NECESSARY CONDITIONS FOR UNIVERSAL INTERPOLATION IN \hat{E}^{\prime}

W. A. SQUIRES

1. Introduction. Let $\hat{\mathscr{E}}^{\prime \prime}$ be the space of Fourier transforms of distributions with compact support, or equivalently, the space of entire functions h satisfying the growth condition

$$
\begin{equation*}
|g(z)| \leqq A \exp (B p(z)) \text { for all } z \in \mathbf{C} \tag{1}
\end{equation*}
$$

where $p(z)=|\operatorname{Im} z|+\log \left(1+|z|^{2}\right)$ and A, B are constants depending only on h. A sequence $\left\{z_{k}\right\}_{k=1}^{\infty} \subset \mathbf{C}$ with $\left|z_{k}\right| \uparrow \infty$ is said to be a universal interpolation sequence for \hat{E}^{\prime} if for all $\left\{a_{k}\right\}_{k=1}^{\infty}$ such that

$$
\begin{equation*}
\left|a_{k}\right| \leqq A \exp \left(B p\left(z_{k}\right)\right) \quad k=1,2, \ldots \tag{2}
\end{equation*}
$$

for constants A, B independent of k, there exists $f \in \hat{\mathscr{O}}^{\prime}$ such that $f\left(z_{k}\right)=a_{k}$. In this note we will consider necessary conditions for universal interpolation in $\hat{\mathscr{E}}^{\prime}$ and more general subspaces of the entire functions.

If $\left\{z_{k}\right\}_{k=1}^{\infty}$ is a universal interpolating sequence for $\hat{\mathscr{E}}^{\prime}$ then for some $h \in \hat{\mathscr{O}}^{\prime}$ we must have

$$
\left\{z_{k}\right\}_{k=1}^{\infty} \subset Z(h)=\{z \mid h(z)=0\} .
$$

To see this note that $\left\{z_{k}\right\}_{k=1}^{\infty}$ a universal interpolation sequence implies there exists $f \in \hat{\mathscr{E}}^{\prime}$ such that $f\left(z_{1}\right)=1, f\left(z_{k}\right)=0, k=2,3, \ldots$ Thus we have

$$
\left\{z_{k}\right\}_{k=1}^{\infty} \subset Z\left(\left(z-z_{1}\right) f(z)\right)
$$

where $f \not \equiv 0$.
If in (1) we let $p(z)=|z|$ the resulting space of entire functions is the space of functions of exponential type, denoted A_{1}. It is known (see [2]) that if $\left\{z_{k}\right\}_{k=1}^{\infty}=Z(h)$ for some $h \in A_{1}$ then $\left\{z_{k}\right\}_{k=1}^{\infty}$ is a universal interpolation sequence for A_{1} if and only if

$$
\begin{equation*}
\left|h^{\prime}\left(z_{k}\right)\right| \geqq \epsilon \exp \left(-C p\left(z_{k}\right)\right) \quad k=1,2, \ldots \tag{3}
\end{equation*}
$$

with ϵ, C constants independent of k. This result is false for $\hat{\mathscr{E}}^{\prime}$ as our example will show which answers the question posed in [1], page 34.

In a positive direction we have Theorem 1 which shows that if $\left\{z_{k}\right\}_{k=1}^{\infty}$ is a universal interpolation sequence for $\hat{\mathscr{E}}^{\prime \prime}$ then there exists

Received May 28, 1980 and in revised form November 10, 1980.
$h \in \hat{\mathscr{E}}^{\prime}$ such that $\left\{z_{k}\right\}_{k=1}^{\infty} \subset Z(h)$ and (3) holds for

$$
p\left(z_{k}\right)=\left|\operatorname{Im} z_{k}\right|+\log \left(1+\left|z_{k}\right|^{2}\right), \quad k=1,2, \ldots
$$

