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The scaling universality of structure functions is studied for artificially thickened
turbulent boundary-layer flows in over-tripped impacts by using hot-wire measurement
datasets. The self-similarity behaviours in the inner and outer regions are examined
from the viewpoint of different flow mechanisms. In the inner region, the relative ratios
between structure functions for the energy-containing range of scales exhibit universality
behaviour, in accordance with Townsend’s attached eddy hypothesis. This universality of
the energy-containing range of scales extends further away from the wall by increasing
the tripping intensity. On the other hand, the impact of the external intermittency on
the self-similarity of small-scale turbulence is examined through the intermittent zone in
over-tripped conditions. Towards the boundary-layer edge, the structure functions exhibit
a growing departure from self-similarity and analytical prediction, and it is demonstrated
that the departure is primarily due to external intermittency. Moreover, based on the
conditional statistics concentrated in the turbulent regimes, it is revealed that the small
scales in the turbulence regime are homogenized in a self-similar behaviour, which is
independent of the current tripping conditions.

Key words: turbulent boundary layers

1. Introduction

1.1. Extended self-similarity
Turbulent flows are characterized by non-Gaussian, intermittent fluctuations over a wide
range of different scales (Frisch 1995; Pope 2000). Based on the assumption that the
statistical property of the velocity fields is locally isotropic, Kolmogorov’s similarity
theory predicts that, at sufficiently large Reynolds numbers, the small-scale motions
decouple from the large scales and are independent of the boundary or initial conditions,
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which can be expressed as structure functions

〈(Δru)n〉 ∝ rξn, (1.1)

where Δru = u(x + r)− u(x) is the velocity increment, u(x + r) and u(x) are velocities
along the streamwise direction at two points separated by a spatial distance r, 〈 〉 represents
averaged quantities and ξn is the scaling exponent. This universality hypothesis indicates
that the statistical properties of the velocity fields are self-similar within the inertial range,
η � r � L, where η is the dissipation scale and L is the integral scale of turbulent
motions. While the possible existence of universal scaling exponents ξn is one of the most
significant headways of turbulence, a scaling exponent deviation from the Kolmogorov
prediction ξn = n/3 has been widely reported, specifically for the higher-order statistics
(Anselmet et al. 1984; Frisch 1995; Sreenivasan & Antonia 1997). The ‘anomalous’
deviation behaviour from the Kolmogorov scaling has been attributed to the non-Gaussian,
strong intermittent fluctuations, which are often known as internal intermittency (Landau
& Lifshitz 1963).

Otherwise, extensive investigations have been devoted to the existence of universal
scaling laws of 〈(Δru)n〉 for various kinds of turbulent flows by employing the so-called
extended self-similarity (ESS) hypothesis (Benzi et al. 1993a,b). Rather than pursuing the
universal scaling exponents ξn of the nth-order structure function for the inertial subrange
(ISR) scales, ESS describes the relative scaling exponent of one given structure function
against another as

〈(Δru)n〉 ∝ 〈|�ru|3〉ξn, (1.2)

where the scaling ξn is computed relative to the third-order structure function of the
modulus of the velocity increments. The self-similarity form of the ISR scaling properties
in ESS form following (1.2) has been consolidated to hold for various turbulent flows and
at high as well as low Reynolds numbers (Grossmann, Lohse & Reeh 1997; Yang et al.
2016b).

In wall turbulence, the dominance of energy-containing range (ECR) scales in the
logarithmic region is argued to challenge the scaling universality due to the wall
boundedness conditions (Pope 2000). The popularity of the ECR scales, y < r � δ

(where y and δ represent the wall-normal distance and boundary-layer thickness) has been
reported in wall-bounded turbulence. Following Townsend’s attached eddy hypothesis
(Townsend 1976; Meneveau & Marusic 2013; Hu, Yang& Zheng 2019; Marusic & Monty
2019; Wang et al. 2021, 2022), the ECR scales of the normalized even-ordered longitudinal
structure functions can be expressed as (Davidson, Nickels & Krogstad 2006; de Silva et al.
2015, 2017)

〈(Δru+)2p〉1/p = Dp ln
(

r
y

)
+ Ep, (1.3)

where Dp and Ep are constants. The velocity is given in wall units by the subscript +
(u+ = u/uτ , where uτ is the friction velocity). The scaling behaviour by (1.3) in the ECR
scales ( y < r � δ) was confirmed in the logarithmic region from high-Reynolds-number
databases, and the scale extent was limited to the given wall-normal distance (Davidson
et al. 2006; de Silva et al. 2015). The work of de Silva et al. (2017) further discerned
the universality of the scaling for the ECR scales in the ESS framework. They examined
the scaling behaviour of the even-order velocity structure functions 〈(Δru+)2p〉1/p for
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wall-bounded turbulent flows as the expression

〈(Δru+)2p〉1/p = Dp

Dm
〈(Δru+)2m〉1/m + Ep − Dp

Dm
Em. (1.4)

By means of the ratio of Dp/Dm as extracted in (1.4), the further reaching universality
of the ECR of scales was demonstrated in wall-bounded flows which span a wide range
of Reynolds numbers and flow geometries (de Silva et al. 2017; Xia, Brethouwer & Chen
2018; Hu et al. 2019). Specifically, the universality was also observed at Reτ ∼ O(103)
(Reτ = uτ δ/ν, ν is kinematic viscosity), which supports that the scaling for the ECR scales
in (1.4) provides more precise measures to examine the structure functions at relatively
lower Reynolds numbers.

1.2. Over-tripped turbulent boundary layer
In practical industrial applications, turbulent flows in wind turbines, pipelines, ships and
aviation, are in the range of high Reynolds numbers. From the academic aspect, the
characteristics of the turbulent boundary-layer (TBL) flows at high Reynolds numbers
(Reτ ) have always been the focus for researchers (Marusic et al. 2010; Smits, McKeon
& Marusic 2011; Marusic et al. 2013; Smits & Marusic 2013; Smits 2020). Admittedly,
achieving high-Reτ TBLs in a canonical form is an infrastructural and economic challenge.
Instead, the artificially thickened TBL generated in a given wind tunnel is assumed as one
of the cheaper/feasible approaches to mimic the high-Reτ TBLs.

Since the pioneering work by Klebanoff & Diehl (1951) to artificially generate the
TBL flows, numerous studies have been executed in this area by considering the impact
of the inflow Reynolds number, tripping device, adaptation length and so on (Erm &
Joubert 1991; Fernholz & Finleyt 1996; Castillo & Johansson 2002; Jiménez et al. 2008;
Chauhan, Monkewitz & Nagib 2009; Schlatter & Örlü 2010a,b, 2012). For a certain
inflow Reynolds number, incorporating some perturbation by the tripping devices at the
leading edge of the flat plate is a generally accepted approach to promoting an earlier
transition for the development of TBL flows (Erm & Joubert 1991; Fernholz & Finleyt
1996; Jiménez et al. 2008; Chauhan et al. 2009). A small perturbation by the tripping
device results in an underdeveloped boundary layer. It is necessary to have a long enough
adaptation region for the formation of a fully developed TBL with a high boundary-layer
thickness. However, the requirement of a sufficiently long development length is not
feasible in a common laboratory environment. On the other hand, for a test section of finite
length, a strong perturbation at the leading edge will lead to an over-tripped boundary
layer up to surprisingly high Reynolds numbers, by presenting a remarkably increased
boundary-layer thickness in the adaptation region (Castillo & Johansson 2002; Schlatter &
Örlü 2012; Marusic et al. 2015). Thus, it is more desirable to obtain an artificially thickened
higher-Reτ TBL by an elaborately appropriate trip design (Schlatter & Örlü 2010a,
2012).

A considerable effort has been dedicated to understanding the effects of an exact
tripping device with different sizes and shapes on the boundary layer in the adaptation
region (Hunt & Fernholz 1975). Rodríguez-López, Bruce & Buxton (2016b) proposed that
the adaptive boundary layer could be generated through two mechanisms: wall driven and
wake driven, by employing two families of tripping devices which are high aspect ratio
uniformly distributed cylinders and low aspect ratio sawtooth fences. For the wall-driven
mechanism, the inner structures drive the mixing of the obstacle’s wake. On the other
hand, the wake-driven mechanism is related to a long adaptation region where the inner
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structures are reorganized under the influence of highly energetic wake motions. These
proposed driven mechanisms have been further confirmed by assessing the geometry
parameters of tripping devices, such as aspect ratio, blockage ratio and blockage at the wall
(Rodríguez-López, Bruce & Buxton 2017a,b; Buxton, Ewenz Rocher & Rodríguez-López
2018).

Furthermore, to characterize the scaling in the adaptation region, Marusic et al. (2015)
measured the spatial development of high-Reτ TBL flows from the tripping threaded rods
of different diameters. A significant difference was noted in the outer region under the
tripping effects, and the influence on the outer region persists for more than 10 m along the
streamwise direction. Tang et al. (2024) observed the deviation of the boundary layer from
the canonical state, which is tripped by a set of transverse cylindrical rods with incremental
diameters at the given inflow Reynolds number. They confirmed that the tripping effects
are significant in the outer region by introducing large-scale energetic structures. These
observations are consistent with the previous results that the threaded/cylindrical rods
featured by the high wall blockage can trigger a long adaptation region by generating
a prominent wake in the outer layer (Klebanoff & Diehl 1951; Chauhan et al. 2009;
Sanmiguel Vila et al. 2017). These generated energetic wake motions dominate the outer
region, which exerts a prominent modification on the external intermittency (Tang et al.
2024). Furthermore, these wake motions transport fluid across the entire wall-normal
extent which can disrupt the near-wall regions, and impose a holistic modification on
the boundary layer (Marusic et al. 2015; Buxton et al. 2018; Tang et al. 2024). This
is very similar to the function of the very-large-scale structures in high-Reτ TBLs
in consideration of the ‘footprints’ and modulation effects by the large scales (Baars,
Hutchins & Marusic 2017; Marusic, Baars & Hutchinsc 2017). Importantly, it reveals
that the artificially thickened boundary layer has the potential to simulate its canonical
counterparts of high-Reτ TBL flows. In fact, these over-tripped TBL flows widely exist in
practical systems, which are stimulated by the effects of roughness, separation, pressure
gradients, incoming turbulence, etc.

