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A 2 X 2 factorial experiment was performed to investigate the interaction between a high- and low-crude-protein (CP) diet
(200 v. 140g/kg) and inulin supplementation (0 v. 12.5 g/kg) on nutrient digestibility, nitrogen (N) excretion, intestinal
microflora, volatile fatty acid (VFA) concentration and manure ammonia emissions from 24 boars (n = 6, 74.0kg live weight).
The diets were formulated to contain similar concentrations of digestible energy and lysine. Pigs offered the high-CP diets had
a higher excretion of urinary N (P < 0.001), faecal N (P < 0.01) and total N (P < 0.001) than the pigs offered the low-CP diets.
Inulin supplementation increased faecal N excretion (P < 0.05) and decreased the urine N:faeces N ratio (P < 0.05) compared
with the inulin-free diets. There was no effect (P > 0.05) of dietary treatment on N retention. There was an interaction

(P < 0.05) between dietary CP concentration and inulin supplementation on caecal Enterobacteria spp. Pigs offered the diet
containing 200 g/kg of CP plus inulin decreased the population of Enterobacteria spp. compared to those with the inulin-
supplemented 140 g/kg CP diet. However, CP level had no significant effect on the population of Enterobacteria spp. in the
unsupplemented diets. Inulin supplementation increased caecal Bifidobacteria (P < 0.01) compared with the inulin-free diets.
There was no effect of inulin supplementation on VFA concentration or intestinal pH (P > 0.05). Pigs offered the 200 g/kg CP
diets had higher (P < 0.05) manure ammonia emissions from 0 to 240 h of storage than pigs offered the 140 g/kg CP. In
conclusion, inulin supplementation resulted in an increase in Bifidobacteria concentration and a reduction in Enterobacteria spp.
at the high CP level indicating that inulin has the ability to beneficially manipulate gut microflora in a proteolytic environment.
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Introduction

The formulation of commercial diets supplies excess dietary
protein in order to satisfy the needs for the first limiting
amino acid(s) (Lenis, 1989). As a result, incomplete diges-
tion and consumption of excess amino acids are largely
responsible for unnecessary nitrogen (N) excretion and half
of ingested N is excreted as urea in urine (Jongbloed and
Lenis, 1992). The urea is then rapidly converted into
ammonia by the urease enzyme present in faeces, whereas
faecal N in the form of bacterial protein degrades gradually
(Van der Peet-Schwering et al, 1999). More importantly,
the end products of proteolytic fermentation are potentially
harmful to performance and are involved in the clinical
expression of diarrhoea (Macfarlane et al.,, 1992; Aumaitre
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et al, 1995), whereas branched-chain fatty acids (BCFA)
such as isobutyric and isovaleric acid are major odour-
causing compounds (Mackie et al., 1998). It is well docu-
mented that reductions in total N excretion, ammonia
emissions, offensive volatile fatty acids (VFA) and other
odorous compounds are achievable (Sutton et al, 1996;
Hayes et al., 2004) by lowering dietary crude protein (CP).

Physiologically, fructo-oligosaccharides, like inulin, are
classified as dietary fibre (Flamm et al., 2001) resistant to
complete enzymatic degradation in the small intestine.
Inulin is selectively fermented by Bifidobacteria and Lacto-
bacilli to short-chain fatty acids (SCFA), lactate and gas
(Roberfroid et al,, 1998). In a high proteolytic environment,
inulin supplementation may regulate metabolic activity,
decreasing the protein : carbohydrate ratio in the hindgut.
As a result, carbohydrate fermentation may suppress the
formation of BCFAs and ammonia, which are produced from
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protein fermentation (Macfarlane and Macfarlane, 2003),
while stimulating SCFAs and beneficial bacteria. By
increasing the carbohydrate : protein ratio the partitioning
of N excretion can be manipulated to reduce the amount of
excess urinary N excreted by the pig, and therefore
improving nutrient management (Canh et al, 1997; Mroz
et al., 2000).

It is our hypothesis that inulin supplementation in a
high-CP diet will reduce urinary N excretion, enhance the
proliferation of lactic acid-producing bacteria, reduce
BCFAs and ammonia emissions compared with an unsup-
plemented diet. The objective of the experiment is to
compare the effects of two levels of CP in diets (200 and
140 g/kg) and inulin inclusion (0 and 12.5 g/kg) on nutrient
digestibility, N excretion, large intestinal microflora, VFA
concentration and manure ammonia emissions from finisher
boars.

Material and methods

All procedures described in this experiment were conducted
under experimental licence from the Irish Department of
Health in accordance with the Cruelty to Animals Act 1876
and the European Communities (Amendments of the
Cruelty to Animals Act 1976) Regulations, 1994.

