1

∆j
hV(j Ð j2kSn�2k)(Sh

n�2j)
Th2

ã d°,

where we have changed back to the vector notation. Using the identity

∆(jxj2kPn) ≥ 4k(n + k � 1 + dÛ2)jxj2k�2Pn + jxj2k∆Pn

for Pn 2 Pn and the intertwining property of V it follows that

∆j
hV(j Ð j2kSn�2k) ≥ Vf∆j(j Ð j2kSn�2k)g

≥ 4j k!
(k � j)!

(n � k � j + dÛ2)jV(j Ð j2k�2jSn�2k)õk,j,

where õk,j ≥ 1 if j � k and õk,j ≥ 0 if j Ù k. Therefore, we conclude that

Z
Sd�1

V(j Ð j2kSn�2k)(Sh
n�2j)

Th2
ã d°

≥
0
@k

j

1
A (n � k � j + dÛ2)j

(jãj1 + n � 2j + dÛ2)j

Z
Sd�1

V(j Ð j2k�2jSn�2k)(Sh
n�2j)

Th2
ã d°õk,j

≥
0
@k

j

1
A (n � k � j + dÛ2)j

(jãj1 + n � 2j + dÛ2)j
Bk�j

n�2j,n�2jõk,j

using the first equation of formula (3.4) for Bk
n,n; the desired result follows from the

second equation of (3.4).
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From the unique decomposition (1.4) of Pn in terms of H h
n , the result in Theorem 3.2

can be used to get the action of V on any polynomial P 2 Pn. In particular, we can take
n ≥ 2k in the formula (3.3) so that it gives a formula for V(j Ð j2k).

The formula (3.3) shows, in particular, that V(j Ð j2kSn�2k,i) is orthogonal to Hl with
respect to h2

ãd° for l Ú n � 2k. Therefore, it follows from the unique decomposition of
Pn in (1.4) that V(j Ð j2kSn�2k,i) is orthogonal to all polynomials of degree � n � 2k � 1.
We formulate this fact as a corollary since it seems to be of independent interest.

COROLLARY 3.3. For each k, 2k � n, and 1 � i � Nn�2k,

Z
Sd�1

V(j Ð j2kSn�2k,i)qh2
ã d° ≥ 0, q 2

n�2k�1[
j≥0

Pj.

For a large family of weight functions on Sd�1, including many reflection invariant
ones, it is shown in [15] that an orthonormal basis can be expressed in terms of or-
thogonal polynomials on the unit ball Bd�1. Comparing to orthogonal structure on the
spheres, orthogonal structure on balls seems to be better understood at present time and
it is relatively simple. For example, an orthonormal basis on Bd�1 can be constructed
by the standard Gram-Schmidt process. Hence, this connection provides a possible way
to obtain a basis of H h

n . For results about orthogonal polynomials in several variables,
including some recent developments, we refer to the survey [12]. In the following we
describe the construction of h-harmonics in terms of orthogonal polynomials on Bd�1

which appears in [15].
A weight function H defined on Rd is called S-symmetric if it is even in yd and is

centrally symmetric with respect to variables y0 ≥ (y1, . . . , yd�1); that is, H satisfies

H(y0, yd) ≥ H(y0,�yd) and H(y0, yd) ≥ H(�y0, yd) y ≥ (y0, yd) 2 Rd.

Examples of S-symmetric functions are h2
ã whenever hã is even in each of its variables.

We shall restrict our discussion to the case that H ≥ h2
ã is reflection invariant as well

as S-symmetric. In associate to an S-symmetric weight function h2
ã on Rd we define a

weight function Wh on Bd�1 by

Wh(x) ≥ h2
ã(x,

q
1 � jxj2), x 2 Bd�1.

The assumption on hã implies that Wh is centrally symmetric on Bd�1. We denote by fPn
kg

and fQn
kg systems of orthonormal polynomials with respect to the weight functions

(3. 5) W(1)
h (x) ≥ 2Wh(x)Û

q
1 � jxj2 and W(2)

h (x) ≥ 2Wh(x)
q

1� jxj2,

respectively, where we adopt the convention that the superscript n means that Pn
k and Qn

k

are polynomials of degree n; the subindex k has the range 1 � k � rd
n so that fPn

kg, or
fQn

kg, forms an orthonormal basis for orthogonal polynomials of degree n.
In this connection we fix the following notation: For y 2 Rd, we write