Theorem 1, together with a result of Berenstein and Taylor gives us Theorem 2, namely, necessary and sufficient conditions for $\left\{z_{k}\right\}_{k=1}^{\infty}$ to be a universal interpolation sequence in $\hat{\mathscr{E}}^{\prime}$. The condition for universal interpolation involves finding two defining functions $f_{1}, f_{2} \in \hat{\mathscr{O}}^{\prime}$ for $\left\{z_{k}\right\}_{k=1}^{\infty}$ such that

$$
\left\{z_{k}\right\}_{k=1}^{\infty}=Z\left(f_{1}, f_{2}\right)=\left\{z \mid f_{1}(z)=f_{2}(z)=0\right\}
$$

and $\left|f_{1}{ }^{\prime}\right|+\left|f_{2}{ }^{\prime}\right|$ satisfies (3) for

$$
p\left(z_{k}\right)=\left|\operatorname{Im} z_{k}\right|+\log \left(1+\left|z_{k}\right|^{2}\right) .
$$

However, this theorem does not give a practical way of determining whether or not $\left\{z_{k}\right\}_{k=1}^{\infty}$ is a universal interpolation sequence since we have no constructive way of finding f_{1} and f_{2}.
2. Notation and definitions. We shall always assume that $p(z)$ is a subharmonic function defined for all $z \in \mathbf{C}, p \not \equiv-\infty$, satisfying the following two conditions (see [1] for more details)

$$
\begin{equation*}
p(z) \geqq 0 \text { and } \log \left(1+|z|^{2}\right)=O(p(z)) \tag{4}
\end{equation*}
$$

(5) there exist constants C and D such that

$$
|\zeta-z| \leqq \text { implies } p(\zeta) \leqq C p(z)+D
$$

Note that (5) says that p is approximately constant on discs of radius less than or equal to 1 .

Definition. $A_{p}=\{f$ entire $| | f(z) \mid \leqq A \exp (B p(z))$ for some constants A, B depending on $f\}$.

It is easily seen that conditions (4) and (5) on $p(z)$ imply
(6) all polynomials belong to A_{p}
(7) $\quad A_{p}$ is closed under differentiation, that is, $f \in A_{p}$ implies $f^{\prime} \in A_{p}$.

The two most important examples of such functions p are

$$
p(z)=|z| \text { and } p(z)=|\operatorname{Im} z|+\log \left(1+|z|^{2}\right)
$$

corresponding to the spaces A_{1} of entire functions of exponential type and \mathscr{E}^{\prime}.

We will now define what we mean by a universal interpolation sequence for the spaces A_{p}. Let $V=\left\{\left(z_{k}, m_{k}\right)\right\}_{k=1}^{\infty} \subset Z(h)$ for some $h \in A_{p}$ where (z_{k}, m_{k}) means a zero of multiplicity m_{k} at z_{k}.

Definition. $A_{p}(V)=\left\{\gamma=\left\{\gamma_{k j}\right\}_{j=0}^{m_{k}-1} \underset{\substack{\infty \\ k=1}}{ }| | \gamma_{k j} \mid \leqq A \exp \left(B p\left(z_{k}\right)\right)\right.$ for constants A and B, independent of k but depending on $\gamma\}$.

With the above definition define the restriction map $\rho: A_{p} \rightarrow A_{p}(V)$ by

$$
\rho(f)=\gamma
$$

where

$$
\frac{f^{(j)}}{j!}\left(z_{k}\right)=\gamma_{k j} \quad j=0,1, \ldots, m_{k}-1, k=1,2, \ldots
$$

Definition. A multiplicity sequence $V=\left\{\left(z_{k}, m_{k}\right)\right\}_{k=1}^{\infty}$ will be called a universal interpolation sequence if the restriction map ρ is onto.
3. Example. Now we will give an example of a variety $V=\left\{z_{k}\right\}_{k=1}^{\infty}$, each point having multiplicity one and $V=Z(h)$ for $h \in \hat{\mathscr{E}}^{\prime}$. The variety will have the property that V is a universal interpolation sequence for $\hat{\mathscr{E}}^{\prime}$ and h^{\prime} is too small on V, that is, there exist no constants ϵ, C such that

$$
\left|h^{\prime}\left(z_{k}\right)\right| \geqq \epsilon \exp \left(-C\left[\left|\operatorname{Im} z_{k}\right|+\log \left(1+\left|z_{k}\right|^{2}\right)\right]\right) .
$$