Notably, the artificially generated TBL flows are beyond canonical flows with the
feature of significant changes throughout the boundary layer in all aspects of the mean
flow, turbulence energy and scale interactions. However, the existence of self-similarity
is less extensively explored under these non-canonical TBL conditions. A sound
understanding of the scaling universality behaviour in artificially thickened conditions
is essential for generalizing the self-similarity to more general flows. To explore the
self-similarity behaviour of the artificially thickened TBL flows, two primary aspects
should be considered. Firstly, the equilibrium between the inner layer and the wall
is dramatically disrupted by the emergence of large-scale structures generated from
over-tripped configurations (Marusic et al. 2015; Buxton et al. 2018; Tang et al. 2024).
The inner region undergoes an adaptation process, gradually recovering from the tripping
influence. This raises concerns about whether inner-layer self-similarity holds under
non-canonical conditions. On the other hand, establishing self-similarity in the outer
layer poses a significant challenge due to the dominance of energetic large-scale wake
motions and their dependence on the tripping configurations. Moreover, these generated
large-scale structures inherently differ from naturally developed very large-scale motions
in canonical TBL flows. Consequently, the outer layer is intuitively assumed to lack
universality. Therefore, given the above consideration, the current study aims to examine
whether self-similar behaviour for the ECR scales is established in the inner region or if
the outer-layer self-similarity can be observed in the impact of the external intermittency
in the over-tripped conditions.
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1.3. Paper outline
The objective of this paper is to study the effect of over-tripped configurations on
the self-similarity of the TBL flows in the adaptation region, allowing for meaningful
exploration of scaling universality behaviours in artificially thickened TBL flows. The
analysis is based on the self-similarity of low-order and higher-order velocity structure
functions, by mainly considering two factors: the popularity of the ECR scales in the inner
region and the intrinsic scale-sensitive features of intermittency in the outer region. In
the remainder of the paper, we introduce in § 2 the experimental dataset of the artificially
thickened boundary-layer flows on which the analysis is based. In § 3, we systematically
study structure functions at different orders of ECR scales under the tripping influence
from the self-similarity perspective. The analysis is carried out in the inner region. On
the other hand, the impact of external intermittency on the self-similarity of structure
functions is discussed in § 4, and the self-similar behaviours within the ISR are further
observed by conditional structure functions. A conclusion is given in § 5.

2. Experimental dataset description

A detailed description of this facility and flow conditions is provided by Tang et al. (2024).
Specifications of experimental parameters and tripping configurations are given in table 1.
Experiments were conducted in a closed-circuit wind tunnel in Tianjin University, as
described in previous studies (Tang et al. 2016; Tang & Jiang 2020). The test section of
the tunnel was 2.0 m long, 0.6 m tall and 0.8 m wide. A smooth boundary-layer plate was
vertically fastened at the test section. The flat plate had a size of 1.75 m × 0.6 m × 0.015 m
(length × width × thickness) with a 4 :1 elliptical leading edge. In the current experiments,
it had three different free-stream velocities of U∞ ≈ 5.5, 9.0 and 13.6 m s−1. Transverse
cylindrical rods of different diameters, Dc = 1, 2, 3, 4, 6, 8, 10, 12, 14, 17, 20 mm,
were employed as the tripping devices, which were mounted at the position 80 mm
downstream of the leading edge of the plate. The current trips have a wide range of
ReD ≈ 300−17 000 (ReD = U∞Dc/ν) which could have a considerable effect on the
boundary layer at each free-stream velocity, as suggested in one of the pioneer works in
this area by Erm & Joubert (1991). The cylindrical rods were made of ceramic zirconia
materials with high hardness and toughness. The ceramic zirconia cylindrical rod was
glued onto accurately machined metal inserts which were bolted into a recess and flush
with the flat plate wall. The diameter of the tripping rods (Dc = 1−20 mm) was assumed
to be the only parameter considered at each free-stream velocity. From the basic flow
parameters shown in table 1, it can be seen that the boundary-layer flows tripped by the
relatively small tripping diameters, such as the cases I-D2, II-D2 and III-D2, are very close
to canonical TBLs. For case I-D1, the boundary layer is considered to be under-tripped at
the measurement location, and will not be involved in the discussion of this study. Thus,
these tripping configurations provide a comprehensive insight into the effect of the tripping
rod diameters on the boundary-layer flows from moderate to over-stimulation.

In the experiment, the static wall pressure was measured through four pressure ports in
the region x = 0.78−1.58 m downstream of the leading edge. The coefficient of pressure
along the measurement positions was constant to within ±0.82 % of the free-stream
dynamic head for the moderately tripped cases, which is comparable in quality to related
studies (Marusic et al. 2015; Sanmiguel Vila et al. 2017). The pressure deviation was
also acceptable in all the over-tripped cases, which should be attributed to the large
ratio between the distance from the flat plate to the tunnel ceiling and the maximum
displacement thickness (which was below approximately 1.3 %). Hot-wire measurements
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were carried out at the streamwise location x = 1.32 m downstream of the trip. The
location in dimensionless form xθ = x/θ (θ is the momentum thickness of boundary
layer) is shown in table 1. The streamwise location is located at the adaptive region
in the over-tripped conditions, which as expected supplies the data for the examination
of the self-similarity in artificially thickened TBL flows. Boundary layer traverses were
conducted by a miniature single-sensor boundary-layer probe (TSI-1621A-T1.5). The
probe was used with a constant temperature anemometer system of IFA-300 operating
at an overheat ratio of 1.7. The tungsten (platinum-coated) hot-wire has a sensitive length
of 1.25 mm and a diameter of 4 μm, resulting in a length-to-diameter ratio (l/d) of more
than 200 (Ligrani & Bradshaw 1987; Hutchins et al. 2009). In terms of spatial resolution,
the viscous-scaled wire length (l+) is less than l+ < 48 for all the measurement cases.
Following the suggestions of negligible energy content by Hutchins et al. (2009), the
sampling frequency was set up and the corresponding non-dimensional sample interval
was �t+ < 0.5 (�t+ = �tu2

τ /ν, where �t = 1/f , f is the sampling frequency and uτ
is the friction velocity). Note that the current sampling frequency is higher than the
effective frequency that can be resolved by the current hot-wire probe of l+ → 48. The
total sampling time at each wall-normal location is given by T, which is normalized in
outer variables to give boundary-layer turnover times TU∞/δ (in table 1). For converged
statistics, these numbers need to be large, since the largest structures in high-Reτ TBLs
can exceed 20δ (Kim & Adrian 1999; Guala, Hommema & Adrian 2006; Hutchins &
Marusic 2007b), and we would typically require several hundreds of these events to flow
past the hot-wire sensor before we could expect converged statistics. In this study, the total
sampling time was set in such a way that the boundary-layer turnover time was in the range
of 8500–23 500 for all the measurements. Due to the limit on the amount of memory, the
sampling time in each case was changed with the given sampling frequency to make sure
that there were more than 8 500 boundary-layer turnover times for all the measurements,
which adequately covers the energy contained in the largest scales (Hutchins et al. 2009;
Mathis, Hutchins & Marusic 2009) and acquires converged statistics. Calibration was
employed by Air Velocity Calibrator Model 1127 of IFA-300 over a velocity range of 0
to 22 m s−1. The hot-wire probe was translated to all the wall-normal positions in the
experiments by using a computer-controlled translation stage. The number of wall-normal
measurement stations with logarithmical spacing was increased as the boundary-layer
thickness increased. In addition, the adjustment of the wall-normal offset of the probe
sensor was monitored by a digital microscope-based procedure.

Inner-normalized mean streamwise velocity profiles, 〈U〉+ versus y+, are shown in
figure 1 for all the tripping conditions at different free-stream velocities. Considering
the strong impact of the tripping configurations on the mean flow fields, the friction
velocity, uτ , is estimated from the raw mean velocity by fitting a composite profile by
Rodríguez-López, Bruce & Buxton (2015). As shown, the mean velocity profiles for
different tripping diameters collapse in the near-wall region. For comparison, the inner
velocity profile of Musker (1979) is superimposed as a black line, in which the von Kármán
constant κ = 0.41 and the constant B = 4.86 (Nagib & Chauhan 2008; Marusic et al. 2013;
Segalini, Örlü & Alfredsson 2013). The agreement also suggests that the near-wall region
is more prone to adapting quickly to a canonical TBL under the tripping impact, which is
similar to the previous investigations (Schlatter & Örlü 2012; Rodríguez-López, Bruce &
Buxton 2016a; Rodríguez-López et al. 2017b). On the contrary, a significant difference is
observed in the outer layer, showing a progressively repressive wake region with increasing
Dc. Similar to the TBLs stimulated by other kinds of tripping conditions (Marusic et al.
2015; Dogan, Hanson & Ganapathisubramani 2016), the current over-tripped effects could
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Figure 1. Inner-normalized mean velocity profiles for the different Dc at different free-stream speeds:
(a) case I, (b) case II and (c) case III. The solid black lines show the Musker profile (Musker 1979) with
constants κ = 0.41 and B = 4.86.
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Figure 2. Pre-multiplied p.d.f. of (�u+)nP(�u+) at two representative wall-normal heights in the inner and
outer region for case III-D20: (a) at y+ ≈ 80 and (b) at y/δ ≈ 0.87, with the spatial distance r ≈ δ. Curves are
multiplied by an arbitrary factor Kn to get the normalized maximum for all orders.

result in a suppression of the wake region by introducing the generated wake flows, which
leads to lower velocity in the modified region, as shown in figure 1.

