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CATEGORIES IN CATEGORIES OF GROUPS WITH

OPERATIONS

by T. PORTER

(Received 19th September 1985)

In [6] Brown and Spencer noted that internal categories within the category of
groups are equivalent to crossed modules. As they remarked, this result was known to
various others before them, but it had not until then appeared in print. That paper led
me to investigate the question of which algebraic categories, C, were such that a similar
result held i.e. internal categories in C are equivalent to crossed modules of the
appropriate type. The resulting work was written up in 1980 but was not submitted for
publication.

Since then several things have happened which suggest that the results of that 1980
research may be of considerably wider importance than I had then thought. Various
authors have used the group theoretic case in algebraic topology and have generalised it
to higher dimensions. Loday [15] has introduced caf-groups which are equivalent to
internal n-fold categories in groups, and also has given a notion of crossed square
corresponding to the case n = 2. Ellis in his thesis [8] generalised Loday's ideas to
arbitrary dimensions and gives this in his paper with Steiner [9]. In fact Ellis proves
more as he extends the results of my 1980 preprint to arbitrary dimensions (his
Proposition 1.3.11 p. 30 of [8]). Thus it seems reasonable to publish that earlier work
which is the basis for this generalisation.

It is natural however to ask why such an equivalence of categories may be important.
Homotopical algebra extends ideas from homotopy theory to algebraic contexts in
much the same way as homological algebra extended ideas from classical geometric
homology theory. Use of crossed modules of groups has resulted not only in advances
in homotopy theory such as the generalised van Kampen theorems of Brown, Higgins
and Loday ([2,3,4]) but, via this theory, to information on the homotopical and
homological algebra of groups (again see [2]). Ellis gives purely algebraic proofs of
these latter results and is thus able to extend them to apply to Lie algebras. In this
context I should also mention the work of Kassell and Loday [13].

Thus crossed modules in other contexts than groups raise the possibility of applying
homotopical methods to algebraic problems. The work of Dedecker [7], Gerstenhaber
[10] and [11], Lue [17] and [18], and others has already contributed much in this
direction, but there is still a lot more to investigate.

However, in any given context, there remains, of course, the initial problem of
deciding what a crossed module should be. The test should be a form of the Brown-
Spencer result.
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374 T. PORTER

As with the original result of Brown and Spencer, no proofs of the equivalence of
categories given below has previously been published, but the result is known to various
people who discovered it about the same time as me and for the same reasons, i.e. the
wish to be able to apply crossed module techniques in contexts other than groups.

Thus the cases of associative rings and algebras, Lie and Jordan algebras are
mentioned in Lavendhomme and Roisin [14]. They also give an example (C = Monoids)
in which only a more restricted version of the equivalence holds. A detailed discussion
of this latter case is implicit in Porter [22] in which the partially algebraic case of
C = Cat, the category of small categories is studied; another partially algebraic case,
C = Groupoids, is essentially treated in a second paper by Brown-Spencer [5]. Aznar
Garcia, in his unpublished thesis [1], discusses in detail the general case of "categories
of interest" or categories of groups with operations looked at here and applies it to
generalising Dedecker's non-abelian cohomology theory. He also discusses the existence
of free crossed modules in these contexts. This is also treated in Porter [21].

1. Categories of groups with operations

For the idea behind the definition given below we refer the reader to Higgins [12]
and Orzech [20]. Our axioms are adapted from those of Orzech.

Let Q be a set of finitary operations such that the following axioms hold: If Q, is the
set of i-ary operations in Q:

(1) Q =

(2) The group operations of identity, inverse and multiplication (written 0, —, +) are
elements of il0, Cll, Q2 respectively.

Let Q^QzXI + l . n ' ^ Q A I —} and assume that if *eQ2 then *° defined by x*°y=y*x
is also in Q'2. Also assume that O0 = {0}.
(3) If *eQ'2, then a*(b + c) = a*b + a*c.