Let

$$
\phi(z)=\prod_{j=1}^{\infty}\left(1-\left(\frac{z}{2^{j}}\right)^{2}\right)
$$

and let

$$
h(z)=\frac{\sin (\pi z)}{\phi(z) \cdot z} .
$$

We will show that for each n there exists C_{n} such that

$$
\begin{equation*}
|h(x)| \leqq C_{n} /(1+|x|)^{n} \text { for all } x \in \mathbf{R}, n=0,1,2, \ldots \tag{8}
\end{equation*}
$$

Since h is an even function and $Z(h) \subset Z(\sin (\pi z))$ it is clear that h is of exponential type. This fact and (8) imply $h \in \mathscr{\mathscr { D }}$, where $\hat{\mathscr{D}}$ is the space of Fourier transforms of C^{∞} functions with compact support.
It is clear that $V=Z(h)$ is a universal interpolation sequence for $\hat{\mathscr{E}}$, since $V \subset Z(\sin (\pi z))$ and $Z(\sin (\pi z))$ is certainly a universal interpolation sequence for $\hat{\mathscr{E}}{ }^{\prime}$ as is easily seen from Theorem 4 [1]. Since $h \in \mathscr{\mathscr { D }}$ we have $h^{\prime} \in \hat{\mathscr{D}}$ and thus it is clear that h cannot satisfy inequality (3) for any constants ϵ, C.

Now we will prove (8). To prove (8) it suffices to prove that
(9) $|h(x)| \leqq K_{0} /|x|^{n-8}$ for all $x, 2^{n-1} \leqq x \leqq 2^{n}$
where K_{0} is a constant independent of n.

First let $x \in I_{n}=\left[2^{n-1}+1,2^{n}-1\right]$. Since we are assuming $x \leqq 2^{n}$ then for $j \geqq n$ we have

$$
1-\left(\frac{x}{2^{j}}\right)^{2} \geqq 1-\frac{1}{2^{2(j-n)}}
$$

which implies

$$
\prod_{j=n+1}^{\infty}\left(1-\left(\frac{x}{2^{j}}\right)^{2}\right) \geqq \prod_{j=1}^{\infty}\left(1-\frac{1}{2^{j}}\right)=C_{0} .
$$

Thus we have

$$
\begin{equation*}
|h(x)| \leqq \prod_{j=1}^{n}\left|1-\left(\frac{x}{2^{j}}\right)^{2}\right|^{-1} \cdot \frac{1}{C_{0}} \quad \text { for all } x \in I_{n} \tag{10}
\end{equation*}
$$

Next let us compute a lower bound for the product

$$
\left|\prod_{j=1}^{n}\left(1-\left(\frac{x}{2^{j}}\right)^{2}\right)\right|
$$

We have

$$
\begin{aligned}
& \prod_{j=1}^{n}\left|1-\left(\frac{x}{2^{j}}\right)^{2}\right| \geqq \prod_{j=1}^{n-2}\left|\frac{2^{2 j}-x^{2}}{2^{2 j}}\right| \\
& \geqq \frac{1}{2^{2 n-2}} \cdot \frac{1}{2^{2 n}} \\
& \geqq \frac{1}{2^{4 n-2}} \prod_{j=2}^{n-2} \frac{\left(2^{2 n-2}-2^{2 j}\right)}{2^{2 j}} \geqq \frac{1}{2^{4 n-2}} \cdot \frac{1}{2^{n-2}} \cdot \prod_{j=1}^{n-2} 2^{2 n-2 j-2} \\
& \\
& \geqq \frac{1}{2^{5 n-\overline{4}}} \cdot 2^{(n-2)(n-1)} \geqq 2^{6}\left(2^{n}\right)^{n-8}
\end{aligned}
$$

Hence

$$
\begin{equation*}
\prod_{j=1}^{n}\left|1-\left(\frac{x}{2^{j}}\right)^{2}\right| \geqq|x|^{n-8} \tag{11}
\end{equation*}
$$

The last inequality along with (10) gives

$$
\begin{equation*}
|h(x)| \leqq 1 / C_{0}|x|^{n-8} \text { for all } x \in I_{n} . \tag{12}
\end{equation*}
$$

We will now consider x in the interval $J_{n}=\left[2^{n}-1,2^{n}+1\right]$ and show that (12) holds for $x \in J_{n}$ with $1 / C_{0}$ replaced by a larger constant. We will obtain a lower bound for ϕ on the circle $C_{n}=\left\{z| | z-2^{n} \mid=1\right\}$ which will give an upper bound for h on C_{n} and applying the maximum principle we get the desired upper bound for $x \in\left[2^{n}-1,2^{n}+1\right]$.

