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Abstract

We prove that any subset of @m (closed under complex conjugation and which contains the origin) is the
exceptional set of uncountably many transcendental entire functions over C” with rational coefficients.
This result solves a several variables version of a question posed by Mahler for transcendental entire
functions [Lectures on Transcendental Numbers, Lecture Notes in Mathematics, 546 (Springer-Verlag,
Berlin, 1976)].
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1. Introduction

An analytic function f over a domain Q C C is said to be an algebraic function over
C(z) if there exists a nonzero polynomial P € C[X, Y] for which P(z, f(z)) = 0, for all
z € Q. A function which is not algebraic is called a transcendental function.

The study of the arithmetic behaviour of transcendental functions started in 1886
with a letter of Weierstrass to Strauss, proving the existence of such functions taking
Q into itself. Weierstrass also conjectured the existence of a transcendental entire
function f for which f(Q) € Q (as usual, Q denotes the field of all algebraic numbers).
Motivated by results of this kind, he defined the exceptional set of an analytic function
f:Q—>Cas

S;={eeQnQ: f(a) € Q.

Thus, Weierstrass’ conjecture can be rephrased as: does there exist a transcendental
entire function f such that Sy = Q? This conjecture was settled in 1895 by Stickel [4],
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2] The exceptional set of entire functions 65

who proved, in particular, that for any X C @ there exists a transcendental entire
function f for which X C §y.

In his classical book [1], Mahler introduced the problem of studying S for various
classes of functions. After discussing a number of examples, Mahler posed several
problems about the admissible exceptional sets for analytic functions, one of which is
as follows. Here B(0, p) denotes the closed ball with centre 0 and radius p in C.

PROBLEM L.1. Let p € (0, 00] be a real number. Does there exist for any choice of
S € QN B(0,p) (closed under complex conjugation and such that O € §) a transcen-
dental analytic function f € Q[[z]] with radius of convergence p for which Sy = §?

In 2016, Marques and Ramirez [3] proved that the answer to this question is ‘yes’
provided that p = oo (that is, for entire functions). Indeed, they proved the following
more general result about the arithmetic behaviour of certain entire functions.

LEMMA 1.2 [3, Theorem 1.3]. Let A be a countable set and let K be a dense subset
of C. For each a € A, fix a dense subset E, C C. Then there exist uncountably many
transcendental entire functions f € K[[z]] such that f(a) € E, for all a € A.

This result was improved by Marques and Moreira in [2] giving an affirmative
answer to Mahler’s Problem 1.1 for any p € (0, oo].

In this paper, we consider Mahler’s Problem 1.1 in the context of transcendental
entire functions of several variables. Although the previous definitions extend to the
context of several variables in a very natural way, we shall include them here for the
sake of completeness.

An analytic function f over a domain Q C C” (we also say that f is entire if Q = C™)
is said to be algebraic over C(zy,...,z,) if it is a solution of a polynomial functional
equation

P(Zlf‘"’Zm’f(zl""’znl)) = 0 fora’ll (Zl""izm) e Q’

for some nonzero polynomial P € C[zy, ..., Zm, Zm+1]- A function which is not algebraic
is called a transcendental function. (We remark that an entire function in several
variables is algebraic if and only if it is a polynomial function just as in the case of
one variable.) Let K be a subset of C and let f be an analytic function on the polydisc
A0, p) := B(0,p1) X - -- X B(0, p,,) € C™ for some p = (p1,...,pm) € (0,00]™. We say
that f € K[[z1,...,z,]] if

k Ko
f(zl""azﬂ’l) = Z Ck] ’’’’’ kmzll ...Zm7

with ¢k, . € Kforall (ky,..., k) € Z’Z"O and for all (zy,...,zx,) € A0, p).
The exceptional set S, of an analytic function f : Q € C" — Cis defined as

Sp={@n....an) €QNQ : flai,....an) € Q).

Downloaded from https://www.cambridge.org/core. IP address: 3.141.27.107, on 30 Sep 2024 at 23:28:34, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50004972723001041


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0004972723001041
https://www.cambridge.org/core

66 D. Alves, J. Lelis, D. Marques and P. Trojovsky [3]

For example, let f: C> — C and g : C*> — C be the transcendental entire functions
given by

fw,2) =e""* and g(w,z) = e"™.
By the Hermite—Lindemann theorem,
Se=1{@,-a):aeQ and S,=(Qx{0})U({0}xQ).
In general, if P(X,Y),...,P,(X,Y) € @[X, Y], then the function

n
Sfw,2) = exp ( n Py(w, z))
k=1
has the exceptional set given by
" —2
Sr = Ji@p e : Pue.p = 0}
k=1

We refer the reader to [1, 5] (and references therein) for more about this subject.

In the main result of this paper, we shall prove that every subset S of Qm (under
some mild conditions) is the exceptional set of uncountably many transcendental entire
functions of several variables with rational coefficients.

THEOREM 1.3. Let m be a positive integer. Then, every subset S of@m, closed under
complex conjugation and such that (0,...,0) € S, is the exceptional set of uncountably
many transcendental entire functions f € Q[[z1, ..., Zm]]

To prove this theorem, we shall provide a more general result about the arithmetic
behaviour of a transcendental entire function of several variables.