Prior to calculating the higher-order moments of the streamwise structure function, it
is necessary to inspect the statistical convergence of the higher moments, which can be
verified by examining the pre-multiplied probability density function (p.d.f.) of velocity
increments, (�u+)nP(�u+), following the approach used in previous works (Meneveau
& Marusic 2013; Yang, Marusic & Meneveau 2016a; de Silva et al. 2017). Figure 2 plots
the results for case III-D20 at two representative wall-normal heights in the inner and outer
regions. For the inner region, the reference location is at y+ ≈ 80, and the other reference
location is at y/δ ≈ 0.87, corresponding to an intermittency parameter of γ ( y) ≈ 0.55
(γ represents the proportion of time that the hot-wire probe records turbulent fluids). It
can be noted that an acceptable convergence degree of the current dataset is up to n = 8.
The results show acceptable ‘closure’ of the pre-multiplied p.d.f. with the smooth tails in
the sense that the structure function, which is the area under the curve, is well captured.
However, convergence at the order of n = 10 is moderate, therefore, for the current analysis
results at the order of n > 8 should be considered with due caution. Similar convergence
results are obtained for the other data used in the current study.
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Figure 3. Distribution of even-order structure functions up to the tenth order at y+ ≈ 80 for various
tripping conditions with different rod diameters in case III. The structure functions are normalized by
(a) the Kolmogorov scales and (b) the Taylor scales. The line colour from light to dark corresponds to
increasing tripping rod diameters from Dc = 1 to 20 mm in case III.

3. Self-similarity in the inner region of over-tripped boundary layers

3.1. Structure functions in the inner region
To explore the self-similarity of structure functions in the inner region under the impact
of the over-tripped conditions, the even-order structure functions up to the tenth order are
plotted in figure 3. The structure functions are normalized by the different characteristic
scales, which are the Kolmogorov scales (Kolmogorov velocity uK = (ν〈ε〉)1/4 and
Kolmogorov length η = (ν3/〈ε〉)1/4, where 〈ε〉 = 15ν(∂u/∂x)2 is the estimate of the
mean dissipation rate based on the local-homogeneity assumption) and the Taylor scales
(the root mean square of the velocity fluctuations uλ = 〈u2〉1/2 and Taylor length scale
λ = (15νu2

λ/〈ε〉)1/2). In figure 3, the line colour for each order structure function switching
from dark to light represents an increase of the rod diameter from Dc = 1 to 20 mm in
case III. In the plot, the higher-order structure functions are presented since they hold the
information about internal intermittency (Landau & Lifshitz 1963), which represents a
stochastic behaviour of very intense fluctuations with a higher frequency of occurrence
than that predicted by a Gaussian distribution and occurs predominantly at the small
scales. In the current study, with increasing tripping rod diameter, the large-scale structures
generated by the tripping configurations are enhanced, which provides a modification
effect on the small scales in the inner region (Mathis et al. 2009; Baars et al. 2017; Marusic
et al. 2017; Tang et al. 2024). Thus, under the tripping influence in the over-tripped
conditions, whether the similarity of the ISR could be established arouses our interest.

Figure 3 shows the even-order structure functions at the wall-normal location of y+ ≈
80. In figure 3(a), for the second order, there is reasonable support for self-similarity
for various tripping configurations, since an adequate collapse of structure functions
can be observed almost over the entire r space. At the smallest scales, the collapse is
perfect, which suggests the structure functions obey the classical Kolmogorov scaling
〈(Δru)2〉/u2

K ∝ (r/η)2. At the largest scales, the self-similarity still holds with acceptable
accuracy despite the tripping influence and finite-Reynolds-number effects. However, the
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situation is different for the higher-order structure functions. The self-similarity of
structure functions is not strictly valid. Specifically, the eighth- and tenth-order structure
functions normalized by the Kolmogorov scales (uK and η) reveal a non-collapsing
and clearly non-self-similar arrangement over the entire range of scales. In addition, as
regards the performance of the Kolmogorov similarity at the smallest scales, it requires
higher-resolution datasets for observation. Similarly, the structure functions do not satisfy
the self-similarity over the entire scale range after normalization with the Taylor scales
(figure 3b). As shown, except for the collapse at the intermediate scales, the Taylor scales
lead to a certain discrepancy in the dissipative range and at the large scales on increasing
the order. This finding confirms the general understanding of turbulence that the structure
functions do not feature universality over the entire range of scales, specifically at low to
moderate Reynolds numbers (Pearson & Antonia 2001).

As indicated in the previous investigation (Landau & Lifshitz 1963), the non-universality
of the higher-order structure functions is highly sensitive to different effects, such as
internal intermittency and finite-Reynolds-number effects. Especially, in the current study,
the generated large-scale wake structures by the over-tripped rods have amplitude and
frequency modification effects on the small scales in the inner region, as presented in
Appendix A. Both the amplitude and frequency modulation coefficients are increased
with the tripping diameter, which means that generated large-scale structures could
alter the internal intermittency behaviour based on modulation effects and result in the
non-universality of the higher-order statistics, as shown in figure 3.

Figure 4 plots the comparison of the p.d.f.s of the velocity gradients ∂u/∂x at the
wall-normal height y+ ≈ 80 for various tripping cases III-D1–D20. It shows that the p.d.f.s
are non-Gaussian and have stretched exponential tails, which is very similar to the p.d.f.s
in many other kinds of turbulent flows, such as isotropic turbulence (Gotoh, Fukayama &
Nakano 2002) and turbulent jet flows (Gauding et al. 2021). On increasing the tripping rod
diameter, the p.d.f.s have almost a consistent distribution. Careful observation shows that
the tails of the p.d.f.s become slightly stretched in the over-tripped cases, which should be
related to the footprint of large-scale wake structures generated by the tripping condition
with increasing rod diameter (the evidence of the footprint effect of large scales in the
near-wall region is exhibited in Appendix B).

3.2. Relative relations of structure functions for the ECR scales
In the spirit of the ESS hypothesis, the relation of the velocity structure functions as
expressed in (1.4) for the ECR scales is examined to further explore universality in this
part. Following the previous work from de Silva et al. (2017), figure 5 plots the relation of
〈(Δru+)2p〉1/p versus 〈(Δru+)2〉 at y+ ≈ 80 for all the cases III-D1–D20. All the results
are computed at a fixed wall-normal location of y+ ≈ 80, similar to that processed in
figures 3 and 4. In the plot, the tenth-order (2p = 10) structure function is also involved
to highlight any subtle differences in the ESS framework. In figure 5, the distributions
of 〈(Δru+)2p〉1/p versus 〈(Δru+)2〉 for almost all the scales are shown by the coloured
lines, from which the ESS scaling cannot be extracted directly, as shown by de Silva
et al. (2017). However, for the ECR-scale range of y < r < δ, as marked by the symbols,
the results obviously reveal a convincingly extended range of scaling behaviour in the
ESS-inspired framework. The results show a good collapse of the higher-order moments
up to 2p = 10 and provide direct support for the investigation of de Silva et al. (2017).
Furthermore, the current study extends the application of the ECR-scale similarity to the
over-stimulated boundary layers, which are in an adaptation region to recover from the
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leading-edge tripping effects and return to the canonical state. The good agreement for
each higher order 2p = 4, 6, 8, 10 in figure 5 suggests that the scaling behaviour of ECR
scales is independent of the current tripping influence.

The extended range of scaling behaviour in figure 5 provides an opportunity to have a
reliable estimation of the scaling coefficients (slopes Dp/D1, p = 2, 3, 4, 5). To further
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Figure 6. Distribution of ratios Dp/D1 versus p, from the relation in figure 5. The symbol of the blue circle
represents the results of TBL DNS datasets ( y+ ≈ 150, Reτ ≈ 1600) from Sillero et al. (2013).

quantify the relation, the ratios of Dp/D1 are computed based on a linear fit in the
ECR-scale range y < r < δ. The work of de Silva et al. (2017) utilized this procedure
to exhibit a good description of the ECR-scale similarity at Reτ ≈ 900, which indicates
that ECR scaling coefficients can be confidently estimated from databases at low Reynolds
numbers when no clear logarithmic region exists. The current study confirms the scaling
universality of ECR scales based on the datasets in the range of Reτ ≈ 500−3500,
especially under the tripping influence. Figure 6 shows the estimates of the higher-order
slope ratios Dp/D1 over a range of ECR scales for various tripping rods with different
diameters. We can note that the coefficient ratio Dp/D1 holds a consistent distribution
for all the tripping cases. For comparison, the results in the inner region of TBL flow
( y+ ≈ 150, Reτ ≈ 1600) by Sillero, Jiménez & Moser (2013) are also shown in the
plot. As shown, Dp/D1 in the current study is in accordance with the result by Sillero
et al. (2013). The consistent scaling behaviour confirms that the relation of the structure
functions in the ECR scales is independent of the different tripping conditions in the
current study.