For $z \in C_{n}$ it is easy to show

$$
\prod_{j=n+1}^{\infty}\left|1-\left(\frac{z}{2^{j}}\right)^{2}\right| \geqq \prod_{j=1}^{\infty}\left(1-\frac{1}{2^{j}}\right)=C_{0}
$$

and a calculation similar to (11) gives us

$$
\prod_{i=1}^{n}\left|1-\left(\frac{z}{2^{j}}\right)^{2}\right| \geqq|z|^{n-8}
$$

Now $|\sin (\pi z)| \leqq\left(1+(\sinh 1)^{2}\right)^{1 / 2}$ for $z \in C_{n}$ and thus

$$
\left|\frac{\sin (\pi z)}{z \cdot \phi(z)}\right| \leqq \frac{\left(1+(\sinh 1)^{2}\right)^{1 / 2}}{C_{0}|z|^{n-8}} \quad \text { for all } z \in C_{n}
$$

An application of the maximum principle allows us to conclude that for all $x \in J_{n}$

$$
\begin{equation*}
|h(x)|=\left|\frac{\sin (\pi x)}{x \cdot \phi(x)}\right| \leqq \frac{K_{0}}{|x|^{n-\overline{8}}} \tag{13}
\end{equation*}
$$

where K_{0} is a constant independent of n. From (12) and (13) we deduce $h \in \mathscr{D}$.

It is possible to define V by two "good" functions namely $h_{1}(z)=$ $\sin (\pi z)$ and $h_{2}(z)$ which has the same zeros as $h_{1}(z)$ except for the zeros at $\pm 2^{n}, n=1,2, \ldots$ which are perturbed by some small amount. Then

$$
\left|h_{1}{ }^{\prime}(n)\right|+\left|h_{2}{ }^{\prime}(n)\right| \geqq \epsilon \exp \left(-C \log \left(1+n^{2}\right)\right)
$$

for all $n \neq 2^{k}, k=1,2, \ldots$
where ϵ, C are constants independent of n.
4. Necessary conditions for interpolation. We see in the example that the universal interpolation sequence $Z(h)$ can be defined as a subset of the zero set of a function with large derivative, namely $\sin (\pi z)$. This leads us to the question as to whether or not every universal interpolation sequence $V=\left\{\left(z_{k}, m_{k}\right)\right\}_{k=1}^{\infty}$ in the space A_{p} is the zero set of a function F satisfying

$$
\frac{\left|F^{(m k)}\left(z_{k}\right)\right|}{m_{k}!} \geqq \epsilon \exp \left(-C p\left(z_{k}\right)\right) \quad k=1,2, \ldots
$$

This problem was posed in [4] page 258 and the following theorem gives an affirmative answer to this question.

Theorem 1. If $V=\left\{\left(z_{k}, m_{k}\right)\right\}_{k=1}^{\infty} \subset Z(h)$ for $h \in A_{p}$ is a universal interpolation sequence for the space A_{p} then there exists a function $F \in A_{p}$ such that

$$
\left|F^{\left(m_{k}\right)}\left(z_{k}\right)\right| / m_{k}!\geqq \epsilon \exp \left(-C p\left(z_{k}\right)\right) \text { for all } k .
$$

Proof. The basic idea of the proof was communicated to us by E. Kronstadt. The proof will follow easily from the following two lemmas (see [3]).

