A REMARK ON THE EXISTENGE OF A DENUMERABLE BASE FOR A FAMILY OF FUNCTIONS

FRITZ ROTHBERGER

A family F of functions is said to have a denumerable base if there exists a sequence of functions $\left\{f_{n}(x)\right\}$ (not necessarily $\in F$) such that any function $f \in F$ is the limit of a subsequence of $\left\{f_{n}(x)\right\}$. The domain X of a function $f(x)$ is the set of x 's for which $f(x)$ is defined; we say $f(x)$ is a function on X. A dyadic function is a function taking only the values 0 and 1 .

Let F be a family of dyadic functions on a set X.
Proposition ($\mathfrak{m}, \mathfrak{n}$). If $\overline{\bar{F}}=\mathfrak{m}$ and $\overline{\bar{X}}=\mathfrak{n}$, then the family F has a denumerable base.

In an earlier paper I have shown that the proposition $\left(\boldsymbol{\aleph}_{1}, \boldsymbol{\aleph}_{1}\right)$ is true $[\mathbf{1}$, p. 401, Theorem 3]. Hence, the continuum hypothesis implies the proposition (c, c) [ibid., Corollary].

The problem is whether or not the proposition (c, c) can be proved independently (i.e., merely with the axiom of choice, but without any additional hypothesis such as the continuum hypothesis). We are going to prove a theorem which throws some light on this problem.

First, we need two lemmas (proofs omitted):
Lemma A. If $\mathfrak{n}_{1}>\mathfrak{n}_{2}$, then proposition ($\mathfrak{m}, \mathfrak{n}_{1}$) implies proposition $\left(\mathfrak{m}, \mathfrak{n}_{2}\right)$.
Lemma B. If $\boldsymbol{\aleph}_{a}<\mathfrak{c}$, then proposition ($\mathfrak{c}, \mathfrak{c}$) implies proposition $\left(\mathfrak{c}, \boldsymbol{\aleph}_{a}\right)$.
These will enable us to prove the following
Theorem. If there exists an a and a β such that

$$
\begin{equation*}
\boldsymbol{\aleph}_{a}<\boldsymbol{\aleph}_{\beta}, \quad \boldsymbol{\aleph}_{\beta} \leqslant \mathfrak{c}<\boldsymbol{\aleph}_{\omega_{\beta^{\prime}}} \quad 2^{\boldsymbol{\aleph}_{a}}=\boldsymbol{\aleph}_{\omega_{\beta^{\prime}}} \tag{1}
\end{equation*}
$$

then the proposition $\left(\mathrm{c}, \boldsymbol{\aleph}_{a}\right)$ is false.
For example,

$$
a=1, \beta=2, \boldsymbol{\aleph}_{2} \leqslant \mathfrak{c}<\boldsymbol{\aleph}_{\omega_{2}}=2^{\boldsymbol{\aleph}_{1}}
$$

Incidentally, the first relation in (1) is redundant: it follows from the third one by Koenig's theorem.

From this theorem, together with Lemma B, we have:
Corollary 1. If $\boldsymbol{\aleph}_{a}, \boldsymbol{\aleph}_{\beta}$ satisfying (1) exist, the proposition (c, \mathfrak{c}) is false.
We have, in particular (special cases):

[^0]Corollary 2. The proposition (\mathfrak{c}, c) is false if any one of the following propositions (2), (3), (4), holds:

$$
\begin{align*}
2^{\boldsymbol{\aleph}_{1}} & =\boldsymbol{\aleph}_{\omega_{2}} \text { and } \boldsymbol{\aleph}_{2} \leqslant \mathfrak{c}<\boldsymbol{\aleph}_{\omega_{2}} ; \tag{2}\\
2^{\boldsymbol{\aleph}_{2}} & =\boldsymbol{\aleph}_{\omega_{3}} \text { and } \boldsymbol{\aleph}_{3} \leqslant \mathfrak{c}<\boldsymbol{\aleph}_{\omega_{3}} ; \tag{3}\\
2^{\boldsymbol{\aleph}_{n}} & =\boldsymbol{\aleph}_{\omega_{n+1}} \tag{4}
\end{align*} \quad(n=0,1,2, \ldots) .
$$

