NECESSARY CONDITIONS FOR UNIVERSAL INTERPOLATION IN &

W. A. SQUIRES

1. Introduction. Let \mathscr{E}' be the space of Fourier transforms of distributions with compact support, or equivalently, the space of entire functions h satisfying the growth condition

(1)
$$|g(z)| \leq A \exp(Bp(z))$$
 for all $z \in \mathbf{C}$

where $p(z) = |\text{Im } z| + \log (1 + |z|^2)$ and A, B are constants depending only on h. A sequence $\{z_k\}_{k=1}^{\infty} \subset \mathbf{C}$ with $|z_k| \uparrow \infty$ is said to be a *universal* interpolation sequence for $\hat{\mathscr{E}}'$ if for all $\{a_k\}_{k=1}^{\infty}$ such that

(2)
$$|a_k| \leq A \exp(Bp(z_k))$$
 $k = 1, 2, ...$

for constants A, B independent of k, there exists $f \in \hat{\mathscr{E}}'$ such that $f(z_k) = a_k$. In this note we will consider necessary conditions for universal interpolation in $\hat{\mathscr{E}}'$ and more general subspaces of the entire functions.

If $\{z_k\}_{k=1}^{\infty}$ is a universal interpolating sequence for $\hat{\mathscr{E}}'$ then for some $h \in \hat{\mathscr{E}}'$ we must have

 $\{z_k\}_{k=1}^{\infty} \subset Z(h) = \{z \mid h(z) = 0\}.$

To see this note that $\{z_k\}_{k=1}^{\infty}$ a universal interpolation sequence implies there exists $f \in \hat{\mathscr{E}}'$ such that $f(z_1) = 1$, $f(z_k) = 0$, $k = 2, 3, \ldots$. Thus we have

$$\{z_k\}_{k=1}^{\infty} \subset Z((z-z_1)f(z))$$

where $f \neq 0$.

If in (1) we let p(z) = |z| the resulting space of entire functions is the space of functions of exponential type, denoted A_1 . It is known (see [2]) that if $\{z_k\}_{k=1}^{\infty} = Z(h)$ for some $h \in A_1$ then $\{z_k\}_{k=1}^{\infty}$ is a universal interpolation sequence for A_1 if and only if

(3) $|h'(z_k)| \geq \epsilon \exp(-Cp(z_k))$ $k = 1, 2, \ldots$

with ϵ , C constants independent of k. This result is false for $\hat{\mathscr{E}}'$ as our example will show which answers the question posed in [1], page 34.

In a positive direction we have Theorem 1 which shows that if $\{z_k\}_{k=1}^{\infty}$ is a universal interpolation sequence for $\hat{\mathscr{O}}'$ then there exists

Received May 28, 1980 and in revised form November 10, 1980.

 $h\in {\mathscr E}^{\hat{c}\,\prime}$ such that $\{z_k\}_{k=1}^\infty\subset Z(h)$ and (3) holds for

$$p(z_k) = |\operatorname{Im} z_k| + \log (1 + |z_k|^2), \quad k = 1, 2, \ldots$$

Theorem 1, together with a result of Berenstein and Taylor gives us Theorem 2, namely, necessary and sufficient conditions for $\{z_k\}_{k=1}^{\infty}$ to be a universal interpolation sequence in $\hat{\mathscr{C}}'$. The condition for universal interpolation involves finding two defining functions $f_1, f_2 \in \hat{\mathscr{C}}'$ for $\{z_k\}_{k=1}^{\infty}$ such that

$$\{z_k\}_{k=1}^{\infty} = Z(f_1, f_2) = \{z | f_1(z) = f_2(z) = 0\}$$

and $|f_1'| + |f_2'|$ satisfies (3) for

 $p(z_k) = |\operatorname{Im} z_k| + \log (1 + |z_k|^2).$

However, this theorem does not give a practical way of determining whether or not $\{z_k\}_{k=1}^{\infty}$ is a universal interpolation sequence since we have no constructive way of finding f_1 and f_2 .

