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A two parameter eigenvalue problem

J.A. Rickard

An ordinary second order different ial equation is considered in

which the coefficients are dependent on two parameters u) and

F as well as the independent variable \i . The equation ar ises

in the study of free osci l la t ions of incompressible inviscid

fluid in global she l l s . An asymptotic technique i s presented

which estimates the eigenvalues (that i s the values of w for

which the solution is bounded for a l l \\i\ 5 1 ) as functions of

F , as F •*• °° . The agreement of the resul ts with numerical

computations is also discussed.

1. Introduction

In recent studies of free osci l la t ions of incompressible inviscid

fluid in both spherical and spheroidal shells with r igid or free outer

surfaces equations l ike that below are encountered (see Rickard [ 2 ] , [ 3 ] ,

(1.1) <o(l-u2) (u/Uu2) i \ - pu>M"2-2-2u2) + >F(l-u2) ( u W ) } J*

+ {-2(a)3+to2+Uy2)+ii;'(a)2-l*u2)(a)3+(2-3w)y2)}x = 0 .

In free-surface problems, l ike that above (see Rickard [ 2 ] , [4]) F

represents a non-dimensionalised Froude number and w the free periods of

osci l la t ion (apart from various constants). In r igid boundary problems a

similar parameter K occurs (see Rickard [ 2 ] , [3 ] ) , which is essent ia l ly a

measure of the deviation of the shel l from a spherical she l l . The

dependent variable X represents a reduced pressure and the independent

variable u is such that |u | 5 1 .
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40 J.A. Rickard

I t i s required to calculate the eigenvalues co , that i s the values of

u> for which x i s bounded in |p | £ 1 , as functions of F (or K , as

the case may be) . The analyt ical solution of ( l . l ) for small F and

numerical calculations for moderate F have been carried out by Rickard

( [ 2 ] , [ 3 ] , [ 4 ] ) . In most geophysical applications F i s not large. For

example, F i s approximately 12 for the Pacific Ocean (see Rickard [4 ] ) .

However, the s tructure of the eigenvalues of ( l . l ) and similar equations as

F •* °° i s of considerable mathematical in te res t .

In t h i s paper an asymptotic technique i s used to estimate the values

of u> as F -*<*>. Specif ical ly , the paper is made up as follows. In

Section 2 the solution of ( l . l ) away from \i = 0 and |y | = 1 i s examined

for F •*•">. Sections 3 and 4 examine the solution in these boundary

layers while Section 5 discusses the matching procedure necessary to

estimate u . Final ly , in Section 6 the resul ts are compared with

numerical calculations and res t r ic t ions on the general applicabi l i ty of the

method are discussed.

2. Solutions for large positive F

Since we are primarily concerned with calculating the eigenvalues of

( l . l ) , (the values of co for which x i s bounded) and not in the detailed

s t ruc ture of the solut ion, a l l we require of the boundary conditions i s a

means of distinguishing between even and odd eigenfunctions. I t wi l l be

convenient to distinguish between even and odd solutions of ( l . l ) by

imposing the boundary conditions

(2.1) XU) = ! » X(°) = 0

for odd solut ions , and

(2.2) X(l) = 1 . X'(O) = 0

for even solutions.

Further, we shal l r e s t r i c t our attention to positive values of V ,

the extension to negative values being straightforward. In ( l . l ) , as

F -*• °° , the coefficient of the most highly differentiated term becomes

singular and we may expect the presence of boundary layers , enabling us to

sa t i s fy (2 .1 ) , (2 .2) .

Away from the neighbourhood of any such boundary layers the solution
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of ( l . l ) may be written

(2.3) X(u) = AF{\i) + BG(\i) ,

where A and B are arbitrary constants and F(u), C(p) may be written

in the form

(2.U) F(u) = 2 ^ 0 0 + (2/F)F2(\i)
 2

(2.5) G(M) = y ^ j ^ t p ) + (2/F)G2(M)

where F (v), G (\i) , n = 1, 2, . . . , are functions of V only.

Although 03 is also a function of F , we shall for the present

regard i t as constant; a simplification which in no way affects the

analysis to follow.

It is now a straightforward matter to determine F.(u) and G (\i)

by substituting (2.3)-(2.5) in ( l . l ) and comparing corresponding powers of

F . We find that

(2.6)

where a and B are arbitrary constants and

(2.7) *-i2=4i

From (2.3)-(2.6) it follows that

(2.8) ' v "r a)2f" 2 i" X

where the constants a and 3 have been absorbed into A and B .

Further terms in (2.8) may be calculated in a straightforward way but here

we give only the leading contributions to F(p) and G(v) . It is clear

that (2.8) breaks down in the neighbourhood of U = 0 and P = 1 , and

that we cannot at present satisfy (2.1), (2.2). We shall now consider the

solutions of (l.l) within these boundary layers.
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3. The boundary layer near y = 0

A consistent match with the solution (2.8) near p = 0 can be found

by taking F 2 as scaling factor for this layer, and near p = 0 we write

1

(3.1) U = (2/F)5j/ , X = Xj ([/)•+ (2/F)x2(«/) + . . . . .

