BULL. AUSTRAL. MATH. Soc. 54C10
VoL. 38 (1988) [335-338]

CHARACTERISATION OF FUNCTIONAL PROPERTIES BY NETS

CaRrLOS R. BORGEs

We characterise continuous closed (perfect, open) functions in terms of nets. This enables
us to improve some significant results, with much simpler proofs.

The primary motivation for this study is the following result of Bourbaki, a nice
proof of which appears in Lemma 14 of [2]. Let X, Y and Z be Tychonoff spaces. If
f: X »Y and g: Y —-» Z are continuous onto maps such that h = gf is perfect, then
f and g are perfect.

The preceding result has played a major réle in the proof of several significant
results, but its proof is surely nontrivial and requires the machinery of compactifications.
Our characterisation of closed continuous functions allows us to prove this result in a

more general setting, with little effort. There are other gains.

THEOREM 1. Let f: X » Y be a continuous map from X onto Y. Then f isa
closed map if and only if, for each y € Y, net{y,},en in Y which converges to y and
any choice of z, € f~'(y,), ({zo |v €A} N Fl(y) #0.

PROOF: The “only if” part. Suppose f is closed and limy,, =y, v € A. Pick ¢, €

1 4
f(y,),foreach v € A, and let A = {z, | v € A}. Assuming that AN f~ (y) =0, we
then get that y ¢ f(A) = f(A) (because f is closed), which contradicts limy, = y.
v

The “if” part. Assume A is a closed subset of X but f(A) is not a closed subset

of Y. Pick y € f(A) ~ f(A) and net{y,}ven in f(A) such that limy, = y. For

each v € A, pick z, € f~'(y,) N A. Then ({z, |v € A})” C A which implies that
({zv | v € A}) N f~1(y) = @, which contradicts the hypothesis. (]

THEOREM 2. Let f be a continuous map from X onto Y. Then f is a perfect
map if and only if, for each y € Y, net{y,}ser in Y which converges to y and any
choice of ¢, € f™'(yo), {To}oer has a cluster point in f~1(y).

PROOF: The “only if” part. Let us assume that {z,}ser does not have a cluster
point in f~(y). Then, for each z € f~1(y), there exists an open neighbourhood U,
of z in X and some f; € I’ suchthatz, ¢ U, forall v > 8,, v € T'. Since f~¥(y) is
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compact, let Uz, ,...,Us, cover f~!(y). Pick v € T such that v > Bz,,...,7 > Bs, -
Since f is closed there exists an open neighbourhood U of y such that f=(U) C
Uy, U...UU,, . It follows that A = ({z, |v€T,v>~})" C X — f~Y(U), which
implies that y ¢ ({y, | v € T,v > 9})” = f(A), a contradiction (because litx'n Yo = Y).

The “if” part. We get immediately from Theorem 1 that f is a closed map.
Therefore, we need only show that each f~!(y) is compact: suppose not. Pick p€ Y
such that f~!(p) is not compact. Let {z,},cr be anetin f~!(p) which has no cluster
point in f~!(p). Then, letting y, = p, for all v € A, we get a net {y,},en in ¥ which
converges to p and points z, € f~(y,) such that {z,},eca has no cluster point in
f~1(p), a contradiction. This completes the proof. |

THEOREM 3. Let f be a continuous map from X onto Y. Then f is open if and
only if, foreach y €Y , z € f~Yy) and net {y,}vecn in Y which converges to y, there
exists a net contained in f~'({y, | v € A}) which converges to z .

PrOOF: The “only if” part. Let {N4(z) | @ € D} be an open neighbourhood base
for £ € X and direct D by inclusion (that is, @ < 8 « Ny{z) 2 Ng(z)). Since f is
open and continuous, we get that {f(/N,(X)) | @ € D} is an open neighbourhood base
for y € Y. For each a € D, pick v, € A such that y,, € f(Na(X)). (It can happen
that there are a, 8 € A such that a # 8 but vo = 13; see Proposition 4.) Next, for
each a € D, pick z4 € No(X) N f~(y,, ) and note that lign:ca = . Clearly the net
{za}aep satisfies all requirements.

