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Spherically-Symmetric Motions in Stellar Atmospheres.
A. - Pulsating Variable Stars.

Summary-Introduction:

Velocity Fields and Associated Thermodynamie Variations
in the External Layers of Intrinsic Variable Stars.

P. LEpoux and (. A. WHITNEY

Université d- Liege and Smithsonian Astrophysical Observalory

1. - General introduection.

By intrinsic variable stars, we mean those stars which present variations
in light, spectrum and radial velocity which cannot be accounted for in terms
of purely geometrical or orbital factors; so that. we have to appeal to some
kind of periodic physical modification of the star.

This class is very large, and it would be quite impossible here to review even
briefly the properties of all the different sub-classes (LEDOUX and WALRAVEN,
1958; hereafter called reference A); so we shall limit ourselves to one of the
best known groups, which comprises the cepheids and the RR Lyrae stars.
The essential factors which, up to now, have been called upon to explain the
properties of the various kinds of intrinsic variable stars, excluding the most
irregular or the most violent types (such as novae and super-novae), will be
brought up in the discussion of this group.

The cepheids are supergiants of mean absolute bolometric magnitude, M, ,
falling in the range — 3 to — 6 and of spectral type F to G. In a Hertz-
sprung-Russell diagram, using M,, and log T, as co-ordinates, they occur
about % of the way from the main sequence to the giant branch, where they
form a sequence roughly parallel to the latter (cf. ref. A, p. 572). They com-
prise stars typical of Populations I (disk and spiral arms), often referred to
as classical cepheids, whose periods vary from about 2 to 40 days from the
less to the most luminous objects of the class; and stars typical of Popu-
lation II (globular clusters and spherically distributed stars in the galaxy),
which show a concentration in two ranges of periods: 1 to 2 days and 13 to
20 days. Stars in the second group are often designated, after the prototype,
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as W Virginis stars. Although the basic phenomena are probably the same,
there are many interesting physical differences between the classical cepheids
and the W Virginis stars, at least in the behaviour of the external layers.

The RR Lyrae stars, which belong to Population II, have periods between
1 of a day and 1 day. The exact value of their absolute magnitude, which is
roughly of the order of 0.0.M,,, is at present a matter of great concern as
it plays an important role in fixing the distance scale of the Universe. Their
spectral type falls in a small range around A5. In the Hertzsprung-Russell
diagram of a globular cluster, they fill a small definite gap in the horizontal
branch. This suggests that any star which, in the course of its evolution, goes
through this gap, becomes the seat of this type of variability. )

In some of the RR Lyrae stars there appears, superposed on the periodic
variation referred to above, a very regular modulation of very long period
(60 to 1400 times, the main period), which affects both the amplitude and
the phase. The resulting variation can be interpreted as a beat phenomenon
between two variations of very close periods.

Some cepheids in the range of periods 2 to 3 days present a similar phe-
nomenon, but with a modulation period that is a much smaller multiple (2 to
3 times) of the fundamental period.

The phenomenon of multiple periodicity is perhaps best represented by a
group of variables with very short periods, of the order of 0.05 to 0.2 days.
Despite the fact that, as far as the periods are concerned, they fall close to
the lower end of the RR Lyrae variables, they do not probably belong to that
class and are sometimes called dwarf cepheids. One of them which has been
studied extensively, AI Velorum, presents no less than four well marked periods.

A beat phenomenon is also encountered in some of the g Cephei stars, a
group containing about 12 known members with main periods in the range 3} to
6 hours and composed of bright blue stars, B1 to B2, somewhat above the main
sequence. However, in this case, the two interfering variations must present
some significant physical difference, since one of them is associated with a
variable broadening or doubling of the lines while the other does not seem
to affect the line shapes. This suggests that the type of motion may be more
complicated here than in the case of the other variable stars mentioned above.
Note also that the light amplitude is very small in this case.

For well observed classical cepheids and RR Lyrae stars, the periods can
be defined with a very high precision and are very stable. In some cases, slight
secular changes have been found, but no systematic trend has been discovered
up to now. In any fairly homogeneous group, there are about equal numbers
of stars with lengthening or shortening periods.

With their very short periods, the 8 Cephei stars provide a very favorable
case for the study of such secular effects and, indeed, there seems to be a tend-
ency, in this group, for increasing periods.
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For the aerodynamicists, let us recall the fundamental characteristics of
the variations of a typical classical cepheid, & Cephei (cf. Fig. 1). The light
emitted by the star varies periodically,
a8 does its radial velocity, and the two

corresponding curves are practically mir-  -,g[ 7 @
ror images of each other. This corre- -2t
lation between the two curves extends it
even to many details particular to indi- 29

vidual stars (humps on the ascending or L
descending branch, ete.) and suggests that
there must really exist a close physical
relationship between the two.

The amplitude of the light curve
varies from about 0.5m to about 2m
as the period varies from about 3 to 30
days. In the same way, the amplitude .
of the velocity curve varies from about .6l
10 to 35 km/s. The spectral type, which e
is related to the temperature and the ,
density, varies in phase with the light.
The corresponding variation of the effec-
tive temperature, T, for J Cephei, is
represented in Fig. le. This is the most
direct argument for the existence of
physical changes in the star. But one
may also recall that the shape of the
light and velocity curves, and the phase
relationship between the two, exclude
any interpretation of the light variation
in terms of eclipses. On the other hand,
the discussion of the velocity curve as
being due to orbital motion leads also to
highly improbable results. : L phase

An explanation of the cepheids in 00 0z 04 06 08 10
terms of oscillations of a single star was Fig. 1. - a) Light curve, b) velocity
advocated for the first time in a paper curve, c¢) radial displacement, d) ac-
by SHAPLEY in 1914. At that time a celeration, e) effective temperature,
non-radial oscillation such as that cor- for 6 Cephei.
responding to a spherical harmonic of
degree two was mainly favored because it was thought easier to excite; for
instance, by close passage of another star. However, EDDINGTON noted,
that this last argument is not very significant and, on general grounds, that
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one would expect that a purely radial pulsation would be the easiest to maintain.
He also pointed to the general spatial symmetry of the phenomenon, an argu-
ment which has been confirmed recently by the correlation, found in well
observed eepheidé, between amplitudes and periods. This result could hardly
be expected for any other type of symmetry of the oscillation than a purely
spherical one. Thus at present, it is generally believed that, at least in cepheids
and probably in the RR Lyrae stars, the variations are due to radial pulsations:
the star expands and contracts periodically.

In that case, if we change the sign of the radial velocity curve and mul-
tiply its ordinates by a factor 24/17 to correct for the averaging over the
visible hemisphere and the limb darkening, we get the rate of variation of the
radius of the star, E, which, integrated with respect to the time, yields the
variation 3R of the radius (cf. Fig. 1¢). In classical cepheids, the relative
amplitude (3R/R), varies from 0.05 to 0.1 at most, while in RR Lyrae stars
it is a little larger, and lies in the range 0.1 to 0.2. In W Virginis stars, it
would seem that (3E/R), may reach appreciably higher values, of the order
of 0.3 or larger. However, as will be pointed out later, the evaluation of 3R
is not quite as straightforward for these stars.

On the other hand, the derivation of — V, with respect to the time yields
the value of the acceleration in the atmosphere (cf. Fig. 1d). The results show
that these layers are submitted to a strong upward force only for a short time;
during most of the period, they fall regularly under a practically constant
downward force.

On a simple adiabatic theory, one would expect the star to be hotter at
maximum compression. With the usual opacity laws, the variation of the flux
computed as a second order non-adiabatic effect would also lead to maximum
luminosity at the same phase; and this certainly occurs at sufficiently great
depth inside the stars. However, at the star surface, a comparison of Fig. 1a
and lc¢ shows that maximum luminosity is delayed with respect to the radius
variation, and occurs only about half-way on the ascending branch of the
radius. In the same way, minimum luminosity does not occur at maximum
expansion, but again about half-way on the descending branch. In other words,
light maximum and minimum occur for about the same value of the radius,
respectively at mid-expansion and mid-contraction. For a sinusoidal variation,
this would imply a « quarter phase-lag » of the light-curve with respect to that
of the radius, and the effect is usually referred to under this name. This, how-
ever, should not distract too much from the actual observations which show
that, in some way, the effect is strongly bound to the general symmetry in
time of the phenomenon. For instance, in & Cephei the light maximum
occurs only about 0.1 of the period late with respect to the maximum con-
traction; while the light minimum occurs more than 0.3 of the period after
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the maximum expansion. In other cepheids, like { Geminorum, for instance,
the delays are just about reversed.

The relatively small value of (3E/R),, at least for classical cepheids, might
suggest that a linear theory should already provide a fairly good approxi-
mation. However one must not forget that the amplitude of other more sig-
nificant physical variations, such as (3¢/g),, may, in the external layers, be-
come fairly large even for small values of (8R/R),. In fact, the observed
variations, as illustrated in Fig. 1, exhibit in most cases an appreciable an-
harmonicity, which may become very strong in some RR Lyrae stars. This
shows that non-linear effects must be at work, because even if superposition
of a few linear modes could, as-
suming commensurability of their
frequencies - (which in general is
very unlikely), reproduce a period-
ic phenomenon with the observ-
ed asymmetry, the maintenance
of this shape will depend on the
non-linear coupling between these
modes. Otherwise they would,
in the course of time, grow or
fade away individually according
to the values and the signs of
their damping constants.

An interesting example, in
that respect, is provided by a
few stars with multiple periods
studied in great details by WAL-
RAVEN (cf. ref. A, p. 22). He
has shown that, to recover the
observed variation, it is necessary
to superpose on the sum of the

Fig. 2. — Fhase diagrams for the observed
pulsation of- § Cephei (- - -) and #n Aqui-

i . . lae (——-—-— ). The thin lines correspond to
corresponding harmonic oscilla-  the theoretical phase diagrams for the homo-
tions, a distortion in phase and geneous model (full line) and the standard
amplitude which is a function of model (dashed line).

the instantaneous total amplitude
of that sum. Inside homogeneous groups of classical cepheids, it would also
seem that the asymmetry increases with the amplitude.

This appears also clearly in a phase-plane (3R, 8R). There, the asymmetry
of the phase-path suggests (cf. Fig. 2) that not only should non-linear terms
be taken into account, but also that the non-conservative character of the
system plays an important role in the shaping of the motion, at least in the
external layers. This is also confirmed by the fact that the conservative non-
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linear cases that have been discussed up to now show that the observed anhar-
monicity cannot be recovered for finite amplitudes of the order of those ob-
served. Very little work has been devoted to the non-conservative case (for
a more complete review cf. ref. A, chap. V) and, up to now, only the linear
theory, started by EDDINGTON in 1917, has been developed to some degree
of completeness.

Nevertheless, one may expect that such a theory should at least yield pe-
riods of the right order
of magnitude, give some
indication on the ‘run of
the amplitude inside the
star, and reveal the source
of the incipient instability
which gives rise to the
pulsation.

The last point implies
that we have to deal with
a soft self-excited oscilla-
tion; i.e., one which starts

o"ﬁ-
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N
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3 4 from an arbitrarily small
perturbation of the equi-
Fig. 3, 4. - Illustrations of soft self-excited oscilla- librium state, and in-

tion (3) and hard self-excited oscillation (4). Thick full creases, as illustrated on

lines: stable limit-cycles; thick dashed line: unstable Fig, 3, along a spiralling

limit-cycle. Thin lines: phase-paths. phase-path. This path

tends to a stable limit-

cycle along which, on the average, the dissipation factors balance exactly
the exciting forces.

This is the point of view which has generally been adopted in this problem,
although it would be difficylt to advance reliable arguments ruling out de-
finitely the case of hard self-excited oscillations. These, as illustrated in Fig. 4,
require a finite perturbation capable of pushing the representative point of
the system past the first unstable limit cycle. The general disregard of this
possibility is probably due to the fact that it seems difficult, in the case of a
star, to justify such a finite perturbation on a time-scale comparable to the
period of pulsation. For a much slower perturbation such as we encounter
normally in stellar evolution, non-adiabatic re-adjustments of the stellar
structure would become dominant and could hardly lead to a pulsation such
as the one considered here.

However, we have had some indications recently that some phases of stellar
evolution could be extremely fast. In this connection, it may be worth-while
to keep the possibility of hard self-excited oscillations in mind. Of course, in
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that case the linear theory would be of no avail to elucidate the source of the
pulsation.

In the absence of any adequate non-linear theory, it is obvious that we
have no information on the possible limit-cycles, not even on their existence;
although the latter, as we shall remark briefly later, may appear more likely
for some excitation mechanisms than for others.

<

2. - Linear radial oscillations (*).

2'1. Development of the pulsation equations. — In Lagrangian co-ordinates
and denoting by & the variations of the variables following the motion, the
small purely radial perturbation of a gaseous spherical star around its equi-
librium configuration are governed (ref. A) by the following equations expressing :

1) Conservation of mass

2) azar: 4 erlep 1 ?f?p
ot? roor o or

where p denotes the pressure.

3) Conservation of thermal energy

(3) @ AU pde
‘ dat — dat erdt’

where U represents the total internal energy

3RT  al*
5o+

@ vt +1,
2 pm 0

(') In view of the interest shown by aerodynamicists in the question of incipient
instability underlying the pulsations of these variable stars, this part, which was intended
primarily as an introduction to the problem of the external layers where the observ-
able aerodynamic motions occur, has been amplified considerably. In writing up
the final text due consideration has been paid to the numerous questions asked and
the interesting comments made by many of them, especially Dr. CLAUSER, Dr. PRTSCHEK
and Dr. THomPsON.
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with R, the gas constant, @, the mean molecular weight and I, the ionization
energy. We may write

) © 1@ 0
(0) -(—17 -—AB — Z)F 5 (7’2F(7')) = & — "-ém y

where ¢ is the rate of nuclear energy generation per unit mass, F(r), the flux
per unit surface and L(r), the total flux equal to 4nr:F(r).
Taking the first variation of eq. (3) and noting that, at equilibrium

oL(r
(6) e= 0
we find
i odp  Ip 3¢ . ¢dL
(7) o _éat +(F3—1)9 83_'3;"{ ’

where [} and [’y are the generalized adiabatic coefficients relating the loga-
rithmic variations of the pressure and the temperature to those of the den-
sity for a mixture of partly ionized gas and radiation.

The variables p, ¢ and T are related by an equation of state

RoT 1
p="g +gzelt
and their variations by
dp 80 dn 3T
(8) A A R S IR =

where f§ represents the ratio of the gas pressure to the total pressure. The
second term on the right is important only in a region where the ionization
of an abundant element is critical and may vary rapidly during the pulsation
and, in that case, dzi/ may be expressed fairly simply in terms of 3p/o and
3T|T.

If instead of p and o, we use T and p as the independent thermodynamical
variables we obtain instead of eq. (7)

®) o o om

BT _ (=T 1, oI
& T o A 'é;(s__"’

where C, is a generalized speciﬁc'heat at constant volume.
The viscous terms which have been neglected here can be shown to have
a very small influence on the few first modes of radial oscillation at least as
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long as only molecular and radiative viscosity come into play. Furthermore,
these equations are strictly valid only when radiative equilibrium prevails
through the whole star. In presence of convection in some region of the star,
they must be generalized and an extra equation expressing the conservation
of the kinetic energy of convection must be added. As shown by CowLING,
under the hypothesis of isotropic turbulent convection and adopting a mixing
length picture, this generalization is not too difficult and the results have been
summarized in ref. A.