Experimental diets

The experiment was designed as a 2 X 2 factorial experi-
ment comprising of four dietary treatments. All diets were
formulated to have identical digestible energy (DE; 13.7 MJ/
kg) (Sauvant et al., 2004) and total lysine (10.0 g/kg). The
amino acid requirements were met relative to lysine (Close,
1994). The experimental treatments were as follows: (1)
200 g/kg CP, (2) 200 g/kg CP plus 12.5 g/kg inulin, (3) 140 g/kg
CP and (4) 140g/kg CP plus 12.5g/kg inulin. The inulin
was substituted for wheat on a weight for weight basis as
previous work with inulin had shown it to have a similar
DE to that of wheat (Pierce et al, 2005a). Dietary ana-
lysis indicates an average CP content of 148.2 g/kg and
202.4 g/kg for the low- and high-CP diets, respectively. The
140g/kg CP diet was formulated by decreasing the
soya-bean meal content from 265 to 112.5g/kg and sup-
plementing with synthetic amino acids as follows: lysine
HCl 4.9 g/kg, b.-methionine 0.5 g/kg and -threonine 2.1 g/kg.
The inulin (Raftiline ST®) was manufactured by Orafti S. A,
Tienen, Belgium. All diets were fed in meal form. The
dietary composition and analysis is presented in Table 1.

Animals and management

Twenty-four finishing boars (progeny of meat-line boars X
(Large White X Landrace sow)) with an initial live weight
of 74 (s.d. 2.6) kg were used in this experiment. The pigs
were blocked on the basis of live weight and within each
block were randomly allocated to one of four dietary
treatments. The pigs were allowed a 14-day dietary
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Table 1 Composition and analysis of experimental diets (as-fed basis)

Treatment
1 2 3 4
Ingredients (g/kg)
Wheat 7043 691.8 855.0 8425
Soya-bean meal 265 265 1125 1125
Soya oil 5.7 5.7 0 0
Lysine HCI 0 0 4.9 49
pL.-methionine 0 0 0.5 0.5
L-threonine 0 0 2.1 2.1
Dicalcium phosphate 7.5 7.5 7.5 7.5
Salt 5.0 5.0 5.0 5.0
Limestone 10.0 10.0 10.0 10.0
Mineral and vitamin® 2.5 2.5 2.5 2.5
Chicory inulin 0 12.5 0 12.5
Analysed composition (g/kg)
Dry matter 8720 870.0 866.0 873.0
Crude protein (N X 6.25) 2029 201.8 151.7 1447
Neutral-detergent fibre 1289 1266 107.7 98.4
Acid-detergent fibre 45.2 49.5 55.8 51.5
Hemicellulose 83.7 771 51.9 46.9
Crude ash 42.0 42.7 38.7 40.9
Crude oil 20.0 20.0 14.5 14.3
Gross energy (MJ/kg) 16.1 16.1 15.8 15.6
Lysine 9.9 104 9.9 9.8
Methionine and cysteine 6.0 6.1 5.4 5.4
Threonine 7.0 7.0 6.4 6.4
Tryptophan 1.9 1.9 1.8 1.8
Calculated composition (g/kg)
Starch* 426.0 4180 517.0 509
Sugar® 41.0 41.0 30.8 30.5
Digestible energy* 13.75 13.75 13.70 13.70

Dietary electrolyte balance ~ 198.0  197.0  128.0 127.0
(meg/kg)®
Non-starch polysaccharides” 109.8  121.3 916 1033

Provided per kg of complete diet: 3mg retinol, 0.05mg cholecalciferol,
40mg «-tocopherol, 90 mg copper as copper Il sulphate, 100 mg iron as
iron 1l sulphate, 100mg zinc as zinc oxide, 0.3mg selenium as sodium
selenite, 25mg manganese as manganous oxide and 0.2mg iodine as
calcium iodate on a calcium sulphate/ calcium carbonate carrier.

*Sauvant et al. (2004).

SCalculated as (K™ + Na*—Cl™).

INSP calculated as (organic matter — (crude fat+ crude protein +
starch + sugar)) (Canh et al., 1998b).

adaptation period after which time they were weighed.
Sixteen pigs were selected according to a uniform weight
and transferred to individual metabolism crates. The pigs
were given a further 5 days to adapt to the metabolism
crates before collections begun. The collection period was
subdivided into two parts to facilitate studies on ammonia
emission (days 1 and 2) and apparent digestibility and N
balance (days 3 to 7). The daily feed allowance (DE intake
(MJ/day) = 3.44 X (live Weight)o'54 (Close, 1994) was divi-
ded over two meals. Water was provided with meals in a
1:1 ratio. Between meals, fresh water was provided ad
libitum from a nipple drinker. The metabolism crates were
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located in a temperature-controlled room, maintained at a
constant temperature of 22°C (+=1.5°C).