(3. 6) y ≥ (y1, . . . , yd�1, yd) ≥ (y0, yd) ≥ rx ≥ r(x0, xd), x 2 Sd�1, x0 2 Bd�1,
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where r ≥ jyj ≥
q

y2
1 + Ð Ð Ð + y2

d and x0 ≥ (x1, . . . , xd�1). Keeping in mind this notation
we define

(3. 7) Y(1,h)
k,n (y) ≥ rnPn

k(x0) and Y(2,h)
j,n (y) ≥ rnxdQn�1

j (x0),

where 1 � k � rd�1
n , 1 � j � rd�1

n�1 and we define Y(2,h)
j,0 (y) ≥ 0. The following theorem

is proved in [15] for all S-symmetric weight functions.

LEMMA 3.4. Let h2
ã be a S-symmetric weight function on Rd. Then the functions

Y(1,h)
k,n (y) and Y(2,h)

k,n (y) defined in (3.7) are homogeneous polynomials of degree n on Rd

and they form an orthonormal basis for H h
n .

When hã ≥ 1 we are back to the ordinary harmonics. In fact, since the polynomials
Tn and Un are orthogonal polynomials on [�1, 1] with respect to the weight function
1Ûp1 � x2 and

p
1 � x2, respectively, the formula (1.8) provides an illustrating example

for this construction. More generally, we can derive formulae for orthogonal polynomials
with respect to 1Û

q
1� jxj2 and

q
1 � jxj2, respectively, from the ordinary harmonic

polynomials in (1.9).
For the S-symmetric weight function, we can simplify Theorem 3.1 by taking into

account the additional symmetry. We need some notations first. Let h2
ã be S-symmetric,

and Y(i,h)
n,k be the h-harmonics given in terms of orthogonal polynomials on Bd�1 in (3.7).

We denote by Y(1,h)
n and Y(2,h)

n , respectively, the vectors

Y(1,h)
n ≥ (Y(1,h)

n,1 , . . . , Y(1,h)
n,rd�1

n
)T , and Y(2,h)

n ≥ (Y(2,h)
n,1 , . . . , Y(2,h)

n,rd�1
n�1

)T .

When h2
ã ≥ 1, we write Y(i,h)

n as Y(i)
n , which consists of the ordinary harmonic polyno-

mials. We note that for d ≥ 2 the vector Y(i)
n becomes a scalar, and we have Y(i)

n ≥ Y(i)
n .

So the notation agrees with that in (1.8). In view of the previous notation Sn and Sh
n, we

have ST
n ≥ (Y(1)

n ,Y(2)
n )T .

THEOREM 3.5. If h2
ã is S-symmetric in addition, then

(3. 8) VY(i)
n ≥ M(i,h)

n Y(i,h)
n , M(i,h)

n ≥ Eã,n

Z
Sd�1

Y(i)
n (Y(i,h)

n )T d°, i ≥ 1, 2,

where M(1,h)
n is a matrix of size rd�1

n ð rd�1
n and M(2,h)

n is a matrix of size rd�1
n�1 ð rd�1

n�1.
Furthermore,

(3. 9) (M(i,h)
n )�1 ≥ E�1

ã,n

Z
Sd�1

Y(i)
n (Y(i,h)

n )Th2
ã d°, i ≥ 1, 2.

PROOF. Since h2
ã is S-symmetry, it is even with respect to yd. By the definition in

(3.7), Y(1,h)
n,i is even in yd and Y(2,h)

n,i is odd in yd; moreover, the same holds for the ordinary
harmonics. Therefore, it follows thatZ

Sd�1
Y(1)

n (Y(2,h)
n )T d° ≥ 0 and

Z
Sd�1

Y(1)
n (Y(2,h)

n )Th2
ã d° ≥ 0.

Hence, writing ST
n ≥

�
(Y(1)

n )T , (Y(2)
n )T

�
and a similar formula for Sh

n, we see that the matrix
Mh

n in (3.1) takes the form of the block diagonal matrix, from which the desired result
follows from Theorem 3.1.

Similarly, we have the following simplified version of Theorem 3.2.
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THEOREM 3.6. If h2
ã is S-symmetric in addition, then

(3. 10) V(j Ð j2kY(i)
n�2k) ≥ Bk,i

n Y(i,h)
n + Bk,i

n�2,njxj2Y(i,h)
n�2 + Ð Ð Ð + Bk,i

n�2k,njxj2kY(i,h)
n�2k

where Bk,in ≥ Bk,i
n,n and the matrices Bk,i

n�2i,n are given by

Bk,i
n�2j,n ≥

0
@k

j

1
A (n � k � j + dÛ2)j

(jã1j + n � 2j + dÛ2)j
Eã,n�2j

Z
Sd�1

Y(i)
n�2k(Y(i,h)

n�2j)
T d°.