The main effect is that, in such a region, F must be treated as the sum of
two terms; the radiative flux

4acT® AT
11' = —_
(10) £ 3o dr’

where » is the opacity coefficient, a, the Stefan-Boltzmann constant and e,
the velocity of light; and the convective flux which can be defined by

1 aT -1 1dp)
11 Fo=—olCCT{=——"°" ——=].
(n cT e (1 & I, par
(' is of the order of a root mean square velocity of convection; (', a gener-
alized specific heat at constant pressure; and I/, a characteristic, mixing length.
I, is related to I3 and I, defined above.
For thermonuclear reactions, we may represent ¢ by

&= gol"

and its variations by

de B by

(12) — ==

where however v, may be difterent from » due to possible phase-delays in the
variations of the abundances of the relevant elements in the course of the
pulsation. »

In regions in radiative equilibrium we find, according to (10) where we
assume that x =x,0*T"

.1',

: 3L S 3T do d (8.’1‘) 14T
(1 204X " 2 . 2 it
(13) 7 iy tiAmg 0 @ Tar
and corresponding expressions for regions in convective equilibrium can be
written down using (11).

After 37 has been expressed in terms of 3o and 3p by means of (8) in (12)
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and (13), we may substitute these expressions in eq. (7) and then proceed to
the elimination of 8p and 3p between this equation and eq. (1) and (2). How-
ever, this leads to a fifth order differential equation in », which is very cumber-
some. Since, furthermore, the last term in (7) is very small in the greatest
part of the star, it has been customary to carry out the elimination of 3p
and 8¢ between (1), (2) and (7) without taking the explicit dependence of
that last term on 3¢ and 3p into account. If we separate out the time-depen-
dence, writing

(14) f’rl': £(r) exp [iot] .

this leads to the usual equation

O TR 777 IR ER U DU
(15) Frins drlr Iy dr + ¢ Tp rlpar {BI — 4)p}| =
1 df

= iorlp a[‘f o e (e

The solution should satisfy the following boundary conditions: at the
center (r=20):

(16) dr=rE=0

and at the surface (r= R), treated as a free surface:
&\ (I — 1) ddL
— == 0,

17 sp— — Iip (36 4 r %€
(an o 1"'(3“'@ tnric dr

since ¢ vanishes well below the surface.

2'2. Adiabatic pulsation. — Excluding a thin external layer of negligible
mags, the right-hand member of (15), which represents the deviations from
adiabaticity due to energy generation and conductivity, is very small. This
is simply a consequence of the fact that, in a star, ¢ is very small compared
to the internal energy per unit mass. Thus one may expect to get a good
approximation for ¢ and the run of the relative amplitude &(r) in the bulk of
the star by dropping this term completely both in (15) and (17). The latter
implies that & and d¢/dr remain finite everywhere, and we are left with a well
defined eigenvalue problem with a discrete spectrum: o,, o,, 0,, ... associated
with the complete set of orthogonal eigensolutions &,, &, &, ....

Provided I does not become smaller than % in an appreciable part of the
mass, all the eigenvalues are positive (no dynamical instability). The first
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few modes of pulsation (corresponding to the lowest eigenvalues) have been
studied numerically for many stellar models (ref. A, Table 12).

For the fundamental mode of oscillation (no node in 0 <r-R) one can
show that ¢2 is given by an expression of the form

(18) ol = C(2I - 1)p,

where g is the mean density, I'; an appropriate average and (' depends on the
actual distribution of ¢ inside the star and generally increases with the central
condensation (o./@) of the model. Going over to the period P, (18) may be
written

( 06
(19) P, = __‘_)f' . ‘/ o day .
V3, —4F @

where the subscript « © » represents values for the sun, chosen as convenient
reference.

On general grounds, the fundamental mode should be the easiest one to
maintain. Furthermore, the period decreases rapidly as the order of the mode
increases, and this makes the comparison with observations less favorable to
_the higher modes. In summing up the results of this comparison, we shall
thus limit ourselves to the fundamental mode.

In that case, the theoretical value of @, varies between about 0.07 to 0.03
as we go from the less to the most centrally condensed models that have been
discussed and have a physical meaning. The most likely models for the cepheids
must have a fairly high central condensation to enable the nuclear reactions
to proceed at the necessary rate to explain the average luminosity. The cor-
responding theoretical value of , may vary between 0.03 and 0.04, depending
on the exact constitution of the external layers. For the classical cepheids,
assuming masses obeying the usual mass-luminosity relation, the observed
value of ¢, comes out around 0.032 to 0.035 so that the agreement is very
reasonable in this case.

However, for cepheids of type II, the same hypothesis for the mass leads
t0 (Qo)o,, =~ 0.16, which is quite incompatible with the theory. But evolutionary
considerations suggest that the mass may be much smaller in this case; and
if it is of the order of M,, ()., is reduced to 0.065, which is still very large.
Taking into account the finite amplitudes, which are large in this case, may
reduce (§,),, further to perhaps 0.052, which at least falls in the range of
the possible theoretical values.

In the case of the RR Lyrae stars (at least for groups a and b) the mass
has also to be taken appreciably smaller than that derived from the usual
mass-luminosity relation to bring (€,),,, in the allowed range.

o
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For the long-period variables, ()., is also somewhat large, of the order
of 0.07 to 0.06, which would not be compatible with the high degree of central
condensation required by the energy generation, but here also the uncertaintiex
on the masses are considerable.

For the B Cephei star, on the contrary, (€,),, comes out rather too low,
of the order of 0.022. Although masses and radii are better defined here, the
readjustments necessary to bring ()., back in the theoretical range cannot
be ruled out.

If one keeps in mind that for light variations associated with orbital motion
or the rotation of a single convex body (assuming that the rotation axis is
a symmetry axis of order 2) the smallest possible value of @, (contact binaries
or limit of rotational stability) is of the order of 0.12, one sees that the pre-
vious discussion definitely favors pulsation.

As far as the run of the relative amplitude, &(r), inside the star is con-
cerned, it is characterized in all reasonable models and for masses of the order
of those that are significant for our problem (M < 15 M ), by a large increase
from the center to the surface, which takes place mainly in the external half
of the model. In the «standard model », which has a very moderate central
condensation (g,/g = 54), the amplitude of the fundamental mode &, increases
by about a factor 2 from r =0 to r = R/2, and increases by another factor 10
from there to the surface: £,/§,~20. But in highly centrally condensed mod-
els (gp,/@~10%), which are probably more significant for many of the va-
riables considered, £,/é, may reach values as high as 10* to 10° depending on
whether the external half is predominantly in convective or in radiative equi-
librium.

This behaviour becomes more and more pronounced as one goes to higher
and higher modes, the amplitude remaining fairly small up to the most ex-
ternal node, and increasing then very abruptly to a large value at the surface.

The behaviour of 3¢/p and 3T/T is qualitatively similar except that they
increase even more rapidly from the center to the surface.

2'3. Non-adiabatic pulsation. — We must now take into account the second
member of eq. (15) and the complete boundary condition (17). Since p =0
at r= R the latter implies that

d3L
P 0 at r=2=~R.

(20)
Furthermore, as we approach the surface, keeping only the terms which in-
crease as p~! and noting that the I™s may be treated as constants there,
eq. (15) becomes

o d 3 —4 l,—1d| 1 4L
—l'xg—f’t-+£<cr?—— . --g)]z_ 3,______{ ],

=1 ¢ ar ior dr|dmr dr
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where g denotes the gravity Gm(r)/r:. As p tends toward zero at r =R, we
also have

(22) S 0 at r=1rR.

Conditions (20) and (22) show that, in these very external layers, say above
r=7* 3L may, to a high degree of approximation, be treated as a constant.
Physically, this means that the pressure, the density and the heat capacity
of these layers are so small that their differential motion can no longer affect
the flux.

However, as we go deeper inside the star, we reach a level—say r =r,—
below which the left-hand member of (15) becomes dominant. This level can
be taken as fixing the upper limit of the « adiabatic interior ». It is:also the
level below which the last term on the right of eq. (9) becomes negligible.
It occurs usually in a region where T is of the order of & few times 10* °K. We
shall call the non-adiabatic region between r, and r* the « critical layer ».

Below that layer, the right-hand member of (15) may be evaluated by
means of the adiabatic solution found previously and, in that part of the star
which contains practically the whole mass, it will thus be purely imaginary
t.e. in phase with + v = dd»/df. This means that the main correction to the
adiabatic solution will be of the nature of a damping corresponding to the
addition of an imaginary part to o, which for the k-mode may be written

o !
O = Ok,a + 10, .

We shall neglect here any possible modification of the real part, which will
be taken equal to the adiabatic frequency.

The eigensolutions will also acquire an imaginary part corresponding to a
variable phase, so that the general solution will be of the form

(23) (5}’) = exp [— 0,8]&xa(1)V'1 + tg* 0,(r) 08 [or.t + 04(r)] .

Very generally, or,'c will be small compared to o,,; and one may evaluate it
by a perturbation method, as was done first by ROSSELAND. Although due to
the non-adiabatic external layers, application of the perturbation method is
not quite straightforward, it yields values of ¢’ and 6(r) which, in practice,
are Significant, provided that no special circumstances, such as the ionization
of an abundant element, occur in the critical layer.

However, as that case is of special interest here, we shall require a more
general expression for ¢’. This can be obtained from eq. (3), which shows
that to maintain one unit mass in steady pulsation, we must provide, per
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period P, an amount of mechanical work

p do dq
-2t [

The integrands have to be evaluated up to the second order of small quan-
tities, since the integrals of the first order terms vanish. This can be
done by integrating once by parts the first integral, and then using for
dp/dt = ddp/dt its value from eq. (7). But, if, following EDDINGTON, we re-
mark that the change of entropy over a complete cycle must be zero, we have
directly

s (149 1 .dQ ST%{ 3
= i [,l,d{dt Tdtdt——/ dt=0,

or

do . [srag. (3. L
fdt at = [ S St = fT(Ss—-dm)dt,
[} L)

using eq. (9).
From this expression of the dissipation integrated over the whole mass, it
is easy to compute the damping constant for the k-mode

31 __d_SL)] i,
.

dm

‘ | ]
(24) O = g, [

with
M
J]“,, :féi,u r2 dm .
)

In the adiabatic interior (m << Ma), we may substitute the adiabatic solution
in the integrand of the numerator and the time factor cos? (s,!) may be in-
tegrated out. On the other hand, since d3L/dr is negligible for m > M*, and
since ¢ certainly vanishes there, the expression (24) may be written

M,
. .1 []3T\ (. &L
(25) g = — 20:Ja_[(7>a (88 dm ) d +
’ M* 27/o,

ona [0 |7, (). fam o
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where we have dropped the index k as, from now on, we shall be mainly
interested in the fundamental mode. This expression is also known as the
coefficient of vibrational stability, and the star is said to be vibrationally
stable or unstable (overstable) depending on whether it is positive or negative.

Let us first discuss the first term on the right-hand side of (25) which, in
some cases, is the only one that matters. Expression (12) shows that 3¢ is
always of the same sign as 37, and the energy generation contributes nega-
tively to ¢’; <.e. it always tends to increase the amplitude or, in otherw ords,
to render the star vibrationally unstable.

As to the term in 3L, an integration by parts using eq. (13) and remem-
bering that 3L vanishes at the center, gives

ddL ST d/dr)(3T/1
26) f(l)( ) { ( )[45”4* )7 7 Q+§1//17’3T/Qr>’]}

3T 30 4 (6T\ /1 aT] 4 (3T
feleurmo T e 5 (7)) 7 5 () o

]

In the bracket of the integrated part, the first, third (y > 0) and fourth
terms are always of the opposite sign to that of 37'; thus they cpntribute nega-
tively to ¢’ and reinforce the instability. Physically, they correspond to the
different factors that tend to decrease the flux at contraction: the decrease
of the radiating surface, the increase of the opacity associated with its pro-
portionality to g, and the decrease of the temperature gradient; and vice-versa,
at expansion. As the energy generation, these factors tend to heat up the gas
at compression and to cool it at expansion.

On the other hand, the second term in the bracket with (» > 0) has the
same sign as 37, and gives a positive damping which contributes to the sta-
bility of the star. Physically it corresponds to the increased radiation power
per unit surface at compression, and the decrease of the opacity associated
with its dependence on a negative power of T.

As an illustration, let us assume that the first and fourth terms in the
bracket amount together to about — 3p/p, then eliminating 37/T by means
of the adiabatic part of the relation (9), the whole bracket may be written

@7 (4 +n)I5— 1) — (x +1)] %—') .

For the usual Kramers opacity law (y =1, n=3.5) and a star of fairly small
mass (F3—>%), the first term predominates and all together, the integrated
term in (26) will have a strongly stabilizing influence. In practice, numerical
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computations confirm that the same situation prevails for all reasonable opac-
ity laws provided the mass does not become very large.

The same type of reasoning may be applied to the integral in the second
member of (26), the different terms having now the opposite effect because of
the negative sign before the integral. Thus, on the whole, in the same condi-
tions as above, this term has a destabilizing influence. However, due to the
rapid increase of &,, (3T/T), and (3¢/p). from the center outwards, the in-
tegrated term will be largely preponderant; and more so for higher modes
gince, in that case, parts of the integral on successive regions will tend to
cancel out. Thus, on the whole the « conduction » will tend to damp out the
oscillation.

We must now compare this stabilizing effect to the destabilizing influence
of the energy generation. The latter is limited to a very small central core
where all the amplitudes are small while, as we have just seen, the external
layers where the amplitudes are large are determinant for the « conduction »
effect. Since these opposing influences are proportional to the squares of the
amplitudes, it is understandable that, in all cases satisfying our general hypoth-
esis (fairly small masses, small heat capacity of the non adiabatic layer)
the coefficient of vibrational stability comes out positive and large. For a
not unreasonable model of a cepheid, Cox (1955) found that the destabilizing
influence of ¢ would lead to an increase of the amplitude by a factor ¢ in an
extremely long time, of the order of 10° years, while the damping time due
to « conduction » is only of the order of 10 days. It is obvious that, in such
a case, only a strong reversal of the stabilizing trend in the external layers
could bring about vibrational instability.

As we go to larger and larger masses, the pressure of radiation becomes an
increasingly large fraction of the total pressure and I3, I', and I'; decrease and
tend towards -%. This has two effects: it reduces considerably the rise of the
amplitude with r (for F——>§, 6o—>0, £ —> (') so that the energy generation
is no longer in such an unfavorable position with respect to the « conduction ».
Furthermore, the stabilizing effect of the latter decreases, as can be seen
from (26) when smaller and smaller values of Iy are used. The result is that,
for any law of thermonuclear energy generation, there is always a critical mass
above which the stars become strongly vibrationa,lly unstable (LEDOUX, 1941;
ScHEWARZSCHILD and HARM, 1959). Unfortunately, this occurs at much too
high masses to be of interest for our problem; furthermore, the instability be-
comes 80 strong for small excesses of the mass above the critical value, that
it seems likely to lead to strong ejection of material rather than to a regular
pulsation.

In all this, we have assumed radiative equilibrium. But the presence of
limited zones in convective equilibrium does not alter the main conclusion
gince the convective transfer of energy either increases at contraction and de-
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creases at expansion, thus having a stabilizing infiuence just as radiative con-
ductivity (time of relaxation of convection short as compared to the period)
or does not vary appreciably its effects on stability being very small (time
of relaxation long).