Ammonia emissions

Four separate collections of total faeces and urine were
taken at 12-h intervals during collection days 1 and 2. Urine
was collected in a plastic container, via a funnel below the
crate. Faeces were collected in a tray directly underneath
the metabolism crate. Following collection, the excreta were
stored separately in sealed containers at 4°C. After the
last collection, the urine and faeces samples were mixed
together (w/w) according to the original excretion ratio.
Samples (2 kg) of the manure homogenate from each pig
were placed in duplicate, in containers within a climate-
controlled room maintained at 20°C. Ammonia emission from
the manure was measured over 240 h from the first con-
tainer, in a laboratory-scale set-up according to the method
of Derikx and Aarnink (1993). The equipment consisted of a
sealed vessel containing 2kg slurry, vacuum pump and
three impingers in series per sample. The first two impin-
gers contained 1 mol/l nitric acid and the third impinger
contained water. The ventilation rate in the container was
4.2 |/min. The first impinger was replaced at 48, 96 and
144h and the second impinger was replaced at 96h.
Samples were taken from all three impingers at 240 h. The
concentration of ammonia-nitrogen (NHs-N) in the impin-
gers was determined by the microdiffusion technique of
Conway (1957). Ammonia production (g/day) from manure
is compared between the different dietary treatments using
the quantity volatilised from 0 to 240 h. The sample in the
second ventilated container was used to conduct pH ana-
lysis of the slurry whenever the first impinger was replaced.

Apparent digestibility and nitrogen balance study

During collections, urine was collected in a plastic container,
via a funnel below the crate, containing 20 ml of sulphuric
acid (25% H,S0,). To avoid N volatilisation, the funnel was
sprayed four times daily with dilute sulphuric acid (2%
H,S0,) solution. The urine volume was recorded daily and a
50-m| sample was collected and frozen for laboratory
analysis. Total faeces weight was recorded daily and oven
dried at 100°C. A sample of freshly voided faeces was
collected twice daily and frozen for N analysis. At the end of
the collection period, the faeces samples were pooled and a
subsample retained for laboratory analysis. Feed samples
were collected each day and retained for chemical analysis.

Microbiology

All 24 pigs remained on their respective dietary treatments
until slaughter. Digesta samples (approximately 10 = 1g)
were aseptically removed in aerobic conditions from the
caecum and colon of each animal immediately after
slaughter, stored in sterile containers (Sarstedt, Wexford,
Ireland) on ice and transported to the laboratory within 7 h.
Bifidobacteria spp., Lactobacillus spp. and Enterobacteria
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spp. were isolated and counted according to the method
described by O'Connell et al. (2005). Lactobaccilus spp.
were chosen because of their health-promoting properties
(Gibson and Roberfroid, 1995) while Enterobacteria spp.
were chosen because of the harmful effects of some species
in the gastro-intestinal tract (Gibson and Roberfroid, 1995).

pH measurements

Samples of digesta from the caecum and proximal colon
were taken and placed in universal containers. The pH of
the digesta was taken on site, immediately after collection.
All pH measurements were made on a Mettler Toledo MP
220 pH meter, which was calibrated with certified pH 4 and
pH 7 buffer solutions. Distilled water was added to some
very viscous samples to enable their pH to be read.

Volatile fatty acid analysis and sampling

Samples of digesta from the caecum and the colon of
individual pigs (n= 24) were taken for VFA analysis. VFA
concentrations in the digesta were determined using a
modified method of Porter and Murray (2001). First, 1g of
sample was diluted with distilled water (2.5 X weight of
sample) and centrifuged at 1400 X g for 4 min (Sorvall GLC
— 2B laboratory centrifuge). Then, 1 ml of the subsequent
supernatant and 1 ml of internal standard (0.5 g 3-methyl-n-
valeric acid in 11 of 0.15 mol/l oxalic acid) were mixed with
3 ml of distilled water. Following centrifugation to remove
the precipitate, the sample was filtered through Whatman
0.45-pm polyethersulphone membrane filters into a chro-
matographic sample vial. Finally, 1 I of sample was injec-
ted into a model 3800 Varian gas chromatograph with a
25m X 0.53mm i.d. megabore column (coating CP-Wax
58 (FFAP) — CB (no. CP7614)) (Varian, Middelburg, The
Netherlands).

Laboratory analysis

Proximate analysis of diets for dry matter (DM) and ash was
carried out according to the Association of Analytical
Chemists (1995). The DM of the food and faeces was
determined after drying for 24 h at 103°C. Ash was deter-
mined after ignition of a known weight of concentrates or
faeces in a muffle furnace (Nabertherm, Bremen, Germany)
at 500°C for 4h. The gross energy of feed and faeces
samples was measured using an adiabatic bomb calori-
meter (Parr Instruments, IL, USA). The neutral-detergent
fibre (NDF) and acid-detergent fibre (ADF) content of feed
and faeces was determined using a Fibertec Extraction Unit
(Tecator, Sweden) according to the method of Van Soest et
al. (1991). The N content of feed and urine was determined
using the LECO FP 528 instrument (Leco Instruments (UK)
Ltd). The dietary concentrations of lysine, threonine,
tryptophan, methionine and cysteine were determined by
high-performance liquid chromatography (lwaki et al,
1987). The N content of fresh faeces was analysed by the
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macro-Kjeldahl technique using a Buchi digestion and dis-
tillation apparatus.