From (1.1), (3.1) i t follows that

(3.2) _ _ l _ j , _ l + ( 1 2 0 >

the complete solution to which is given by

where A , B are arbitrary constants and M(a, b, z) is Kummer's

function (see, for example, Slater , [5] , p. 50U).

We now have to apply the boundary conditions at p = 0 , as given by

(2.1) , (2.2). Which of these conditions we impose depends on whether the

class of solutions we wish to consider are even or odd, and we shall now

proceed to discuss each of these cases separately.

(i) Odd solutions

In this case (2.1) i s the appropriate condition, and from (3.3) i t

follows that

(3.1*) A1 » 0 ,

The asympto t ic form of (3-5) as y -*• °° i s given by

(3-6 )

J !

where

2 /
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(3.7) L2(y) = 1 + ±±=2-^

(i i ) Even solutions

We now have (2.2) instead of (2.1) as the appropriate boundary

condition, and from (3.3) i t follows that

(3.8) Bx = 0 ,

(3-9) X^y) = A^d{-\u2, i , ij/2) .

As y •*• °° t h e asymptotic form of (3-9) i s given by

(3.10)

Due to the presence of the exponential term in (3-6) we see that every

term of the second series dominates even the leading term of the first

series. Hence, in the case of odd solutions, it follows from (2.8), (3-6)

that B is correctly related to B , but that the relationship of A to

B may be in error by a term of order B .

Analogous remarks apply to the relationships between A, B, A for

even solutions.

4. The boundary layer near p = 1

In this boundary layer, near p = 1 , a consistent match with the

solution (2.8) can be found with scaling factor F , and on writing

(l*.l) y = 1 - (2/F)x , X = Xj/x) + (2/F)x2(x) + ... ,

it follows from (l.l) that

X, %

(U.2) x — ± + (x+2) -^ + XXl = 0 .

dx

If we now make the transformation

(U.3) x = -z ,
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then (U.2) becomes

(k.k) z — ^ + (2-3) -rjf- XXl = 0 .
(is

This i s the Confluent Hypergeometric or Rummer's Equation, and has

solution

(4.5) Xx(z) = i»gM(X, 2, z) + B2tf(A, 2, s) ,

where 4p, B? are at present arbitrary constants. For an account of

Kummer's equation, together with the definition of M(a, b, z) and

U(a, b, z) , see, for example, Slater, [ 5 ] , p. 50U.

From (2.1), (2.2) , we see that for both even and odd eigensolutions,

we require

(4.6) B2 = 0 , A2 = 1 ,

so that (1+.5) reduces to

l ) (*, 2,

I t follows that the asymptotic behaviour of xAx) as x •*•

(3 ••• -°°) is given by

(1, 8 )(it.8)

5. Matching of solutions

I t is clear from (2.8), on putting V = 1 - ^pr , that the algebraic

terms in (4.8) must have a small coefficient. This can be achieved only i f

(5.1) X = « + 6 , n = 2, 3, h, . . . ,

where [6| « 1 ; or if A •* -°° . If A •+• -« , i t follows from (2.7) that

0) i s small and negative, contrary to the known result that 00 > 0 for a l l

F (see Rickard, [2]) . Hence (5.1) i s the only possibil i ty.
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It is clear that 6 will be different for even and odd solutions, and

we shall write

( 5 -2 )

6=6 for odd solut ions ,

6 = 6g for even solutions,

la an attempt to estimate the values of 6 , 6 we shal l proceed to
O 6

match the solutions in the boundary layers near \i = 0 and u = 1 with

(2.8), taking only the leading terms in each series in the asymptotic

expansions (3-6), (3.10), (It.8). As remarked previously, this matching

procedure may involve errors, due to the dominance of all the terms in one

series in (3.6), (3.10) over terms in the other series in these asymptotic

expansions. We must therefore anticipate our results to be correct only to

within an order of magnitude.

When I «S I « 1 , we may make the following approximation

(5-3) u5x}l
o

Further, for values of X given by (5-1) , w i s small compared with

unity, and we may approximate certain functions occuring in (3-6) , (3.10),

for example,

(5.U) (-l-i<02)l £ -2/0)2 , H - | w 2 ) l % /F , ( i ) " 2 % 1 , and so on.

From (2.8), (3.6), (3.10), (U.8), with the aid of (5-3) and

approximations like those in (5.k), we find

0

(5.6) 6 e = _ _ ! _ 6 o .

From (2.7), (5-1) it follows that

(5.7) a) = w + to* ,

where a) is the root of the cubic equation

(5.8) w3 - (3+2n)o) + 2 = 0 , n = 2 , 3, U, . . . ,
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which l ies between zero and unity, and u* is given by

(5.9) u* = Y - ui ,

where Y is the root of (5-8), (lying between zero and unity), with n

replaced by n + 6 [& for odd solutions and 6 for even solutions) .