Thus, up to now, we haven’t discovered any source of vibrational insta-
bility of significance for the regular variable stars. However, as illustrated
above for massive stars, a lowering of the I"s—whatever its origin—would
favor instability. Long ago, EDDINGTON noted that this could also be brought
about by the ionization of an abundant element, at least in limited regions
of the star. However, these regions will be so small that they will practically
not affect o or the run of &; so that the main effect described above for mas-
sive stars will be absent in this case. For this reason, ionization of heavy ele-
ments occurring deep in the star will not be of much help and, anyway, with
the large preponderance of H and He (98 to 99 percent of the mass) now
accepted, such ionization would not even modify the /s appreciably. This
led EDDINGTON (1942) to propose a qualitative theory in which the instability
responsible for the development of pulsation in cepheids was attributed to the
ionization of hydrogen. However, this occurs in the critical layer », to r*,
where the non-adiabatic terms are very important, and it is essential to take
them into account. Later quantitative discussions have failed to provide de-
finite support for Eddington’s suggestion, but they have led to some clari-
fication of the important physical factors and to the development by ZHE-
VAKIN (1960) of a modified version in which the second ionization of helium
now plays the fundamental role. As this occurs already deeper in the star,
the non-adiabatic aspects of the phenomenon, although still significant, are
perhaps not quite as essential as in Eddington’s original theory.

Let us note that, due to the large separation of the ionization potentials
of H and He, the corresponding ionizations occur in fairly distinct regions.
In the middle of such a region (50 percent ionization), the I™s reach fairly low
values depending on the abundance of the element and its ionization potential.
But even with a He-abundance by number of about 15 percent, the values
of the Is associated with its second ionization may be as low as 1.25, according
to ZHEVAKIN. In all cases, the mass of the corresponding region is too small
for this local change in compressibility to affect appreciably the period of the
pulsationi or even the local amplitude of the displacement. However the adia-
batic variation of the temperature (first term on the right-hand side of (9))
will be much reduced there, and this alone can change the sign of the quantity
in brackets in (26) or (27). But it is also found (ScHATZMAN (1956), ZHEVA-
KIN (1960)) that » decreases considerably below the usual values (~3), and
may even become negative in such a region—especially on the external side
of it—and this enhances very much the reversal in the effect of the radiative
conductivity. Furthermore, taking for instance the situation at compression,
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the gradient of the modified temperature will be steeper on the internal side
of the ionization zone, and less steep on the external side, favoring the inflow
of energy in it and hindering its escape (influence of the last term in the
bracket), thus also reinforcing the instability.

Of course, we shall have, superposed on those effects, those of non-adia-
baticity, a measure of which is provided in a first approximation by

. [SL(/’a) _ SL(T*)]‘,P
T a(M*— M,)C,(8T),’

(28)

which is the ratio of the heat accumulating in this layer due to the quasi-
adiabatic effects discussed above during a quarter-cycle, to the variation of
its heat content due to compressional work during the same interval.

To discuss rigorously these non-adiabatic effects, we would have to con-
tinue, for » > r,, the adiabatic solution by the complete complex solution of
eq. (25) after 8o and 3T have been expressed in terms of & in 3L (3e=0,
here). As mentioned under eq. (13), this leads to a complicated high order
differential problem. Furthermore, the variable £ is probably not particularly
appropriate because as shown by EDDINGTON and confirmed by ZHEVAKIN
(1960), it is affected very little by the non-adiabatic terms, its imaginary part
(or its phase-shift across the region, cf. (23)) remaining very small. As a con-
sequence, 3p will also remain very close to the adiabatic solution so that,
from (7) and (9), the non-adiabatic component of 87 will satisfy the following
approximate equation

- nor

(29)

a\T “y—1e, |om = L6 am

0 (ST) 1 [F (I's— 1)28C,] 93L 1 aSL
- 7o~

In this respect, one may verify from the continuity equation that a very small
non-adiabatic component &, , is sufficient to cause a fairly large readjustment
of (3¢/g), capable of compensating (3T/T),, without any appreciable change
in 3p/p.

If we assume with EDDINGTON that the dominating term on the right of
(13) is the one in 37/T, and that, in the critical layer (r,—r*), the non-
adiabatic part of 37T is largest, eq. (29) becomes

0 (3L L4 +n) 0
(30) é’t(f)—_ Lo,T 6m(L)’
which admits a solution

3L 3L
(31) % = (3),, costout + pim1,
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with a phase-lag
2y;[ 0, T dm

(32) p(m) = — RTETY A
defined essentially as the ratio of the heat content of the layer to the total
energy radiated across it in one period. This confirms our previous state-
ment that the layers with very small heat capacity cannot affect the flux.
Let us go back now to the discussion of the vibrational stability. Taking
(29) into account, the time integral involving (87'/T),, in the last term of (25)
cancels out; and using (31), the expression (25) of ¢’ may be written

(33) (202d,)0" = —f(%) de, dm f(SL) (%) dm +
0 L)

+ ’(8%1) ] (8L) 4, cos [@(M*)] ——/ (0L),, cos [@(m)] ———~(¥> dm
a|M* a

As in our discussion of the quasi-adiabatic part of (25) or of (26), the first
two terms in (30) contribute to the instability while the integrated stabilizing
term in (26) is replaced here by the third term proportional to cos[¢(M*)].
As long as |@(M*)| is <m/2, it is still positive and reinforces the stability.

But as we increase the heat capacity (or C,) of the layer (M* — M,) (and
the ionization of an abundant element is the only way to achieve this), |p(M*)|
also increases; and the contribution of the third term to the stability decreases
until for |p(M*)|= n/2, it vanishes altogether. In that case, the last term
has a small stabilizing influence [d(37/T)/dm < 0 in the region where @(m)
is small] which may at most balance the second term in (33). If |@(M*)| in-
creases above 7/2, the third term now reinforces the instability, but the sta-
bilizing contribution of the last term increases too [d(3T/T)/dm > 0 towards
the top of the critical region where cos ¢(m) < 0] and EDDINGTON thought
that this indicated that the minimum dissipation (or maximum instability)
would occur for ¢(M*) in the vicinity of =/2. As one may well admit that
pulsation occurs only when this condition of maximum instability is realized,
this would, at the same time, explain the observed phase-lag between dis-
placement and the flux in cepheids. Furthermore it would open the way to
an explanation of their period-luminosity relation (or of their distribution
in a narrow band in the H-R diagram) since, apart from the mass-luminosity
relation and the period-mass-radius relation provided by (19), this condition
of maximum instability (or p(M*)= =/2) would furnish a third relation be-
tween L, M and R and thus permit the elimination between the three equa-
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tions of two of the parameters say M and R (or, in the H-R diagram, of M
and P).

However, we may note immediately that in Eddington’s scheme, the final
source of instability is still the first term in (33) due to the energy generation;
and we have seen already that, for likely models of supergiants like the cepheids,
this yields a much too small rate of increase of the amplitude. Thus what we
really want to find is not just the cancellation of the dissipation but a nega-
tive value for it capable of bringing any small pulsation up to an appreciable
amplitude in a reasonable time.

First, we could try to verify whether Eddington’s views on maximum insta-
bility occurring for @(M*)~ 7/2 are correct. It seems that when ¢(M*) be-
comes greater than z/2, the destabilizing influence of the integrated term in
(33) may very well dominate any possible stabilizing effects of the last term;
and it may be worth-while to investigate this point, even if it means losing
the right phase-lag in this approximation.

However, Eddington’s approach suffers from other difficulties. Even in
the ionization zone of hydrogen (nearest to the surface and strongest non-
adiabatic effects), it is not at all certain that the non-adiabatic terms are so
dominant as to justify the corresponding hypothesis in the establishment of (30).
Furthermore, this equation rests also on the assumption that the term in 37T
is largest in eq. (13). But in the ionization zone, I, and » tend to become so
small that, at least in the quasi-adiabatic approximation, this term is far from
dominant. In particular, the term proportional to the gradient of 37 may
become large close to the extremities of the critical layer.

We then suspect that the variation of (3L/L) in the critical layer may
indeed be very different from the simple phase-shift given by, (31), and that
it is going to be necessary to solve the non-adiabatic equation much more
carefully. Furthermore, convection tends to get established in those layers
of low I”s, and if it takes an appreciable part in the energy transport, it will
certainly decrease the instability.

Although no detailed discussions of the non-adiabatic effects of the ionization
zone of hydrogen exist, one is tempted to conclude from Schatzman’s quasi-

-adiabatic treatment (1956), when corrected by the introduction of an appro-
priate limit M* to the integrals in ¢ (cf. ref. A, Section 69), that it occurs
too far out to provide the necessary instability.

This favors Zhevakin’s point of view that the source of instability should
be looked for deeper in the star, in the region of the second helium ionization.
Aécording to him, although convection arises in this layer, the superadiabatic
excess of the radiative gradient remains so small that the flux is still mainly
transported by radiation, so that 3L is still given by (13). In that case,
ZBEVAKIN finds that vibrational instability prevails for a whole range of values
of ¢, as given by (28), corresponding to all possible phase-lags from practically
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0 to 180° depending on the ratio of the mass of the critical layer to the mass
above it, a circumstance in which he sees the possibility of explaining practi-
cally every type of observed stellar variability. However, no account has
been taken of the first ionization zone of helium, or of that of hydrogen which,
despite the fact that they may not suffice to cause instability, may still affect -
the phase-lag appreciably. One should note also that, from his latest com-
putations (ZHEVAKIN, 1960), it aprears that already a large fraction of the
total negative dissipation arises below what he calls the critical layer of the
second helium ionization.

In general, although ZHEVAKIN has devised an ingenious algebraic method
based on the subdivision of the star into discrete layers to solve his non-
adiabatic equations in the external zone, his models and the application of
his method itself (for instance the whole critical layer is one of the discrete
shells) are still very rough, so that the results fail to be completely convincing.

Cox (1958) has also discussed the problen of the non-adiabatic layers, trying
to formalize some of its aspects; for instance, by assimilating the effect of the
critical ionization to a sudden and large drop in 3L, so as to permit a simple
mathematical treatment in terms of the parameter ¢(M*) as defined by (32).
Later Cox and WHITNEY (1958) and Cox (1959), using this formalism, found
that, if the region of the second helium ionization is responsible for the sudden
change in 3L, then the condition ¢(M*)= n/2, used as a criterion for maxi-
mum instability, is compatible with the observed period- lummomty relations
for cepheids of types I and II.

Since then, new investigations by Cox (1960), which provide certainly
the best treatment of the non-adiabatic layers ever attempted, have con-
firmed the destabilizing effect of the second helium ionization zone for
reasonable abundances of helium (15 percent, by number) assuming that
radiative transfer is dominant there. However, the negative dissipation in
that region is of the same order as the estimated positive dissipation
in the interior so that his results are somewhat unconclusive as far as
the overall vibrational instability of the star is concerned. Nevertheless, it
may be noted that the condition of minimum total dissipation in' the star
(this time without any assumption as to the corresponding phase-lag @(M*))
does again lead to a fairly satisfactory period-luminosity relation for the Popu-
lation I. cepheids. Due to the low surface gravities of the type II cepheids,
this mechanism does not seem to work in their case.

Let us add that all these computations have been made for very idealized
models of the external envelopes and neglect the effects of the first helium
and hydrogen ionization. While the consequences of the first point are dif-
ficult to foresee, it may be reasonable to expect that, if taken properly into
account, the second may improve some of the results and increase somewhat
the negative dissipation.
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Apart from the complexity of the rigorous non-adiabatic equations, one
major difficulty resides in the fact that we do not have, at present, any re-
liable model for the interior of these variables and this may affect considerably
the gradient of the different perturbations dr, 3¢, 3T in the external layers.

Nevertheless, the results reported above show definitely that the ionization
of an abundant element in the external non-adiabatic layers, with the corre-
sponding changes in the values of the I”s, of the opacity and of the
temperature gradients, may lead to the accumulation of heat at the expense
of the radiative flux in that layer during the phases of compression, and thus
produce instability if the heat capacity of the layer including the displacement
of ionization equilibrium is large enough.

A general advantage of negative dissipation as a source of the vibrational
instability responsible for the pulsation is that its effects have a natural limit.
In our case, once the amplitude is large enough so that, at compression, prac-
tically all the atoms primitively in a critical stage of ionization are completely
ionized, the source of the instability vanishes and positive dissipation takes
over, limiting the amplitude to some finite value.

However, a word of caution may be in order. All the previous discussions
were: supposed to refer to the fundamental mode of oscillation. But the be-
havior of the first mode or even the second is not so different in the external
layers from that of the fundamental mode; and the arguments, as far as they
have been developed, would apply just as well to any of these modes. The
viscous dissipation is not very much higher either for these first few modes
(Counson, LEDoOUX, SIMON, 1956) and, once excited, it will be difficult to get
rid of them, although no traces of such modes are found in most of the ob-
gerved light or velocity curves. This seems to be one of the fundamental diffi-
culties associated with pushing the source of the instability far out into the
external layers.

3. — The atmospheric problem.

All the observations refer directly to the atmospheric layers, and it is ob-
vious that our views on the general phenomenon depend strictly on a correct
interpretation of these observations. However, if one admits that the observed
radial velocity fields and light-variations are conclusive evidence of pulsations,
the preceding sections may lead him to think that the atmosphere plays a
negligible role in the problem since its mass and its heat capacity are so small
that it can neither affect the period P = 2n/o (cf. eq. 18) nor the coefficient
of vibrational stability o' (cf. eq. 25).

But this is not quite true, because the boundary conditions depend very
much on what we believe is the structure of the most external layers. In the
preceding discussion, we have always assumed that the pressure vanishes at
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some point, r =k, insuring perfect reflection there. If this is correct, the
oscillations, at least in the linear approximation, should have essentially the
character of a standing wave right through to the surface except for the very
small phase-shift 6(r) due to non-adiabaticity (cf. eq. 23).

If on the other hand the star had no such sharp boundary but would fade
out gradually into the surrounding interstellar medium, the wave could take
a marked progressive echaracter in the external layers and an appreciable part
of the wave energy would be lost to that medium, increasing appreciably the
damping (cf. ref. A, section 68; SCHWARZSCHILD and HARM, 1959). Not much
is known of the exact circumstances under which this would occur. If we
assume that the star is surrounded by an extensive hot corona with a much
lower density than the atmosphere proper, an appreciable fraction of the energy
could still, even at the wavelengths considered here, filter through the density
discontinuity separating the atmosphere from the corona.

Fﬁrthermore, in the absence of a proper boundary, the amplitude would
in the linear approximation increase indefinitely, leading unavoidably to a
breakdown of this approximation, to the formation of shock-waves and to
non-linear damping effects. Of course, for finite amplitudes, this type of effect
may already occur in the atmosphere proper, even in the presence of a sharp
boundary, and may indeed be one of the mechanisms which, in the presence
of vibrational instability, stops the increase of the amplitude and stabilizes
it at some finite value. \

There are two approaches to this aspect of the problem. One may, for
instance, build purely theoretical models, try to solve the corresponding aero-
dynamical problems completely and compare the solutions with the obser-
vations until some kind of fit is found. However, at the present time, this
is likely to lead to a great many useless trials in all kinds of directions. Instead
we may start directly from the observations, which we analyse in as much
detail as possible and, if necessary, we make new observations to find out
what is the actual behaviour of the external layers in the course of the pul-
sation. In particular, we try first to answer the two following questions, which
are not quite independent:

1) Does the atmosphere, at any instant, deviate appreciably from the
normal atmosphere of a non pulsating star, and what are these deviations?
Or can we, at each phase, explain its properties by the usual theory of static
atmospheres?

12) What is the character of the wave in the external layers (standing,
progressive, shock)?

Our two sources of information are the distribution of the radiation in the
continuum and the line-spectrum.
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38'L. The continuum. — The study of the continuum has improved conti-
nuously with the development of better and better techniques. At first it
reduced essentially to the determination of a color index or at most a few color
indices. This type of study culminated in the six color photoelectric photo-
metry of STEBBINS and collaborators (STEBBINS, 1953).