The “if” part. Suppose U # 0 is an open subset of X such that f(U) is not
open in Y. Pick y € f(U) such that y € (Y — f(U))™; then pick a net {y,},er in
Y — f(U) such that lilr’n Yy = y. Next, pick z € f~}(y) N U and, by hypothesis, pick
a net {¢q}acp contained in f~!({y, | v € A}) such that H;nza = z; note that this

contradicts “z € U and U N f~({y, | v € A}) = 0.” This completes the proof. 1

PRrROPOSITION 4. Let f be a continuous map from X onto Y. The following
conditions are suflicient but not necessary for f to be an open map: for each y € Y,
z € f~Yy) and net {y,},en which converges to y, there exists z, € f~(y,) such
that « € ({z, | v € A})™ or z is a cluster point of ({z,}ven ).

PRroOOF: The conditions are sufficient for f to be open; suppose not. Let U # 0
be an open subset of X such that f(U) is not openin Y. Pick y € f(U) such that
y € (Y — f(U))™; then pick a net {y,},en in ¥ — f(U) such that lilxlny,, = y. Next,
pick z € f~!(y) N U and, by hypothesis, pick z, € f~*(y, ), for each v € A such that
z € ({z, | v €A})” (or z is a cluster point of {z,},ecn ); note that this contradicts
“zeU and UN f~'({y» | v € A}) = 0.” This shows that f is open.

The conditions are not necessary for f to be open: Let N denote the positive
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integers and X = {(0,0)} U {(m,n) | m,n € N}. Let 7 be the topology for X
generated by the following collection B; of subsets of X: if (m,n) € X — {(0,0)} then
{(m,n)} € B;. If (0,0) € U then U € B; provided that U contains all but a finite
number of elements of all but a finite number of columns of X (that is, for (m,n) €
X ~{0,0}, {(m,7) | j € N} is the column through (m,n)). Let ¥ = {0}U{m | m € N}
and let 7, be the topology for Y generated by the following collection B; of subsets
of Y:if m#0 and m € X, then {m} € B;. If 0 € U then U € B, provided that
Y — U is a finite set.

Now, let f: X — Y be the map defined by f((m,n)) = m. It is easily seen that
f is continuous and open. However, letting y =0, z = (0,0) € f~(y) and choosing
the sequence {m}meco which converges to y in (Y, 7;), we easily see that if we choose
any z, € f~1(m),for m=1,2,..., then * ¢ ({zm |m =1,2,...})” (hence z is not
a cluster point of {z,,}mew ). This completes the proof. 1

THEOREM 5. Let X, Y and Z be topological spaces such that Y is Hausdorff. If
f: X »Y and ¢g: Y -» Z are continuous onto functions such that h = gf is perfect,
then f and g are perfect.

PROOF: The argument consists of several parts.

(i) g is closed; note that, for each 4 C Y, hf~1(4) = g(4) (hfY(4A) =
(9£)f~(A) = g(ff1)(A) = g(A)). Consequently, if A is a closed subset
of Y, we immediately get that g(A4) = hf~1(A) is closed.

(i) f~'(y) is compact, for each y € Y : note that h~1g(y) is compact and
F~1(y) is a closed subspace of h™¢g(y).

(iii) g~'(z) is compact, for each z € Z: note that h~1(z) = f~1g71(2) is
compact and ¢=(z) = fh7(z).

(iv) f is closed: (we use Lemma 2). Let y € Y and a net, {y,},en in ¥V
which converges to y. Pick any z, € f~!(y,), for each v € A. By
Lemma 2, {x,},en converges to some point z in A~'g(y) (note that
{9(yv)}ven is a net in Z which converges to ¢g(y) in Z and, for all
weY, f i (w) C h~lg(w)). From the continuity of f, it follows that
z € f~!(y). (Suppose not. Then y # f(z) with ].isnf(:c,,) =y and also

lim f(z,) = f(z), a contradiction, since Y is Hausdorff.)
v

From (i) through (iv) we get immediately that f and g are perfect, which com-
pletes the proof. n

The following result also improves a very useful result (see Theorem 2.5 on p. 227
of [1}]), with a simpler proof.

THEOREM 6. Let X be compact, Y any space and p: X xY — Y be defined by
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p(z,y) =y. Then p is perfect.

PROOF: Clearly, each p~*(y) = X x {y} is compact. Also, for any net {y,}vea
in Y converging to y €Y and any z, € X, v € A, we get immediately {(z.,¥.)}ven
has a cluster point (z,y) where z is a cluster point for {z,},es in X. By Theorem
1, p is closed, which completes the proof. [}
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