(4) If coen\, then co is a morphism for + and if *efi'2 then co(a) *b = a>(a * b).

Remarks. The set, fi0 contains exactly one element, the group identity; hence for
instance associative rings with unit are not groups with operations. Higgins [12] allows
non-trivial ternary and higher operations, but we will not work in this generality.

From now on, C will denote a category of <fi, £>—algebras where £ is a set of
identities including the group laws (cf. MacLane [19]). The objects of C may be referred
to as groups with operations. The elementary properties of C can be found in Orzech
[20].

2. Structures and crossed modules

Let B, A be objects of C. An extension of B by A is a sequence

in which p is surjective and i is the kernel of p.

https://doi.org/10.1017/S0013091500026766 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500026766


EXTENSIONS, CROSSED MODULES AND INTERNAL CATEGORIES 375

An object A is singular if it is abelian as a group and if a1*a2 = 0 for all
al,a2eA,*e0.'2.

An extension

is singular if A is singular and is split if there is a morphism s:B->E such that ps = idB.
A split extension of B by A is called a B-structure on A.

Given a B-structure on A

we get actions of B on A corresponding to the operations in C: For any
beB,aeA,* eO!2 we have as "definition" of these actions

-s{b)

b*a = s{b) * a

These actions are called derived actions by Orzech [20].

Proposition 1 (Orzech [20]). A set of actions of B on A (one for each operation in Q2)
is a set of derived actions if and only if the semi-direct product Bx A, that is the Q-algebra
with underlying set Bx A and operations

(b, a)+(b1, a') = {b + b', (b' • a) + a')

is an object in C.

For example, for any B in C, the obvious action of B on itself corresponding to the
split extension

also corresponds to the extension

with s(6) = (6,0).
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In the usual way one can talk of morphisms of extensions and morphisms of split
extensions. If there is a B-structure on A and a B'-structure on A', a pair of morphisms
(/?,<*), with p-.B-*B', <x:A->A', is a morphism of structures if it gives a morphism of the
corresponding split extensions. This happens if and only if for all aeA,beB, *eQ'2 one
has

«((-*)• a) = ( -

Given a B-structure on A and a morphism (in C) <f>:A->B, we say <p is a crossed
module if (1B, 0) and (</>, 1̂ ,) are both morphisms of structures.

So as to be able to link this concept with the classical ones—crossed module, crossed
ring etc. it is useful to have a description in terms of actions and operations.

Proposition 2. Given a B-structure on A,(j>:A^B is a crossed module if and only if the
following conditions are satisfied for all a, a1,a2sA,beB, *eCl'2

(i) <P((-b)-a)=
(ii) (-4>(a1))-a2=-a1+a2 + al

(iii) <j)(al)*a2=al *a2 = al *<f>(a2)

The proof is straightforward.
As a corollary one finds that when C = Groups, the crossed modules are exactly the

crossed modules of Whitehead [24].

Proposition 3. / / 4>:A^B is a crossed (B —) module then Ker<£ is singular.

Although the proof is easy we give it as it illustrates how one works with these
properties.

Suppose a1,a2eKeT(p, then by (ii) above

=(-<p(al))-a2 = a2.

So Ker <f> is an abelian group under +. By (iii) we have

aj *a2 = (j)(a1) *a2

Note singular objects are internal groups in C.

3. The equivalence

An internal category in C is a diagram in C
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do

f

such that dos = d1s = idB with an operation °:C xBC-*C satisfying the usual axioms of a
category.

If, in addition, for any ceC, there is c'eC with c°c'' = sdo(c), d °c = sdl(c) then we say
the category is a groupoid. Note that since s is in C, s(0) = 0 and that the operation o
being a morphism implies that for all a,b,c,deC, *eCl2, (a*b)°(c*d)=(aoc)*(bod)
whenever one side makes sense. These are called the interchange laws.

