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CLASSIFYING ALGEBRAS FOR THE ^-THEORY 
OF <T-C*-ALGEBRAS 

N. CHRISTOPHER PHILLIPS 

Introduction. In topology, the representable AT-theory of a topological space 
X is defined by the formulas RK°(X) = [X,Z x BU] and RKl(X) = [X, 17], 
where square brackets denote sets of homotopy classes of continuous maps, 

U = lim U(n) 

is the infinite unitary group, and BU is a classifying space for U. (Note that 
ZxBU is homotopy equivalent to the space of Fredholm operators on a separable 
infinite-dimensional Hilbert space.) These sets of homotopy classes are made 
into abelian groups by using the //-group structures on Z x BU and U. In 
this paper, we give analogous formulas for the representable AT-theory for a-
C*-algebras defined in [20]. That is, we produce a-C*-algebras P and Unc, 
equipped with the appropriate analog of an //-group structure, such that there 
are natural isomorphisms of abelian groups 

RK0(A)*[P,Ah and RKl(A)^[Unc,A]l 

for unital cr-C*-algebras A. Here [A,#]i denotes the set of unital homotopy 
classes of *-homorphisms from A to B. Thus, RK* really is a representable 
functor in the sense of category theory. (Compare with the remarks in the intro­
duction to [20].) A small variation on our results gives a proof, up to a minor 
technicality, of Conjecture 2.5.7 in the survey article [21]. 

As a byproduct of our proofs, we also obtain descriptions of RKQ(A) and 
RK\(A) that are more closely related to the usual definitions of Ko(A) and K\(A) 
for C*-algebras A than the definitions given in [20]. We show that, for any a-
C*-algebra A, the group RKo(A) is isomorphic to the group of homotopy classes 
of projections in Mi{{K 0A)+) which differ from 

(ID 
by an element of Mi(K 0 A), with an operation derived from the direct sum 
operation. Also, we show that RK\(A) is naturally isomorphic to the group of 
path components in the unitary group of (K 0 A)+. Here, and throughout this 
paper, K is the algebra of compact operators on a separable infinite dimensional 
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Hilbert space, and the superscript + denotes the unitization. The examples in 
Section 4 of [20] suggest that it is unlikely that this description of RKQ(A) can 
be much improved. 

We should mention that Rosenberg has obtained in [22] a representation theo­
rem for the AT-theory of C*-algebras which is analogous to what the topologists 
do for covariant functors. For example he proves in Theorem 4.1 of [22] that 
there is a natural isomorphism 

Ar,(A)^[Co(R),£®A] 

for any C*-algebra A. Here the square brackets with no subscript denote homo-
topy classes of homomorphisms with no restrictions on units. This formula is 
also correct for cr-C*-algebras A. Our approach, however, is the analog of what 
the topologists do for contravariant functors. Since A'-theory is contravariant on 
spaces, and since the functor X »—• C(X) from spaces to (pro-) C*-algebras is 
contravariant, our results are a more direct generalization of the formulas 

RK°(X) = [X, Z x BU] and RKl(X) = [X, U]. 

This paper is organized as follows. In the first section, we define an adjoint 
to the functor Mn <g> — of tensoring with the n x n matrices, and we show how 
to use it to construct certain "noncommutative" //-groups. This is the method 
used to construct the classifying algebra P for RKQ. We define P and prove the 
isomorphism 

RK0(A)^[P,A]{ 

in the second section. In the third section, we define (much more directly) the 
classifying algebra UnC9 and establish the isomorphism 

RKx{A) = [Unc,A\\. 

In Section 4, we relate the construction of Unc to that of P, and use this in­
formation to compute RK*(P) and RK*(Unc). These groups are much smaller 
than the corresponding groups RK*(Z x BU) and RK*(U), and the difference 
can be used to show that the algebras of continuous functions C(Z x BU) and 
C(U) cannot take the places of P and Unc, even for the case in which A is a 
C*-algebra. In the last section, we prove a version of our results in terms of 
pointed a-C*-algebras; this version is probably the closest to the topologists' 
approach, and leads to the formulation of a "noncommutative Bott periodicity" 
conjecture. We then discuss this conjecture and other related problems. 