Spectrophotometry, which consists in measuring the intensity of the con-
tinnous spectrum betwcen the absorption lines at as many wave-lengths as
pbssible, provides, in principle, an ideal method. However, as long as its
application had to be made photographically, it presented in practice many
limitations, and required an enormous labor in transforming from photo-
graphic density into true intensities. But direct photoelectric scanning with
high resolution of the spectrum has now become possible, achieving a consi-
derable gain in precision and speed, and we shall describe later some of the
results obtained by J. B. OKE using this method.

If we denote by an asterisk, values relative to some standard star, the
« relative gradient »

Alog (I,/13)
AP = —23 —=—=

A@ja)
is fairly constant in rather large intervals of 1 and can be used to characterize
the distribution of energy in at least a part of the spectrum. If the stars were
radiating like black-bodies, we would have

AD — (gl (1 — exp [— C/AT))~ — 12 (1 — exp [— Co/AT*))",

with C,=14300 if 1 is expressed in A and 7 in °K. In the range of temper-
atures, considered, we may write

which defines the color temperature of the star and is very closely related to
the color index CI.=m; —m,, if 4, and 4 lie in the same range of wave-
lengths. )
Around 1940, BECKER and STROHMEIER found that they could represent
- relatively well the distribution of intensity in cepheids at any phase by means
of two gradients, corresponding respectively to the following ranges of A:
(6500-4800) A and (4800-3900) A. They derived corresponding color tem-
peratures and their variations in the course of the pulsation.
These temperatures however presented considerable differences with the
« radiation temperatures » defining the surface brightness of the star. As a
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rule, the color temperatures are larger at maximum light and smaller at
minimum light than the corresponding radiation temperatures. Thus, the
amplitude of the color temperature is much larger than that of the radiation
temperature. This departure from black-body radiation points to a real diffi-
culty in the straightforward interpretation of the variations in light and color
in terms of the variation of the radius and temperature.

CANAVAGGIA (1949), also determined two gradients in the continuous spec-
trum; before (4800 to 4000 A) and after (3600 to 3100 A) the Balmer dis-
continuity for o Cephei, n Aquilae and & Geminorum. She also evaluated the
Balmer discontinuity D =1log (I300+/I3790-) Which varies more or less in par-
allel to the brightness of the star. These variations affect strongly the gra-
dient in the violet, so that the color temperature derived from it has no phys-
ical meaning. On the other hand, D is very sensitive to the value of the grav-
ity and can be used to determine its effective value, ¢.., at different phases.

In principle, six-color photometry (STEBBINS used A4 10300(I), 7190(R),
51700(G), 4880(B), 4220(V) and 3500(U)) yields a much larger amount of in-
formation on the continuous spectrum than the determination of one or two
gradients since the differences between any two of the six corresponding
curves may be used as so many measures of the variations in color of the star
during the pulsation. However, one must keep in mind that the band-widths
of the filters are quite considerable (a few hundreds A) so that the influence
of the absorption lines is not eliminated. In particular, the amplitude of the
U-curves is still strongly affected by the Balmer discontinuity and, in many
investigations, it cannot be used.

Furthermore, these measures are affected by the general interstellar red-
dening, an effect which was neglected in the earlier attempts at interpretation
(HARRIS, 1954). .

One of the first effects established by the six-color observations is the
phase-shift between the light-curves in different colors; the maximum and the
minimum, which remain equally distant, occurring progressively later as one
goes from the U-curve to the I-curve, the phase retardation for this last curve
amounting to about 0.05P. As predicted by VAN Hoor (1943), this is
really what one should expect on the simple picture of a star radiating like

" a black-body due to the fact that in a cepheid, according to the usual inter-
pretation of the velocity curve, R increases while 7T, goes through its max-
imum. This simple approach should be corrected for the black-body deviations;
but WESSELINCK (1947) has shown that, qualitatively, the effect remains the
same.

Even if exact quantitative agreement has not been reached, this effect
and its qualitative interpretation certainly support the pulsation theory and
the ordinary interpretation of the radial velocity curve as being practically
identical to that of the photosphere.

o0
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But the six-color observations can yield other tests of the pulsation theory,
which are all related to a very simple criterion first proposed by BAADE (1926):
if a cepheid radiates like a black-body, at all phases,

(34) L(t) = 4n R*(t)o T*(t)

and if T,(f) is known throughout the cycle as a function of the phase (from
spectral type or color-index), the relative variation of the radius E(?)/R, may
be computed from (34) and should agree in phase and amplitude with the
displacement (R(f) —R,) derived from the radial velocity curve for a value
of R, compatible with the average luminosity L and the average effective
temperature (T',), of the star. Of course, Baade’s criterion may be formulated
in terms of monochromatic luminosities as well.

The difficulties encountered in the first application (BOTITLINGER, 1928)
were attributed to deviations from the black-body laws, which were confirmed
by BECKER’s investigations (1940). Then, the main step in the application of
Baade’s test is to find a correlation between the color-index C.I.=m, —m,
and the surface brightness b, expressed in magnitudes in a small interval
around 4,, say

(35) b, = f(C.L).

In the absence of a detailed theory of stellar atmospheres, such a relation
could only have an empirical basis. BECKER himself had already obtained
one by comparing AC.I.’s and the Am,’s between the phases of maximum and
minimum in a .series of cepheids admitting that, at these phases, the radii are
equal so that the Am,’s reduce to the Ab,’s. Of course, this assumption is a
consequence of the usual interpretation of the radial velocity curve. It im-
plies already to a certain extent that the pulsation theory is correct; and that
the variation of the photospheric radius, R,, is parallel to that of the radius,
R,, characteristic of the level where the absorption lines are formed. With his
relation (35) BECKER found that Baade’s test was, on the average, well satis-
fied but the overall precision was not very high.

VAN Hoor (1943) later extended Becker’s method to all pairs of phases
in a given cepheid which, according to the velocity curve, have the same
radius. This is sufficient to establish a relation of type (35), which can usually
be written

(36) Ab, = a, A(C.L).

If the variation of C.I. is known through the cycle, the variation of (R,),

-
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between any two phases 1 and 2 can be obtained from

(AR,),
(B.)o

(37) (Amy,),,, = — 2.151 + a;,(AC.1.),, ,

where (R,), is the photospheric radius at some phase, say the mean radius.
Identifying (AR,), . given by (37) to the corresponding displacement (AR,),.,
obtained by integration of the velocity curve, one can determine a value of
(R,)o for each pair of phases (1,2) considered. Since the method is rather
sensitive to small errors in the empirically determined values of (Am,),, and
(AC.L),,, an agreement in order of magnitude between the different values
of (R,), is generally considered a satisfactory test.

WESSELINCK (1946) took a new step in considering phases of equal C.I.,
freeing himself of relations of the type (36), although he still assumes that
Ab, vanishes with A(C.L). Now, if 1 and 2 denote phases corresponding to
the same C.L, eq. (37) yields :

(ARW)1.2
(Bo)o

(Amy),, = — 2.151

As before a set of (R,), can be derived, which should be consistent.

The six-color photometry gave a new impetus to these methods; in par-
ticular the corresponding phases in Wesselinck’s method could be determined
by a much better match in colors (WESSELINCK 1947, STEBBINS, KRON and
SMITH 1952). On the whole, in the case of the cepheids, the values of the
mean radius thus obtained show a reasonable agreement with other determi-
nations.

A combination of Van Hoof’s and Wesselinck’s methods, with an empirical
determination of the a,’s in the different relations (36) corresponding to Steb-
bins’ six color observations, can lead also to the absolute values of the radius
as a function of phase (OPoLSKI and KRANECKA 1956).

However only a theoretical discussion can reveal the complete meaning
of these tests. The simplest approach is to assume that, at each phase, the
atmosphere adjusts itself practically instantaneously to the radiative flux
coming from the interior and to the effective gravity g,

aM .

(38'), gm=—R2—+R,

where R and I are the instantaneous values of the radius and the acceleration,
which is supposed uniform throughout the atmosphere.

One may then build a series of static model atmospheres for an appropriate
range of values of T, and g,,. Bach of these models gives the flux, F,, as a

0
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function of frequency and a value for the Balmer discontinuity D, which is
rather sensitive to g,. It remains then to pick out the models that repro-
duce at each phase the observed six-color magnitudes and D. Then the rela-
tive variation of the photospheric radius may be computed from

F R,
I ]

where the left-hand member represents the observed magnitude difference at
the wavelength A between any pair of phases ¢ and 0 and the F,’s, the theo-
retical flux given by the appropriate models.

This can be repeated for a series of colors A, providing an internal test on
the values of R,/R,,. As a rule, the observations in the ultraviolet are not
used because they are strongly affected by the Balmer discontinuity. More-
over, the theoretical F,’s should really refer, not to a given wavelength but
to the total flux passing through each of Stebbins’ filters.

The relative variations of the radius R,/R,, thus determined should agree
in phase with those of [R,— (R,),]. The agreement in amplitude permits one
to determine the mean radius R,,. Furthermore, the values of the g,’s fixed
by the fitting of the models to the observations (especially D) should agree
with those which can be computed from (38), provided a likely value of the
mass is known.

The first attempts (HITOTUYANAGI, 1952; CANAVAGGIA and PECKER, 19524,
1952b, 1953; LEDOUX and GRANDJEAN, 1954) to carry this test through
encountered considerable difficulties. The method is essentially equivalent to
a theoretical determination of the a,’s in (36) for the different wavelengths
used ; and the models, apparently like the black-body, yielded too large values
for these.

However, further corrections to the observations were necessary due to
the effect on the continuum of the variations in intensity of the absorption
lines with phase and to the interstellar reddening (HARRIS, 1954 ; CANAVAGGIA,
1954, 1955). As shown by WHITNEY (1955), the first factor acts in the right
direction to improve the agreement between R, and R,, and this was partially
confirmed by HITOTUYANAGI and VIJ-IYE (1956) in an investigation based
on photographic spectrophotometric data.

Recently J. B. OKE (1960) has considered the problem again for RR Lyrae
and 7 Aquilae, using photoelectric scanning of the spectrum, and he has kindly
sent a detailed summary of his results in advance of publication. In the case
of RR Lyrae, the observations were made at the Cassegrain focus of the

100 inch telescope and the resolution of the scan extending from 6000 to
3300 A is approximately 5 A in wavelength and 15 min in time. '
HD 182487, whose energy distribution had been calibrated on an absolute

L
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scale by comparison with Vega using Code’s results, was used as a standard;
and monochromatic light curves of the observed differences between RR Lyrae
and HD 182487, outside the atmosphere, were plotted for 24 wavelengths.
Corrections for absorption lines were carefully computed from intensity tracings
of Sanford’s 10 A/mm spectrograms. No corrections for interstellar reddening
were applied since, according to STROMGREN, it is very small in the
RR Lyrae region. By adding to the corrected measurements the absolute
energy distribution of HD 182487, the absolute energy distribution in the
spectrum of RR Lyrae was obtained at each phase.

By comparison with the absolute flux of model atmospheres computed by
DE JAGER and NEVEN, effective temperatures, 7T,,, were determined primarily
by the slope of the energy distribution to the red of A4000; effective grav-
ities g,, were found primarily from the Balmer discontinuity. It is believed
that apart from uncertainties in the theoretical models, 0,,=5040/T, can
be determined to within 0.005 and logg,, within 0.1 to 0.2. The final effec-
tive range of T,, is (5900-+-7200) °’K which, according to OKE, compares
favorably with other lines of evidence.

Formula (39) was then used to determine (R, ;/R,,); and assuming R,=R_,
comparison with the displacements (R,,— R, ) derived from Sanford’s radial
velocity curve yielded for R, (identified here with R_ )

Ry(=R,) = (83 +0.1)R, .

The general agreement in phase and amplitude is quite good.

Finally with (GM/R;) =475, which corresponds to M =1.2M_, formula
(38), in conjunction with the radial velocity curve differentiated to yield R,
was used to compute theoretical g,’s. The comparison between these and the
observed values is also very satisfactory. The value of @, in the relation (19)
comes out of the order of 0.03, using a mean radius R=T7.8R.

For n Aquilae, the method followed was essentially the same, using a cor-
rection for interstellar reddening of 0.14 in the B-V scale as determined by
KRAFT. A comparison between the observed absolute distribution of the flux
in the true continuum (corrected for absorption lines), and that in model
atmospheres computed by CANAVAGGIA and PECKER, yielded the values of T,
and g,,. The temperature range found in this way is from 5320 °K to
6140 °K.

The comparison between the radii derived from the radial velocity curve
and those derived as shown above from relation (39) with a value of the min-
imum radius (taken here as the standard R,)

R,, = 52.3 £ 21 R

n fo

997

https://doi.org/10.1017/5S0074180900104437 Published online by Cambridge University Press


https://doi.org/10.1017/S0074180900104437

160 P. LEDOUX and C. A. WHITNEY

shows a good overall agreement in phase and amplitude. The value of M,
turns out to be equal to — 3.85 4 0.3 at mean light which is in good agree-
ment with Kraft’s value of ~—3.6.

The essential difference with most of the previous treatments is the smaller
range in 7,, and it is this, as already noted by GRANDJEAN and LEDOUX,
which brings the agreement between the two radii.

The most obvious conclusion is that ordinary stellar model atmospheres
computed at each phase, assuming radiative and hydrostatic equilibrium, seem
to reproduce the observations and that there is no need to distinguish very
carefully between the photospheric radius E, and the radius E, of the level
where the weak absorption lines are formed.

Since the models used are computed for an assumed constant total flux
through the atmosphere, it would seem difficult to reconcile these conclusions
with the passing through the atmosphere of a strong isothermal shock-wave,
which would act as a local moving heat source, creating a difference between
the flux F, on the external side and F, on the internal side of the order of

(cf. ref. A, section 92)

(10) - =B (14 2) - ),

which can become quite appreciable. Let us note too, in that respect, that
in the case of KRR Lyrae, OKE has observed no extra continuous emission in
the U-V during the abrupt ascending branch phase but, in this respect, his
observations may not refer to the most favorable moment in the 41-day cycle.
The non-linear transfer of momentum associated with such a wave would also
affect the effective gravity g,,. However these investigations relate to stars
with continuous velocity curves and no or very weak emission lines (except
RR Lyrae, at some phases) and the conclusions may not necessarily apply
to stars like W Virginis.

A few other hydrodynamical inferences can also be drawn from this type
of investigation. Once model atmospheres have been fitted at a series of
phases as described above, they can be used to follow, throughout a cycle,
the Lagrangian variations in density of a given element defined by the con-
stant mass above it.

In the case of 7 Aguilae, results derived by this method (LEDOUX and
GRANDJEAN, 1955) were in good qualitative agreement with those obtained
previously by M. and B. SCEWARZSCHILD and W. S. ApaMs (1948) from a
quantitative discussion of the intensities of the lines of neutral and ionized
iron at 20 selected phases. In both cases, the variation of the density showed
a much better agreement in shape and phase with the velocity curve than
with the displacement curve, suggesting a predominant progressive character
for the wave. However, as shown by these authors, a straightforward inter-
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pretation on this basis leads to an impossibly high speed of propagation in
the atmosphere.

This led them to consider a composite atmosphere with a hot corona, in
which the wave can travel outward at high speed. Although, on this picture,
the wave becomes again stationary at some depth in the atmosphere, there is
an intermediate layer where it resembles that in the corona and, assuming
that the observati(ons refer to that level, the above explanation may then
become acceptable.

However, apart from the fact that this is based on a linear theory, it is
likely that a more realistic treatment would show that this layer is extremely
shallow and situated at such a small optical depth that it cannot affect the
lines. Furthermore, this explanation could certainly not be extended to the
results derived from model atmospheres, since some of them refer to particles
at fairly great optical depths. In this case, a comparison between different
particles shows that the phase of the density variation could be explained by
very small variations with height of the phase and (or) the amplitude of the
velocity curves, which may correspond mainly to an increase of the anharmon-
icity with height.