As an easy application we note that any internal category in C is an internal
groupoid, since given ceC, c~1 = sdx(c) — c + sdo(c) satisfies c~l oc = sdl(c), c°c~i=sdoc.

For future use we note the following two lemmas.

Lemma A. Given cl,c2eC with ct e Ker d0, c2 e Ker dx, then for any * e Q'2

and

c2*ct =cl *c2 = 0.

The proof is an easy use of the interchange laws.

Lemma B. 7/c'eKer d0 then,for any *eil'2, we have, for all ceC,

(— sd^c)) -c'= —c + c' + c

and

c' *sdl(c) = c' *c, sdl(c)*c' = c*c'.

Proof. As c'eKer dQ and c — sd^eKer dlt we can apply Lemma A. The two cases
are then easy consequences of the corresponding parts of that lemma.

We can now associate to a category in C, a crossed module # as follows: Given

do
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set /l = Ker do,(j) = dl\A. Certainly

gives a B-structure on A. We have:

Proposition 4. With the above notation <j>:A-*B is a crossed module.

In fact criteria (i) and (iv) are trivial consequences of the way the B-structure on A is
defined and (ii) and (iii) follow from Lemma B.

Thus we have functors

</>:Cat(C)-A:Mod(C)

and for each B in C

4>:CatB(C)->XB-Mod(C)

where CatB(C) is the category of internal categories in C with objects B; the
other notation is self explanatory.

Remark. It is an easy consequence of the interchange laws that the internal category
composition is completely determined by the group multiplication; explicitly

c o c' = c — sdo(c') + c'.

This can also be derived from the description of the functors involved in the equivalence
of categories.

Remark. <f> is a functor fibred over C in an obvious way.

Theorem. <f> and <pB are both equivalences of categories.

We sketch the construction of the quasi-inverses of <f> and <j>B leaving the detailed
verification to the reader.

Given a B-crossed module <f>:A->B, put C = BxA and consider the diagram

do

where s(b) = (b,0),do(b,a) = b and dl(b,a) = b + <j)(a). To define composition note that
(b, a) o (d, c) is defined only if d = b + 0(a) and hence the definition
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makes sense. Both dx and ° are morphisms and the verification is fairly straightforward
that the resulting structure is an internal category in C.

The assignment <j>-*C(<f>) is clearly functorial and is the required quasi-inverse for <f>
(or 4>B).

Remarks, (a) A close inspection of the proofs would reveal that all the axioms on Q
were used at least once; thus it is difficult to see how one might weaken these axioms to
get a wider class of algebraic categories in which the result is true.

(b) A special case of the above result occurs when the internal category is a monoid
(i.e. has only one object) then we have a proof of the well known result that an internal
monoid in C is precisely a singular object.

(c) It is worth noting that associativity of the internal category composition is not
used in the proof of the equivalence.

Example. One of the simplest examples of the above is when C is a category of
commutative algebras over some commutative ring, k, with unit. The algebras in C are
not necessarily unitary and if an algebra has a unit, 1, it is not assumed to be preserved
by the morphisms in C.

An internal category in commutative fc-algebras is a diagram

do

of /c-algebra morphisms, together with a composition which we can express in terms of
addition by

c ° c' — c — sdo(c') + d.

The interchange laws reduce to one only corresponding to multiplication (c.f. equation
(8) p. 255 of [21]). This is still quite complicated however, and it is much easier to
describe C in the form Bx A where A = Ker d0, that is in the form coming from the
equivalence of categories.

In describing the structure of A, one notes that the only non-trivial action of B on A
is multiplicative and this gives a B-module structure to A in such a way that
multiplication in A is B-bilinear. Finally <f> = di\A satisfies the two crossed module
conditions:

(a) <p is B-linear

(b) ^>(a)a' = aa' for all a,a'eA.
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Related structures have been studied by Gerstenhaber [10], Lichtenbaum and
Schlessinger [16], Lue [18] and others. A more recent application is to be found in
[23].
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