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NECESSARY CONDITIONS FOR UNIVERSAL
INTERPOLATION IN &’

W. A. SQUIRES

1. Introduction. Let & be the space of Fourier transforms of distri-
butions with compact support, or equivalently, the space of entire
functions /% satisfying the growth condition

(1)  |g(z)] = Aexp (Bp(z)) forallz € G

where p(z) = [Imz| + log (1 + |2|?) and 4, B are constants depending
only on k. A sequence {z;}5_1 C C with |z;] T o is said to be a universal
interpolation sequence for & if for all {a,}%-, such that

(2)  Jax| = Aexp Bp(z)) k=1,2,...

for constants A4, B independent of k, there exists f € &’ such that
f(2x) = ax. In this note we will consider necessary conditions for universal
interpolation in ¢”’ and more general subspaces of the entire functions.

If {z:}%1 is a universal interpolating sequence for &’ then for some
h € &’ we must have

{zx}ier C Z(h) = {z] h(z) = 0}.

To see this note that {z;}5-; a universal interpolation sequence implies

there exists f € &' such that f(z1) =1, f(zx) =0,k =2,3,.... Thus
we have

{zfie C Z((z — z1) f (2))
where f # 0.

If in (1) we let p(z) = |z| the resulting space of entire functions is the
space of functions of exponential type, denoted 4;. It is known (see [2])
that if {z}%-.1 = Z (k) for some h € A4, then {z;}%~; is a universal inter-
polation sequence for 4 if and only if

(3) W) = eexp (—Cp(zr)) k=1,2,...

with ¢, C constants independent of k. This result is false for &' as our
example will show which answers the question posed in (1], page 34.

In a positive direction we have Theorem 1 which shows that if
{z:}%=1 is a universal interpolation sequence for &’ then there exists
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h € & such that {z}5.1 C Z(k) and (3) holds for
P(Z}c) = ]Imzk]-i—log (1+‘Zk|2), k= 1,2,....

Theorem 1, together with a result of Berenstein and Taylor gives us
Theorem 2, namely, necessary and sufficient conditions for {z;}i-1 to
be a universal interpolation sequence in ¢ ’. The condition for universal
interpolation involves finding two defining functions fi, f € &’ for
{zx}%=1 such that

{zefic = Z(f1, f2) = {3[ f1(z) = fa(z) = 0}
and | fi'| + | f2'| satisfies (3) for
p(z) = [Im 2| + log (1 + [z[%).

However, this theorem does not give a practical way of determining
whether or not {z}%.: is a universal interpolation sequence since we
have no constructive way of finding f; and fs.

2. Notation and definitions. We shall always assume that p(z) is a
subharmonic function defined for all z € G, p # —o0, satisfying the
following two conditions (see [1] for more details)

(4)  p(z) = 0andlog (1 + |2?) = O(p(2))
(5)  there exist constants C and D such that
[t — 2| < implies p(¢) = Cp(z) + D.

Note that (5) says that p is approximately constant on discs of radius
less than or equal to 1.

Definition. A, = { f entire| |f(z)| £ 4 exp (Bp(z)) for some constants
A, B depending on f}.

It is easily seen that conditions (4) and (5) on p(z) imply
(6) all polynomials belong to 4,
(7) A, is closed under differentiation, that is, f € 4, implies f' € 4,.

The two most important examples of such functions p are
#(2) = |zl and p(z) = [Im 2| + log (1 + [2[*)

corresponding to the spaces 4; of entire functions of exponential type
and &',

We will now define what we mean by a universal interpolation sequence
for the spaces 4,. Let V = { (2, m;) %=1 C Z(h) for some h € A, where
(2x, my) means a zero of multiplicity m; at z.
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Definition. A,(V) = {y = {yu;} %5 2| lvasl £ 4 exp (Bp(a)) for con-
stants 4 and B, independent of & but depending on v}.
With the above definition define the restriction map p: 4, — 4,(V) by
o(f) =~

where
f(j)
}T‘(Zk)z')/kj j=0,1,...,mk—l,k=1,2,....

Definition. A multiplicity sequence V = {(zx, m)}5=1 will be called a
universal interpolation sequence if the restriction map p is onto.

3. Example. Now we will give an example of a variety V = {z}%a,
each point having multiplicity one and V = Z(k) for h € &’. The
variety will have the property that V is a universal interpolation
sequence for &’ and &’ is too small on V, that is, there exist no constants
¢, C such that

W (z1)| = eexp (—C[[Im 2 + log (1 + [z:/*)])

Let

o0 =111~ (3))
and let

he) = ST

We will show that for each # there exists C, such that
8) |rx)] = C/A 4+ |x)"forallx € R,n=0,1,2,....

Since £ is an even function and Z (k) C Z (sin (72)) it is clear that & is of
exponential type. This fact and (8) imply & € &, where & is the space
of Fourier transforms of C® functions with compact support.