Furthermore, to explore the performance of the structure functions for the ECR
scales at a broader wall-normal extent, figure 7 plots the distribution of ratios
Dp/D1( p = 2, 3, 4, 5) across the entire boundary layer for all the tripping cases. Similar
to figure 6, the coefficient ratio calculated from the direct numerical simulation (DNS)
TBL datasets by Sillero et al. (2013) ( y+ ≈ 150, Reτ ≈ 1600) is employed for comparison
(black lines). As shown, a good collapse of the ratio is noted in the inner region for the
various tripping conditions, which indicates that the scaling universality of the ECR scales
is independent of the tripping rod diameter. Meanwhile, the values of Dp/D1 in the inner
region appear unchanged. This constant of Dp/D1 is consistent with the suggestions by
de Silva et al. (2017) in the log region of high-Reynolds-number TBLs. In addition, based
on the ESS-inspired framework, the universality of the scaling of the ECR scales extends
beyond the logarithmic region of the boundary layer. From the insets in figure 7, it can be
seen that the universality extends almost up to y/δ ≈ 0.5 for all the tripping cases. Since
the boundary-layer thickness is increased with the tripping diameter, it can be deduced
that a further reaching universality is performed by increasing the tripping rod diameter.

From these findings, it can be concluded that, even though the tripping impacts are likely
to be embodied in structure functions at different orders, as shown in figures 3 and 4, we are
able to exhibit the similarity of ECR scales by accurately quantifying the universal scaling
of the ratios between two structure functions (Dp/D1) over a much larger wall-normal
extent. Analogously, recent work on high-order moments (Yang et al. 2016a,b; Xia et al.
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2018) also indicated that the extent of logarithmic scaling as a function of y increases
when examining ratios between moment functions in ESS form. The observation of the
ESS region could be attributed to the argument that the bulk flow or viscous effects have
a similar action on the structure function for the ECR scales (Yang et al. 2016a,b), which
can be further extended under the over-tripped conditions.

Additionally, the relative relation of structure functions in (1.4) is challenged in the
outer part around the edge of the boundary layer. This region is dominated by the
turbulent/non-turbulent intermittency, rather than the ECR scales following Townsend’s
attached hypothesis. Hence, it is reasonable to note an obvious discrepancy in the
examination of the scaling for ECR scales in the ESS framework, as shown in figure 7. In
the following, the similarity behaviour in the outer region will be examined by considering
the external intermittency.

4. Self-similarity in the outer region with external intermittency

In this section, we examine whether structure functions in the outer region admit
self-similarity under the influence of the tripping condition and discuss the effects of
external intermittency.

4.1. The external intermittency
The external intermittency is described as the flow alternating between turbulent and
substantially irrotational non-turbulent motions in the outer-layer region (Corrsin &
Kistler 1955; Townsend 1976). The turbulent region and non-turbulent region are separated
by the turbulent/non-turbulent interface (TNTI), which is assumed to be a sharp and
highly contorted superlayer (Bisset, Hunt & Rogers 2002; Chauhan et al. 2014; da Silva
et al. 2014; Philip et al. 2014). The mean intermittency distribution is argued to be
independent of Reynolds number (Fiedler & Head 1966). In the artificially thickened
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boundary-layer flows, the generated wake structures from the leading-edge trips can
provide a remarkable alteration to the external intermittency in the adaptive region
(Rodríguez-López et al. 2016a; Buxton et al. 2018; Tang et al. 2024), by inquiring into
the statistics of the outer-layer region, such as mean velocity, variance, energy spectra and
high-order statistics.

To observe the external intermittency behaviour, it is necessary to detect the TNTI,
which is a continuous ongoing research activity in turbulent flows. Several detecting
methods have also been proposed for the experimental datasets, by considering that
the intrinsic background turbulence in free stream. For particle image velocimetry
measurements, the TNTI was detected by the technique based on turbulent kinetic energy
(Chauhan et al. 2014), local homogeneity (Reuther & Kähler 2018), fuzzy clustering of
the streamwise velocity field (Fan et al. 2019; Younes et al. 2021), track of the Lagrangian
particle trajectories (Long, Wu & Wang 2021) and so on. For the current one-dimensional
flow data by hot-wire measurement, the detection of intermittency relies upon identifying
whether the probe is measuring turbulent or non-turbulent fluids. Therefore, a turbulent
kinematic energy criterion proposed by Chauhan et al. (2014) is utilized to detect the
TNTI in this study. This procedure has been extensively used in recent works (de Silva
et al. 2013; Chauhan et al. 2014; Kwon, Hutchins & Monty 2016; Saxton-Fox & McKeon
2017; Buxton et al. 2018; Chen et al. 2023), and only a brief description will be given here.

The intermittency interface detector function is introduced to evaluate the external
intermittency, which is defined as

ϕ(i) = 100
U2∞

1
3

1∑
j=−1

(ui+j − U∞)2, (4.1)

where the index i is an arbitrary instant in the temporal domain and the summation
over index j indicates a mean over three consecutive measurements in a time series. The
turbulent (non-turbulent) fluids can be detected as those for which ϕ(i) is higher (lower)
than a given threshold ϕth. A binary representation of the flow is obtained using the
threshold, and the binary representation is considered as

ψ(i) = H(ϕ(i)− ϕth) =
{

1, ϕ(i) ≥ ϕth
0, ϕ(i) < ϕth

, (4.2)

where H is the Heaviside function and ψ(i) is the so-called intermittency function. Then,
as proposed by Klebanoff (1955), an intermittency parameter γ ( y) at the wall-normal
location of y is defined as

γ ( y) = 1
N

N∑
i=1

ψ(i, y), (4.3)

which quantifies the proportion of time that the flow is turbulent. Close to the wall, the
flow is expected to be fully turbulent, γ ( y) = 1, the non-turbulent fluids gradually have
more occurrence far away from the wall, and γ ( y) = 0 in the free stream. It is well known
that the intermittency profile of γ ( y) in the TBL can be described by the error function
(Corrsin & Kistler 1955; Klebanoff 1955; Fiedler & Head 1966; Hedleyt & Keffer 1974)

γ ( y) = 1

σI
√

2π

∫ ∞

y
exp

(
−( y − YI)

2

2σ 2
I

)
dy, (4.4)
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Figure 8. Intermittency parameter profile γ ( y) as a function of y/δ in outer scaling for different tripping rod
diameters with different free-stream velocities; (a) case I, (b) case II, (c) case III. Coloured lines represent the
result by fitting ( y) to the error function in (4.4).

here, YI is the wall-normal location of the mean interface where γ (YI) = 0.5 and σI
is the standard deviation of the instantaneous interface position yI relative to the mean
position YI . Here, YI and σI are the estimated parameters by fitting the measurement
intermittency profile to the function of (4.4). From the above procedure, it can be seen
that the intermittency is dependent on the given threshold value ϕth, which is related to the
values of YI and σI . Thus, by fitting the error function in (4.4), a threshold of 0.07–0.08 is
chosen to calculate the intermittency profile γ ( y) for all the cases in the current study. The
wall-normal intermittency profiles γ ( y) in the outer scaling y/δ are shown in figure 8. As
shown, γ ( y) exhibits a normal distribution for all the tripping conditions in the current
study, by presenting good fittings to the error function in (4.4). Considering that the
current tripping conditions make a significant alteration to the flow fields in the wake
region, this could challenge the fit precision based on the wake function in determining the
‘true’ boundary-layer thickness (the wall distance where Ū = U∞ exactly) (Chauhan et al.
2009). Thus, the conventional boundary-layer thickness ( y = δ where Ū/U∞ = 0.99) is
used in this study, which is smaller than the ‘true’ boundary-layer thickness (Chauhan
et al. 2009). As shown in figure 8, γ ≈ 0.2−0.4 (increase with Dc) at y/δ = 1 in all cases,
which is consistent with the previous investigations (Kovasznay, Kibens & Blackwelder
1970; Hedleyt & Keffer 1974; Chen & Blackwelder 1978; Chauhan et al. 2014). The
standard deviation σγ of the interface location is presented as a function of the tripping
rod diameter in figure 9. The solid line indicates the range of σγ ≈ 0.15−0.18, which
is obtained from the data of canonical TBL flows (Corrsin & Kistler 1955; Hedleyt &
Keffer 1974). It shows that σγ has a good agreement with the results in the moderately
tripped cases. Then, increasing Dc alters the intermittent region by introducing strong
perturbations. The intermittency region rapidly extends further away from the wall by
holding a wider proportion in the boundary layer, as shown in figure 8, thus, an increased
σγ is noted in figure 9.