Statistical analysis

The data were analysed as a 2 X 2 factorial using the GLM
procedure of the Statistical Analysis Systems Institute (SAS;
1985). The model used included the effect of protein level
and inulin supplementation and the associated two-way
interaction. Starting metabolic live weight (live weight®’?)
were included as covariates in the model. The manure pH
data, measured over 10 days, were analysed by the repe-
ated measures procedure using the Proc Mixed procedure
of SAS 6.14 (Littell et al., 1996). The individual pig was the
experimental unit. The data in the tables are presented as
least-square means (LSM) = s.e.

Results

Coefficient of total tract apparent digestibility and nitrogen
balance study

The effect of dietary treatment on the coefficient of total
tract apparent digestibility and N balance data are
presented in Table 2.

Interaction between inulin and crude protein in pig diets

Inulin supplementation had a significant effect on the
apparent digestibility of NDF, hemicellulose and N. Pigs
offered inulin-supplemented diets had a decreased NDF
(0.59 v. 0.65; s.e. 0.018; P<0.05), hemicellulose (0.59 v.
0.65; s.e. 0.020; P<<0.05) and N digestibility (0.89 v. 0.92;
s.e. 0.005; P<<0.01) compared to those with unsupple-
mented diets.

Pigs offered high-CP diets had an increased apparent
digestibility of NDF (0.66 v. 0.58; s.e. 0.018; P<<0.01) and
hemicellulose (0.74 v. 0.51; s.e. 0.019; P<0.001) com-
pared to those with the low-CP diets.

There was a significant interaction (P<<0.05) between
dietary CP and inulin supplementation on the apparent
digestibility of ADF. Pigs offered the unsupplemented 140 g/
kg CP diet had a significantly higher ADF digestibility
compared to those with the inulin-supplemented 140 g/kg
CP diet. However, there was no significant effect of inulin
supplementation in the high-CP diet.

The excretion of faecal N, and the ratio of urine N : faeces
N were significantly affected by the addition of inulin to
the diets. Pigs offered inulin-supplemented diets had a
higher excretion of faecal N (7.98 v. 6.22 g/day; s.e. 0.463;
P<0.05), and a lower ratio of urine N:faeces N (3.55 v.
4.75; s.e. 0.422; P<0.05) compared to those with inulin-
free diets.

Table 2 The effect of dietary crude protein and inulin inclusion on apparent nutrient digestibility and nitrogen balance (least-square means with

s.e)
Crude protein level (g/kg)
200 140 Significance
Inulin supplementation - + - + s.e. Protein Inulin Protein X inulin
n 4 4 4 4
Weight (kg) 74.0 73.5 74.5 74 2.60 ns ns ns
Dry-matter intake (kg/day) 2.07 2.05 2.07 2.09 0.046 ns ns ns
Nitrogen intake (g/day) 67.16 66.12 52.30 48.31 1.461 bl ns ns
Digestibility coefficients
Dry matter 0.897 0.888 0.908 0.897 0.006 ns ns ns
Organic matter 0.911 0.903 0.921 0.911 0.005 ns ns ns
Neutral-detergent fibre 0.675 0.657 0.629 0.530 0.024 * * ns
Acid-detergent fibre 0.561 0.580 0.674 0.590 0.027 * ns *
Hemicellulose 0.744 0.730 0.564 0.465 0.025 o * ns
Nitrogen 0.918 0.888 0.924 0.900 0.007 ns *x ns
Gross energy 0.892 0.885 0.902 0.890 0.006 ns ns ns
Faeces dry matter (g/kg) 0.306 0.268 0.299 0.301 1.849 ns ns ns
Fresh faeces output (kg/day) 0.741 0.963 0.667 0.765 0.093 ns ns ns
Urine output (kg/day) 3.474 3.260 2.255 2.303 0.250 * ns ns
Nitrogen (N) balance
Faecal N excretion (g/day) 7.26 9.64 5.19 6.32 0.644 ** * ns
Urinary N excretion (g/day) 36.39 34.75 22.50 20.47 1.390 e ns ns
Total N excretion (g/day) 43.65 44.39 27.68 26.79 1.380 il ns ns
N retention (g/day) 23.51 21.73 24.62 21.51 1.421 ns ns ns
N retention/intake 0.35 0.32 0.47 0.45 0.024 e ns ns
Urine N:faeces N ratio 5.14 3.87 4.35 3.23 0.532 ns * ns