3'2. Evwidence from the line spectrum. — The bifurcation, through Doppler
shifts, of the spectral lines of W Virginis, RR Lyrae, and f Cephei stars is
convincing evidence for the existence of very steep gradients in their atmos-
pheres. In fact the presence of emission lines associated with upward-
moving gas indicates the existence of a high temperature region such as
might be associated with a shock discontinuity.

Unfortunately the data available are grossly inadequate for the deter-
mination of the actual velocity fields. The principal limitation is the fact that
an emergent pencil of radiation integrates information from a wide range
of atmospheric levels and conceals the details of its source. Furthermore, the
purity of spectra presently available is insufficient to allow a precise deter-
mination of the profiles of spectrum lines.

In sum, the a priori expectation that valuable data on the velocity field
might be obtained from profiles and velocity-shifts of spectral lines has not
been fulfilled.

In view of the paucity of reliable data, there seems little point in inter-
rupting this text with a discussion of discordances between the opinions of
various astronomers. We shall however abstract some relevant papers in the
Appendix.

R. G. TeSkE (1960) has constructed theoretical line profiles for pulsating
atmospheres with and without velocity gradients. His aim was to provide a
theoretical framework within which to examine available data and to sug-
gest what is desired from future observations.

1L - Supplemento al Nuovo (imenlo.
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Two of his results are of particular significance for the interpretation of
spectroscopic data on pulsating atmospheres.

He has shown that the curve of growth for lines formed by pure absorption
is affected by a velocity gradient in a manner which roughly mimics the effect
of microturbulence.

Line profiles produced by a pulsating atmosphere are asymmetric, since the
line-wings are formed at greater depths than the line-centers. An asymmetry
will exist whether or not there is a vertical gradient of velocity. In the absence
of such a gradient, this asymmetry is produced by the fact that observed
radiation represents an integration over the spherical stellar disc. We shall
designate the asymmetry arising in this case as the « zero-gradient asym-
metry. »

TESKE has re-examined earlier work on the observed line asymmetries and
the velocity differences between lines of different strengths, and he concludes
that these two problems are quite closely related.

There are several cases (e.g. the RR Lyrae variables) in which large velocity
differences are definitely observed. These can amount to several tens of km/s,
and are most pronounced between the hydrogen lines and the weak iron lines.
The interpretation of these differences in terms of velocity gradients has not
yet been put on a quantitative basis.

In the case of small velocity-differences, the problem is complicated by
the subjective nature of the data reduction. The published line-shifts are based
on micrometer measures of the « position » of absorption lines. For asym-
metric lines, the results will be different for the center of gravity, the minimum
of intensity, or the midpoint of the wings of the absorption lines. Unfortu-
nately, it is not clear which of these positions is actually measured by an indi-
vidual measurer.

On the assumption that the micrometer measures refer to the deepest
point of the line profile, TESKE shows that apparent differential velocities
will be recorded even in the zero-gradient case. Further, these differences
will be a function of the depth of line formation and will therefore mimic the
effects of a velocity gradient. TESKE concludes that many of the « velocity
differences » discussed in the literature may be produced by zero-gradient
asymmetries.

Evidently more precise and objective data are needed before we can spec-

.ify the origin of these small velocity differences.

4. — Some theoretical aspects of the dynamical behavior of stellar atmospheres.

In view of the virtual impossibility of a direct empirical approach to the
determination of atmospheric velocity structure, we shall now consider the
theoretical approach through synthesis.

1000
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To provide a foundation for this discussion, we first describe some properties
of stellar atmospheres relevant to their dynamical behavior.

4'1. Properties of the undisturbed stellar atmosphere. — The differential equa-
tions governing the dynamics of stellar atmospheres contain a set of dimen-
sionless parameters whose enumeration is useful.

Let ¢

H = #T|ug = atmospheric scale-height, u = mean molecular weight,
¢ =+'y#T|u = sonic velocity in the atmosphere,

g = stellar surface gravity,

P = period of pulsation,

P == gas pressure.

Then the dimensionless ratio of scale-height to photon free path is Hxo
where » is the absorption coefficient and ¢ the gas density. Although the scale-
height does not vary rapidly through the atmosphere, the density does; xo,
consequently, does Hxg. Defining the optical depth of a layer through

o

T = ——]m_)dm,

x

and utilizing the approximate constancy of H, we see that Hxo at any level ix
roughly equal to the optical depth of the level. For the observable atmosphere,
therefore, Hxp ~ 1.

A thermal parameter may be constructed in the following way. The quan-
tity xooT* is, for a «grey » gas, the rate of emission from an optically thin
volume element. The ratio p/xp;T* is the time to radiate the thermal energy
of this element at constant temperature. The ratio H/c is the time for a small
perturbation to travel one scale height. Therefore the order of magnitude of
the following parameter, «,, indicates the extent to which an optically thin
perturbation will be affected by radiation while travelling through the atmos-
phere

»ool* H
Oy = =
pc

Using Hxo~1, this simplifies to

oT+
, = .
pe

Tont
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This parameter may be regarded as an index of departure from adiabaticity.
Adopting a hydrogen atmosphere at T'=5000°,
5-102
Oy = p
and since 103<<p < 10* for typical pulsating atmospheres at 7=1,we see
that «, is of the order of unity. Thus, deviations from a radiative equilibrium
distribution of temperature tend to smooth out in a time comparable to the
acoustic delay for one scale height.

TaBLE 1. — Physical properties of three pulsating stars.

| ;

I o Cephei , RR Lyrae : W Virginis
P (days) 5.4 ' 0.57 17.3
R (cm) 3.7-1012 | 4.6-101  4.4-10%
g (cm/s?) 100 } 800 ! 10
T (°K) 6000 ' 6800 . 6000
H (cm) 8 -10° 1 1.2-10° | 1-101
Av (km/s) 40 | 100 : 55
¢ (km/s) 9.1 : 9.6 9.1
A 50 | 40 : 14
p .086 ! .25 1 37
(o/m)T* 2.4-100 3.9-1010 2.4-1010

A geometrical parameter of interest is the ratio of pulsation perlod to Hje,
the acoustic delay time of one scale height, i.c.

Pe
x; = F .
This quantity may also be considered as the ratio of the atmospheric pul-
sation wavelength to the atmospheric scale-height.

This quantity is also of interest in conjunction with «, in indicating the
extent to which pulsational disturbances of the temperature from the radia-
tive distribution are suppressed by radiative transfer. Values of «; >1, such
as are tabulated above, indicate that, taken grossly, the temperature distri-
bution in a pulsating atmosphere is not very different from the equilibrium
distribution. It must, of course, differ quite significantly during the brief
intervals when steep velocity gradients lie near 7 =1.

As an index of the degree of departure from hydrostatic equilibrium we
may construct the dynamical parameter «, through

LAl

—ﬁ’

0y =

1002
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where v is the amplitude of the observed pulsation velocity-curve. Writing
» = Me¢, where M is the Mach number, and using

2
=",
79
we find
¢ M
wy— 7
X3

In Table I we list some of the stellar dimensions relevant to the present
discussion for three prototype stars. The stars are listed in order of increasing
o, and increasing «,. It is interesting to note that, observationally, this se-
quence is also one of increasing evidence for discontinuity in the atmospheric
velocity distribution. That is, § Cephei shows no discontinuity, RR Lyrae
shows it only in the strongest, high-level, lines and W Virginis shows it
for all lines. This coincidence may be interpreted in the following way
(WHITNEY, 1955).

A large value of o, indicates that the atmosphere is driven violently by
the interior pulsations and deviates significantly from hydrostatic equilibrium.
Thus a large a, should be propitious for the production of velocity discon-
tinuity.

In a crude way, the smaller the value of «;, the greater is the distance in
wavelength that the pulsation wave must travel in traversing the atmosphere.
This is also propitious for the development of shocks.

Thus, the sequence of increasing discontinuities is consistent with the re-
lated observational parameters.

4’2, Qutline of the dynamical problems. — These problems may be listed
as follows:

a) The development of a shock discontinuity from a continuous wave
of moderate amplitude.

We face here the problem of relating the atmospheric wave to the condi-
tions at the exterior limit of the nearly-adiabatic, small-amplitude pulsation
of the interior. This conceptual dichotomy between the interior and the
atmosphere is quite artificial, but the fact remains that it can be useful since
the differential equations governing most of the interior are considerably simpler
than those for the atmosphere. One specific example of the « useful misuse »
of this dichotomy has been the replacing of the interior-atmosphere transition
region by a solid oscillating piston. This model provides a handy boundary
condition for the treatment of atmospheric waves (WHITNEY, 1956) but must
give an inaccurate picture of the development of atmospheric shocks.

1003
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b) The derivation of conditions immediately behind the shock and the
behavior of the ionizing hydrogen within the shock transition.

¢) The description of the physical nature and spectroscopic properties
of the regions of recombination and radiation behind the shock.

d) A determination of the overall temperature distribution and radiation
field in an atmosphere containing a radiating shock.

Of particular interest in this regard is the effect of radiation leakage from
the shock into the atmosphere lying ahead of the shock.

e) The growth or decay of a strong shock moving up along a density
gradient.

In the next section we write the non-linear equations applicable to atmos-
pheric waves and in succeeding sections we attempt preliminary discussion of
some of the questions outlined above.

4'3. The relevant equations. — We shall restrict ourselves to the one-dimen-
sional case, since the depth of the stellar region of interest here is considerably
less than its radius of curvature. We also neglect viscosity.

In their Eulerian form, the conservation equations may be written as fol-
lows for the one-dimensional case.

Conservation of mass:

@

i
I

(41)

| ®
<
=

)
~
(93]
=

Conservation of momentum:

A ,,

et

cp

CI
42 + — {) 2 ——re — .
( ) @? v (/ 0

(Conservation of energy:

. ¢ (3
(43) at( P+ Ei A+ mr) =
0 .
= T g PV 9ve— (work)
0
% [( p+E + }0,,,2) - (convection)
+ @+ 0., (radiation and conduction).

1064

https://doi.org/10.1017/5S0074180900104437 Published online by Cambridge University Press


https://doi.org/10.1017/S0074180900104437

PART I11-A: PULSATING VARIABLE STARS 167

The conservation of energy requires that the rate of change of energy per
unit volume equal the sum of the rates at which work is done on the element
and energy is carried into the element by mass motion, radiation and con-
duction. FE; is the density of excitation and ionization energy and g is the
gravitational acceleration, which is directed toward negative .

Radiative transfer:

cl,

(44) cos g " %

( ;
= —x,0l, + 0.
2 %01, 4 j,0

I,(z, 0) is the specific intensity of radiation at # in a direction making an
angle 6 with the x axis, », and j, are the mass absorption and emission co-

efficients.
Integration of the transfer equation over all solid angles and all frequencies

leads to the following expression for ()., the radiative input term
e @
(45) O, = 2n% /dv/],, cos 0(d cos ) == 4ng/(x,. I,—j)dv,
(- 0
where the bars denote mean values with respect to direction.

It may be convenient to cast ). into another form which is obtained by
formal integration of the transfer equation. Define the differential of optical

depth by
(46) dr, = —x»,0dr,

divide the transfer equation by x,0 and integrate. The following expression
then results,

@

- d
(47) W), == d‘ifF” dy,
) 0
where
(48) K, - 275[&(t)E2(t —7)dt — 2anS'v(t)E._,(r — t)dt,
‘ T 0
(49) S,, - jt'/%r' .

4'4. The isothermal equations and a kinematic model for W Virginis. — Tem-
perature fluctuations in a stellar atmosphere are smoothed very rapidly by
radiative transfer of emergy. This fact, and the great simplification thereby
introduced, made it appropriate to adopt the isothermal form of the dynamical
equations for preliminary theoretical studies of atmospheric pulsations.
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The use of the isothermal approximation clearly eliminates the possibility
of directly synthesizing the atmospheric thermal structure and radiation field.
However the purely kinematical results have been useful in two ways. On the
one hand, they have provided a model with which to interpret several aspects
of the velocity curves of W Virginis stars. On the other hand they provide
an approximate velocity field with which to study the relative importance of
the compressional work term and the radiation term of the energy equation.

The differential equations obtained by setting T = constant may be di-
rectly integrated from adopted boundary conditions. The integration is, how-
ever, subject to numerical instability associated with the generation of para-
sitic and exponentially-growing oscillatory solutions of the finite-difference
equations (Courant-Friedrichs instability). These oscillations may be sup-
pressed over most of the flow by proper choice of mesh intervals, but they
inevitably appear in regions of steep gradients.

A more powerful method of eliminating this difficulty is through the use
of the method of characteristics.

From eq. (41) and (42), i.e.,

dp @

a Tmt "

ov ov 1 op

@ "m e

we may derive the dimensionless equations

N

(50) —;— R4 (u+1) 7 R=0, R=wu-+Ino-+ 1
T n
2 ¢

(h1) — N8t (- 1), -8=0, Neu Inot+r1.
T on

Where we have defined the new variables through

9
T:tﬁ’
n = z/H,
u = v/c

The density is in units of the density at some convenient point, e.g.,
(=0, t=0).

Evidently R and S are constant along lines of slope w + 1 and « —1, re-
spectively. Further, the values of v and ¢ may be derived from R, § and 7
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through inversion of the defining relations. The shock transitions are handled
with the Rankine-Hugoniot relations, and the integrations proceed in a straight-
forward manner.

Results of integrations for three sets of boundary conditions have been
published (WHITNEY, 1955). These integrations started from v = 0 throughout
the gas for ¢t < 0. A piston at the bottom of the atmosphere was stationary
for t <0 and driven ‘sinusoidally with a velocity amplitude equal to sonic
velocity for ¢>0. The atmosphere was assumed to extend infinitely far
upwards.

The initial shock developed quite close to the piston and travelled out
into the stationary atmosphere with an increasing velocity. The motion
of subsequent shocks was complicated by the preceding disturbances of the
atmosphere and the integration were, perforce, stopped after several piston
oscillations. By this time, the flow within several scale heights of the piston
had apparently relaxed to a nearly cyclic state, although at greater heights
the transients associated with the onset of pulsation still dominated the flow.

It is, of course, very dangerous to draw any conclusions about the cyclic
flow in pulsating atmospheres from these limited «initial value» solutions.
However, two features of the results are worth mentioning.

First, these large amplitude waves transferred momentum to the atmosphere,
« levitating » it and reducing the average density gradient by a factor four.
We may expect a similar effect in a real pulsating atmosphere. However, the
piston frequencies employed in these integrations were higher than are ap-
propriate for real atmospheres. Lautman’s results (1956) indicate that at
lower frequencies the effect may be less pronounced.

Second, the atmospheric density distribution, which would have resembled
a N-wave if the initial medium had been homogeneous, has a stairway profile.
That is, the density was nearly constant, at any given time, between succeeding
shock discontinuities.

The following kinematic model was synthesized from these partial results
and applied to W Vir (WHITNEY, 1956):

1) Shock fronts are generated and they travel upward with constant
strength.

2) All particles between shocks are subjected to the same downward
acceleration, and this acceleration is independent of time. Thus, particle
trajectories are parabolic on the space-time plane. In passing through a shock
front', each particle has its velocity impulsively reversed, but its speed un-
changed.

On this model, the shock velocity is constant with respect to the center of
mass of the star as well as with respect to the matter flowing into it from
above.
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Four quantities specify the model:

a) The velocity of shock propagation. This is chosen so that the veloc-
ity discontinuity at the shock is compatible with the amplitude of the ob-
served velocity curve. .

b) The oscillation period in dimensionless units. This parameter is equi-
valent to o, defined in Section 41.