From the formula for Bk
n in Theorem 3.2, it is evident that the same argument as in the

proof of Theorem 3.6 works in this case. We omit the details. As an special case of this
theorem, we formulate the the following corollary.

COROLLARY 3.7. If h2
ã is S-symmetric in addition, then

(3. 11)

V(j Ð j2k)(x)

≥ H0

Hã

kX
j≥0

jxj2k�2j

0
@k

j

1
A (dÛ2)k(dÛ2)2j

(dÛ2)j(jãj1 + dÛ2)k+j

� Z
Sd�1

(Y1,h
2j )T d°

�
Y1,h

2j (x).

To get (3.11), we substitute the formula of Bk�j
n�2j into (3.10) and take n ≥ 2k. The

constants are rewritten using the formula for Eã,n�2j.

4. Examples. In this section we use examples to illustrate the results in the previous
sections. Because of the difficulties in computation, the examples are mostly given in the
case d ≥ 2. We note that Y(i,h)

n becomes a scalar for d ≥ 2 so that Theorems 3.5 and 3.6
become particularly simple.

4.1 Product weight function. This is the weight function associated to Z2 ð Ð Ð Ð ðZ2; it
is defined by

hã(x) ≥ jx1jã1 Ð Ð Ð jxdjãd , ãi ½ 0, x 2 Sd�1,

where ãi ½ 0. The h-harmonics and the intertwining operator are known in this case;
they are studied as examples of the general theory in [3] for d ≥ 2 and later in [13] in
more detail. The intertwining operator turns out to be an integral operator given by

(4. 1) Vf (x) ≥ Z
[�1,1]d

f (x1t1, . . . , xdtd)
dY

i≥1
(1 + ti)

dY
i≥1

cãi (1 � t2
i )ãi�1 dt,

where the constant cï is defined by c�1
ï
≥ R1

�1(1� t2)ï�1 dt. To describe the h-harmonics,
we introduce the orthonormal polynomials with respect to the weight function

(4. 2) w(ï,ñ)(x) ≥ wï,ñ(1 � x2)ï�
1
2 jxj2ñ, �1 � x � 1, ï,ñ Ù �1Û2,

where wï,ñ is the normalization constant so that the integral of w(ï,ñ) on [�1, 1] is 1;

wï,ñ ≥ Γ(ï + ñ + 1)
Γ(ï + 1Û2)Γ(ñ + 1Û2)

.
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The orthonormal polynomial of degree n with respect to w(ï,ñ) is denoted by D(ï,ñ)
n ; it can

be given in terms of the classical Jacobi polynomials P(ã,å)
n (cf. [9]) as

(4.3a) D(ï,ñ)
2n (x) ≥ cn(ï,ñ)P(ï� 1

2 ,ñ� 1
2 )

n (2x2 � 1),

(4.3b) D(ï,ñ)
2n+1(x) ≥ cn(ï,ñ + 1)

�ï + ñ + 1
ñ + 1Û2

�1Û2
xP

(ï� 1
2 ,ñ+ 1

2 )
n (2x2 � 1),

where

(4. 4) cn(ï,ñ) ≥
 Γ(ñ + 1

2 )Γ(ï + 1
2 )

Γ(ï + ñ + 1)

!1Û2 (2n + ï + ñ)Γ(n + ï + ñ)Γ(n + 1)

Γ(n + ñ + 1
2 )Γ(n + ï + 1

2 )

!1Û2

.

We note that if ñ ≥ 0, then D(ï,0)
n ≥ C̃(ï)

n is the orthonormal Gegenbauer polynomial,
which is a constant multiple of C(ï)

n . For d ≥ 2, an orthonormal basis for H h
n with respect

to the normalized Hãh2
ãd° is given by

Y(1,h)
n (x) ≥ rnD(ã1,ã2)

n (cos í), Y(2,h)
n (x) ≥ rn

�ã1 + ã2 + 1
ã1 + 1Û2

�1Û2
sin íD(ã1+1,ã2)

n�1 (cos í),

where we use the polar coordinates x ≥ (r sin í, r cos í).
Since the intertwining operator is an integral transform in this case, the relation be-

tween VY(i)
n and the h-harmonics leads to an integral formula of the Gegenbauer polyno-

mials, which includes a classical formula of Feldheim and Vilenkin. Indeed, using (1.8)
and applying Theorem 3.5 to Y(1,h)

n implies that
(4. 5)