Lemma 1. If V is a universal interpolation sequence for A_{p} then for all $C>0$, there exist constants A, B and functions $f_{k j} \in A_{p}$ such that $\rho\left(f_{k j}\right)=$ $e_{k j}\left(e_{k j}\right.$ is the sequence in $A_{p}(V)$ which is 0 except for a 1 at the (k, j) place) and

$$
\left|f_{k j}(z)\right| \leqq A \exp (B p(z)) / \exp \left(C p\left(z_{k}\right)\right)
$$

Lemma 2. If $V=\left\{\left(z_{k}, m_{k}\right)\right\}_{k=1}^{\infty}$ is a universal interpolation sequence for A_{p} then there exists $C>0$ such that

$$
\sum_{k=1}^{\infty} \exp \left(-C p\left(z_{k}\right)\right)<\infty .
$$

Assuming the two lemmas for the moment we will prove the theorem. Let

$$
F(z)=\sum_{k=1}^{\infty} m_{k}\left(z-z_{k}\right) f_{k m_{k}-1}(z) \cdot f_{k 0}(z)
$$

It suffices to show $|F(z)| \leqq A \exp (B p(z))$ for some constants A and B since by differentiating the sum term by term we see

$$
\frac{F^{\left(m_{k}\right)}\left(z_{k}\right)}{m_{k}!}=\frac{f_{k m k-1}^{\left(m_{k}-1\right)}\left(z_{k}\right)}{\left(m_{k}-1\right)!} \cdot f_{k 0}\left(z_{k}\right)=1
$$

Now we have

$$
\begin{aligned}
& |F(z)| \leqq \sum_{k=1}^{\infty} m_{k}\left(|z|+\left|z_{k}\right|\right)\left|f_{k m_{k}-1}(z)\right|\left|f_{k 0}(z)\right| \\
& \begin{array}{l}
\leqq|z| \cdot A^{2} \exp (2 B p(z)) \cdot \sum_{k=1}^{\infty} m_{k} \exp \left(-2 C p\left(z_{k}\right)\right) \\
\end{array} \quad+A^{2} \exp (2 B p(z)) \cdot \sum_{k=1}^{\infty} m_{k}\left|z_{k}\right| \exp \left(-2 C p\left(z_{k}\right)\right)
\end{aligned}
$$

using the estimate obtained for $\left|f_{k j}(z)\right|$ in Lemma 1. The next estimates require the following two facts
(i) $m_{k} \leqq E p\left(z_{k}\right)+F$ for some constants E, F independent of k (see [1] page 126).
(ii) $|z| \leqq \exp (K p(z))$ (a consequence of (4)).

Thus

$$
\begin{aligned}
|F(z)| \leqq & A^{\prime} \exp [(2 B+K) p(z)] \sum_{k=1}^{\infty} \\
& \left\{\exp \left[(-2 C+E) p\left(z_{k}\right)\right]\right. \\
& \leqq A^{\prime \prime} \exp [(2 B+K) p(z)]
\end{aligned}
$$

if C is chosen sufficiently large so that the sum converges. This completes the proof of the theorem.

Proof of Lemma 1. Let

$$
\begin{aligned}
& D=\left\{\gamma \in A_{p}(V)| | \gamma_{k j} \mid \leqq \exp \left(C p\left(z_{k}\right)\right)\right. \\
& \left.\quad j=0,1, \ldots, m_{k}-1, k=1,2, \ldots\right\}
\end{aligned}
$$

and let D have the topology induced by the norm

$$
\|\gamma\|=\sup _{k, j}\left|\gamma_{k j}\right| \exp \left(-C p\left(z_{k}\right)\right)
$$

With this norm we see that $D=\{\gamma \mid\|\gamma\| \leqq 1\}$ and D is closed in this topology.

Now let $U_{n}=\{f$ entire $| | f(z) \mid \leqq n \exp (n p(z))\}$.
Claim. $\rho\left(U_{n}\right) \cap D$ is closed in D, in the topology induced by $\|\|$.
Let $\left\{\rho\left(f_{j}\right)\right\}_{j=1}^{\infty} \subset \rho\left(U_{n} \cap D\right)$ such that $\rho\left(f_{j}\right) \rightarrow \gamma \in D$. Now all the f satisfy the uniform bound $\left|f_{j}(z)\right| \leqq n \exp (n p(z))$ and thus, because it is a normal family, there exists a subsequence $\left\{f_{j l}\right\}_{i=1}^{\infty}$ such that $f_{j l} \rightarrow$ $f \in U_{n}$ and $\rho(f)=\gamma$. From this we conclude $\rho\left(U_{n}\right) \cap D$ is closed and the claim is proved.