¢) The downward acceleration. This quantity is derived from the pre-
vious two and the requirement that there be no net flow of matter.

These quantities specify the velocity field. From the continuity equation
and the fourth quantity, the density at an arbitrary point, the density distri-
bution may be determined for the entire atmosphere.

Relation of this model to the atmosphere of W Virginis entailed a lengthy
process of successive approximations to the spatial distribution of tempera-
ture, total pressure, electron pressure and optical depth. Empirical data were
taken from ABT’s (1954) study.

The most serious approximation involved in construction of this model is
that the relation between temperature and optical depth is that appropriate
to radiative equilibrium. The two sources of departure from radiative equi-
librium are 1) the time variations of radiant flux from the stellar interior
into the bottom of the 'atmosphere and 2) the conversion of kinetic energy
into thermal energy represented by the work terms in the energy equation.

The second of these effects will be important over a limited interval of
depth within the atmosphere. That is, the radiation produced by compres-
sional heating across a shock discontinuity will lead to significant departure
from radiative equilibrium in the immediate neighborhood of the shock. We
have not yet investigated this situation and cannot apply the present model
to W Virginis during those phases when the shock is traversing the observ-
able atmosphere.

However, when the shock has passed above the region of spectrum for-
mation or before it has entered this region from below, the assumption of
radiative equilibrium will not be grossly in error. The compressional term in
the energy equation will then be negligible in the region of spectrum formation.

Also calculation of the relaxation of the temperature distribution in a static
atmosphere (WHITNEY, 1955a) after an abrupt change of the radiant flux from
below indicates relaxation times of the order of an hour or less. This is a
small fraction of the pulsation period for W Virginis stars (10 to 20 days), so
that the variation of the radiant flux into the bottom of the atmosphere will
not in itself lead to significant departures from radiative equilibrium.

One specific result of the construction of this model for W Virginis of par- .
ticular value relates to the velocity dispersion within the region of line
formation. In sum the situation is the following:
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When the shock rises into the visible portion of the atmosphere, the pres-
sure and opacity in the rising material are very high. Therefore the dispersion
of pulsation velocity within the visible material is small. At this phase we
observe spectrum lines from matter above and below the shock and doubled
lines are produced. As matter streams down through the rising shock the
total optical thickness of the overlying atmosphere diminishes, finally be-
coming so small that this matter becomes invisible. Concurrently, the opac-
ity of the rising gas behind the shock decreases and a wide region behind
the shock contributes to the spectrum. Within this region of spectrum for-
mation the dispersion of pulsation velocity becomes as large as 10 to 20 km/s.

This dispersion of pulsation velocity will broaden and strengthen the ab-
sorption lines in much the same manner as « micro-turbulence ». Such an
effect has indeed been detected by ABT (1954) although he has interpreted
it as a real turbulent wake behing the shocks. The present model suggests
that the observations can be interpreted quite naturally in terms of the gra-
dient of the pulsational velocity. '

All that can conservatively be said about the proposed model for W Vir-
ginis is that it is not in obvious conflict with available data, it reproduces the
gross feature of the observed velocity curve, and it has given some insight
into the structure of a pulsating atmosphere.

4’5. Previous work on the structure of shocks in the presence of radiation. —
In this section we shall comment briefly on published investigations concerning
the effects of radiation on flow behind shocks.

This work has been carried out with the assumption of asymptotic approach
to a uniform medium at great distances from the shock. The conservation
equations may be written in the steady form, dropping the explicit time-

dependence,

(32) d% or == 0,

(33) % (00 + p) =0,

Gy G%{'v (gi» + Ei+ %W‘)} f«% pr—Q =0,

where E, designates the energy associated with internal degrees of freedom.
Setting E, = 0 and integrating over a discontinuity of infinitesimal thick-
ness leads to the usual Rankine-Hugoniot (R-H) relations.
SAcHS (1946) has introduced radiation pressure and energy density, writing
p =po-tial"
E;= aTl*
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and explicitly neglecting transfer of energy by radiation. He has derived the
resulting transition relations, but since radiative transfer is important in the-
stellar atmosphere his results are not applicable to the present problem.

SEN and GUEss (1957) and MARSHAK (1958) have attempted to include
radiative transfer and they evaluated @ from the radiative diffusion approx-
imation. They neglected the radiative contributions to pressure and energy
density. The former authors were interested in the structure of the shock
transition, but the diffusion approximation

p,— _ Aeelrdl
" 3xo dw

is not appropriate for such a study. The condition for applicability of the
diffusion approximation, ¢.e. that the temperature does not vary significantly
over distances comparable to 1/xp, the photon mean-free-path, cannot be ful-
filled in the region of the shock transition.

The radiative term must be evaluated properly from the transfer equation.
The obvious mathematical difficulty introduced by the radiative term is that
conditions at any point are, in principle, influenced by conditions throughout
the medium. The governing equations cannot rigorously be reduced to purely
differential form but must contain an integral term.

In a recent investigation explicitly recognizing this feature of radiative
transfer, KUBIKOWSKI (1959) has evaluated the energy term from eq. (48).
However, his reduction of the resulting expression to a tractable form is in-
correct and, as noted in the next section, his results are grossly in error.

4°6. Some features of strong shocks in hydrogen. — We wish now to investigate
some properties of strong shock transitions in an atmosphere composed of
hydrogen. Points of principal interest are a) the effects of ionization within
the shock transition; b) the temperature distribution behind the shock in the
presence of radiative cooling; and c¢) the effects of radiative transfer to the
region ahead of the shock.

Our interest lies in shocks moving parallel to a negative density-gradient,
so in principle we should not employ the steady-state equations derived for
a medium which is homogeneous at great distances from the shock. However,
since the thickness of the region of interest is generally much less than one
scale height of atmospheric density, we shall take advantage of the great
simplification afforded by assuming the medium to be homogeneous in front
of the shock, neglecting the gravitational forces.

Although the phenomena across and behind the shock should be treated
with a unified theory, it is convenient to consider separately the following
regions: 1) a homogeneous region in front of the shock; 2) the transition
region for the external degrees of freedom in which conduction and viscosity
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determine the physical conditions; 3) the relaxation region for internal degrees
of freedom in which ionization and excitation take place; 4) the region in
which radiative cooling takes place.

Although these distinctions are artiﬁciél, they are convenient; and the only
one whose validity may be seriously questioned is that between regions 3)
and 4).

Region 2), in which the external degrees of freedom relax but the internal
degrees remain unexcited, will be a region of high temperature, but it is un-
observable astronomically. As the gas moves into region 3), ionization takes
place, the temperature will drop, and the density will rise. Since we assume
the gas in front of the shock to be neutral, no radiation can occur until ex-
citation and ionization have commenced. We shall therefore assume that no
radiation occurs until ionization equilibrium is established. This model rep-
resents a considerable simplification of the physical situation, but it should
he adequate for the present survey. In particular we note that radiation from
the shock will dissociate the gas entering the shock and this may have a pro-
found influence.

Let subscript 1 designate the undisturbed gas flowing into the shock and
subscript 3 designate the gas at the back of region 3) after ionization has
taken place.

In a co-ordinate system moving with the shock front, the R-H transition
relations for the steady-state may be written

(95) 3V = 0101

(76) Pyt 05V = Py 0,0

- 2 r | 2
(57) 083Dy + By + o) = 0,(3py + Kyt L 0,03) -

E, is the density of ionization energy, K,= N_y, and we neglect excit-
ation energy.
We shall reduce these equations with the following approximations.

1) The pre-shock gas is not ionized, so K, = 0.

2) The shock is sufficiently strong that we may set o ¢} >>p,. This is
equivalent to assuming that the square of the Mach number, M, is much
greater, than unity. For cases of astronomical interest 10 < M:< 100, so
we indeed deal with strong shocks.

~3) For the strong shock we also have g, v}>> g, v. From these approx-
imations we may derive '

(58) Py = @1”? ’
(59) §py v+ Noyvy = §000,+ N, g0,
= '%91’02 .
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If pi, v, and g, are chosen we may solve for conditions behind the shock
provided we employ the ionization relation N, = N,(p, T). For we may write

1 0,03
(60 py— 2O
) 3 % ? ex

and with the equation of continuity we find
(61) O3 = 01 %fjv'i

We find p, from eq. (58) and guess a value of 7,. From eq. (61) and the
ionization relation we find g,. The value so derived must satisfy the equation
of state for pure hydrogen

p = NkT -+ #oT

and we adjust 7, until a self-consistent set of o, v;, T, p, is obtained.
Results of a set of calculations for conditions representative of classical
cepheids are given in the table below.

TABLE II - Shock tmnsuwn in pure h;ydrogen

T1 50000,  logp,=3.0, logo — - 862, ‘

v, E emperature 1 i

e My o log (ps/py) 1og ( os/ol) x log N,
km/s ! 7; 10-8 | Ty-10°0 : v

! : ’ ! ,

.30 . 13 25 10 133 .96 15 1532

40 23 1 41 1L 158 108 36 15.81 |
50 36 61 13.2 178 115 . .61 ; 1611
60 | 52 86 . 155 Lo4 117 .90 ° 1629
65 61 0 | 27 o200 o1 99 ! 1627 |
0 71 | 116 | 275 207 | 207 | 10 1619

Assumed conditions in front of the shock are given at the head of the table.
The quantities M; and « are defined by

v 5
:”f:(‘_:z:’ Cf:ggrl,
o Y N density of neutral hydrogen
= . Ny = dens of neutr: rdrogen .
Nyt X H nsity neu 1ydroger

1.12
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Two values are given for the temperature corresponding to each velocity.
T, is the kinetic temperature immediately behind the shock before the onset
of ionization. This temperature is computed from the R-H relations for a
non-ionizing gas with y =% T, is the temperature to which the gas relaxes
before radiation occurs but after the ionization takes its equilibrium value.
These tables may be summarized as follows.
<

1) The density ratio between region 3) and 1) is about ten and is insen-.
sitive to the velocity. For velocities higher than those tabulated this ratio will
fall to the value four appropriate to a non-ionizing gas.

2) Due to the energy sink provided by ionization, the temperature rise
is decreased by a factor of from 2.5 to 5 within the range of this table.

3) Despite the ionization, the pressure ratio increases roughly as M7 and
is about 30 per cent greater than the value corresponding to no ionization.

We turn now to the structure of region 4) in which radiative loss of energy
proceeds.

We can make a preliminary estimate of the dimensions of region 4).in the
following manner. Assume that the loss of energy takes place at constant
pressure and temperature and neglect all terms in the energy equation (43)
except
d(vE,)

dx =0

(62)

The isothermal assumption is suggested by the large heat reservoir pro-
vided by the ionization energy.

The velocity entering this expression is relative to the shock; we designate
it by v, and assume it to be constant. Then eq. (62) becomes

dan,
(63) g g, =0

Finally, neglect energy absorbed in the cooling region, and for the emission
term we neglect all but the free-bound emission, setting

N2
Q) = — .535-10-2! ﬁ erg ' em® .

Letting N, be the electron density at the beginning of the radiating region,
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and N, the electron density at a distance Az from this point, we find

Ax 1% (N,
= 4001000 [ 2 1)
04 . / (N, >

€

We assume ¢, ~ v, = 0,0,/0;.

Arbitrarily setting N, /N, =11, we may define the characteristic time, 7,
and the characteristic thickness L as those dimensions corresponding to vir-
tually complete radiation of the ionization energy. Then

Ax T
64 — — 4-1011
(64) T 7, N’
(63) L = 1o, = 10, 0,/05.

From the results given in Table IT we derive the characteristic dimen-
sions given in Table TIII.

TaprLe III.

v 7 (8) L (m)
30 .02 | 60
50 .0C3 ! 9
70 004 ' 25

For the purpose of comparison with recent work by KUBIKOWSKI (1959),
we have applied these equations to the conditions examined by him. The
resulting cooling time is two orders of magnitude shorter than Kubikowski’s
value of 180 seconds.

We now proceed with a more detailed analysis of region 4) through nu-
merical integration of the conservation equations.

We construct a one-dimensional space mesh labelling the points with index
i, such that

(66) @, =iAz, (i=3,4,..).

The initial point «, is identified with the rear of region 3), ¢.e., the point
at which ionization equilibrium has been established and radiation commences.
The mass and momentum equation may be integrated to give, again for the
steady-state,

(67) Qit1Vit1 = Qi

o

(68) Pirr+ 0611(0i1)* = P + Qi(vi)‘ .
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Define the quantity «» through

(69) w=5§p+ B+ bovt.

The energy equation then integrates to

Tyt
(70) Vip1Uigr = V; — | Q(@) da .

Ty

The net quantity @(«) is the net rate at which energy is absorbed, per unit
volume, at the point . For the present case, Q(x) may be considered as the
difference between the following two rates:

1) The rate, I,, at which energy is lost from the element through ra-

diative recombinations. We again adopt

N2
T3 .

(71) I, = .535-10-!

2) The rate, 4,,, at which energy is absorbed from the radiation field
by the inverse process of radiative ionizations. The evaluation of the ionization
rate requires determination of the radiation field. This, in turn, involves in-
tegration over the radiation sources distributed throughout the atmosphere.
However, since the shock region of interest is optically thin, we shall neglect
the exchange of energy between regions of the shock, in a first approximation.
We assume that the remaining atmosphere is isothermal and constitutes a
radiation bath equivalent to a black-body at temperature T,.

With this model we may evaluate the rate of ionization from the rate of
recombination through the principle of detailed balancing. Write

(72) Abf = C(TI)NH I
and set
Ijb(Tl) = Abf(Tl) ]

73
{73) N,=N,.

Then

.535-10-2?

(Ne/Na)y -
Tf *

o) =

The quantity (N?/N,). is a function of T alone and the asterisk denotes
that it is to be evaluated from the Saha equation for the temperature 7T,.

12 - Supplemento al Nuovo Cimenlo.
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Combining these relations we have

NZ|T*/N® Ng
(75) Q= Apy— 1, = .535-10"21 T {T‘}( ) N_z 1} .

Throughout most of the relaxation process, the gas departs significantly
from equilibrium and

N N?
76 .
(76) NH<<(-NH)*

PETSCHEK and BYRON (1957) have emphasized that significant differences be-
tween the electron and atom kinetic temperature can arise during relaxation
to ionization equilibrium through electron-atom collisional ionizations behind
a shock. This ionization process cools the electron gas so severely that the
rate of approach to equilibrium behind strong shocks in argon is determined
not by the collisional ionization cross-section but rather by the rate at which
energy can be fed to the electron gas by elastic electron-atom collisions.

This cooling of the electron gas will be important in region 3) in which the
hydrogen is being collisionally ionized. We do not explicitly treat region 3)
in this discussion, however.

In the radiative cooling region under discussion here, the electron concen-
tration is decreasing through recombination, and there is no strong tendency
toward a difference between atom and electron temperatures (1).

Integrations of the complete set of conservation equations have been carried
over the radiative cooling regions behind the shocks of velocity 30 km/s,
50 km/s, and 70 km/s listed in Table IV. The corresponding initial conditions
are listed below.

TaBLE IV. - Initial conditions for radiative cooling.

v, 0 P T N, » v
(g/em?) (dyn/em?) (°K) (km/s)
30 2.19-10-8 2.14-104 10000 2.09-1015 .15 3.29
50 3.39-10-8 6.02-104 13200 1.29-101¢ .61 3.54
70 2.57-10-8 1.18-10% 27500 1.55-1016 1.00 6.54

Profiles ‘of the temperature, density and ¢ are given in Fig. 5-6 for these
cases (2). The pressure profile is not plotted since in all cases the pressure
increased by less than ten percent during the cooling.