With this definition of the intermittency parameter γ , any conventionally averaged
quantity 〈φ〉 can be decomposed as

〈φ〉 = γ 〈φ〉T + (1 − γ )〈φ〉N, (4.5)

where 〈φ〉T and 〈φ〉N indicate the conditional averaging results by only considering either
turbulent or non-turbulent regimes (Mellado, Wang & Peters 2009; Gauding et al. 2021).
The conditional averages are defined with the binary indicator function, ψ , as

〈φ〉T = 〈ψφ〉, (4.6)
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Figure 9. Standard deviation of the interface location σγ as a function of tripping rod diameter Dc for the
cases I, II and III. Solid line represents the range of σγ ≈ 0.15−0.18.

and

〈φ〉N = 〈(1 − ψ)φ〉. (4.7)

4.2. Intermittency structure function
Referring to the external intermittency, when we calculate the statistical moments of the
velocity increments of two points separated by a spatial distance r, different conditions
should be considered: (I) both points are located within the turbulent regime, (II) both
points are within the non-turbulent regime and (III) one point in the turbulent regime
and the other one in the non-turbulent regime. For locally homogeneous turbulence, the
corresponding probabilities for the different conditions can be obtained as γTT = γ −
1
2ΘI , γNN = 1 − γ − 1

2ΘI and γTN = ΘI , where ΘI = 〈(ψ(x + r)− ψ(x))2〉 is known
as the intermittency structure function (Kuznetsov, Praskovsky & Sabelnikov 1992). It
is clear that γTT + γNN + γTN = 1. From the probabilities in different conditions, it can be
deduced that the ratio

γTT

γ
= 1 − ΘI

γ
, (4.8)

which represents the conditional probability that one point of the velocity increment is in
the turbulent regime considering that the other point is also in the turbulent regime. From
the above equations, it can be deduced that γTT/γ → 1 (γTT → γ ) as ΘI → 0 if r → 0.
Figure 10 shows γTT/γ against spatial distance r/η at different wall-normal positions the
intermittency of which is in the range of γ = 0.1−0.9 for case III-D20 as a representative
case. It is expected that in the inner region with the higher value γ → 0.9, γTT/γ is close
to unity with r → 0 and has a relatively slowly decreasing trend with increasing separation
distance r. Further away from the wall, γTT/γ decreases remarkably at larger r. A similar
distribution was reported in the turbulent jet flow by Gauding et al. (2021). Due to the
external intermittency of the alternation between turbulent and non-turbulent fluid and the
decreased proportion of turbulent excursion, it is reasonable to have lower γTT/γ toward
the edge of the boundary layer (γ → 0.1) at the larger-separation distance.

To further explore the feature of the intermittency function ψ , one-dimensional random
telegraphic signals ψts are introduced, which have randomly distributed values of ψts = 1
in turbulent regimes and ψts = 0 in non-turbulent regimes, with the corresponding
probabilities of P(ψts = 1) = γts and P(ψts = 0) = 1 − γts. The second-order moment of
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Figure 10. Conditional probability γTT/γ against spatial distance, r/η, at different wall-normal positions
with the intermittency parameter in the range of γ = 0.1−0.9 for case III-D20.

the increment ΘI,ts(r) can be expressed by the autocorrelation function of ψts, as

ΘI,ts(r) = 〈(ψts(x + r)− ψts(x))2〉 = 2(Rψts(0)− Rψts(r)) = 2(γts − Rψts), (4.9)

where Rψts(r) represents the analytical expression of the autocorrelation of ψts, which is
expressed as (Machlup 1954; Fitzhugh 1983; Thiesset et al. 2020)

Rψts(r) = 〈ψts(x + r)ψts(x)〉 = γts(γts + (1 − γts) e−r/Lts). (4.10)

In (4.10), Lts is a characteristic length scale, Lts = 2γts(1 − γts)[limr→0(ΘI,ts(r)/r)]−1,
that relates to the probability of ψts transiting from a value of 1 to 0 and vice versa
(Machlup 1954; Fitzhugh 1983; Thiesset et al. 2020).

From the expression of (4.9) and (4.10), an analytical intermittency structure function
of the random telegraphic signal can be expressed as

ΘI,ts(r) = 2γts(1 − γts)(1 − e−r/Lts). (4.11)

From (4.11), it can be seen that, at large separations, ΘI,ts(r → ∞) = 2γts(1 − γts), and
for the small-separation limit it can be deduced that

lim
r→0

ΘI,ts(r) = 2γts(1 − γts)
r
Lts

+ O(r2), (4.12)

which indicates that ΘI,ts(r) is proportional to r when the separation distance r is small
compared with Lts.

Then, we can compare the analytical intermittency structure function of the random
telegraphic signal, ΘI,ts, with the intermittency structure function ΘI of the wall
turbulence signals for case III-20 in the current study. In figure 11, the intermittency
structure function ΘI is presented for the different wall-normal positions, which is
normalized by the large-scale limit 2γ (1 − γ ). The separation distance r is normalized
by the characteristic length scale L. The plot shows a good collapse between ΘI,ts/2γts
(1 − γts) and ΘI/2γ (1 − γ ) at the scales of the small- and large-scale limits. A clear
discrepancy is noted in the intermediate-scale range, which becomes more obvious as
increasing wall-normal heights (decreasing intermittency parameter γ ). This discrepancy
was also reported in the intermittent range scales of turbulent jet flows (Gauding et al.
2021) and liquid–gas turbulence (Thiesset et al. 2020). In fact, the TNTI is widely argued
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Figure 11. Comparison of the intermittency structure function ΘI (coloured lines) at different wall-normal
positions (γ = 0.1−0.9) with the analytical intermittency structure function of the random telegraphic signal
(ΘI,ts, blue dashed lines). The black dashed lines indicate the analytical small- and large-scale limits. Data for
case III-D20.

to be a self-similar fractal which can be quantified by the fractal dimension (Sreenivasan
& Meneveau 1986). The self-similar fractal behaviour has been confirmed in different
classes of flows, such as boundary layer, jet flow, plane wake and mixing layer (Sreenivasan
& Meneveau 1986; Meneveau & Sreenivasan 1991). Furthermore, Tang et al. (2024)
confirmed that, under the impact of the tripping conditions in the current study, the
boundary-layer flows remain self-similar fractals with identical fractal dimensions. Thus,
the discrepancy in the intermediate-scale range in figure 11 is due to the fact that the
morphology of the TNTI is not fully random but instead characterized by the self-similar
fractal behaviour of turbulence.

As mentioned earlier, the characteristic length scale L relates to the transiting
probability of ψ , which is equivalent to the jump frequency transiting from a value of
1 to 0 and vice versa. The jump frequency is expressed as

fψ =
〈∣∣∣∣∂ψ∂x

∣∣∣∣
〉

= nI

L0
, (4.13)

where fψ represents the number of turbulent/non-turbulent (non-turbulent/turbulent)
transitions nI per length in the streamwise direction. Following the previous investigations
(Debye, Anderson & Brumberger 1957; Thiesset et al. 2020; Gauding et al. 2021), it
can be deduced that limr→0(ΘI/r) = 〈|∂ψ/∂x|〉 from the small-separation limit in (4.12),
which means that the small-separation limit of the second-order structure function is
equal to the jump frequency. Figure 12(a) shows the jump frequency fψ as a function
of the wall-normal heights for all the cases III-D1–D20. In the plot, fψ has a clear
maximum for each tripping configuration, which means that the alteration between
turbulent and non-turbulent happens most frequently. On increasing the tripping rod
diameter, the maximum fψ moves outwards with a gradually decreasing trend, meanwhile,
the wall-normal span of fψ has a broader extent, which implies a growing wall-normal
extent of the TNTI in the over-tripped conditions. This is consistent with the results of
the intermittency parameters in figure 8. It is shown that, with increasing tripping rod
diameter, the intermittency region rapidly extends further away from the wall by holding a
wider proportion of the boundary layer (as shown in the inset of figure 12a). Specifically,
the intermittency parameter exhibits a normal distribution with an increasing standard
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Figure 12. (a) Jump frequency fψ as a function of the wall-normal height y+ ( y/δ in the inset),
(b) self-preservation of fψ after normalization with the standard deviation of intermittent parameter σγ , as a
function of γ . The data are for the various tripping conditions with different rod diameters (cases III-D1–D20).
The results of cases I and II are shown in Appendix D.

deviation σγ . Here, σγ is suggested to be a measure of the width of the intermittent
zone. Thus, σγ is employed for the normalization in figure 12(b), and fψ exhibits a
self-preserving shape with intermittent factor in the relationship of fψσγ ∝ γ . This finding
is consistent with the growth of the characteristic length scale of TNTI with increasing
tripping diameter in the framework of self-similar behaviour.

4.3. Structure functions and the effects of external intermittency
The current tripping configurations provide a predominant influence on the intermittency
in the wake region, such as the jump frequency, which attracts our interest as to whether
the self-similarity of the structure functions can be observed in the intermittent zone.
Figure 13 shows the normalized even-order structure functions up to the tenth order at
the different wall-normal heights for the case III-D20. As shown in figure 13(a,b), the
structure functions are normalized by the Kolmogorov scales (uK and η) and the Taylor
scales (uλ and λ), respectively, similar to figure 3. It seems that the second order shows
the self-similarity as regards the wall-normal heights in the range of γ = 0.1−0.9, by
showing an acceptable collapse in either form of the normalizations. The remarkable
collapse is noted at the small scales; the distribution can be explained by the validation
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Figure 13. Distribution of even-order structure functions up to the tenth order at different wall-normal heights
in the range of γ = 0.1−0.9 for case III-D20. The structure functions are normalized by (a) the Kolmogorov
scales and (b) the Taylor scales, as similar in figure 3. The line colour from dark to light means that the
wall-normal position moves outwards, corresponding to an intermittency parameter from γ = 0.9 to 0.1.

of classical Kolmogorov scaling. At the large scales, a certain discrepancy is noted in the
Kolmogorov-scale normalizations, which should be attributed to the external intermittency
in the over-tripped conditions. It is evident that the higher-order structure functions (fourth
to tenth order) exhibit a clearly non-collapsing and non-self-similar arrangement over the
entire range of scales through the intermittent zone. This result is expected in higher-order
statistics, which are very sensitive to various factors, especially external intermittency,
and probably promoted under the influence of the tripping conditions. Additionally, by
comparing with the results in the inner region, as shown in figure 3(a), it is indicated that
the spatial resolution effect of the hot-wire probe on the estimation of the Kolmogorov
length scale should be neglected from the reasons causing the non-collapsing distribution
in figure 13(a).