2. Notation and definitions. We shall always assume that p(z) is a subharmonic function defined for all $z \in \mathbf{C}$, $p \neq -\infty$, satisfying the following two conditions (see [1] for more details)

(4) $p(z) \ge 0$ and $\log (1 + |z|^2) = O(p(z))$

(5) there exist constants C and D such that

 $|\zeta - z| \leq \text{implies } p(\zeta) \leq Cp(z) + D.$

Note that (5) says that p is approximately constant on discs of radius less than or equal to 1.

Definition. $A_p = \{ f \text{ entire} | |f(z)| \leq A \exp (Bp(z)) \text{ for some constants} A, B \text{ depending on } f \}.$

It is easily seen that conditions (4) and (5) on p(z) imply

(6) all polynomials belong to A_p

(7) A_p is closed under differentiation, that is, $f \in A_p$ implies $f' \in A_p$.

The two most important examples of such functions p are

p(z) = |z| and $p(z) = |\text{Im } z| + \log (1 + |z|^2)$

corresponding to the spaces A_1 of entire functions of exponential type and \mathscr{E}' .

We will now define what we mean by a universal interpolation sequence for the spaces A_p . Let $V = \{(z_k, m_k)\}_{k=1}^{\infty} \subset Z(h)$ for some $h \in A_p$ where (z_k, m_k) means a zero of multiplicity m_k at z_k . Definition. $A_p(V) = \{\gamma = \{\gamma_{kj}\}_{j=0}^{m_k-1} \bigotimes_{k=1}^{\infty} ||\gamma_{kj}| \leq A \exp(Bp(z_k)) \text{ for constants } A \text{ and } B, \text{ independent of } k \text{ but depending on } \gamma\}.$

With the above definition define the restriction map $\rho: A_p \to A_p(V)$ by

$$\rho(f) = \gamma$$

where

$$\frac{f^{(j)}}{j!}(z_k) = \gamma_{kj} \quad j = 0, 1, \ldots, m_k - 1, k = 1, 2, \ldots$$

Definition. A multiplicity sequence $V = \{(z_k, m_k)\}_{k=1}^{\infty}$ will be called a universal interpolation sequence if the restriction map ρ is onto.

3. Example. Now we will give an example of a variety $V = \{z_k\}_{k=1}^{\infty}$, each point having multiplicity one and V = Z(h) for $h \in \hat{\mathscr{O}}'$. The variety will have the property that V is a universal interpolation sequence for $\hat{\mathscr{O}}'$ and h' is too small on V, that is, there exist no constants ϵ , C such that

$$|h'(z_k)| \ge \epsilon \exp (-C[|\operatorname{Im} z_k| + \log (1 + |z_k|^2)]).$$

Let

$$\phi(z) = \prod_{j=1}^{\infty} \left(1 - \left(\frac{z}{2^j}\right)^2\right)$$

and let

$$h(z) = \frac{\sin (\pi z)}{\phi(z) \cdot z}$$

We will show that for each n there exists C_n such that

(8)
$$|h(x)| \leq C_n/(1+|x|)^n$$
 for all $x \in \mathbf{R}$, $n = 0, 1, 2, ...$

Since h is an even function and $Z(h) \subset Z$ (sin (πz)) it is clear that h is of exponential type. This fact and (8) imply $h \in \hat{\mathcal{D}}$, where $\hat{\mathcal{D}}$ is the space of Fourier transforms of C^{∞} functions with compact support.

It is clear that V = Z(h) is a universal interpolation sequence for $\hat{\mathscr{C}}'$ since $V \subset Z(\sin(\pi z))$ and $Z(\sin(\pi z))$ is certainly a universal interpolation sequence for $\hat{\mathscr{C}}'$ as is easily seen from Theorem 4 [1]. Since $h \in \hat{\mathscr{D}}$ we have $h' \in \hat{\mathscr{D}}$ and thus it is clear that h cannot satisfy inequality (3) for any constants ϵ , C.

Now we will prove (8). To prove (8) it suffices to prove that

(9)
$$|h(x)| \leq K_0/|x|^{n-8}$$
 for all $x, 2^{n-1} \leq x \leq 2^n$

where K_0 is a constant independent of n.