(*) The energy-dependence of the recombination cross-section will produce a very
small difference between these temperatures, but we neglect it.

() Examination of these profiles shows that thermal conduction is completely
trivial in this cooling region.
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We recall the fact, noted above, that the collisional relaxation to ionization
equilibrium also takes place at essentially constant pressure (cf. PETSCHEK
and BYRON, 1957). Put in different terms, the pressure distribution, in the

V,230km/s 1%
10 logh =3 420

T, 25000° ,
8 41.6

@-1077
707 g J1.2
0 .108
4 e 1.8
2 4.4
L 1 1 b | I 1 T
0 10 20 0 0 50 60 70

Fig. 5. — Spatial profiles of density, temperature, and emission rate behind a steady
ghock front in pure hydrogen. Shock velocity, 30 km/s; temperature and pressure
in front of the shock, 5000 °’K and 1¢3 dyn/cm?, respectively. The coordinate system
moves with the shock front, which is at the left border. Matter streams to the right.

presence of ionization and radiative recombination, is very nearly what it

would be for a perfect gas in adiabatic flow.

These profiles indicate that for 30 km/s << v, << 50 km/s and for the assumed
initial pressure, eq. (65) gives a good approximation to the width of the cooling
region. For v= 70 km/s the cooling proceeds more rapidly than given by this

equation. This occurs
because the mean tempe-
rature is lower and the
mean electron density is
higher during cooling
than assumed in eq. (65).

Fig. 6. — Same as Fig. 5
except that the shock veloc-
ity has been increased to
76 km/s. Note that the free-
bound emission rate initially
increases and then decreases
with distance from the shock
front. Also the thickness
of the high-temperature re-
gion is reduced at the higher
velocity.

1017

https://doi.org/10.1017/5S0074180900104437 Published online by Cambridge University Press

-3

s
e.]o 1
Q1078

o

@

o

W=70km/s
A =10°
7; = 5000°



https://doi.org/10.1017/S0074180900104437

180 P. LEDOUX and C. A. WHITNEY

Table V summarizes some pertinent properties of the cooling process.
Columns two and three give the enthalpy and the density of ionization
energy immediately behind the shock. For the strongest shock these quan-

tities become nearly equal.

TaBLE V. — Some properties of the radiating shocks.

Uy %P Ne %lei j.de -Nv NH

30 5.35-104 4.6-10° 3.2-10% 1.9-10° .5-1021 4.5-1021
50 1.50-105 2.8-10% 1.5-10%1 1.1-101* 3 -102t 7.5-1021
70 2.95-10% 3.4-105 4.2-101 3.7-101* 1 -1022 1.0-1022

We have evaluated the total emission per em2-s from the shock and these
values are labelled f Qdw». As is expected, the total emission approaches }p,03,
the rate of kinetic energy flow across the shock.

Finally the last two columns compare the flux of ionizing photons, N,,
across the shock from behind, with the flux of hydrogen atoms, Ny, across
the shock from in front. We have assumed that the average photon energy,

hy ~14 eV, and have written

szfé’QT(}m’

where the factor } accounts for the fact that this fraction of photons will be
emitted toward the shock front.

If we make the limiting assumption that 1) the material in front of the
shock is sufficiently opaque that all photons will produce ionization and 2) no
recombination takes place ahead of the shock, we see that material streaming
into the weaker shocks will receive only a slight additional ionization from
the shock radiation. For the strongest shock, however, the material flowing
into the shock will be highly pre-ionized.

The pre-ionization will have a profound influence on the structure of the
shock. Therefore the present calculations for v,>50 km/s must be grossly
incorrect and should be used simply to indicate the importance of pre-ionization.

APPENDIX

We assemble here the best data available concerning the velocity fields
in pulsating atmospheres. We shall restrict attention to data obtained with
high-dispersion spectra, since results based on moderate dispersion are

unreliable.
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The literature being rather limited, we have included brief summaries of
the relevant papers rather than summarizing all of the data in a single discus-
sion. Comments by the present writers accompany several of the summaries.

1. - Summaries of papers on classical cepheids.

1. SANFORD, R. F.

Ref.: Ap. J., 123, 201 (1956).
Subject: Examination of 10 A/mm 100" coude plates of two classical
cepheids SV Vul (P = 45d) and T Mon (P = 274d).

Presents velocity curves for Fel lines and residual for Fe IT1, Ti IT, Sr 1T, H.
The author makes two comments on Fe I curve.

1) Velocity extrema lag light extrema by

T Mon A® = 0.044 periods ,
SV Vul A® = 0.072 periods .

This lag and its increase with period had been previously noted, esp. by
Joy (1937).
2) The velocity curves are very nearly repetitive.

Concerning differential velocities the author makes the following comments.

a) No significant Av between Fe IT and Fe I.

- b) Hydrogen shows positive residual of 50 km/s just before light
maximum, 4.e. there is a phase lag of 5 days in maximum positive velocity
relative to Fe 1.

¢) H, differs from other H lines by plus 20 km/s during decline of light.

d) Velocity residuals of H and metallic lines are correlated with line
widths and the author suggests that both are produced by an extension and
deepening of redward line wings.

Although the line profiles are generally symmetric, the H, and H; pro-
files show redward displaced cores near maximum light.

Emission lines of Ca II are strong in T Mon from phases 22¢ 28 to 26" 895
but are not apparent at other phases. Interpretation of the emission is com-
plicated by the presence of an interstellar absorption line.

2. KrarT, R. P.

Ref.: P.A.8.P., 68, 137 (1956).
Subject: Examination of plates of X Cyg, a classical cepheid of period
16 days.

The author concludes that the absorption lines of low excitation potential
are doubled at @ = 0».82, i.c., on the rising branch of the light curve. The
separation of the Fel line (43923) is 38 km/s. The H, core is displaced
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42 km/s from the 13923 line. The undisplaced component is not observed
and the author suggests, by analogy with W Vir, that it has been obliterated
by emission.

The author comments that the luminosity expected from the shock pro-
ducing the line-doubling is comparable with the total luminosity of the star.
The atmospheric shock may therefore produce the hump on the light curve.

3. GRANDJEAN, J.

Ref.: Mem. Acad. Roy. Belgique, Cl. Sci., Coll. No. 8, vol. 22, fasc. 7 (1956).
Subject: A study of differential motions in the atmospheres of the clas-
sical cepheids 1 Agql and ¢ Gem based on 2.9 A/mm Mt. Wilson 100"
coude plates. Summarizes earlier work with the following comments:

«Tirer de toutes ces investigations une conclusion nette, n’est pas chose aisée....

I’aspect assez chaotique de ces observations est trés explicable quand on pense
que ces déterminations ont été faites a 1’aide de spectrogrammes ayant une dispersion
de 40 A par mm 3 H,. A cette dispersion, la majorité des raies du spectre sont des
«blends » non résolus et la variation d’intensité des composantes peut donner des
déplacements apparents de la raie qui interprétés en termes d’effets Doppler, donnent
des vitesses relatives n’ayant aucune réalité physique. Les travaux de JACOBSEN realisés
3 plus grande dispersion, 13 A par mm 3 H > € sont guére plus convaincants. Néanmoins,
ils excluent les grands écarts prétendument mis en évidence précédemment, car, &
cette dispersion (3 fois plus élevée), de tels effets devraient apparaitre nettement, or,
il n’en est rien. Quant 3 des effets moins importants, rien de certain n’est établi;
la dispersion est toujours faible, les erreurs probables relativement grandes, et ce que
nous avons dit précédemment au sujet des « blends » reste vrai en partie. »

The author measured radial velocities of a large number of lines using a
Zeiss comparator and concludes that small velocity gradients definitely exist
(amounting to (3--4) km/s over the depth of formation of the lines measured).
He comments that it is tempting to interpret these velocity differences as
resulting from a slight phase lag of the higher layers relative to the lower but
adds that an increase of velocity amplitude with height could also explain the
differences.

On the basis of model atmospheres and calculated depths of line forma-
tion the author estimates that the velocity gradient is of the order of

1.5-10~* km/s km .

Comment. — Recent theoretical work by R. G. TESKE indicates that line
shifts dependent on line intensity can be produced in the spectra of stars even
in the absence of real differential velocities.

4. JACOBSEN, T. S.

Ref.: Pub. Dom. Ast. Obs. 10, No. 6 (1956).
Subject: A spectrographic study of n Agl and 6 Cep based on plates of
20 A/mm dispersion.
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The author finds essentially no velocity differences among photospheric
absorption lines. Further, the core of H, seems to follow these lines closely.
The Ca Il H and K lines show large departure from the photospheric lines
and also periodically show marked asymmetry.

In ¢ Cep the Ca IT K-line has a larger amplitude but nearly the same phase
as the photospheric lines. In 5 Agl, the amplitude of the K-line velocity curve
is greater than that of the photospheric curve and the K-line curve is distorted
and appears to be retarded by about 0°.1.

5. HErsBIG, G. H.

Ref.: Ap. J., 118, 369 (1952)

Subject: Study of 10 A/mm 100" coude plates of § Sge (P = 8.4 days)
with special emphasis on emission lines of Ca IT.

Comments that Ca Il emission is present in many classical Cepheids.
In 8§ Sge it occurs during the middle of ascending branch of hght curve and
is transitory, lasting two days or less.

The author remarks that there is considerable evidence that the emission
lines in long period (red) variables originate below the layers of formation of
the cores of the absorption lines. He notes the following points of similarity
between the long period variable emission and that of 8 Sge.

1) The emission is diffuse and displaced to the violet relative to the
absorption lines.

2) An increase of absolute strength of the emission with \pha,se is shown
for 8 8ge and is apparent in the long period variables from measured relative
intensities.

3) In the long period variables I(H) > I(K) of Ca II as opposed to the
relative transition probabilities. This is an exaggeration of the tendency to
equality I(H) ~ I(K) in § Sge.

4) Ca Il K emission shows a greater violet displacement than Ca II H in
both types of stars.

The most significant differences between the phenomena in the two types
of stars is the greater strength in the long period variables and the fact that
emission occurs during the descending branch of the light curve.

" The author discusses self a,bsorptlon in a sumple two-layer atmosphere and
indicates that a low-lying ongm of the emission can account for the presence
of the Ca II infrared emission in the absence of detectable H and K emission.

6. ScHWARZSCHILD, M. and B., Apams, W. S.

Ref.: Ap. J., 108, 207 (1948).
Sub]ect A study of the spectrum of 9 Aql (P = 7.2 days) based on
2.9 A/mm plates.

Measurements of line cores show very little evidence for differential veloc-
ities. However:
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«... the principal change in the spectrum of 5 Aql at minimum of light consists
in a widening of many of the lines on the violet side [outward motion], thus pro-
ducing a lack of symmetry, ...».

A modification of standard curve-of-growth technique, using residual inten-
sities in line cores, was employed. The results are similar to those of WALRAVEN
for 6 Cep as regards temperature and electron pressure variations.

The authors derived the (Lagrangian) variation of density following a
particle finding the density to be some 4 times greater at the phase of maximum
light and maximum outward velocity than at minimum light. This result
could be very significant as it is the only available result of its kind.

The authors introduce the derived velocity and density amplitudes into
the Rankine-Hugoniot equation for the isothermal case and state that the
density amplitude is smaller by a factor 10 than is compatible with the velocity
amplitude (Av=10 X velocity of sound). The authors justify the application
of the isothermal R-H equation through noting that 1) the temperature varia-
tion is small relative to the density variation and 2) the atmospheric motion
appears to have the form of a running wave since maximum density occurs at
the time of maximum outward velocity.

Through the application of the linearized -equation of motion the authors
construct a composite model with a high temperature upper layer and show
that the discrepancy can be eliminated.

Comments. — The quantitative results of this paper are derived with the
aid of a number of approximations and assumptions. The amplitude of the
density variations must be considered uncertain by a factor 2 or 3.

Further the use of linearized hydrodynamic equations to construct a com-
posite pulsation model has not received adequate justification.

7. 'WALRAVEN, TH.

Ref.: Pub. Astrom. Inst. Univ. of Amsterdam, No. 8 (1948).
Subject: A spectrophotometric study of 6 Cep based on 10 A/mm plates.

The author did not measure velocities. His representative tracings show
that blending of adjacent spectral lines is an exceedingly serious problem
even at the dispersion employed. He employed the standard curve-of-growth
procedure with the following results: '

1) The hydrogen lines are greatly enhanced near maximum light, at
which time they are too strong by a factor 10 on the basis of classical calculations
using the excitation temperature derived from the metals.

2) Excitation and ionization temperatures vary by about (500 =-1000) °K
during a cycle of pulsation depending on the spectral lines analysed. Electron
pressure varies by a factor 10 during a cycle, reaching maximum with the
temperature, i.c. near maximum light.

3) During increasing light, there is a pronounced relative weakening
of lines of atoms and ions for which the 2-nd ionization potential is less than
about 14 eV, suggesting an increase of Lyman radiation.

1022

https://doi.org/10.1017/5S0074180900104437 Published online by Cambridge University Press


https://doi.org/10.1017/S0074180900104437

PART III-A: PULSATING VARIABLE STARS 185

8. Bruck, H. A. and GRrREEN, H. E.

Ref.: M. N., 376, 101 (1941).
Subject: Study of radial velocities of & Cep based on 13 A/mm plates.

The authors quote references on earlier work concerned with differential
velocities in classical cepheids. The early work was based largely on 40 A/mm
plates and was highly discordant. They note that of the 200 lines in the
region A1 42504650, only 109, are sufficiently free of blends to merit meas-
uring for velocities. Their paper concludes with the following:

«Cambridge four-prism spectrograms of ¢ Ce¢p do not indicate any definite rela-
tive diplacements between lines of different atmospheric level, confirming thereby
earlier negative results of PETRIE and JAcoBSEN. There may exist small differences.
between the velocity curves of groups of neutral iron and ionized titanium lines and
there is evidence for the existence of relative shifts in the case of the neutral calcium
line 1 4425.6 ».

2. — Summaries of papers on RR Lyrae stars.

1. TrirFT, W. G. and H. J. SMITH.

Ref.: Ap. J., 127, 591 (1958).
Subject: A comprehensive study of 7 Sext, the first « C» type RR Lyr
star to have been studied in detail.

The authors note the following characteristics of C-type variables;
1) Period about 6 hours.

2) Relatively sinusoidal light curve with an amplitude of less than 0.6 mag.

Photometric, spectrographic and radial-velocity data are presented and
the following points are brought out.