D(ã1,ã2)
n (cos í) ≥ bn

Z 1

�1

Z 1

�1
(t2

1 sin2 í + t2
2 cos2 í)nÛ2

ð Tn

 
t2 cos í

(t2
2 cos2 í + t2

1 sin2 í)1Û2

!
(1 + t2)(1 � t2

1)ã1�1(1 � t2
2)ã2�1 dt1 dt2,

where bn is a constant which can be determined by setting í ≥ 0. In particular, if we let
ã2 ! 0 by using the relation

lim
ñ!0

cñ
Z 1

�1
f (t)(1 � t2)ñ�1 dt ≥ f (1) + f (�1)

2

and write ã1 ≥ ã, then (4.5) becomes

C̃(ã)
n (cos í) ≥ bn

Z 1

�1
(t2 sin2 í + cos2 í)nÛ2Tn

 
cos í

(cos2 í + t2 sin2 í)1Û2

!
(1 � t2)ã�1 dt.

By setting í ≥ 0 the constant bn is seen to equal to cãC̃(ã)
n . Hence, changing variable

t1 ≥ cos† and then † 7! (ôÛ2) � û, we conclude that (4.5) with ã2 ≥ 0 and ã1 ≥ ã is
equivalent to

C(ã)
n (cos í)
C(ã)

n (1)
≥ 2cã

Z ôÛ2

0
(1 � sin2 í sin2 û)nÛ2Tn

 
cos í

(1 � sin2 û sin2 í)1Û2

!
(sinû)2ã�1 dû.
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This formula is a special case of a formula due to Feldheim and Vilenkin (cf. [1, p. 24]),
which has Gegenbauer polynomial C(ï)

n in place of Tn in its general form.
The same consideration with the explicit formula of V allows us to write down the

h-harmonics on Rd in terms of an integral transform of the ordinary harmonics. Let us
consider a special case of hã ≥ Hãjxdjã on Sd�1 with d ½ 3; that is, we take ã1 ≥ Ð Ð Ð ≥
ãd�1 ≥ 0 and ãd ≥ ã. From the formula in [13], an orthonormal basis of H h

n for this hã
is given by formulae similar to those of the ordinary harmonics; in fact, we only need to

replace C
(k1+ d�1

2 ,ã)
n�k1

in (1.9) by D
(k1+ d�1

2 ,ã)
n�k1

(of course, the normalization constant changes
as well). It follows from Theorem 3.4 and the explicit formula of V (which reduces to
only one fold integral in this case) that we have

D
(k+ d�2

2 ,ã)
n�k (cos í) ≥ bn

Z 1

�1
(sin2 í + t2 cos2 í)nÛ2C

(k+ d�2
2 )

n�k

 
t cos í

(sin2 í + t2 cos2 í)1Û2

!

ð (1 + t)(1 � t2)ã�1 dt,

where bn is a constant. In particular, let k ≥ 0, n ≥ 2m and use (4.3a), we end up with
the following interesting formula

P
( d�3

2 ,ã� 1
2 )

m (cos 2í) ≥ am

Z ô

0
(1 � cos2 í sin2 û)mC

( d�2
2 )

2m

 
cos í cosû

(1 � cos2 í sin2 û)1Û2

!

ð (sinû)2ã�1 dû,

where the constant am can be determined by setting í ≥ 0. Using quadratic transform

to change C
( d�2

2 )
2m to P

( d�3
2 ,� 1

2 )
m , it can be seen that the above integral is a special case of a

formula on Jacobi polynomials first derived by Askey and Fitch (see [1, p. 20, (3.10)]),
which also follows from a formula of hypergeometric function of Bateman (cf. [1, (3.5)]).

4.2 Dihedral group D4. The weight function is

(4. 6) hã(x) ≥ j2x1x2jïjx2
1 � x2

2jñ, Hã ≥ wï,ñÛ2,

where wï,ñ is given in (4.2) and we write ã1 ≥ ï and ã2 ≥ ñ. In this case, a closed
formula of the intertwining operator V is not known.