Note. In what follows, a, β are "constants"; γ, ξ are "variables."
Proof of Theorem. We assume (1), and we are going to construct a counterexample for the proposition $\left(\mathfrak{c}, \boldsymbol{\aleph}_{a}\right)$. Let G be the family of all dyadic functions on X, where $\overline{\bar{X}}=\boldsymbol{N}_{a}$. Then $\overline{\bar{G}}=2^{\boldsymbol{\aleph}_{a}}$, hence, by (1),

$$
\begin{equation*}
\overline{\bar{G}}=\boldsymbol{\aleph}_{\omega_{\beta}} \tag{5}
\end{equation*}
$$

Given a sequence $\left\{\phi_{n}(x)\right\}$ of dyadic functions on X, let F_{ϕ} be the family of those functions which are limits of subsequences of $\left\{\phi_{n}(x)\right\}$. Furthermore, let Φ be the family of all sequences (of dyadic functions on X), and let \mathscr{S} be the system of all families F_{ϕ} where $\phi \in \Phi$.

It follows that

$$
\begin{equation*}
\overline{\bar{F}}_{\phi} \leqslant \mathfrak{c}, \overline{\bar{\Phi}}=\left(2^{\boldsymbol{\aleph}_{a}}\right)^{\boldsymbol{\aleph}_{0}}=2^{\boldsymbol{\aleph}_{a}}=\boldsymbol{\aleph}_{\omega_{\beta}} \tag{6}
\end{equation*}
$$

(The last inequality follows from the fact that every element of G corresponds to a one-element family F_{ϕ} whose base converges.)

Hence, from (1), (5), (6), and (6^{\prime}), we have:

$$
\begin{equation*}
\overline{\bar{F}}_{\phi} \leqslant \mathfrak{c}<\boldsymbol{\aleph}_{\omega_{\beta}}, \quad \overline{\bar{G}}=\overline{\overline{\mathscr{S}}}=\boldsymbol{\aleph}_{\omega_{\beta}} \tag{7}
\end{equation*}
$$

Now, since F_{ϕ} is the "maximal" family with the base ϕ, every family of functions admitting a base is contained in some F_{ϕ}, i.e.,
(8) If F has a base then, for some $\phi, F \subset F_{\phi} \in \mathscr{S}$.

On the assumption of (7) we are going to construct a family F° of power $\leqslant \boldsymbol{\aleph}_{\beta}$ which is not contained in any $F_{\phi} \in \mathscr{S}$, which therefore, according to (8), has no base.

Let

$$
F_{1}, F_{2}, \ldots F_{\omega}, \ldots F_{\xi}, \ldots| |_{\omega_{\beta}}
$$

be the elements of \mathscr{S}, ordered in a transfinite sequence.
We put

$$
\begin{equation*}
H_{\gamma}=\sum_{\xi<\omega_{\gamma}} F_{\xi} \quad\left(\gamma<\omega_{\beta}\right), \tag{9}
\end{equation*}
$$

and, for each $\gamma<\omega_{\beta}$, let h_{γ} be one element of the set $G-H_{\gamma}$:

$$
\begin{equation*}
h_{\gamma} \in G-H_{\gamma} \tag{10}
\end{equation*}
$$

$$
\left(\gamma<\omega_{\beta}\right)
$$

This element h_{γ} exists because

$$
\overline{\bar{H}}_{\gamma} \leqslant \boldsymbol{c} \boldsymbol{\aleph}_{\gamma}<\boldsymbol{\aleph}_{\omega_{\beta^{\prime}}}
$$

but $\overline{\bar{G}}=\boldsymbol{\aleph}_{\omega_{\beta}}$ hence the set $G-H_{\gamma}$ is not empty.
Now let F° be the set of all these h_{γ}. Then $\overline{\bar{F}}{ }^{\circ} \leqslant \boldsymbol{\aleph}_{\beta} \leqslant \mathrm{c}$. It follows from (10) that $h_{\gamma} \notin F_{\xi}$ for all $\xi<\omega_{\gamma}$. But $h_{\gamma} \in F^{\circ}$ by definition. Therefore F° cannot be contained in any F_{ξ} (for all $\xi<\omega_{\omega_{\beta}}$), i.e., in any $F_{\phi} \in \mathscr{S}$.

Thus, by (8), F° has no base, although

$$
\overline{\bar{F}}^{\circ} \leqslant \mathrm{c} .
$$

Reference

1. F. Rothberger, On families of real functions with a denumerable base, Ann. Math., vol. 45 (1944), 397-406.

University of New Brunswick

[^0]: Received June 20, 1950.