For general facts about a-C*-algebras and pro-C*-algebras, we refer to [19] 
and [21]. In particular, the tensor products which appear above, and multiplier 
algebras, are as defined in Section 3 of [19]. We will also adopt the convention 
that all homomorphisms are assumed to preserve adjoints and to be continuous. 
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(Note that *-homomorphisms between <r-C*-algebras are automatically contin­
uous, by [19], Theorem 5.2.) If A is a unital pro-C*-algebra, then U(A) is the 
unitary group of A, UQ{A) is the path component of the identity in U(A), and 
(U/Uo)(A) is U(A)/U0(A). Also, if X is a topological space, then C(X,A) de­
notes the algebra of all continuous A-valued functions on X, with the topology of 
uniform convergence on compact subsets of X in each continuous C*-seminorm 
on A. If X is compactly generated, then C(X,A) is a pro-C*-algebra which we 
identify with C(X)®A. (Compare [19], Proposition 3.4.) If A is omitted, it is 
understood to be C. 

1. Homotopy dual groups and the adjoint functor to M,7(g>—. The purpose 
of this section is to define, and prove some properties of, certain homotopy dual 
groups whose operation is derived from the direct sum opertation on matrices. 
The construction uses algebras Wn(A) and W^A), where Wn(A) is defined by 
the property 

Hom(Wn(A),B) *Ê Hom(A,M„(£)), 

and where 

M/o û(A)-lim^(A). 
n 

Notation 1.1. For any unital pro-C*-algebra A, denote by eA the homomor-
phism from C to A such that eA(l) = 1, and denote by 8A the homomorphism 
from A * cA to A which sends both copies of A in the free product identically 
onto A. (For the definition of the free product of pro-C*-algebras see Section 
1.5 of [21], or, using an equivalent notion of pro-C*-algebra, [29].) Finally, we 
denote by rA the flip homomorphism from A * QA to A * QA which sends each 
copy of A in the free product identically onto the other one. 

Definition 1.2. (Compare [29], 2.1.) A homotopy dual group in the category 
of pro-C*-algebras is a tuple (A, x, M? 0» where A is a unital pro-C*-algebra, and 
where \ : A —> C, p : A -^ A * cA, and i : A —• A are unital homomorphisms, 
such that there exist unital homotopies as follows: 

(1) (p * idA) o p ~ (idA * p) o p. 

(2) L o t ^ idA. 

(3) 5AO(L* idA) ofjJc^eAox—èAo (idA u ) o / i . 

(4) (x * idA) o p ~ idA ~ (idA * x) ° p. 

In (4), we identify C * QA and A * cC with A in the obvious way. The homotopy 
dual group is called abelian if in addition there is a unital homotopy 

(5) TA O p ^ p. 
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The only real difference between this definition and that of [29] is that we have 
everywhere replaced equality by unital homotopy. A homotopy dual group is the 
noncommutative analog of an //-group, as defined for example in Section 1.5 of 
[26], but without the base point. Indeed, if A in the definition is a commutative 
algebra, then it is the algebra of continuous functions on a quasitopological 
space [25] which is also an //-group. (Use the results of Section 2 of [19].) It 
follows that if A is a homotopy dual group, then the space Homi(A, C) of unital 
homomorphisms from A to C is a quasitopological //-group, with identity x> 
multiplication p • ip = (p * i/0 ° p, and inverse p~l = p o L. 

Just as in the topological category, we obtain a group structure on appropriate 
sets of homotopy classes. In the following proposition and throughout this paper, 
we will denote the (unital) homotopy class of a (unital) homomorphism p : A —> 
B by [<£]• (We will usually mean the unital case, but it will always be clear from 
the context.) 

PROPOSITION 1.3. Let (A, x, M? 0 be a homotopy dual group. Then for each 
unital pro-C*-algebra B, the set [A,/?h has a natural group structure, with 
identity [eg o \], multiplication [p]W = [<5# o (p * t/;) o p], and inverse [p]"x = 
[p o i\. If (A, x, /i, t) is ahelian then so is [A, B]\. 

The proof is immediate, and is omitted. 

We now set about constructing an important class of examples of homotopy 
dual groups. 

Definition 1.4. Let A be a C*-algebra and let n à 1. Then Wn(A) is defined 
to be the universal C*-algebra generated by the symbols xn(a,ij) for a G A 
and 1 ^ ij S n, subject to certain relations. To state them, we introduce the 
symbols xn(a) for the n x n matrix (xn(a, ij))" .-=1 and x*(a) for the n x n matrix 
(xn(aj\ /)*)"/=!• Then for every polynomial/ in 2k noncommuting variables 
and having no constant term, and every a\,...,ak G A such that 

f(aua*{,...,ak,a*k) = 0, 

we impose the n2 relations stating that the entries of the n x n matrix obtained 
by formal evaluation of the expression 

f(xn(a\),x*(a\),.. .,xn(ak),x*(ak)) 

are all zero. If furthermore p : A —+ B is a homomorphism of C*-algebras, then 
we define 

Wn(p):Wn(A)->Wn(B) 

by setting 

Wn(ip)(xn(a, ij)) = xn(ip(a), ij). 
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Finally, if B is a pro-C*-algebra and xp ' A —> Mn(B) is a homomorphism, then 
we define a homomorphism 

$:Wn(A)-*B 

by setting 

the ij entry of the n x n matrix ip(a). 