An orthogonal basis for H h
n can be derived using Lemma 3.4. It is easy to verify that

HãW(1)
h (t) ≥ 22ï+2ñwï,ñjtj2ï(1 � t2)ïjt2 � 1Û2j2ñ :≥ w(ï,ñ)

4 (t),

and
R 1
�1 w(ï,ñ)

4 (t) dt ≥ 1. Hence, by Lemma 3.4, to derive an orthonormal basis for H h
n ,

we need to find orthonormal polynomials for w(ï,ñ)
4 and (1 � t2)w(ï,ñ)

4 , respectively.
It turns out that an orthonormal basis for H h

2n can be given rather easily. Indeed, in
terms of polar coordinates x ≥ (x1, x2) ≥ r(cos í, sin í), it is easy to verify that

Y(1,h)
2n (x) ≥ r2nD(ï,ñ)

n (cos 2í), Y(2,h)
2n (x) ≥ r2n

 ï + ñ + 1
ï + 1Û2

!1Û2

sin 2íD(ï+1,ñ)
n�1 (cos 2í).

The formulae for Y(i,h)
2n+1 are much more involved; for example,

Y(1,h)
2n+1(x) ≥ anr2n+1 cos í[D(ï,ñ)

n (cos 2í) � bn cos2 íD(ï+1,ñ)
n�1 (cos 2í)],
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where an and bn are constants and their formulae are different for n being even and odd.
The formula for Y(2,h)

2n+1 takes a similar form. We will not give them explicitly but refer the
reader to [2], where a complete basis for H h

n is derived by solving ∆hP ≥ 0 and the basis
is given in terms of Jacobi polynomials (see (4.3)).

Using Theorem 3.5 or by elementary consideration it is easy to conclude that VY(i)
n is

a constant multiple of Y(i,h)
n . The importance of the results in the previous section is that

Theorem 3.5 shows a way to compute the constant. Indeed, we have that

VY(i)
n (x) ≥ M(i,h)

n Y(i,h)
n , M(i,h)

n ≥ Eã,n

Z
Sd�1

Y(i,h)
n Y(i)

n d°.

Therefore, let ç(ï,ñ)
n denote the leading coefficient of D(ï,ñ)

n , we derive easily that

VY(1)
2n (x) ≥ Γ(2n + 1)

2n(1 + ï + ñ)2n
ç(ï,ñ)

n D(ï,ñ)
n (cos 2í),

VY(2)
2n (x) ≥ Γ(2n + 1)

2n(1 + ï + ñ)2n

ï + ñ + 1
ï + 1Û2

ç(ï+1,ñ)
n�1 sin 2íD(ï+1,ñ)

n (cos 2í).

Hence, we have the explicit formula for the action of V on the ordinary harmonic polyno-
mials of even degree; the formula in the case of odd degree can be derived in a same way,
but it is cumbersome. Moreover, using (3.7) we can derive the formulae for V(jÐj2kY(i,h)

n�2k).
In particular, since by (4.3)

Z
S1

Y(1,h)
4n+2 d° ≥ const

Z 1

�1
xP

(ï� 1
2 ,ñ+ 1

2 )
n (2x2 � 1)

dxp
1 � x2

≥ 0,

it follows from (3.11) that we have

V(j Ð j2k)(x) ≥ r2kΓ(k + 1)
H0

Hã

[kÛ2]X
j≥0

0
@ k

2j

1
A (2j + 1)2j

(ï + ñ + 1)k+2j
c2

j (ï,ñ)

ð Z 2ô

0
P

(ï� 1
2 ,ñ� 1

2 )
j (cos 4û) dûP

(ï� 1
2 ,ñ� 1

2 )
j (cos 4í),

where cj(ï,ñ) is defined in (4.3) integral of [P(ï�1Û2,ñ�1Û2)
j ]2 with respect to the normal-

ized weight function wï,ñ(1 � x)ï�1Û2(1 + x)ñ�1Û2. It is conjectured by Dunkl that V is
always positive. If the conjecture were proved, then the above would give a nonnegative
sum of Jacobi polynomials.

Still, we do not know a closed formula of V for this weight function. It would be very
interesting if V can be written as an integral operator as in the case of Z2. One approach is
to derive an integration formula for the reproducing kernel Ph

n and make the connection
to V through the general formula (see [5] and [14])

Ph
n(x, y) :≥ Y(1,h)

n (x)Y(1,h)
n (y) + Y(2,h)

n (x)Y(2,h)
n (y)

≥ n + 2ï + 2ñ
2ï + 2ñ [VC(2ï+2ñ)

n (hÐ, yi)](x), jyj � jxj ≥ 1.