First let $x \in I_n = [2^{n-1} + 1, 2^n - 1]$. Since we are assuming $x \leq 2^n$ then for $j \geq n$ we have

$$1 - \left(\frac{x}{2^{j}}\right)^{2} \ge 1 - \frac{1}{2^{2(j-n)}}$$

which implies

$$\prod_{j=n+1}^{\infty} \left(1 - \left(\frac{x}{2^j}\right)^2\right) \ge \prod_{j=1}^{\infty} \left(1 - \frac{1}{2^j}\right) = C_0$$

Thus we have

(10)
$$|h(x)| \leq \prod_{j=1}^n \left|1 - \left(\frac{x}{2^j}\right)^2\right|^{-1} \cdot \frac{1}{C_0} \text{ for all } x \in I_n.$$

Next let us compute a lower bound for the product

$$\left|\prod_{j=1}^n \left(1-\left(\frac{x}{2^j}\right)^2\right)\right|\,.$$

We have

$$\begin{split} \prod_{j=1}^{n} \left| 1 - \left(\frac{x}{2^{j}}\right)^{2} \right| &\geq \prod_{j=1}^{n-2} \left| \frac{2^{2j} - x^{2}}{2^{2j}} \right| \cdot \frac{1}{2^{2n-2}} \cdot \frac{1}{2^{2n}} \\ &\geq \frac{1}{2^{4n-2}} \prod_{j=2}^{n-2} \frac{(2^{2n-2} - 2^{2j})}{2^{2j}} \geq \frac{1}{2^{4n-2}} \cdot \frac{1}{2^{n-2}} \cdot \prod_{j=1}^{n-2} 2^{2n-2j-2} \\ &\geq \frac{1}{2^{5n-4}} \cdot 2^{(n-2)(n-1)} \geq 2^{6} (2^{n})^{n-8}. \end{split}$$

Hence

(11)
$$\prod_{j=1}^{n} \left| 1 - \left(\frac{x}{2^{j}} \right)^{2} \right| \ge |x|^{n-8}.$$

The last inequality along with (10) gives

(12)
$$|h(x)| \leq 1/C_0 |x|^{n-8}$$
 for all $x \in I_n$.

We will now consider x in the interval $J_n = [2^n - 1, 2^n + 1]$ and show that (12) holds for $x \in J_n$ with $1/C_0$ replaced by a larger constant. We will obtain a lower bound for ϕ on the circle $C_n = \{z \mid |z - 2^n| = 1\}$ which will give an upper bound for h on C_n and applying the maximum principle we get the desired upper bound for $x \in [2^n - 1, 2^n + 1]$.

For $z \in C_n$ it is easy to show

$$\prod_{j=n+1}^{\infty} \left| 1 - \left(\frac{z}{2^j} \right)^2 \right| \ge \prod_{j=1}^{\infty} \left(1 - \frac{1}{2^j} \right) = C_0$$

and a calculation similar to (11) gives us

$$\prod_{j=1}^n \left| 1 - \left(\frac{z}{2^j} \right)^2 \right| \ge |z|^{n-8}.$$

Now $|\sin (\pi z)| \leq (1 + (\sinh 1)^2)^{1/2}$ for $z \in C_n$ and thus

$$\left| \left| rac{\sin\left(\pi z
ight)}{z\cdot\phi(z)}
ight| \leq rac{\left(1+\left(\sinh1
ight)^{2}
ight)^{1/2}}{C_{0}\left|z
ight|^{n-8}} ext{ for all } z\in \mathit{C_{n}}.$$

An application of the maximum principle allows us to conclude that for all $x \in J_n$

(13)
$$|h(x)| = \left| \frac{\sin(\pi x)}{x \cdot \phi(x)} \right| \leq \frac{K_0}{|x|^{n-\delta}}$$

where K_0 is a constant independent of n. From (12) and (13) we deduce $h \in \mathscr{D}$.