The hypothesis that V is a universal interpolation sequence is equivalent to ρ being onto and thus we have

$$
\bigcup_{n=1}^{\infty}\left[\rho\left(U_{n}\right) \cap D\right]=D .
$$

Now we apply the Baire Category theorem to conclude for some n, $\rho\left(U_{n}\right) \cap D$ contains an open set. Without loss of generality we can assume

$$
\rho\left(U_{n}\right) \cap D \supset\{\gamma \mid\|\gamma\| \leqq \epsilon\}
$$

and it easily follows that $\rho\left(1 / \epsilon U_{n}\right) \cap D=D$.
Thus we have shown there exist $\hat{f}_{k j}(z)$ such that

$$
\rho\left(\hat{f}_{k j}\right)=\exp \left(C p\left(z_{k}\right)\right) e_{k j} \text { and }\left|\hat{f}_{k j}(z)\right| \leqq A \exp (B p(z)) .
$$

If we let $f_{k j}(z)=\hat{f}_{k j}(z) / \exp \left(C p\left(z_{k}\right)\right)$ then

$$
\rho\left(f_{k j}\right)=e_{k j} \text { and }\left|f_{k j}(z)\right| \leqq A \exp (B p(z)) / \exp \left(C p\left(z_{k}\right)\right) .
$$

This completes the proof of Lemma 1.
Proof of Lemma 2. We know that since p satisfies (1) there exists $C_{1}>0$ such that

$$
\int_{\mathbf{G}} \exp \left(-C_{1} p(z)\right) d x d y<\infty .
$$

Let $d_{j}=\min _{k \neq j}\left|z_{k}-z_{j}\right|$, the distance of the closest zero to z_{j}, and let B_{j} be the disc of radius $r_{j}=\min \left\{d_{j} / 2,1\right\}$ about z_{j}. Then we have

$$
\sum_{j=1}^{\infty} \int_{B_{j}} \exp \left(-C_{1} p(z)\right) d x d y \leqq \int_{\mathrm{C}} \exp \left(-C_{1} p(z)\right) d x d y<\infty .
$$

It can be shown that $d_{j} / 2 \geqq \epsilon \exp \left(-C_{2} p\left(z_{j}\right)\right)$ (see [1], page 126) which implies

$$
\epsilon \exp \left(-C_{2} p\left(z_{j}\right)\right) \leqq r_{j} \leqq 1 .
$$

From the hypothesis that p satisfies (2) we have $p(z) \leqq A p\left(z_{j}\right)+B$ for
all $z_{j} \in B_{j}$. Thus it follows that

$$
\begin{aligned}
& \int_{B_{j}} \exp \left(-C_{1} p(z)\right) d x d y \geqq \int_{B_{j}} \epsilon \exp \left(-C_{3} \not p\left(z_{j}\right)\right) d x d y \\
& \geqq \epsilon \exp \left(-C_{3} p\left(z_{j}\right)\right) \int_{B_{j}} 1 d x d y \geqq \epsilon \exp \left(-C p\left(z_{j}\right)\right)
\end{aligned}
$$

for some constant C larger than C_{2} and C_{3}. From the above inequality we can conclude

$$
\sum_{j=1}^{\infty} \exp \left(-C p\left(z_{j}\right)\right)<\infty
$$

This completes the proof of Lemma 2.
Theorem 1 and a result of Berenstein and Taylor (see [1]) gives us necessary and sufficient conditions for universal interpolation in the spaces A_{p}. This is the content of Theorem 2.

Theorem 2. Let $V=\left\{\left(z_{k}, m_{k}\right)\right\}_{k=1}^{\infty} \subset Z(h)$ for some $h \in A_{p}$. Then V is a universal interpolation sequence in A_{p} if and only if there exist F_{1}, $F_{2} \in A_{p}$ such that $V=Z\left(F_{1}, F_{2}\right)$ and

$$
\begin{equation*}
\frac{\left|F_{1}^{\left(m_{k}\right)}\left(z_{k}\right)\right|}{m_{k}!}+\frac{\left|F_{2}^{\left(m_{k}\right)}\left(z_{k}\right)\right|}{m_{k}!} \geqq \epsilon \exp \left(-C p\left(z_{k}\right)\right) \quad k=1,2, \ldots \tag{14}
\end{equation*}
$$

for some constants ϵ, C independent of k.
Proof. (\Rightarrow) Theorem 1 shows that there exists one function F_{1} which satisfies (14) at every point $z_{k} \in V$. We will show, by perturbing those zeros of F_{1} which are not in V, there exists a function $F_{2} \in A_{p}$ such that $V=Z\left(F_{1}, F_{2}\right)$.