Such an approach is used in [13] to derive a formula of V in (4.1) for the case of
Z2 ð Ð Ð Ð ð Z2. Based on the product formulae of D(ï,ñ)

n in [13] and ad hoc transforms,
we can follow this approach to prove that
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PROPOSITION 4.1. For hã in (4.6), if ï + ñ ½ 3Û2 and ï,ñ ½ 0, then for all n ½ 0

[V(hÐ, yi)2n](x)

≥ cïcñ(ï + ñ)(ï + ñ � 1)ô�3Û2
Z

B3
(1 � juj2)ï+ñ�2 du8><

>:
Z 1

�1

Z t

�1

0
B@xT

"q 1+s
2 u2 +

q
t�s
2 u3

q
1�t

2 u1

�
q

1�t
2 u1

q
1+s
2 u2 +

q
t�s
2 u3

#
y

1
CA

2n

Φ(t, s) dt ds

+
Z 1

�1

Z 1

t

0
B@xT

" q
1+t
2 u1

q
1�s

2 u2 +
q

s�t
2 u3

�
q

1�s
2 u2 +

q
s�t
2 u3

q
1+t
2 u1

#
y
!2n

Φ(t, s) dt ds
)

,

where Φ(t, s) ≥ (1 + t)(1 + s)(1 � t2)ñ�1(1 � s2)ï�1.

This formula indicates that there should be an integral formula for the intertwining
operator V in this case. Unfortunately, the obvious choice hinted by this formula does
not seem to work in general. Because it is only a partial result and the proof is rather ad
hoc and long, we will not give the proof here. Although the formula looks complicated,
a formula of similar type with 6-fold integrals has been conjectured by Dunkl (private
communication) based on some consideration using integration over the unitary group.

4.3 Other Dihedral groups. We can apply Theorem 3.5 and 3.6 to other Dihedral group
Dk since an orthogonal basis for the h-harmonics associated with Dk can be given ex-
plicitly (cf. [2, 4]). To get M(i,h)

n in (3.8) we need to normalize the basis; that is, we need
to compute

R
[Y(i,h)

n ]2h2
ã d°, which could be complicated. For example, for D3 whose cor-

responding weight function is given by hã(cos í, sin í) ≥ j sin 3íjã in polar coordinates,
we know form [2, p. 52] that

Y(1,h)
3n�1 ≥ r3n�1[cos 2íC(ã+1)

n�1 (cos 3í)� cos íC(ã+1)
n (cos 3í)].

The norm of this function is not easy to compute. Other than this computation, we should
have no problem to write down the action of V on ordinary harmonics using (3.8).

4.4 Remarks on the case of d Ù 2. Naturally, we would like to get results on the inter-
twining operator for d Ù 2. In this regard, the results in Section 2 may not be practical; it
requires to compute M �1

n , where Mn contains inner product of ordinary harmonics with
respect to h2

ãd°. These inner products can be difficult to compute. Take, for example, the
octahedral group, which is the symmetric group of the unit cube fš1,š1,š1g in R3,
with the weight function hã(x) ≥ j(x2

1 � x2
2)(x2

2 � x2
3)(x2

3 � x2
1)jã. For d ≥ 3 the ordinary

harmonics are given by

Y(1)
k,n ≥ rnC(k+1Û2)

n�k (cosû) cos kí, Y(2)
k,n ≥ rnC(k+1Û2)

n�k (cosû) sin kí,

0 � k � n, under the standard spherical coordinates x1 ≥ r sin í sin û, x2 ≥ r sin í cosû
and x3 ≥ r cos í, where 0 � û � 2ô and 0 � í � ô. In order to work out Mn, we then
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need to compute integrals such as

Z
S2

Y(1)
k,nY(1)

j,mh2
ã d°

≥ Z 2ô

0

Z ô

0
C(k+1Û2)

n�k (cosû)C(j+1Û2)
m�j (cosû) cos kí cos jí

ð j sin2 í cos 2û(sin2 í sin 2û � cos2 í)(sin2 í cos 2û � cos2 í)j2ã dí dû.

A moment reflection tells that this is rather difficult even for moderate m and n.
On the other hand, the results in Section 3 are workable provided a basis for H h

n is
known. So far, however, such a basis has been constructed only for the product weight
functions in 4.1. We note that for S-symmetric function, we can work with orthogonal
polynomials on Bd�1 with respect to the weight functions defined in (3.5). For small n, at
least, we can find the basis for orthogonal polynomials using the standard Gram-Schmidt
method.
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