It is clear that V = Z(k) is a universal interpolation sequence for &
since V C Z(sin (7z)) and Z(sin (wz)) is certainly a universal inter-
polation sequence for &' as is easily seen from Theorem 4 [1]. Since
h €D we have I’ € @ and thus it is clear that & cannot satisfy in-
equality (3) for any constants ¢, C.

Now we will prove (8). To prove (8) it suffices to prove that

9) |h(x)|] = Ko/|x|"2forallx, 21 < x £ 2°

where K, is a constant independent of #.
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First let x € I, = [2""! 4 1,2" — 1]. Since we are assuming x < 2"
then for j = n we have

x\’ 1
1= (5) 21— 5

which implies
© x 2 - © 1
,:I;IH 11—\ =]1=Tl 1—5) = Co
Thus we have
- (ﬁ)2 L forallxe I
2]' C() ora ne

Next let us compute a lower bound for the product

(- (3))

n -1

10) |rx)| = I1

j=1

We have
n x 2 n—2 22]' _ xz 1 1
Hi-g) 2|5 | 3=
1 %22 — 9%) 1 1 ™% g
> , > c - n=e
= 24n—2 ]1;12 22_7 = 24n—2 271—.. g 2
; 251_3 . 2(n—2)(n—1) é 26(271,)71—8.
Hence
n 2
x —
(11) 71;[1 1— (y) =

The last inequality along with (10) gives
(12) |h(x)| £ 1/Co|x|"8 for all x € I,.

We will now consider x in the interval J, = [2" — 1, 2" 4+ 1] and show
that (12) holds for x € J, with 1/C, replaced by a larger constant. We
will obtain a lower bound for ¢ on the circle C, = {z| [z — 27| = 1} which
will give an upper bound for & on C, and applying the maximum principle
we get the desired upper bound for x € [2" — 1, 2" 4 1].

For z € C, it is easy to show

(e -2 -

j=1
and a calculation similar to (11) gives us
n (Z 2
- (3)
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Now [sin (7z)| £ (1 + (sinh 1)?)'/? for z € C, and thus

sin (72) | _ (14 (sinh 1))
2 6@ | = Colzln_g forallz € C,.
An application of the maximum principle allows us to conclude that for
all x € J,
i K
13 1k _ | sin (rx) < Ko
where K, is a constant independent of #. From (12) and (13) we deduce

he 2.

It is possible to define 7 by two ‘‘good’ functions namely ki(z) =
sin (w3) and k2(z) which has the same zeros as k1(z) except for the zeros
at +2", n = 1,2, ... which are perturbed by some small amount. Then

|h' (n)| + [k (n)| = eexp (—=Clog (1 + n?))
forallm # 2% k=1,2,...
where ¢, C are constants independent of 7.

4. Necessary conditions for interpolation. We see in the example
that the universal interpolation sequence Z (%) can be defined as a subset
of the zero set of a function with large derivative, namely sin (vz). This
leads us to the question as to whether or not every universal interpolation
sequence V = {(z;, m;)}7=; in the space 4, is the zero set of a function
F satisfying

[F™ () |

py =eexp (—Cp(z) k=1,2,....

This problem was posed in [4] page 258 and the following theorem gives
an affirmative answer to this question.

THEOREM 1. If V = { (2, mi)}oe1 C Z(h) for h € A, 1s a universal
interpolation sequence for the space A, then there exists a function F € A,
such that

[F0 (z,)|/my! = e exp (—Cp(ar)) for all k.

Proof. The basic idea of the proof was communicated to us by E.
Kronstadt. The proof will follow easily from the following two lemmas

(see [3]).

LEMMA 1. If V is a universal interpolation sequence for A, then for all
C > 0, there exist constants A, B and functions fy; € A, such that p( f;) =
ex; (ex; is the sequence in A,(V) which is 0 except for a 1 at the (k, j) place)
and

| fes(2)| = A exp(Bp(2))/exp(Cp (2x)).
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LemMa 2. If V = {(zi, my) )51 ts @ universal interpolation sequence for
A, then there exists C > 0 such that

3 exp (—Cpe) < <.

Assuming the two lemmas for the moment we will prove the theorem.
Let

Fo) = ;Zl (s — 2) fimy 1(2) - fro(2).

It suffices to show |F(z)| < 4 exp (Bp(z)) for some constants 4 and B
since by differentiating the sum term by term we see
Fome (21) - I(cﬁl;c:}) (2x)

“fro(zr) = 1.

Now we have

F@] S 3l + 1) im0 fuao)
<l - 4° exp (2Bp(z)) - 3 mrexp (~2Cp (@)

+ A%exp (2Bp(s)) - gmklzkl exp (—2Cp (@)

using the estimate obtained for | f;;(z)| in Lemma 1. The next estimates
require the following two facts

(i) my = Ep(z:) + F for some constants E, F independent of k (see
[1] page 126).