Define

$$
F_{2}(z)=F_{1}(z) \prod_{k=1}^{\infty}\left(\frac{z-w_{k}+\epsilon_{k}}{z-w_{k}}\right)^{n k}
$$

where $\left\{\left(w_{k}, n_{k}\right)\right\}_{k=1}^{\infty}=Z\left(F_{1}\right) \sim V$ and $\left\{\epsilon_{k}\right\}_{k=1}^{\infty}$ is a sequence of small constants to be chosen later. Now let $\left\{a_{k}\right\}_{k=1}^{\infty},\left\{b_{k}\right\}_{k=1}^{\infty}$ be two sequences of positive numbers satisfying the following conditions:
(i) The discs $D\left(w_{k}, b_{k}\right)=\left\{z| | z-w_{k} \mid \leqq b_{k}\right\}$ are pairwise disjoint.
(ii) $b_{k} \leqq 1$ for all k so that $p(z) \leqq C p\left(w_{k}\right)+D$ for $z \in D\left(w_{k}, b_{k}\right)$.
(iii) $\sum_{k=1}^{\infty} \frac{n_{k}}{a_{k}}=K<\infty$.

Define $\epsilon_{k}=b_{k} / a_{k}$. It remains to prove $F_{2} \in A_{p}$ and it will suffice to show $\left|F_{2}(z)\right| \leqq K_{1}\left|F_{1}(z)\right|$ for some constant K_{1}. First assume $\left|z-w_{k}\right| \geqq$
b_{k} for all k. Then we have

$$
\begin{aligned}
\left|F_{2}(z)\right| & \leqq\left|F_{1}(z)\right| \prod_{k=1}^{\infty}\left|1+\frac{\epsilon_{k}}{z-w_{k}}\right|^{n_{k}} \leqq\left|F_{1}(z)\right| \prod_{k=1}^{\infty}\left|1+\frac{1}{a_{k}}\right|^{n_{k}} \\
& \leqq \exp (K)\left|F_{1}(z)\right| .
\end{aligned}
$$

Now suppose $\left|z-w_{k}\right| \leqq b_{k}$ for some k (exactly one k by (i)). By applying the maximum principle and noting that (ii) holds it suffices to consider $\left|z-w_{k}\right|=b_{k}$. The above estimate still holds in this case, namely

$$
\left|F_{2}(z)\right| \leqq \exp (K)\left|F_{1}(z)\right| \text { for }\left|z-w_{k}\right|=b_{k} .
$$

Thus we conclude $F_{2} \in A_{p}$ as desired.
(\Rightarrow) This follows from Theorem 4 page 126 of [1].
Remark. Theorem 2 actually gives no more information than Theorem 1 since given an arbitrary sequence $V \subset Z(h)$ for some $h \in A_{p}$ we have no constructive procedure for finding F_{1} and F_{2}.

References

1. C. A. Bernstein and B. A. Taylor, A new look at interpolation theory for entire functions of one variable, Advances in Math. 33 (1979), 109-143.
2. A. F. Leont'ev, Representation of functions by generalized Dirichlet series, Math. U.S.S.R. Izvestija 6 (1972), 1265-1277.
3. B. A. Taylor, Class notes for Math 704, The University of Michigan, Winter Semester (1977).
4. Academia Nauk S.S.R. Math. Inst. B. A. Steklov Zapiski Nauchnykh Seminarov, Isslevovaniia Po Lineinym Operatoram I Teorii Funkstii, 99 Nereshennykh Zadach Lineinoho I Kompleksnoh Analiza 81 (1978).

California Institute of Technology, Pasadena, California