THEOREM 1.4. Let X be a countable subset of C" and let K be a dense subset of
C. For each u € X, fix a dense subset E, C C and suppose that if (0,...,0) € X, then

.....

feK[lz,...,zm]l such that f(u) € E, for all u € X.

Theorem 1.4 is a several variables extension of the one-variable result due to
Marques and Ramirez [3, Theorem 1.3].

2. Proofs

2.1. Proof that Theorem 1.4 implies Theorem 1.3. In the statement of Theorem
1.4, choose X = Q" and K = Q* + iQ. Write S = {u1,us,...} and Q /S = {v1,v2,. ..}
(one of them may be finite) and define

£ {@ ifues,

K-n" ifu=v,.
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By Theorem 1.4, there exist uncountably many transcendental entire functions
k klll
f@,eszm) = Z oy " Zm

k120,...0kn 20

in K[[z1, ..., zn]] such that f(u) € E, for all u € @m. Define ¥(zy,...,2y,) as

Utz = L) G o)

By the properties of the conjugation of power series,

kim

k
Uzt Zm) = Z Re(cx,...x,)2) " 2

(k1seeskin)EZY,

is a transcendental entire function in Q[[z,...,zx]] since Re(cy,,. «,) is rational and
nonzero for all (ky, ..., kn,) € ZZ by construction. (Here, as usual, Re(z) denotes the
real part of the complex number z.)

Therefore, it suffices to prove that S, = §. In fact, since S is closed under complex
conjugation, if u € S, then u € § and thus f(x) and ﬁ are algebraic numbers and
so is ¥(u). (Observe also that f(0,...,0) =co_ o € @.) In the case in which u = v,
for some n, we can distinguish two cases. When v, € R™, then ¢(u) = Re(f(v,)) is
transcendental, since f(v,) € K- n". For v, ¢ R™, we have v, = v, for some [ # n. Thus,
there exist nonzero algebraic numbers 7y, y, such that

!
Yt +yom
Y(vy) = 5
which is transcendental, since Q is algebraically closed and 7 is transcendental. In
conclusion, ¥ € Q[[z1,...,zx]] is a transcendental entire function whose exceptional

set is S.

2.2. Proof of Theorem 1.4. Let us proceed by induction on m. The case m = 1
is covered by Lemma 1.2. Suppose that the theorem holds for all positive integers
k € [1,m — 1]. That is, if K is a dense subset of C, X is a countable subset of C* and E,,
is a dense subset in C for each u € X, then there exist uncountably many transcendental
entire functions f € K[[zy, ..., z]] such that f(u) € E, for all u € X, for any integer
kell,m-1].

Now, let X be a countable subset of C" and E, a fixed dense subset of C for all
u € X. Without loss of generality, we can assume that (0,...,0) € X. In this case,

.....

partition of X given by

where #,, denotes the powerset of [1,m] = {1,...,m} and X5 denotes the set of all
z2=1(21,.--,2m) In X € C" such that z; # 0 if and only if i € S. In particular, Xy =
{(0,...,0)} and X[1 ,,; = X N (C\ {OH™.

Downloaded from https://www.cambridge.org/core. IP address: 3.141.27.107, on 30 Sep 2024 at 23:28:34, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50004972723001041


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0004972723001041
https://www.cambridge.org/core

68 D. Alves, J. Lelis, D. Marques and P. Trojovsky [5]

Given S = {i1,..., i} in @, = P, \{0,[1,m]} and z = (21, . . ., z) in C", we denote
by zs the element (z;,,...,z;,) € C. To simplify the exposition, we will assume that
i <---<i for all § €@Q,. Our goal is to show that there exist uncountably many
ways to construct a transcendental entire function f € K[[z1, ..., z,]] given by

fG@i, o zm) = ao +( Z (nzi)fs(zs))+f*(zl,...,zm),

SeQ,, i€S

where ag € E,._0) N K and, for each S = {i, ..., ik} € Q,, the function f; : Cck > Cis

.....

a transcendental entire function such that
1
Ss(us) € o “(E, — Og,)

for all u = (ay,...,a,) € Xg with

L= ao + Z (nai)fr(w) eC.

TeQ,,,T+S ieT

By the induction hypothesis, fs exists for all S € Q,, (noting that if E, is a dense
subset of C, then (a;, - - - aik)‘l - (E, — Qg,,) 18 also a dense set). Moreover, we want the
function f*(z1,...,zm) € K[[z1,...,2x]] to satisfy the condition

e (B-a- Y ([Taifocus) 2.1

SeQ,, €S

forallu = (a,...,an) € X{1,m, and f*(z1, ..., 2,) = 0 whenever z; = 0 for some i with
1 < i < m. Under these conditions, it is easy to see that if S € Q,, and u € Xy, then
f*(w) =0and f(u) € E,.