1) The maximum velocity of approach lags the maximum light by
0.1 periods «in general agreement with results for the few RR Lyr stars
of type a for which velocity curves are available. »

2) The light and ecolor curves show real deviation from one cycle to
another. The light curve fluctuates .03 mag.; the U-B color fluctuates by
0.1 mag. These two types of fluctuations appear to be uncorrelated. -

3) A hump is evident on the ascending branch of the light curve. This
hump is correlated with a hump on the (B-V) color curve but not the (U-B).
‘We note that the (B-V) color is a measure of the slope of the continuous
spectrum to the red of the Balmer limit while the (U-B) is sensitive to the.
Balmer discontinuity. by

The authors estimate that the integral of the hump represents one percent
of the total light emitted during a cycle. Therefore it contains about 10°® erg
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and is equivalent to the kinetic energy of a mass of 5-10?° g moving 20 km/s.
(The amplitude of the observed velocity-curve is about 30 km/s.) If spread
over the entire surface of the star, this mass contains 15 g/cm? and has an
optical thickness of the order of unity in the continuum. The authors suggest
that the hump may be produced by loss of thermal energy following compres-
sion of the atmosphere. Present data are not sufficient to discuss the presence
or absence of transitory emission lines of the type observed during rising light
in RR Lyr.
The authors conclude with the following remarks:

«In summary, a qualitative description of the changes in T Sext can be for-
mulated as follows: A reversing layer which produces the visible spectral lines has
been thrown out from the photosphere by phase 0.9. It begins to fall back around
phase 0.3. Meanwhile the light of the star has increased to maximum and begins to
decline, largely as a function of the behavior of the underlying photospheric layers.
At phase 0.6 a new pulsation wave is emerging from the interior, brightening the star.
Collision between the top of this wave and the infalling layer liberates the energy needed
to produce the hump at phase 0.85, which is superimposed on the over-all increase in
light coming from the lower layers; and the cycle begins to repeat. Since the slope
of the rising branch is rather sensitive to the timing and energy content of the collision
and since the timing, in turn, depends on two essentially independent periodicities
— namely, the pulsation frequency of the star and the interval required for the upper
layer to execute a rise and fall under gravitational and possibly magnetic forces as
well — we are not surprised to find variations between cycles, and these most pro-
nounced on the rising branch of the light-curve. Indeed, such a picture might provide
at least a partial explanation of the common occurrence of beat periods among intrinsic
variables, on the grounds that the two independent periods normally would not be
perfectly synchronized.

« Clearly, this rough model, although plausible, is quite preliminary. It points up
the need for high-dispersion spectra of 7T Sext and for detailed atmospheric calcu-
lations. For example, if collision of layers occurs, a thin zone of high temperature
must be present, which in turn could produce emission lines, as well as the observed
strongly blue color of the hump. Higher-dispersion spectra taken near phase 0.85 would
be useful in looking for the emission lines, In this connection, Balmer-series emission
lines have been found by STRUVE (1947, 1948) and SANFORD (1948) in RR Lyr at
certain phases of its long period. It is of considerable interest that the emission lines
are most pronounced near the long-period phase y=0.1, at which phase, in turn the
light curve, having lost its type @ peak, shows the most pronounced T Sext-like
hump on the rising branch (WALRAVEN 1949). Further, within each cycle the appearance
of emission lines coincides with the light-curve hump. Because of the over-all similarity
of the two stars, these observations of RR Lyr lend some support to the inferential
picture derived above for T Sewt».

2. HARDIE, R. H.

Ref.: Ap. J., 122, 256 (1955).
Subject: A study of RR Lyr in three colors.

The equipment employed in this investigation is deseribed in Ap. J., 114,
522 (1951).
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This paper presents photoelectric light curves adjusted to superposition
0.3 mag. above the minimum of light. The (B-V) color curve has the same form
as the light curve. The (U-B) curve shows a short-lived maximum at the
midpoint of the ascending branch of the light curve. This maximum, indi-
cating a decrease of the Balmer discontinuity, coincides with an observed
weakening of the hydrogen line-absorption and with the transitory emission
observed at H,.

<

3. SanrorDp, R. F.

Ref.: Ap. J., 109, 208 (1949).
Subject: An examination of high-dispersion plates of RR Lyr.

The dispersion of the plates employed in this investigation (10 A/mm,
photographic; 20 A/mm visual) is greater than that employed by STRUVE and
BrLAaaUWw (40 A/mm), and distinet doubling of the hydrogen lines was found.
Sanford interprets this doubling in the following terms:

«If the velocity variations of RR Lyr are caused by pulsations of its atmosphere,
the behavior of the velocities from H and K and from H, would seem to indicate
that an atmospheric wave suddenly started outward with the maximum velocity of
expansion at the time of maximum light and then slowed down, reaching maximum
velocity of contraction at minimum light. Since the wave persists altogether for an
interval of 1.C60 for both H and K and H,, two atmospheric layers may be forming two
separate sets of absorption lines simultaneously. It is perhaps significant that the
relative intensities (shortward/longward) of the two components during this stage
increase with time, i.e., the component belonging to maximum velocity tends to pre-
dominate in the first of the overlap interval, whereas the component accompanying
the curve at minimum does so at the end of the overlap...».

This line-doubling occurs during increasing light, as in W Vir stars. It
is not detected in the metallic lines or the high members of the Balmer
series.

Transitory emission at H, develops at the midpoint of the ascending branch
of the light curves and lasts 0.032 periods or about 30 minutes. The fading of
this emission is followed by the formation, at the same wave length, of the
new, violet-displaced, absorption line of H,. The old, red-displaced component
vanishes near phase .12 periods.

4. STRUVE, O. and BLAAUW, A.

Ref.: Ap. J., 108, 60 (1943).
‘Subject: A study of the radial velocity variations of RR Lyr based
on 390 spectrograms of dispersion 40 A/mm.

The authors states that:

«The purpose of this work was to investigate whether the velocity curve changes
in conformity with the 41-day period of fluctuation in the character of the short-period
light curve (P=0.567 days) ».
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The authors conclude that the behavior of the velocity curve is quite
analogous to the behavior of the light curve.

1) With respect to a uniform ephemeris the times of maximum velocity
are advanced and retarded by .024 periods with a period of about 41 days.

2) Emission in hydrogen occurs during the midpoint of the rising branch
of the light curve. This emission occurs during those cycles when the velocity
curve shows nearly its greatest retardation.

3) RR Lyr shows only a weak correlation between velocity amplitude
and retardation of the velocity curve. However in another paper (dp. J.,
109, 215 (1959)) STRUVE and VAN HoOF find for XZ Cyg an amplitude varia-
tion of some (15--20)9, such that maximum amplitude occurs in cycles of
retarded maximum. Most of the amplitude variation is produced by an increase
of the maximum of velocity.

Therefore it appears that retardation of the maximum of light and velocity
is associated with «) increased amplitude of light and velocity and b) emission
at hydrogen.

3. - Summﬁries of papers on W Virginis stars.

1. WALLERSTEIN, G.

Ref.: Ap. J., 127, 583 (1958).

Subject: A spectroscopic study of three Population II cepheids (two W
Vir stars and one RV Tau star) based on plates of dispersions 18 A/mm
to 80 A/mm.

Although these stars show no line splitting with the lower dispersions,
the higher dispersion plates show doubling by about 50 km/s for two of the
stars at their light maxima.

The RV Tawu star M5 No. 84 shows alternating deep and shallow minima
of the light curve. Wallerstein finds that, preceding the shallow minima, the
maximum of outward velocity occurs 0.3 periods late and the velocity ampli-
tude is reduced from 60 km/s (preceding deep minima) to 40 km/s. This result
is in qualitative agreement with that of ABT for U Mon.

The writer comments that, for the W Vir and RV Tau stars, hydrogen
« emission seems to have a marked maximum among stars of period 15-19 days.
Emission is definitely weaker among the stars of period 20-30 days. »

The writer comments on the difference between the spectra of classical
cepheids and those of Population IT in the following terms:

«... This [difference] is most apparent in the vicinity of maximum light, when the
classical cepheids are close to spectral type F6 with abnormally strong hydrogen absorp-
tion lines. The Population II cepheids, on the other hand, have spectra of A5-F0 with
either greatly weakened hydrogen lines or emission lines of hydrogen. The difference
is so great for variables of period 15 days or more that a star can easily be sepa-
rated into one of the two types using spectra of quite low dispersion... ».
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2. Ast, H. A.

Ref.: Ap. J., 122, 72 (1955).
Subject: A study of U Mon (RV Tau variable, P~46 days) based on
photometric data and spectra of 11 A/mm and 22 A/mm dispersion.

This star is typical of RV Taw stars in showing alternating deep and
shallow minima of the light curve. The light and velocity variations show
a large degree of irregularity.

In other respects the behavior of this star is like that of W Vir. I.e.
emission of hydrogen is present during increasing light. The radial velocity
curve is discontinuous with a total amplitude of about 40 km/s and « just
before each light-maximum a weak set of lines appears, displaced shortward
with respect to the stronger lines. These lines quickly strengthen, move long-
ward, and then fade during the next light-maximum... ».

The author discusses available data relevant to the question of systematic
atmosphere-streaming. Table III of his paper, here reproduced, lists inte-
grated radial velocities of globular clusters and mean velocities of the W Vir
and RV Tau stars which are contained in these clusters.

TaBLe TII. — Velocities of variables in globular clusters.

v Integra?ted Varia- Mea.n . Dit.
Type NGC velocity W_t. ble velocity | Wt. (Mean- | Weigh

(M) (km/s) Wy No. (km/s) Wy ‘Integ.)

(Mayall) (Joy)

W Vir 5272 (3) — 150 24 154 — 153 | 14.0 — 3 8.84
6218(12) - 32 4 1 — 42 5.6 — 10 2.33
6 254(10) + 73 6 2 + 67 7.0 — 6 3.23
5904 (5) , + 45 | 13 | 42 | + 54 | 80 | + 9 | 4.95
RV Tau 5904 (5) | + 45 | 13 | 84 | + 50 | 80| + 5 | 4.95
6779(56) | — 154 5 6 | —132 | 77| +22 |3.03
7080 (2) | — 3 | 17| 11| — 4 |108 | — 2 |6.60
Weighted mean — — — | = — — | +246 | —

It is known that the mean random velocities of non-variable stars within
globular clusters are of the order of 5 km/s. Therefore, Abt’s results

Av =246 km/s,

is consistent with the assumption of no systematic streaming within the atmos-
pheres of Population II variables.
Application of the curve-of-growth analysis to the line intensities indicates,
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as for W Vir, an increase of random velocities, on the microscopic scale, with
advancing phase. A random velocity of 3 km/s is characteristic of lines which
have just developed and this increases to about 7 km/s as the lines shift toward
the red with increasing age. The author suggests that this increase of width
may be due to turbulence or dispersion of the pulsation velocity.

The author interprets the variations of line strength around maximum
light as being due to variations of the continuous opacity of the atmospheric
layers forming the lines. This assumption allows evaluation of the electron
pressure and degree of ionization in the layers.

Comment. — The variations of line strength appear to be confined to the
phases of line-splitting and, for the longward component, must be largely
due to decreasing total mass in the layer as the shock moves upward.

3. Asmt, H. A.

Ref.: Ap. J., Supp., Ser. 1, 63 (1954).
Subject: An analysis of the spectrum variations of W Vir (P =17.3 days)
based on 10.3 A/mm coude plates.

The author combines color and light data with integrations of the velocity
curve to derive a mean photospheric radius of 30-10°km and a pulsation
semi-amplitude of about 10-10® km.

Examination of data on variable stars in globular clusters indicates that
the median observed velocities of the variables are within 10 km/s of the
velocity of the center of mass of the clusters. Hence systematic streaming
motions at the region of line formation are probably less than 10 km/s.

Absorption lines show duplicity around maximum light with a separation
of 55 km/s. (Private communication: Within each of the two sets of lines
the differential velccities are small.) ’

The writer describes the appearance of the absorption spectrum in the
following terms:

« When they first appear just before maximum light, the shortward absorption
lines are very weak but have the appearance of an F2 supergiant. The luminosity
class at all phases is about Ib—-certainly not IT or III. The new group of lines quickly
strengthens, while the longward components fade, until at phase 0.2 they have nearly
reached their full strength. The spectral type becomes later until at minimum light
(phase 0.62) the metallic lines indicate G6, although the G band is either absent or
very weak. After minimum light the lines begin to fade, and the spectral type quickly
returns to F2. Between phases 0.825 and 0.1, when both absorption components are
present and weak, both indicate a spectral type of F2, although there is a large differ-
ence in excitation temperature between the two spectra ».

In a private communication dated Nov. 3 (1954) the writer states:

«... The measures in both W Vir and U Mon indicate that the Doppler velocity
(from curves of growth) increases monotonically throughout each cycle. In so far as I
can tell, the line widths in W Vir also increase correspondingly, so that at the phase
of double lines, the longward (old) components are broader than the shortward ones.
In U Mon the lines are not so well resolved but they seem to show the longward
components broader... ».
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Concerning the hydrogen lines the writer states that « the behavior of the
hydrogen lines is complex and shows large variations from cycle to cycle ».
This behavior is shown in Fig. 6 of the writer’s paper and, concisely, is the
following. Shortward-displaced emission lines appear at light minimum
(phase 0.6) and they have vanished by phase 0.1. The emission lines are
replaced by narrow absorption lines which shift toward the red. These absorp-
tion lines persist, superimposed on the emission lines, until phase 0.1 of the
following cycle.

The author notes the existence of very broad shallow absorption wings
around maximum light and states that they have the same velocity as the
shortward metallic lines and the H emission lines.

4. SaAxForD, R. F.

Ref.: Ap. J., 116, 331 (1952).

Subject: A study of the spectrum and radial velocities of W Vir based
on 10 A/mm plates.

This paper presents the best existing velocity curve for W Vir and discusses
the behavior of certain spectral lines.

Table II of the paper, reproduced hereafter, indicates that the relative
intensities of the shortward (upward moving gas) and longward component
change little while both are present.

TABLE II. - Spectrograms of W Virginis with double absorption, lines.

Element and relative intensities: shortward

P’late No. Phase to longward component ratio, S: I

(Ce) (P) -

Sr IT Till Fel

7102 0.94 2:3 2:3 2:1

6107 .95 2:1 2:2 2 :trace

6211 .00 3:1 2:0.5 2:0

5647 : .00 1:2 1:3 1:2

5617 .04 1:1 1:1 1:1

5618 0.10 1:1 1:1 1:1

Concerning the hydrogen emission, the writer states:

Emission lines of hydrogen prevail in the phase interval from light-maximum and
for an interval of 0.1 P beyond, in which short interval W V.r is very little fainter
than at maximum light (see Fig. 1). Each emission hydrogen line is divided into a
strong shortward and relatively weak longward part by a superposed absorption line.
This difference in intensity of components increases markedly from minimum to
maximum of light, so that finally the longward parts are scarcely visible.

The hydrogen lines... are in both emission and absorption. The absorption lines give
velocities which agree with the velocities from the absorption lines of the other elements
if these lines are single, and with their longward components if they are double.
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The superposed absorption components prevented satisfactory measures of the
displacements of the hydrogen emission lines on the spectrograms themselves. However,
microphotometer tracings which seemed fairly adequate for this purpose furnished
the diplacements from which the velocities in Table I vere obtained. Although these
velocities are liable to considerable error, they seem to give evidence of a wvariation
as brought out in Fig. 3. The velocity trends downward from —70 km/s at phase 0.65 P
to — 100 km/s at phase 0.95 P, with little or no change thereafter until the disappearance
of the emission lines at phase 0.10 P. The average of the emission hydrogen lines is
at least 2.3A.

The paper closes with the following interpretation of the observation:

Absorption-line velocities of W V4r and the relation of their changes to changes
of light may be explained quantitatively by means of shock-waves. Such a shock-wave
is thought of as entering the reversing layer at its bottom and passing through its suec-
cessive strata at the time when the reversing layer is falling in at its maximum velocity.
This imparts a high outward velocity to successive strata, beginning at the bottom.
That part of the reversing layer which has not been hit by the shock wave continues
to rush rapidly inward. The Doppler effect separates the absorption lines of the inrushing
from those of the outrushing gases. However, this would apparently require the
relative intensities of the shortward to the longwaard components of the double lines
to be weakest at the beginning and to grow stronger as the interval for double lines
advances. This is not evidenced by the data in Table II....

The explanation of the emission lines of W Vir is not clear. If these lines are a
product of the shock wave, it would seem that the emission lines begin in layers below
the reversing layer, perhaps after the shock-wave has passed by this lower level. If
such a mechanism is present, it might account for the continuance of the emission lines
until the shock-wave has completely traversed the reversing layer.
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