Abbreviations are: s.e. = standard error, ns = non-significant (P> 0.05).
*P<0.05, **P<0.01, ***P<0.001.
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A reduction in dietary CP level had a strong impact on The population of Bifidobacteria in the colon were sig-
the N balance data. Pigs offered the high-CP diets had an nificantly affected by dietary CP. Pigs offered diets con-
increased excretion of faecal N (8.45 v. 5.75g/day; s.e. taining 140 g/kg CP had a significantly higher population of
0.472; P<0.01), urinary N (35.57 v. 21.49 g/day; s.e. 0.999; Bifidobacteria in the colon than the 200 g/kg CP diet (8.82
P<0.001), total N excretion (44.02 v. 27.23 g/day; s.e. v. 8.59 log 10 c.fu./g digesta; s.e. 0.085; P<<0.05).
0.989; P<0.001) and urinary output (3.37 v. 2.28 kg/day;
s.e. 0.180; P<0.01) compared to those with low-CP diets. Ammonia emission stud
Pigs offered the low-CP diets had an increased apparent N Y

absorption coefficient (0.45 v. 0.33; s.e. 0.026; P<0.001) T_he effe;t (I)f dmtar}é tr_eatment on manure amr(r;(_)nla te)lmls-
compared to those with the high-CP diets. sions and slurry pH luring storage are presented in Table 4.
Pigs offered diets containing 140g/kg CP had

significantly lower ammonia emissions from 0 to 96h
(1.43 v. 2.37g/day; s.e. 0.229; P<<0.01), 96 to 240h
(3.16 v. 5.31 g/day; s.e. 0.293; P<<0.01) and from 0 to 240h
(459 v. 7.68g/day; s.e. 0.405; P<0.001) than those
offered the 200g/kg CP diets. This equates to a 40%
reduction in ammonia emissions over 10 days of storage by
reducing the CP content by 60 g/kg.

There was no interaction (P> 0.05) between treatment
and time on slurry pH over 240 h of storage. There was a
significant effect of dietary CP on urine pH and slurry pH.
Pigs offered diets containing 140 g/kg CP had a significantly
lower slurry pH (8.92 v. 9.09; s.e. 0.044; P<0.05) than
those offered the high-CP diets.

Microbiology study

The effect of dietary treatment on selected microbial
populations in the caecum and colon is presented in
Table 3.

There was a significant interaction between dietary
CP and inulin supplementation on the population of
Enterobacteria spp. (P<<0.05) and Lactobacilli spp. in the
caecum digesta (P<<0.1). Pigs offered the diet containing
200g/kg CP plus inulin had a decreased population of
Enterobacteria spp. compared to those with the unsupple-
mented 200 g/kg protein diet. However, pigs offered the
inulin-supplemented 140g/kg CP diet had an increased
population of Enterobacteria spp. compared to those with
the unsupplemented 140g/kg CP diet. Pigs offered the Volatile fatty acid study

inulin-supplemented 200 g/kg CP diet had a higher popu- The effect of dietary treatment on the concentration and
lation of Lactobacilli compared to those with the unsup- profile of caecal and colonic VFA is shown in Table 5.
plemented 200 g/kg CP diet. However, there was no effect There was no effect (P> 0.05) of dietary treatment on
of inulin supplementation in the 140 g/kg CP diets. total VFA concentration and molar proportions of VFA in the
Pigs offered inulin-supplemented diets had a significantly caecum.
higher population of Bifidobacteria in the caecum than Pigs offered diets containing 140g/kg CP had a lower
inulin-free diets (8.63 v 8.25 log 10 c.f.u./g digesta; s.e. proportion of butyric acid in the colon than pigs offered the
0.095; P<<0.01). 200 g/kg CP diets (0.13 v. 0.15; s.e. 0.005; P<<0.05).

Table 3 The effect of dietary crude protein and inulin inclusion on microbial ecology and pH in the caecum and colon (least-square means with s.e.)

Crude protein level (g/kg)

200 140 Significance
Inulin supplementation - + - + S.e. Protein  Inulin  Protein X inulin
n 6 6 6 6
Caecum bacterial populations (log 10 c.f.u./g digesta)
Enterobacteria spp. 7.47 6.90 732 8.03 0.329 ns ns *
Lactobacilli spp. 8.28 9.04 8.80 8.75 0.229 ns ns *
Bifidobacteria spp. 8.18 8.70 8.32 8.57 0.131 ns ** ns
Colon bacterial populations (log 10 c.f.u./g digesta)
Enterobacteria spp. 8.03 717 6.92 7.43 0.396 ns ns ns
Lactobacilli spp. 8.49 9.04 8.93 8.89 0.215 ns ns ns
Bifidobacteria spp. 8.48 8.70 8.83 8.80  0.118 * ns ns
pH
Caecal pH 5.76 5.62 5.65 578  0.118 ns ns ns
Colonic pH 5.99 5.86 5.81 5.84 0.096 ns ns ns

Abbreviations are: s.e. = standard error, ns = non-significant (P> 0.05).
*P<0.05, **P<0.01, ***P<0.001.
" = approaching significance (P< 0.1).
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Table 4 The effect of dietary crude protein and inulin inclusion on ammonia production and slurry pH (least-square means with s.e.)