To reveal the cause behind the lack of self-similarity of higher-order structure functions,
we present the characteristics of intermittency. Following Batchelor & Townsend (1949),
the turbulent signals are intermittent when the fine structure of the turbulence tends to be
locally concentrated, intermittent in nature and randomly scattered through the fluid in a
spotty way. This spatially spotty pattern becomes more prominent with increasing order of
the velocity derivative. Hence, the higher-order moment of velocity derivative is a suitable
tool to probe turbulent intermittency, and the flatness is defined as

F =

〈(
∂u
∂x

)4
〉

〈(
∂u
∂x

)2
〉2 , (4.14)
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which is widely accepted to represent intermittency at the fine scales. Note that, for the
velocity incrementΔru = u(x + r)− u(x), when r → 0,Δru at small scales is essentially
equivalent to the derivative.

For the purpose of testing the original Kolmogorov similarity hypothesis, the evolution
of high-order statistics of the velocity derivatives with Reλ has been widely examined.
It was indicated that the statistic of F is affected by two factors, which are the
finite-Reynolds-number effect and the flow conditions (Antonia et al. 2015, 2017; Djenidi
et al. 2017; Meldi, Djenidi & Antonia 2018; Tang et al. 2018). Figure 14(a) shows the
distribution of the flatness factor F against Reλ for all the data with the intermittency
parameter in the range of γ = 0.1−0.9 (for cases III-D1–D20). In the plot, with increasing
tripping diameter Dc, both F and Reλ exhibit a broader extent. Each of the tripping
conditions indicates that the flatness factor of the velocity derivative F is increased on
reducing Reλ (also γ ). From the numerous investigations, the Reλ dependence of F in a
fitting power law has been sought empirically in different kinds of flows, and the fitting
power law F ∼ (1.14 ∓ 0.19)Re0.34±0.03

λ was derived from an abundance of turbulent
data (Antonia, Satyaprakash, & Hussain 1982; Jiménez et al. 1993; Wang et al. 1996;
Sreenivasan & Antonia 1997; Gotoh et al. 2002; Ishihara et al. 2007; Ishihara, Gotoh &
Kaneda 2009). The fitting power law is drawn in figure 14(a) for comparison. It can be
seen that, at a high intermittent factor (γ → 0.9), F shows a good collapse with the power
law of Reλ. The collapse means that the high-order statistics of fine-scale structures in the
wall-normal region with the higher γ are almost independent of the impact of external
intermittency. The results are supported by Djenidi et al. (2017) that a constant flatness
factor can be noted in the region 0.3 ≤ y/δ ≤ 0.6 (corresponding to high γ ), in which
both F and Reλ are independent of the distance to the wall. On decreasing the intermittent
factor (further away from the wall), F has an obvious deviation from the fitting power law
of Reλ by showing significantly greater values in figure 14(a), which could be attributed to
the effect of the flow conditions of external intermittency. Similarly, figure 14(b) shows the
dependence of F on the external intermittency parameter γ . As shown, F increases from
an inner value close to 6 (γ → 0.9) to a value around 50 (γ → 0.1) close to the edge of
the boundary layer. Considering that the velocity derivative can emphasize the fine-scale
components but not cut out the low-frequency (large-scale) parts of the signal (Kuo &
Corrsin 1971), the dependence of F confirms that the fine scales do not decouple from the
large scales under the tripping effects and further supports that the external intermittency
has a dominant impact on the fine scales. In fact, the remarkable change of F was also
discussed by Gauding et al. (2021) in turbulent jet flows. They linked the change of F to
the local kinematics of TNTI by considering the non-equilibrium in the energy cascade
and the direction of the inter-scale transport (Watanabe, da Silva & Nagata 2019, 2020),
which is probably further promoted in the current over-tripped conditions.

To further understand the impact of external intermittency, the conditional flatness factor
of the velocity derivatives is defined as (following the expression of (4.6))

FT =

〈
ψ

(
∂u
∂x

)4
〉

〈
ψ

(
∂u
∂x

)2
〉2 . (4.15)

The binary indicator function of intermittency ψ is introduced to consider only the
turbulent portion of the outer-layer flow. Figure 15(a,b) shows the distribution of
conditional flatness factor FT against Reλ and γ , respectively. In figure 15(a), FT and
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Figure 14. Flatness factor of the velocity gradients F as a function of (a) Reynolds number Reλ (light to dark
red colour represents an increase of intermittent parameter from γ = 0.1 to 0.9, the black line indicates the
power law F = (1.14 ∓ 0.19)Re0.34±0.03

λ ) and (b) the intermittency parameter γ (the line colour indicates the
tripping rod diameter, Dc).
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Figure 15. Conditional flatness factor of the velocity gradients FT as a function of (a) Reynolds number Reλ
and (b) the intermittency parameter γ . Note that the presentation is completely consistent with that in figure 14
for comparison.

Reλ show a good agreement with the power law FT = (1.14 ∓ 0.19)Re0.34±0.03
λ for all the

data at different wall-normal heights through the intermittent region. It is clear that the
effect of the external intermittency, which leads to the obvious deviation (significantly
high values of F in figure 14a), is excluded by examining the conditional flatness factor
FT , which is further confirmed by the distribution of the p.d.f.s of the velocity derivatives
in figure 16. The power-law dependence of FT on Reλ in figure 15(a) implies that, in the
turbulent regimes of the outer layer, the large-scale fluctuations play a role in determining
the turbulence intermittency, the level of which increases with Reλ (Batchelor & Townsend
1949).

In figure 15(b), FT is almost constant and less sensitive to the variations of γ . Obviously,
these findings are independent of the tripping conditions, which means that the strong
turbulent transport of the wake flow could lead, in a homogenized statistical sense, to the
turbulent regions. The homogenization of turbulent regions was speculated by Corrsin &
Kistler (1955) and later confirmed by free shear flows (Mellado et al. 2009; Gauding et al.
2021). The current results expand this feature into the wall-bounded shear turbulent flows,
especially in the over-tripped conditions. In addition, the analogy suggests that the external
intermittency has a comparable role in the TNTI in the outer region for both the free and
wall-bounded shear flows.
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Figure 16. Conventional (a) and conditional (b) p.d.f.s of the velocity derivatives at different wall-normal
positions as indicated in the legend of intermittent factor γ . The black dashed line indicates a normal
distribution. The curves are normalized by the standard deviation σ = 〈(∂u/∂x)2〉1/2 and the conditional
standard deviation σT = 〈(ψ ∂u/∂x)2〉1/2, respectively. The density functions are estimated over abscissa
intervals of bin width 0.15σ (0.15σT ). Data for case III-D20.

To reveal the mechanism behind the fine-scale coupling related to the external
intermittency, we study the p.d.f.s of the velocity derivatives at different wall-normal
heights through the intermittent zone. In fact, the flatness factor of the velocity derivatives
can be obtained in the integral expression as

F =
∫ ∞

−∞
(ux,σ )

4σP(ux,σ ) dux,σ , (4.16)

where ux,σ = (∂u/∂x)/σ , P(ux,σ ) is the p.d.f. of the normalized velocity derivative
and σ = 〈(∂u/∂x)2〉1/2 is the standard deviation. Figure 16(a) shows the p.d.f.s of the
velocity derivative (∂u/∂x)/σ at the different wall-normal heights through the intermittent
zone. Since the fourth moment is heavily dependent on the large values of ux,σ , the
flatness factor F in figure 14 is a measure of the relative extent of the skirts of the
probability density curves. Clearly, it can be seen in figure 16(a) that the p.d.f.s depart from
normality further away from the wall towards the boundary-layer edge. The departure is
enhanced by showing that the tails of P(ux,σ ) become increasingly stretched, which is a
characteristic footprint of the external intermittency. In particular, the far tails represent
large velocity gradients that partly stem from the thin interfacial layer between turbulent
and non-turbulent fluids (Elsinga & da Silva 2019). At the same time, a distinct peak
emerges around ux,σ = 0. This peak originates from non-turbulent regions outside of the
turbulent envelope where the velocity gradients are close to zero. The combination of these
behaviours leads to the flatness factor F increasing as it moves toward the boundary-layer
edge, as shown in figure 14.

It is now of interest to compare the results with the conditional p.d.f.s that account only
for the turbulent portion of the flow. The conditional p.d.f. is defined as P(ux,σT |ψ = 1)
in the condition of ψ = 1. A similar procedure was executed by Gauding et al. (2021) to
observe the self-similarity in the shear-layer region of turbulent jet flows. The parameter
P(ux,σT |ψ = 1) in figure 16(b) exhibits self-similarity. The departure from normality has
the same shape, which has a higher probability than the normal curve in the neighbourhood
of zero and a lower probability at the intermediate values. This kind of distribution
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Figure 17. Normalized conditional structure functions 〈(Δru)n〉TT up to the tenth order at different
wall-normal heights, where both end points are located inside the turbulent regime. The structure functions
are normalized by the conditional (a) Kolmogorov scales and (b) Taylor scales. The line colour has the same
meaning as that in figure 13. Data for case III-D20.

was consolidated as a typical feature of turbulent signals with internal intermittency
in the inner region of TBL flow (Kuo & Corrsin 1971), similar to figure 4. From this
comparison between figure 16(a,b), we can conclude that external intermittency is the
relevant mechanism that destroys self-similarity through the intermittent zone.

Finally, we revisit the self-similarity of the velocity structure functions. Motivated by
the previous discussion, a conditional structure function is defined as

〈(Δru)n〉TT = 〈ψ(x + r)ψ(x)(u(x + r)− u(x))n〉, (4.17)

for which both ending points are restricted to the turbulent regime of the boundary layer. In
the previous investigation, Sabelnikov et al. (2019) defined structure functions in a similar
fashion to distinguish in non-premixed flames between burnt and unburnt regions.