(ii) |z| £ exp (Kp(z)) (a consequence of (4)).
Thus

IF&)| < A’ exp [@B + K)p(&)] i {exp [(=2C + E)p (@)

+ exp [(—2C + E + K)p ()]}
< A" exp [(2B + K)p(2)]

if C is chosen sufficiently large so that the sum converges. This completes
the proof of the theorem.

Proof of Lemma 1. Let

D = {y € 4,(V)| lyasl = exp (Cp(ar)),
G=01,. . me—1k=1,2...]

and let D have the topology induced by the norm
vl = supe,sbyasl exp (—Cp(24))-
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With this norm we see that D = {3| [ly]| £ 1} and D is closed in this
topology.
Now let U, = { fentire | | f(2)| < nexp (np(2))}.

Claim. p(U,) M D is closed in D, in the topology induced by || .

Let {p(f)}5%1 C p(U, M D) such that p(f;) =y € D. Now all the f
satisfy the uniform bound | f;(z)| < nexp (np(z)) and thus, because it
is a normal family, there exists a subsequence { f;;}%5-1 such that f;;, —
fe€ U,and p(f) =+v. From this we conclude p(U,) M D is closed and
the claim is proved.

The hypothesis that V is a universal interpolation sequence is equiv-
alent to p being onto and thus we have

O () N D] = D.

Now we apply the Baire Category theorem to conclude for some 7,
o(U,) M D contains an open set. Without loss of generality we can
assume

p(U,) VD D | vl £ ¢

and it easily follows that p(1/eU,) N D = D.
Thus we have shown there exist f;;(z) such that

p(fis) = exp (Cp(zx))er; and |fh;(2)| < A exp (Bp(z)).
If we let fi;(z) = fu;(2)/exp (Cp(z)) then
p(fr;) = ex;and | fi;(2)| = A exp (Bp(2))/exp (Cp(zx))-
This completes the proof of Lemma 1.
Proof of Lemma 2. We know that since p satisfies (1) there exists
C1 > 0 such that

fc exp (—Cip(2))dxdy < o©.

Let d; = mingx; |z — z,, the distance of the closest zero to z;, and let B,
be the disc of radius 7; = min {d,/2, 1} about z;. Then we have

]_:21 fB'exp (— Cip(2))dxdy éfc exp (—Cip(z))dxdy < 0.

I't can be shown that d,/2 = eexp (— Cop(z;)) (see [1], page 126) which
implies

eexp (—Cop(zy)) = 7; = 1.
From the hypothesis that p satisfies (2) we have p(z) < Ap(z;) + B for
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all z; € B,. Thus it follows that
J exp (~Cp@Enasy 2 [ cesp (—Copteasay
B; i

> coxp (~Cip(e) | Landy 2 eexp (~CpCey)

for some constant C larger than C; and C;. From the above inequality
we can conclude

gexp (—Cpey) < .

This completes the proof of Lemma 2.

Theorem 1 and a result of Berenstein and Taylor (see [1]) gives us
necessary and sufficient conditions for universal interpolation in the
spaces 4,. This is the content of Theorem 2.

THEOREM 2. Let V = {(zx, ms)}se1 C Z(h) for some h € A,. Then V
is a universal imterpolation sequence in A, if and only if there exist Fi,
Fy € A, such that V = Z(Fy, Fy) and

2™ ()]

(14) oy =eexp (—Cpz)) kE=1,2,...

|F1(mk) '(Zk)' +
My

for some constants e, C independent of k.

Proof. (=) Theorem 1 shows that there exists one function F; which
satisfies (14) at every point z; € V. We will show, by perturbing those
zeros of Fy which are not in V, there exists a function F, € 4, such that

V = Z(Fy, F2).
Define
o wz—m+ﬂ“
Fy(z) = Fi(z) kI;II (—-————Z —

where {(wy, #:) %1 = Z(F1) ~ V and {e}%.1 is a sequence of small
constants to be chosen later. Now let {a;}i_1, {b:}%1 be two sequences
of positive numbers satisfying the following conditions:

(i) The discs D (wy, bi) = {z| |2 — wi| < by} are pairwise disjoint.

(ii) by = 1lforall kso that p(z) £ Cp(w;) + D for z € D(wy, by).

(i) 2% = K < .
Qg

k=1

Define ¢ = by/ay. 1t remains to prove Fy € 4, and it will suffice to
show |Fy(z)| £ K| Fi(z)| for some constant K;. First assume |z — w;| =
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by, for all k. Then we have

B s RO |1+2 | s R [+
< exp (K) |Fi(z)]-

Now suppose [z — w;| < b; for some £ (exactly one k by (i)). By applying
the maximum principle and noting that (ii) holds it suffices to consider
|z — wi| = b;. The above estimate still holds in this case, namely

|Fa(2)| = exp (K)|Fi(2)] for |z — wy| = by

Thus we conclude F; € 4, as desired.
(=) This follows from Theorem 4 page 126 of [1].

Remark. Theorem 2 actually gives no more information than Theorem
1 since given an arbitrary sequence V C Z(k) for some & € A, we have
no constructive procedure for finding Fy and F.
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