Crude protein level (g/kg)

200 140 Significance
Inulin supplementation - + - + s.e. Protein Inulin Protein X inulin
n 4 4 4 4
Manure volume (kg/day) 3.98 3.98 2.85 2.64 0.366 ** ns ns
Faeces : urine ratio (w/w fresh) 0.238 0.396 0.355 0.277 0.049 ns ns *
Ammonia (g/day)
0-96h 2.16 2.57 1.63 1.23 0.324 ol ns ns
96-240 h 5.17 5.44 3.36 2.95 0.414 i ns ns
0-240h 7.33 8.02 4.99 4.19 0.572 R ns ns
Slurry pH (0-240 h) 9.15 9.02 8.91 8.93 0.06 * ns ns

Abbreviations are: s.e. = standard error, ns = non-significant (P> 0.05).
*P<0.05), **P<0.01, ***P<0.001.

Table 5 The effect of dietary crude protein and inulin inclusion on total volatile fatty acids (VFA) concentration in digesta, molar proportions of VFA

and pH in the caecum and colon (least-square means with s.e.)

Crude protein level (g/kg)

200 140 Significance

Inulin supplementation - + - + S.e. Protein Inulin Protein X inulin

n 6 6 6 6

Caecum
Total VFA (mmol/l digesta water) 209.21 229.02 194.32 208.38 13.45 ns ns ns
Acetic acid 0.592 0.606 0.614 0.608 0.009 ns ns ns
Propionic acid 0.229 0.220 0.223 0.218 0.008 ns ns ns
Isobutyric acid 0.011 0.008 0.009 0.011 0.002 ns ns ns
Butyric acid 0.133 0.137 0.121 0.128 0.007 ns ns ns
Isovaleric acid 0.018 0.012 0.015 0.019 0.003 ns ns ns
Valeric acid 0.017 0.017 0.018 0.017 0.002 ns ns ns
Acetic : propionic acid ratio 2.60 2.79 2.76 2.82 0.120 ns ns ns

Colon
Total VFA (mmol/l digesta water) 220.37 243.55 220.87 228.52 11.24 ns ns ns
Acetic acid 0.580 0.577 0.594 0.597 0.009 ns ns ns
Propionic acid 0.214 0.207 0.223 0.209 0.006 ns * ns
Isobutyric acid 0.014 0.013 0.012 0.014 0.002 ns ns ns
Butyric acid 0.144 0.157 0.130 0.138 0.007 * ns ns
Isovaleric acid 0.026 0.025 0.022 0.024 0.003 ns ns ns
Valeric acid 0.021 0.021 0.020 0.018 0.002 ns ns ns
Acetic : propionic acid ratio 2.73 2.80 2.67 2.88 0.100 ns ns ns

Abbreviations are: s.e. = standard error, ns = non-significant (P> 0.05).
*P<0.05, **P<0.01, ***P<0.001.

Pigs offered inulin-supplemented diets had a significantly
lower proportion of propionic acid in the colon than inulin-
free diets (0.21 v. 0.22; s.e. 0.004; P< 0.05).

Discussion

The objective of the current experiment was to investigate
the effect of dietary CP and inulin supplementation on
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nutrient digestibility, N excretion, intestinal microflora,
VFA concentration and manure ammonia emissions. The
hypothesis was that inulin supplementation of a high-CP
diet would reduce urinary N excretion, enhance the pro-
liferation of lactic acid-producing bacteria and reduce
BCFAs and ammonia emissions compared with an unsup-
plemented high-CP diet. The presence of an interaction
between dietary CP and inulin supplementation on the
population of Enterobacteria spp. in the caecum, a positive
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effect of inulin supplementation on the population of
Bifidobacteria would support the hypothesis that inulin
supplementation can manipulate gut microflora in high-CP
diets.

The results of the current study indicate a proportional
decrease of 0.38 in total daily N excretion as dietary CP was
reduced from 202 to 148 g/kg. This decrease in N excretion
equates to a proportional reduction of 0.06 in N excretion
per 10 g/kg reduction in dietary CP to 148 g/kg. These sig-
nificant reductions were achieved without a negative effect
on N retention, resulting in an increase in N absorption in
the low-CP diets. Reductions previously reported in total N,
urinary N (Canh et al., 1998a; Carpenter et al., 2004) and
faecal N (Lee and Kay, 2003; Portejoie et al., 2004; Leek
et al, 2005) are in line with those found in the current
study. Carpenter et al. (2004) reported a proportional
reduction of 0.06 in total daily N excretion per 10g/kg
reduction in dietary CP to 150 g/kg. Kerr and Easter (1995)
concluded that for each one-percentage unit reduction in
dietary CP combined with amino acid supplementation,
total N excretion (faecal plus urinary) could be pro-
portionally reduced by approximately 0.08.