It is possible to define V by two "good" functions namely $h_1(z) = \sin(\pi z)$ and $h_2(z)$ which has the same zeros as $h_1(z)$ except for the zeros at $\pm 2^n$, $n = 1, 2, \ldots$ which are perturbed by some small amount. Then

$$|h_1'(n)| + |h_2'(n)| \ge \epsilon \exp(-C\log(1+n^2))$$

for all $n \ne 2^k$, $k = 1, 2, ...$

where ϵ , C are constants independent of n.

4. Necessary conditions for interpolation. We see in the example that the universal interpolation sequence Z(h) can be defined as a subset of the zero set of a function with large derivative, namely $\sin(\pi z)$. This leads us to the question as to whether or not every universal interpolation sequence $V = \{(z_k, m_k)\}_{k=1}^{\infty}$ in the space A_p is the zero set of a function F satisfying

$$\frac{|F^{(m_k)}(z_k)|}{m_k!} \ge \epsilon \exp\left(-C\rho(z_k)\right) \quad k = 1, 2, \ldots$$

This problem was posed in [4] page 258 and the following theorem gives an affirmative answer to this question.

THEOREM 1. If $V = \{(z_k, m_k)\}_{k=1}^{\infty} \subset Z(h)$ for $h \in A_p$ is a universal interpolation sequence for the space A_p then there exists a function $F \in A_p$ such that

$$|F^{(m_k)}(z_k)|/m_k! \geq \epsilon \exp(-C\rho(z_k))$$
 for all k.

Proof. The basic idea of the proof was communicated to us by E. Kronstadt. The proof will follow easily from the following two lemmas (see [3]).

LEMMA 1. If V is a universal interpolation sequence for A_p then for all C > 0, there exist constants A, B and functions $f_{kj} \in A_p$ such that $\rho(f_{kj}) = e_{kj}$ (e_{kj} is the sequence in $A_p(V)$ which is 0 except for a 1 at the (k, j) place) and

$$|f_{kj}(z)| \leq A \exp(Bp(z))/\exp(Cp(z_k)).$$

LEMMA 2. If $V = \{(z_k, m_k)\}_{k=1}^{\infty}$ is a universal interpolation sequence for A_p then there exists C > 0 such that

$$\sum_{k=1}^{\infty} \exp\left(-Cp(z_k)\right) < \infty.$$

Assuming the two lemmas for the moment we will prove the theorem. Let

$$F(z) = \sum_{k=1}^{\infty} m_k (z - z_k) f_{km_k-1}(z) \cdot f_{k0}(z).$$

It suffices to show $|F(z)| \leq A \exp(Bp(z))$ for some constants A and B since by differentiating the sum term by term we see

$$\frac{F^{(m_k)}(z_k)}{m_k!} = \frac{f_{km_k-1}^{(m_k-1)}(z_k)}{(m_k-1)!} \cdot f_{k0}(z_k) = 1.$$

Now we have

$$|F(z)| \leq \sum_{k=1}^{\infty} m_k (|z| + |z_k|) |f_{km_k-1}(z)| |f_{k0}(z)|$$

$$\leq |z| \cdot A^2 \exp(2Bp(z)) \cdot \sum_{k=1}^{\infty} m_k \exp(-2Cp(z_k))$$

$$+ A^2 \exp(2Bp(z)) \cdot \sum_{k=1}^{\infty} m_k |z_k| \exp(-2Cp(z_k))$$

using the estimate obtained for $|f_{kj}(z)|$ in Lemma 1. The next estimates require the following two facts

(i) $m_k \leq Ep(z_k) + F$ for some constants E, F independent of k (see [1] page 126).

(ii) $|z| \leq \exp(Kp(z))$ (a consequence of (4)). Thus

$$|F(z)| \leq A' \exp \left[(2B + K)p(z) \right] \sum_{k=1}^{\infty} \left\{ \exp \left[(-2C + E)p(z_k) \right] + \exp \left[(-2C + E + K)p(z_k) \right] \right\}$$
$$\leq A'' \exp \left[(2B + K)p(z) \right]$$

if C is chosen sufficiently large so that the sum converges. This completes the proof of the theorem.