Further we see that ui is the same for even and odd solutions

associated with a given n and is independent of F , whereas o>* is

different for even and odd solutions and furthermore is 0(6) and

dependent on F .

We shall now infer that w is of the form

(5.10) w = w + (2/F)to + (2/i")2u> + . . . ,

where

(5.11) oin = un + o>* , n = l , 2, . . . ,

0) being independent of f and the same for both even and odd solutions,

while o>* is dependent on F and different for even and odd solutions.

Furthermore u>* tends to zero exponentially as F -*•<*>.

The determination of u)_ , while straightforward, is probably not

worthwhile in view of the possible errors in to* . However, calculation of

Zi presents no difficulty and below we shall outline the method used to

calculate such in the simplest case n = 2 . The extension to arbitrary n

i s straightforward.

If we substitute (U.l) into ( l . l ) we find that X2(«) satisfies the

following differential equation:

i 2 y . dy_
(5-12) x

T ( 2 1 f 2l 1 a x l
+ 2u_(x+2) 3tô -U +w 32-"W+28x-3xto!T x j

I d ( . i J H . 1 l j j a x
F f U 2 I f f 3 2 ,"> f 3 2 ,fl"L 1

+ (!)„ 5w, -210), + W , +12 +2< 7w, -2u>, -2l«D, +16 x - ur+u>, +U ) 9 , > .
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When n = 2 , in order to calculate (5 , it is sufficient to take

X = 2 , 6 = 0 , x1(x) = e~
x , when (5.12) reduces to

(x+2) i
where , n = 1, 2, 5 are constants depending only on ui..

The structure of <?2(y) (see (2.5)} in th i s case requires that

(5.1*0 Y (x) = \a xc

where an (n = 1, 2, 3) are constants to be determined.

In order that (5.1U) shall satisfy (5.13) we find that

(5-15)
+56

-U
5u> - +28

In th i s case (n = 2) , ^ = 0.2892 , so from (5.15), w = 0.11*67

The values of 6Q, 6g together with associated values of <d* are

tabulated in Table 1 for the case «,= 2 when F = 10, 20, 25, 30 .

6
o

.OUU

.019

.0096

.ooouu

Odd solutions

U* a)

-.0038

-.0017

-.0008

-.OOOU

from (5.16)

-31U

.302

.300

• 299

F

10

20

25

30

Events oluti ons

*e

-•27

-.13

-.068

-.0031

10* w

.025

.012

.0059

.0027

from (5.16)

.31*3

• 315

• 307

.302

Table 1. Values of 6 , 6 , u* and o> from (5.16) for case n = 2o e L

Further, the values of 0) , as calculated from the approximation

(5.16) (0 = ^ + 0)*+ (2/F)u2 ,
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are also given in Table 1.

J.A. Rickard

6. Discussion

For small values of F , X and o> can be expressed as power series

in F . The procedure i s straightforward, see , for example, Rickard ( [ 2 ] ,

[ 3 ] ) . I t i s found that

(6.1)

where

(6.2) , n = 1, 2,

Numerical computation of eigenvalues of ( l . l ) i s also straightforward,

using a method devised by Picken ([?]) for solving ordinary different ia l

equations in terms of Chebyshev ser ies . The reader i s referred to Rickard

( [ 2 ] , [3]) for ful l de ta i l s of the method. In Table 2 those eigenvalues

which are 1 /3 , 1/6 when F = 0 are tabulated for values of F from 10

to 30 . The r e su l t s are i l l u s t r a t ed graphically in Figure 1.

F

0

1

5

10

15

20

25

30

1/3

.3hk

.356

.31*6

• 332

.318

• 309

.302

1/6

.189

.2kk

.2jk

.288

.293

.296

.295

Table 2 . Numerical calculation of eigenvalues

The values of to predicted by (5-l6) and given in Table 1 are also

i l l u s t r a t e d in Figure 1. The even solution (for which <»> = 1/3 when

F = 0 ) i s in good agreement with the numerical resul ts even for F as low
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as 10 . However, the odd solution (a) = 1/6 , F = 0) is not predicted

to good approximation by (5.16) unt i l F i s greater than about 25 • This

i s due to the fact that (5-l6) wi l l be a good approximation only after the

actual solution curve has passed i t s maximum (F = 5 for even solution and

F = 25 for odd solut ion, approximately); that i s , when exponential decay

dominates. In fac t , for large F , co may be taken as ta. + (2/F)w to

good approximation, but u>* must be considered i f i t i s required to

dist inguish between the even and odd eigenvalues.

For F < 0 similar arguments may be used and i t i s found that a l l

eigenvalues tend to zero as F -*• -°° (except the exceptional eigenvalue for

which ( 0 = 1 for a l l F ) .

The method given in th i s paper can be used to study other equations

similar to ( l . l ) provided that i t is possible to find the solution away

from the neighbourhood of any boundary layers ; see (2 .3) , (2.6) . The

solut ion in the neighbourhood of y = 0 and y = 1 i s unlikely to cause

any d i f f icu l ty .
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