Due to the reduction in faecal and urinary N excretion
in this study, there was a significant reduction in pH
and manure ammonia emissions. The reduction in manure
volume was probably due to a lower water intake in pigs
offered the low-CP diet compared to those with the high-CP
diet; however, water intake was not measured in the
current study. NH3 losses during storage (0 to 240 h) were
reduced by 40% by lowering the dietary composition of CP
to 140 g/kg. This equates to 6.6% reduction in ammonia
emission per day per 10 g/kg reduction in CP. Manure pH is
determined by the level of urea hydrolysis, total ammo-
niacal nitrogen, the dietary electrolyte balance (dEB) and by
the VFA concentration of the excreta (Canh et al., 1998b).
Only a minor reduction in pH is required to reduce ammonia
emissions (O'Connell et al,, 2005). At a low pH, ammonia
remains stable in the slurry as ammonium. However, at high
pH more ammonia will be emitted as observed in the
current study. Therefore, the reduction in ammonia con-
centration and pH of the manure due to reduced dietary CP
and dEB resulted in lower ammonia being emitted from
low-CP diets compared with high-CP diets. Leek et al.
(2005) reported a 10.1% reduction in ammonia emissions
per 10g/kg reduction in dietary CP in vitro while Hayes
et al. (2004) achieved an 8.1% reduction per 10g/kg
CP in vivo.

Dietary fibres and non-absorbable sugars are known to
reduce blood NH; and serum urea levels (Gibson and
Roberfroid, 1995). These effects have been associated with
the growth of the colonic biomass and N fixation by colonic
bacteria, coupled with colonic acidification and conversion
of diffusible NH; into the less diffusible NH,™ ion (Gibson
and Roberfroid, 1995). The reduction in the ratio of urinary
N:faecal N due to inulin supplementation in the current
study indicates that a decrease in manure ammonia would
be likely. However, there was no response in ammonia
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emissions to inulin supplementation in the current study.
This may be due to a number of reasons. Firstly, there are a
number of factors that drive the volatilisation of NH5 such
as the equilibrium of ammonia with ammonium, pH, tem-
perature and ammonia concentration (McCrory and Hobbs,
2001). The pH of slurry is of huge relevance to ammonia
emissions from pig manure (Sommer and Husted, 1995;
O'Connell et al., 2005), with just a minor change having a
substantial effect (Canh et al,, 1998a). Secondly, there may
not have been enough inulin present to bring about a
reduction in manure pH and manure ammonia emissions.
An inclusion level of 12.5 g/kg was used in this study due to
its beneficial effects on piglet health and performance
reported in previous studies (Pierce et al, 2005a and
2006a). However, Hansen et al. (2007) achieved a 33%
reduction in ammonia emissions when inulin was included
at a level of 150 g/kg.

Physiologically, fructo-oligosaccharides, like inulin, are
classified as dietary fibre (Flamm et al, 2001) resistant
to complete enzymatic degradation in the small intestine.
In contrast, Houdijk et al. (1999) found that fructo-
oligosaccharide fermentation is nearly completely precaecal.
However, results from the current study indicate that some
proportion of inulin is not digested precaecally due to the
significant changes in bacteria populations in the caecum
and a reduction in the urine N : faeces N ratio. However, it is
possible that the Bifidobacteria in the caecum could have
been washed down from the ileum (Williams et al., 2001).
Pierce et al. (2005b) concluded that the ileum harbours
enough microflora to ferment inulin, which resulted in the
absence of an inulin effect on pH and VFA production in the
large intestine of piglets. Unfortunately, neither microbial
populations nor VFA production were measured from the
ileum in the current study.

Inulin supplementation had no effect on total VFA con-
centration or digesta pH in either the caecum or colon in the
current study. Rapid fermentation of fructo-oligosaccharides
and inulin by indigenous microflora, specifically Bifido-
bacteria, results in the production of SCFAs, gases and
organic acids (Gibson and Roberfroid, 1995). Previous
authors have reported that inulin supplementation resulted
in a higher capacity for absorption due to an increased
proliferation of epithelial mucosa (Sakata, 1987; Howard
et al, 1993) and a higher percentage of ileum and caecal
goblet cells (Chen et al, 2005). If SCFAs are rapidly
absorbed by the intestinal mucosa the concentration
remaining in the digesta with potential to reduce pH is
limited (Cummings et al., 1987; Alles et al, 1996). Other
studies have also found no response in terms of intestinal
pH or VFA concentration due to inulin supplementation
(Gibson et al., 1995; Kleessen et al., 1997; Houdijk et al,
1997 and 1998).

The depression in digestibility of NDF and hemicelluloses
due to the decrease in dietary CP can be explained by
differences in the soya-bean meal fraction between the
high- and low-CP diets. There is an additional 150 g/kg of
wheat in the low-CP diet compared with the high-CP diet.
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Soya-bean meal is a far more digestible ingredient than
wheat with regard to the NDF fraction with each having a
digestibility of 0.81 and 0.29, respectively (O'Doherty and
Dore, 2001). The higher content of insoluble non-starch
polysaccharide (NSP) (94 g/kg DM) (Bach Knudsen, 1997) in
wheat compared with soya-bean meal (16 g/lkg DM; Choct,
1997) accounts for the poor fibre digestibility of wheat.
Therefore, as the inclusion level of soya-bean meal
decreased and dietary wheat increased from high- to low-
CP diets, respectively, it would be expected that the
apparent digestibility of fibre fractions would decrease.
These results are in agreement with those found by
O'Connell et al. (2006) who observed a decrease in ADF
and hemicellulose digestibility due to a decrease in dietary
CP level.