Figure 17 presents the normalized conditional structure functions 〈(Δru)n〉TT up to
the tenth order at different wall-normal heights through the intermittent zone. The
structure functions are normalized by conditional Kolmogorov scales (uK,T = (ν〈ψε〉)1/4
and ηT = (ν3/〈ψε〉)1/4) and conditional Taylor scales (uλ,T = 〈ψu2〉1/2 and λT =
(15νu2

λ,T/〈ψε〉)1/2) that account only for the turbulent portion of the flow. Compared
with the conventional structure functions 〈(Δru)n〉 (in figure 13), the conditional structure
functions 〈(Δru)n〉TT reveal a significantly improved collapse up to the tenth order, as
shown in figure 17(a,b). Especially, on increasing the order, the self-similar arrangement
can still be noted. In this sense, 〈(Δru)n〉TT is assumed to have a reasonably good
universality. More importantly, the observation signifies that turbulent regions homogenize
across the intermittent zone even under the most over-tripped condition.

Considering the collapse of the conditional high-order structure functions, we now
examine the scaling exponents of structure functions and external intermittency in the
following. Other than the turbulent signal in the near-wall region, the turbulent signals in
the intermittent zone are dominated by external intermittency, the behaviour of which is
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Figure 18. Dependence of the relative scaling exponents ξp/ξ2 on the intermittency parameter γ for all the
tripping conditions (cases III-D1–D20) and for (a) p = 4, (b) p = 6, (c) p = 8, (d) p = 10.

enhanced by the tripping configurations. Thus, the self-preservation/similarity behaviour
of the conditional higher-order structure functions will not be examined for the ECR scales
but rather examined in a relative scaling form by the ESS hypothesis as

ξp

ξ2
= d log 〈(ΔruT)

p〉
d log 〈(ΔruT)

2〉 , (4.18)

which is calculated by the gradient of the pth-order conditional structure function against
the second order. The ESS approach in (4.18) provides an extended wide scaling range
relative to the restricted subrange, which offers an opportunity for better estimates of
the relative ISR scaling exponents (Benzi et al. 1993a,b). Figure 18 shows the scaling
exponents ξp/ξ2 (p = 4, 6, 8, 10) at different wall-normal heights. It shows ξp/ξ2 as a
function of the external intermittency parameter γ . Clearly, the relative scaling exponents
remain constant with γ and collapse for all the tripping cases. This result indicates that
the small scales in turbulent regimes are homogenized in a self-similar behaviour, which
is independent of the wall-normal height and the influence of the current tripping wake
flows.

Furthermore, the p-model, ξp = 1 − log2(0.7
p/3 + 0.3p/3), developed by Meneveau &

Sreenivasan (1991), is employed for comparison. The p-model is based on a multi-fractal
approach and is known to be able to predict the ISR scaling exponents of homogeneous
isotropic turbulence with very good accuracy (Sreenivasan & Antonia 1997). Figure 19
plots the average relative scaling exponents (as shown in figure 18) through the intermittent
zone γ = 0.1−0.9 for cases I, II and III. The plot shows an acceptable agreement
with the prediction from the p-model. Hence, the relative scaling exponents confirm the
self-similarity of higher-order structure functions in the turbulent regime even under the
influence of the over-tripped conditions. In addition, the average relative scaling exponents
in figure 19 involve the cases at all Reynolds numbers in this study, the agreement indicates
that the self-similarity of higher-order structure functions is independent of the current
Reynolds numbers.

984 A34-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

21
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.213


Z. Tang and N. Jiang

0
2 4 6 8 10

2

4

ξ p
/
ξ 2

p

p-model
Cases I
Cases II

Cases III

Figure 19. The average of relative scaling exponents ξp/ξ2 up to the tenth order in the intermittent zone
γ = 0.1−0.9 for cases I, II and III. The standard deviation is denoted by the error bar. For comparison, the
p-model, ξp = 1 − log2(0.7

p/3 + 0.3p/3), by Meneveau & Sreenivasan (1991) (solid line) is shown.

5. Conclusions

In artificially thickened TBL flows from over-tripped conditions, the generated large-scale
structures not only alter the intermittency behaviour in the outer region but also provide
a modification to the small scales in the inner region. Thus, the effect of the internal and
external intermittencies on the self-similarity of TBL in the adaptive region was examined
in this study.

In the inner region, by utilizing the ESS hypothesis, the relative scaling of the velocity
structure functions was presented with a further reaching universality for the ECR scales.
The scaling for the ratio between the velocity structure functions was based on the
log-law scaling for the ECR scales in the logarithmic region of high-Reynolds-number
TBLs (Davidson et al. 2006; de Silva et al. 2015, 2017), which is in accordance with
Townsend’s attached eddy hypothesis. The current study consolidated that the quantitative
measures of the scaling behaviour for the ECR scales can be effectively estimated from
databases at low and moderate Reynolds numbers (Reτ ≈ 500−3500). Moreover, in the
current over-tripped conditions, the boundary layer is thickened with increasing tripping
rod diameter, and the constant exponent scaling extends further away from the wall. It can
be concluded that the scaling universality for the ECR scales in ESS form is independent
of the tripping conditions, which is enhanced with a further reaching universality in the
over-tripped conditions.

Then, we studied the self-similarity of structure functions at different wall-normal
positions through the intermittent zone. In the intermittent zone, the phenomenon of
external intermittency originates from the TNTI, which separates the turbulent and
non-turbulent regimes from the hot-wire signals. The morphology of the TNTI was
described by the intermittency structure function at different scales. It was indicated that
the over-tripped conditions provide a significant modification to the external intermittency.
Even though the non-Gaussianity and external intermittency are enhanced under the
over-tripped impacts, an acceptable self-similarity was noted for the second-order velocity
structure functions through the outer region. However, it was expected that the external
intermittency exhibits a remarkable influence on the high-order structure functions.
The breakdown of self-similarity was mainly contributed to by the combination of
the appearance of higher velocity derivatives and the alternation of turbulent and
non-turbulent fluids, which was supported by corresponding statistics such as the flatness
factor of velocity derivatives and the jump frequency of turbulence–non-turbulence (vice
versa). In fact, the effect of external intermittency on fine-scale turbulence was amplified
by increasing the tripping rod diameter. It was manifested that the fine scales are not
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decoupled with the large scales which are related to the external intermittency at all the
tripping conditions.

By defining the turbulent statistics conditioned on fully turbulent regimes, the collapse
was noted in the conditional flatness factor and the p.d.f.s of the velocity derivatives,
which are nearly independent of the intermittency parameter γ . Then, the self-similarity
behaviour of the conditional higher-order structure functions was further examined. The
relative scaling exponents obtained by the ESS hypothesis remain constant against the
intermittency parameter across the intermittent zone. An agreement of the conditional
scaling exponents with the p-model was further examined. It was revealed that the fine
scales in the turbulent regime in the artificially thickened TBLs are homogenized in
a self-similar behaviour, which is independent of the tripping conditions and also the
Reynolds number in the current study. In addition, it should be noted that the above
conclusions of the scaling universality of the structure functions are also suitable for the
canonical cases, as moderately tripped TBLs with relatively small tripping diameters were
involved in the current study.

In practice, the TBL flows over wind turbines, ships, vehicles and aviation systems,
experience the effects of leading-edge configurations or upstream flow conditions (such as,
roughness, surface curvature, separation, blowing, suction, etc.). Thus, the practical TBL
flows are not only at the condition of high Reynolds number, but also beyond canonical
flows with the feature of significant changes in all aspects of the mean flow and the
turbulence. The current study presents evidence of the self-similarity of non-canonical
TBL flows at relatively high Reτ under leading-edge tripping impacts. With regards to this,
the observation in this study provides a potential avenue to assess/predict more general and
practical TBL flow behaviour.
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Appendix A. Amplitude and frequency modulation

To explore the amplitude and frequency modulation (AM and FM) effect of the large-scale
structure on the small scales in TBL flows, various methods have been used in the previous
works (Mathis et al. 2009; Ganapathisubramani et al. 2012; Baars et al. 2015; Dogan
et al. 2019; Iacobello, Ridolfi & Scarsoglio 2021). The main objective is to identify a
characteristic measure to quantify the instantaneous amplitude/frequency of the small
scales. Baars et al. (2015) applied continuous wavelet transform (CWT) to obtain the
wavelet power spectrum of the fluctuations in time–frequency space, and then constituted
a series of instantaneous amplitude and frequency signals for the observation of AM and
FM effects. In this study, we also utilize the CWT method to observe the AM and FM
effects under the tripping impact.