Proof of Lemma 1. Let

$$D = \{ \gamma \in A_p(V) | |\gamma_{kj}| \leq \exp(Cp(z_k)), \\ j = 0, 1, \dots, m_k - 1, k = 1, 2, \dots \}$$

and let D have the topology induced by the norm

 $\|\boldsymbol{\gamma}\| = \sup_{k,j} |\boldsymbol{\gamma}_{kj}| \exp (-C \boldsymbol{p}(z_k)).$

With this norm we see that $D = \{\gamma | ||\gamma|| \leq 1\}$ and D is closed in this topology.

Now let $U_n = \{ f \text{ entire } | |f(z)| \leq n \exp (np(z)) \}.$

Claim. $\rho(U_n) \cap D$ is closed in D, in the topology induced by $\| \|$.

Let $\{\rho(f_j)\}_{j=1}^{\infty} \subset \rho(U_n \cap D)$ such that $\rho(f_j) \to \gamma \in D$. Now all the f satisfy the uniform bound $|f_j(z)| \leq n \exp(np(z))$ and thus, because it is a normal family, there exists a subsequence $\{f_{jl}\}_{i=1}^{\infty}$ such that $f_{jl} \to f \in U_n$ and $\rho(f) = \gamma$. From this we conclude $\rho(U_n) \cap D$ is closed and the claim is proved.

The hypothesis that V is a universal interpolation sequence is equivalent to ρ being onto and thus we have

$$\bigcup_{n=1}^{\infty} \left[\rho(U_n) \cap D \right] = D.$$

Now we apply the Baire Category theorem to conclude for some n, $\rho(U_n) \cap D$ contains an open set. Without loss of generality we can assume

$$\rho(U_n) \cap D \supset \{\gamma \mid \|\gamma\| \leq \epsilon\}$$

and it easily follows that $\rho(1/\epsilon U_n) \cap D = D$.

Thus we have shown there exist $\hat{f}_{kj}(z)$ such that

$$\rho(\hat{f}_{kj}) = \exp (Cp(z_k))e_{kj} \text{ and } |\hat{f}_{kj}(z)| \leq A \exp (Bp(z)).$$

If we let $f_{kj}(z) = \hat{f}_{kj}(z)/\exp(Cp(z_k))$ then

$$\rho(f_{kj}) = e_{kj}$$
 and $|f_{kj}(z)| \leq A \exp(Bp(z))/\exp(Cp(z_k))$.

This completes the proof of Lemma 1.

Proof of Lemma 2. We know that since p satisfies (1) there exists $C_1 > 0$ such that

$$\int_{\mathbf{C}} \exp\left(-C_{\mathbf{1}}p(z)\right) dx dy < \infty.$$

Let $d_j = \min_{k \neq j} |z_k - z_j|$, the distance of the closest zero to z_j , and let B_j be the disc of radius $r_j = \min \{d_j/2, 1\}$ about z_j . Then we have

$$\sum_{j=1}^{\infty} \int_{B_j} \exp\left(-C_1 p(z)\right) dx dy \leq \int_{\mathbf{C}} \exp\left(-C_1 p(z)\right) dx dy < \infty.$$

It can be shown that $d_j/2 \ge \epsilon \exp(-C_2 p(z_j))$ (see [1], page 126) which implies

$$\epsilon \exp\left(-C_2 p(z_j)\right) \leq r_j \leq 1.$$

From the hypothesis that p satisfies (2) we have $p(z) \leq Ap(z_j) + B$ for

all $z_j \in B_j$. Thus it follows that

$$\int_{B_j} \exp(-C_1 p(z)) dx dy \ge \int_{B_j} \epsilon \exp(-C_3 p(z_j)) dx dy$$
$$\ge \epsilon \exp(-C_3 p(z_j)) \int_{B_j} 1 dx dy \ge \epsilon \exp(-C p(z_j))$$

for some constant C larger than C_2 and C_3 . From the above inequality we can conclude

$$\sum_{j=1}^{\infty} \exp\left(-Cp(z_j)\right) < \infty$$

This completes the proof of Lemma 2.

Theorem 1 and a result of Berenstein and Taylor (see [1]) gives us necessary and sufficient conditions for universal interpolation in the spaces A_p . This is the content of Theorem 2.