Inulin supplementation caused a reduction in ADF
digestibility at low protein levels. Inulin supplementation
also caused a reduction in NDF digestibility. This depression
in NDF digestibility was most pronounced in the low-protein
diets (interaction, P<<0.1). It would seem that the reduc-
tions encountered in ADF and NDF digestibility with low-
protein diets could be due to effects on the gut microflora.
This is supported by the increased Enterobacteria spp.
numbers in the caecum of the low-CP, inulin-supplemented
pigs. The increase in the population of Enterobacteria spp.
may be due to excessive quantities of carbohydrate enter-
ing the colon. When excessive quantities of carbohydrate
enter the colon, the fermentative capacity of the pig may be
exceeded (Soergel, 1994; Williams et al., 2001; Pierce et al.,
2006b). This may be due to differences in diet formulation
between the high- and low-CP diets. There is an additional
150 g/kg of wheat in the low-CP diet compared with the
high-CP diet. Wheat contains a higher proportion of fer-
mentable NSPs (arabinoxylan 60 g/kg) than soya-bean meal
(arabinoxylan 42 g/kg) (Dierick and Decuypere, 1994). Pigs
offered the low-CP, inulin-supplemented diets had a
potential fermentable NSP (Dierick and Decuypere, 1994)
intake of 141 g per pig per day (based on a daily feed intake
of 2.09kg) and pigs offered the low-CP diets had a
potential fermentable NSP intake of 116 g/kg (based on a
daily feed intake of 2.07kg). Therefore, the increase in
potentially fermentable NSP may have caused an over
supply of fermentable substrate in the large intestine,
resulting in the proliferation of Enterobacteria spp. Similar
reductions in fibre digestibility were recorded by Pierce
et al. (2006b) when excess fermentable carbohydrate
(lactose) was offered to finisher pigs.

Also, Brunsgaard (1998) found that pigs offered a
wheat-based diet had a greater presence of mannose and
galactose residues compared with pigs offered a barley-
based diet which are thought to be receptors for Salmonella
spp. (Giannasca et al., 1996). The density of coliform bac-
teria has been reported to be a reliable indicator of the
population of Salmonella in pigs (Mikkelsen et al., 2004),
thus further emphasising the link between high dietary
wheat and the occurrence of coliform bacteria in the
hindgut.
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Saccharolytic species of bacteria such as Lactobacilli
spp. and Bifidobacteria spp. also take part in the breakdown
of complex carbohydrates (Saylers, 1979). If carbohydrate
fermentation is compromised (O'Doherty et al, 2005)
Enterobacteria spp. may be allowed to proliferate. Unfor-
tunately only Lactobacilli spp., Bifidobacteria spp. and
Enterobacteria spp. were measured in the current study.

Pigs offered the diet containing 200 g/kg CP plus inulin
had a decreased population of Enterobacteria spp. and a
higher population of Lactobacilli spp. compared to those
with the unsupplemented 200 g/kg protein diet. The results
indicate that inulin is delivering more nutrients to the large
intestine and increasing Lactobacilli spp. particularly at high
CP concentrations. Lactic acid bacteria are believed to
create a barrier against colonisation by coliform bacteria
(Stewart et al, 1993) and the inclusion of inulin in the
current study was seen to result in a proportional decrease
in coliform numbers at high CP concentrations. The popu-
lation of Bifidobacteria spp. in the colon were also affected
by dietary CP indicating the detrimental effect of the
products of protein fermentation on Bifidobacteria spp.

The increase in Bifidobacteria concentrations in the
caecum due to inulin supplementation is an indication of
improved gut health. It is well documented that fructo-
oligosaccharides and inulin are selectively fermented by
most strains of Bifidobacteria (Wang and Gibson, 1993;
Bunce et al, 1995; Houdijk et al, 1997) through the pro-
duction of B-fructosidases as demonstrated in pure culture
(Wang, 1993).

Conclusions

In conclusion, supplementary inulin reduced the urine N:
faeces N ratio indicating that inulin may have a role to play
in reducing excess N excretion. In the inulin-supplemented
diets, at the high concentration of CP, Enterobacteria was
significantly reduced compared with the low level of CP.
Bifidobacteria concentrations in caecal digesta were sig-
nificantly increased due to the inclusion of inulin. As a
result, we can conclude that inulin can have an impact in
high-CP diets to manipulate beneficially hindgut microflora.
Reducing dietary CP from 202 to 148g/kg can reduce
excess N excretion by 38% and significantly reduce manure
ammonia emissions by 40%.
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