To obtain the large and small scales, based on a filter cutoff of λ+x = 2000, the
fluctuations are decomposed into large scales, uL (λ+x > 2000) and small scales, uS
(λx

+ < 2000). This cutoff length is inferred from the discrepancy of the energy
spectra, as shown in figure 21, which clearly segments the large-scale structures in the
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Figure 20. The distributions of (a) amplitude modulation and (b) frequency modulation coefficients between
the large and small scales along the wall-normal locations for the tripping cases III-D1–D20.

over-tripped conditions. Then, by convolving with a mother wavelet (ψ), the
fluctuation signals (u) are decomposed into a time–frequency space as ũ(t′, s) =
(1/

√
s)
∫∞
−∞ u(t)ψ((t − t′)/s) dt, where s indicates wavelet time scales. In this study,

the Morlet wavelet is employed as the mother wavelet. It has been confirmed that the
modulation results are robust to the different mother wavelets, such as Morlet and Mexican
hat wavelets (Baars et al. 2015). Then, the wavelet power spectrum (WPS) is calculated
as, Ẽ(t′, s) = |ũ(t′, s)|2/s. By transforming wavelet time scale to an equivalent frequency,
the WPS is given by Ẽ(t′, f ). The small-scale amplitude time series can be constructed

by integrating the WPS as σS(t′) =
(∫ fN

fS
Ẽ(t′, f ) df

)1/2
, where fS and fN represent the

small-scale cutoff frequency and Nyquist frequency, respectively. The fluctuation form of
σS(t′) is calculated by σ ′

S(t
′) = σS(t′)− u2

S. Then, the large-scale variation of small-scale
amplitude σ ′

S,L(t
′) is obtained with the long wavelength pass filter of λ+x > 2000, which

is the representative of the instantaneous small-scale amplitude. On the other hand, the
small-scale instantaneous frequency fS(t′) is calculated as fS(t′) = 10F(t′), in which F(t′) =∫ fN

fS
Ẽ(t′, f )f log10( f ) d log10( f )/(σS(t′))2. The fluctuation signals of fS(t′) is decomposed

as f ′
S(t

′) = fS(t′)− 〈 fS〉, where 〈 fS〉 is the mean of fS(t′). Then, the pass filter of λ+x > 2000
is applied again for evaluating the large-scale variation of small-scale frequency ( f ′

S,L(t
′)).

After that, the cross-correlation algorithm is employed to observe the AM and FM effects,

as RAM = 〈uLσ
′
S,L〉/

√
〈u2

L〉〈σ ′2
S,L〉 and RFM = 〈uLf ′

S,L〉/
√

〈u2
L〉〈 f ′2

S,L〉, respectively.
Figure 20(a,b) shows the distributions of the amplitude and frequency modulation

coefficients along the wall-normal locations for all the tripping cases III-D1–D20. In
figure 20(a), the AM coefficients present the positive value in the near-wall region, which
means that the higher small-scale amplitude occurs in high-speed large-scale motions,
and vice versa (Mathis et al. 2013; Hutchins 2014; Baars et al. 2017; Dogan et al. 2019;
Li et al. 2023). Under the tripping effect, the growth of near-wall RAM with increasing
Dc reveals that the generated large scales have an enhanced AM effect on the small
scales. The enhanced FM effects due to the tripping effect can also be noted by showing
the increased RFM in figure 20(b). This implies that the generated large-scale structures
enhance the near-wall FM process by the splatting mechanism (Agostini & Leschziner
2019), similar to the consequence of increasing Reτ in canonical TBL flows (Baars et al.
2015; Iacobello et al. 2021). On the contrary, negative RAM and RFM are observed in the
outer region, which is interpreted as a reversed scale arrangement phenomenon related
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Figure 21. Pre-multiplied velocity spectra of the fluctuation signal for various tripping diameters for the
representative cases III-D2, D6, D12 and D20; in the corresponding right-hand panels, the changes in
spectrograms relative to case III-D2 are shown, which are labelled as �(Dc = 2, 6, 12, 20) in each panel.
The horizontal dashed line represents the wavelength of λ+x = 2000. The ‘+’ symbol refers to the proposed
outer peak of y+ ≈ 3.9Reτ 1/2 and λx/δDc2 ≈ 6 (Mathis et al. 2009).

to the outer-layer intermittency (Baars et al. 2017; Tang et al. 2021). They are modified
under the tripping impacts, meaning that the intermittency is altered due to the generated
large-scale structures. In addition, a ‘phase reversal’ as expected appears in the log layer
between the near-wall region and intermittent region (Chung & McKeon 2010).

Appendix B. Evidence of footprint of large scales in the near-wall region

Figure 21 shows pre-multiplied spectra of streamwise fluctuations kxφuu/u2
τ as contour

plots for several representative cases III-D2, D6, D12 and D20. It can be seen that,
on increasing Dc, the pre-multiplied spectra in the outer region present the enhanced
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Figure 22. The distribution of the near-wall peak u+
rms,P of the turbulent intensity as a function of tripping

diameters Dc for all the cases. The symbols of square, diamond and delta represent cases I, II and III
respectively. The symbol colour indicates the corresponding Reτ .

magnitude with the longer wavelength. Hutchins & Marusic (2007b) proposed that
the scale separation starts to appear for Reτ >∼ 2000, with the emergence of the outer
energy site. This estimate is consistent with the current cases of Dc = 12−20 mm
(Reτ = 2670−3580) by showing the outer energy site. It is deduced that the trip wire
introduces large-scale energetic motions into the boundary layer. These generated large
scales have a comparable length scale to the very-large-scale structures in canonical
high-Reτ TBL flows, which have an outer peak in the spectrogram that emerges at
y+ ≈ 3.9Re1/2

τ and λx/δ ≈ 6 (Hutchins & Marusic 2007a; Mathis et al. 2009). Note
that this location is marked by ‘+’ in figure 21, which is used purely as a reference to
compare with the current over-stimulated cases. Then, the case III-D2 is chosen as the
reference case by considering its nominal canonical behaviour, to observe the differences
in the pre-multiplied spectra, as �kxφuu/u2

τ = kxφuu/u2
τDc=N − kxφuu/u2

τDc=2, where
N = 6, 12, 20. The composite spectrum of case III-D2 is re-gridded by cubic
interpolation to the range of the spectrum in the other cases prior to the subtraction.
As expected, the increasing excess energy with Dc is observed in the outer region. Look
carefully, the outer-layer excess energy is pre-dominantly located near λ+x ≈ 6 × 103−2 ×
104 (λx/δ2 ≈ 7−23). This suggests that the over-tripped conditions introduce large-scale
motions which almost take over the outer layer. Moreover, the enhanced large-scale energy
in the near-wall region seems to be the derivative of these energetic outer-layer large
scales, and the extent of the penetration depends on the tripping intensity. This refers to the
generated large scales penetrating down to the wall based on the footprint effect (Hutchins
& Marusic 2007b; Baars et al. 2017), which leads to the increasing near-wall peak in the
broadband turbulence intensity, as shown in figure 22. Figure 22 shows the distribution of
the near-wall peak of the turbulence intensity, u+

rms,P, as a function of tripping diameter Dc

for the cases I, II and III. Caution must be exercised when examining the near-wall peak
due to the spatial and temporal resolution challenges of the hot-wire probe (Ligrani &
Bradshaw 1987; Hutchins et al. 2009). Based on the current hot-wire spatial resolution, it
can be still observed that, for each free-stream velocity, increasing Dc results in the growth
of u+

rms,P, which is attributed to a growing superposition of the generated larger-scale
energy in the near-wall region. In addition, the growth of u+

rms,P can be also noted with
increasing Reτ , as widely reported in canonical TBL flows (Metzger & Klewicki 2001;
Hoyas & Jiménez 2006; Hutchins et al. 2009).
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Figure 23. Distribution of ratios Dp/D1 along y+ ( y/δ in the insets) for cases I-D2–D20; (a) p = 2, (b) p = 3,
(c) p = 4 and (d) p = 5. For comparison, the black lines represent the coefficient ratio value calculated from
the DNS TBL datasets from Sillero et al. (2013) (z+ ≈ 150, Reτ ≈ 1600).

101
100

100101

101102

102

102 103

y+

D
4
/
D

1

D
4
/
D

1

0 0.5
y/δ

1.0

Dc: 21 3 4 6 8 1012141720

101
100

100

101

101
102

103
102

102 103

y+

D
5
/
D

1

D
5
/
D

1

0 0.5
y/δ

1.0

Dc: 21 3 4 6 8 1012141720

101
100

100

101

101

102
102

102 103

D
2
/
D

1

D
2
/
D

1

0 0.5

y/δ
1.0

Dc: 21 3 4 6 8 1012141720

101

100
101

100

101

102 102

102 103

D
3
/
D

1

D
3
/
D

1

0 0.5
y/δ

1.0

Dc: 21 3 4 6 8 1012141720

(a) (b)

(c) (d)
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(c) p = 4 and (d) p = 5. Consistent presentation as in figures 7 and 23.

Appendix C. Scaling universality of ECR scales

The distribution of ratios Dp/D1 ( p = 2, 3, 4, 5) across the entire boundary layer for the
tripping cases I-D2–D20 and II-D1–D20, are shown in figures 23 and 24. By comparing
the results in cases I, II and III, we confirm that the scaling universality of the ECR scales is
independent of the incoming Reynolds numbers in the current study. Moreover, consistent
conclusions can be derived from the plots that the scaling universality of ECR scales is
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Figure 25. (a) Jump frequency fψ as a function of y+ ( y/δ in the insets), (b) normalized jump frequency
fψσγ as a function of γ . Data for cases I-D2–D20.
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Figure 26. Consistent results of the data for cases II-D1–D20, as in figures 12 and 25.
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independent of the tripping rod diameter, and a further reaching of universality with a
larger wall-normal extent can be noted on increasing the rod diameter. On the other hand,
the obvious discrepancy can be noted in the outer region around the edge of the boundary
layer, which is dominated by the intermittency of generated large-scale structures from the
tripping configurations.

Appendix D. Jump frequency

Figure 25 shows the jump frequency as a function of y+ ( y/δ in the insets) and γ

for the cases I-D2–D20. The corresponding results for cases II-D1–D20 are shown in
figure 26. The consistent indications can be obtained from figures 25, 26 and 12. The
wall-normal span of fψ has a broader extent on increasing the tripping intensity. Moreover,
an acceptable agreement of the relation fψσγ ∝ γ can be observed for all the tripping
conditions, which suggests a self-preserving shape of the TNTI interface under the
over-tripped impacts.
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