To construct the function f* : C" — C, let us consider an enumeration {uy, us, . . .}
of X{im, where we write u; = (a(l’), e a/f’,,)). We construct a function f*e
Kllz1,. .., zn]] given by

(o]
f*(m,...,zm):ZPn(zl,...,zm)= Z CirpninZy) " 2o

n=m 0n=1,..,0,>1

where P, is a homogeneous polynomial of degree n and the coefficients ¢;, _; € K
will be chosen so that f* will satisfy the desired conditions.
The first condition is
1

(T e )

where ¢, ; # 0 for infinitely many m-tuples of integers i; > 1,...,i, > 1. These
conditions will be used to guarantee that f* is an entire function. Let L(P) denote
the length of the polynomial P(zy,...,2z,) € Clzi1,...,2,] given by the sum of the
absolute values of its coefficients. Since

|Pn(Zl L Zm)| S L(Pl’l) maX{l, |Zl |$ ce |Zm|}na

Ciy i) < Siytiy, 1=
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forall n > m and (zy, . .., z,) belonging to the open ball B(0, R),

n—1 n
Er_"l_l) max{1,R})" = —max{lv,R} ,
(m—l)n! n
since P,(z1,...,2,) has at most (Z;ll) monomials of degree n. Hence, the series
Dism Pu(zis ..., 2m) converges uniformly in any of these balls. Thus, f* is a
transcendental entire function such that f*(0,z2,...,2,) = f7(21,0,23,...,2m) =
f*(Zl,Zz,...,O) =0.

To obtain the coefficients ¢;,_; € K such that f* satisfies the condition (2.1), we
consider a hyperplane n(n, j) for positive integers n and j with 1 < j < n, given by

|Pn(Z1,---eZm)| <

a(n.j) : 1z + -+ iz = A =0,

and such that if u;, u,,; and the origin are noncollinear, then 7(n, j) is a hyperplane

containing u; and parallel to the line passing through the origin and the point w1,

and, if u;, u,, and the origin are collinear, then n(n,j) is a hyperplane containing u;

and perpendicular to the line passing through the origin and the point .. Note that in

both cases, /15,’) # 0 and u,,,; does not belong to any hyperplane n(n,j) with 1 <j < n.
Now, we define the polynomials A(z1, - .., 2m) := 21 - Zn and

n

An(Zl, o aZm) = l—l(ﬂg’)lzl +-e +lul(1],)mzm - /lgzl))
j=1

for all n > 1. By the definition of 7(n, j), we have A,(u;) = 0 for 1 <j < n. Since u,41
and the origin do not belong to 7(n, j), we also have A,(0,...,0) # 0 and A,(u,+1) # 0
for all n > 1. Thus, we can define the function

0@y zm) = 61040215 - - -5 Zm) = 01021 " * Tm
such that @; + fl*,O(ul) € E, and 0 < [6,0| < s,,/m, where
@j =ap+ Z (l_[ a’l(.j))fs(uj,s),
SeQ,, €S

and u;g = (af{), .. .,a/g)) for S = {iy, ..., i}, for all integers j > 1.

,,,,,

of z; - - - z,, in the function
fa@s e zm) = [, zm) + 61121 - zaA (1,2
belongs to K with |c1....1| < sp. Therefore, we take
@ zm) = @ Zm)s

where P((21,...,2Zm) = CL1,.,121 * * * Tm-
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Recursively, we can construct a function f* (z1,...,2x») given by

f,::()(zls o ,Zm) = f;_l(zl’ s sZm) + 6n,OZ’11Z2 o 'ZmAn—l(le cee 9Zﬂ’l)
where we take 8,0 # 0 in the ball B(0, $y4,—1/(n + m — 1)) such that
0, + f,f,o(”n) €E,,.

This is possible since E,, is a dense subset of C and all coordinates of u, are nonzero.

Since K is a dense subset of C, if we consider the ordering of the monomials of
degree n+m — 1 given by the lexicographical order of the exponents, then we can
choose 9,,; such that the coefficient ¢;,_;, of the /th monomial il‘ ez in

f:l(zlv""zm) = f:l_l(zh""zm) +5VLJZII "'Z%An(zlwuaZm)
B 8 1

belongs to K with |c;, ;.| < Sp4m-1. Thus, we define
f;(zl’ .. ,Zm) = f:,L(Zlv .. ’Zm)s
n+m-2

where L = ( 1 ) is the number of distinct monomials of degree n +m — 1. Then
fi(z1,...,zn) is a polynomial function such that ¢; j, €K for every m-tuple
(is..-»jm)suchthatj; +---+j, <n+m-1.

Finally, this construction implies that the functions f, converge to a transcendental
entire function f* € K[[z1,...,2x.]] as n — oo such that

[ wy) = £, () = f7 (uy)

foralln >j> 1. Let f : C" — C be the entire function given by

f@iy. o zm) = ao +( Z (l_[Zi)fS(ZS)) + [ @t Zm)-

SeQ,,  i€S

Then f(u) € E, for all u e X c C™. Since f is an entire function that is not a
polynomial, it follows that f is transcendental. Note that there are uncountably many
ways to choose the constants ¢, ;. This completes the proof.
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