THEOREM 2. Let $V = \{(z_k, m_k)\}_{k=1}^{\infty} \subset Z(h)$ for some $h \in A_p$. Then V is a universal interpolation sequence in A_p if and only if there exist F_1 , $F_2 \in A_p$ such that $V = Z(F_1, F_2)$ and

(14)
$$\frac{|F_1^{(m_k)}(z_k)|}{m_k!} + \frac{|F_2^{(m_k)}(z_k)|}{m_k!} \ge \epsilon \exp(-Cp(z_k)) \quad k = 1, 2, \dots$$

for some constants ϵ , C independent of k.

Proof. (\Rightarrow) Theorem 1 shows that there exists one function F_1 which satisfies (14) at every point $z_k \in V$. We will show, by perturbing those zeros of F_1 which are not in V, there exists a function $F_2 \in A_p$ such that $V = Z(F_1, F_2)$.

Define

$$F_2(z) = F_1(z) \prod_{k=1}^{\infty} \left(\frac{z - w_k + \epsilon_k}{z - w_k} \right)^{n_k}$$

where $\{(w_k, n_k)\}_{k=1}^{\infty} = Z(F_1) \sim V$ and $\{\epsilon_k\}_{k=1}^{\infty}$ is a sequence of small constants to be chosen later. Now let $\{a_k\}_{k=1}^{\infty}$, $\{b_k\}_{k=1}^{\infty}$ be two sequences of positive numbers satisfying the following conditions:

(i) The discs $D(w_k, b_k) = \{z \mid |z - w_k| \leq b_k\}$ are pairwise disjoint.

(ii) $b_k \leq 1$ for all k so that $p(z) \leq Cp(w_k) + D$ for $z \in D(w_k, b_k)$.

(iii)
$$\sum_{k=1}^{\infty} \frac{n_k}{a_k} = K < \infty$$
.

Define $\epsilon_k = b_k/a_k$. It remains to prove $F_2 \in A_p$ and it will suffice to show $|F_2(z)| \leq K_1|F_1(z)|$ for some constant K_1 . First assume $|z - w_k| \geq$

 b_k for all k. Then we have

$$|F_{2}(z)| \leq |F_{1}(z)| \prod_{k=1}^{\infty} \left| 1 + \frac{\epsilon_{k}}{z - w_{k}} \right|^{n_{k}} \leq |F_{1}(z)| \prod_{k=1}^{\infty} \left| 1 + \frac{1}{a_{k}} \right|^{n_{k}} \leq \exp(K) |F_{1}(z)|.$$

Now suppose $|z - w_k| \leq b_k$ for some k (exactly one k by (i)). By applying the maximum principle and noting that (ii) holds it suffices to consider $|z - w_k| = b_k$. The above estimate still holds in this case, namely

 $|F_2(z)| \leq \exp((K)|F_1(z)| \text{ for } |z - w_k| = b_k.$

Thus we conclude $F_2 \in A_p$ as desired.

 (\Rightarrow) This follows from Theorem 4 page 126 of [1].

Remark. Theorem 2 actually gives no more information than Theorem 1 since given an arbitrary sequence $V \subset Z(h)$ for some $h \in A_p$ we have no constructive procedure for finding F_1 and F_2 .

References

- 1. C. A. Bernstein and B. A. Taylor, A new look at interpolation theory for entire functions of one variable, Advances in Math. 33 (1979), 109-143.
- A. F. Leont'ev, Representation of functions by generalized Dirichlet series, Math. U.S.S.R. Izvestija 6 (1972), 1265–1277.
- 3. B. A. Taylor, *Class notes for Math* 704, The University of Michigan, Winter Semester (1977).
- Academia Nauk S.S.R. Math. Inst. B. A. Steklov Zapiski Nauchnykh Seminarov, Isslevovaniia Po Lineinym Operatoram I Teorii Funkstii, 99 Nereshennykh Zadach Lineinoho I Kompleksnoh Analiza 81 (1978).

California Institute of Technology, Pasadena, California