The next proposition asserts that this definition makes sense, and that A \—» 
Wn(A) is an adjoint functor to B »—> Mn(B). 

PROPOSITION 1.5. 77z£ assignment A »—• W (̂A) w a functor from C*-algebras 
to C*-algebras. If A is a C*-algebra and B is a pro-C*-algebra, then the 
assignment -0 i—• Up defines isomorphisms of sets 

Hom(A, Mn(B)) 9* Hom(Wn(A\B) and [A, M„(£)] ^ [WW(A),B] 

which are natural in both A and B. 

Proof Wn(A) is a C*-algebra since the relations defining it are admissible in 
the sense of Blackadar ([4], Section 1). Indeed, they imply that 

|Ma,/J)||^H| 

in any representation. That A i—> Wn(A) defines a functor is now obvious. For 
the second part of the proposition, it suffices by the définition of an inverse 
limit to consider only the case in which B is a C*-algebra. That 0 i—y \p 
defines a bijection between the sets of homomorphisms is now immediate from 
the définition of W„(A). Bijectivity on homotopy classes follows by looking at 
homomorphisms from A to B ® C([0,1]). Naturality is immediate. 

Remarks 1.6. (1) Wn can be extended to a functor on the category of pro-
C*-algebras, with the same properties, by defining 

Wn^limAd) =limWn(Ad). 

We will not need this, so we omit the details. 
(2) Wn(A) is a generalization of the noncommutative Grassmannians and uni­

tary groups of [7] and of the noncommutative classical Lie groups of [29]. In 
general, the abelianization of Wn(A), when A is a C*-algebra, is isomorphic to 
the set of all functions on the space of representations of A on Cn which are 
continuous and vanish on the zero representation. (Use the previous proposition 
with B = C.) 
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(3) If A = C*(G,R) is a universal C*-algebra on generators G and relations R 
of the form/(ai , . . . , a*k) — 0, with/ as in Définition 1.4, then in the definition 
of Wn(A) we only need the generators xn(a, ij) for a G G and the relations 

f(xn{a\),...,x*n(ak)) = 0 

corresponding to the relations in R. 

Definition 1.7. Let A be a C*-algebra. Define a homomorphism 

Trn:Wn+{(A)-+W„(A) 

by 

(*) 7rn(^1(fl,î,y))=fJ(fl'^) \-n. 
10 otherwise. 

(To show that (*) defines a homomorphism, one simply observes that 

/jrw(0,1,1) . . . xn(a,\,n) 0N 

= xn(a) © 0 a i-
xn(a,n, 1) . . . xn(a,n,n) 0 

0 . . . 0 0/ 

is a homomorphism from A to Mn+\(W„(A)).) Then define W^A) to be the 
cr-C*-algebra lim W„04), using the homomorphisms ixn. 

n 

Woo is not the adjoint to the functor B \—> K <g> B, but rather of the following 
"finite" version of this functor. The advantage of WQQ is that it sends C*-algebras 
to a-C*-algebras, while the adjoint of B \—> K <g> B, constructed in Proposition 
5.8 below, presumably does not. 

Definition 1.8. Let Ko be the dense subalgebra (J£ii Mk of K. For any pro-
C*-algebra B, denote by KQ 0 B the algebra 

lim 
p 

\jMk®Bp 

as p runs through the set S(B) of all continuous C*-seminorms on B. That is, 
Âo (§) B consists of all infinite matrices b — (/?,/) such that for every p, one has 
pQ>ij) = 0 for all but finitely many pairs (ij). Give KQ <§) B the relative topology 
that it inherits as a dense *-subalgebra of K®B. A homotopy of homomorphisms 
from an algebra A to Ko (g) B is defined to be an assignment t >—• <pt such 
that, with the obvious identifications, the formula ip(a)(t) — <pt(a) defines a 
homomorphism from A to KQ <g> (B 0 C([0,1])). Similarly, a homotopy r »—> a, 
of elements in #o 0 # is required to define an element of KQ <§) (5 ®C([0, 1])), 
not just an element of K 0 5 ® C([0, 1]) which is sent to Ko <§) £ under the 
evaluation maps. 
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PROPOSITION 1.9. Let A be a C*-algebra and let B be a pro-C*-algebra. Then 
there are natural isomorphisms of sets 

Wom(WOQ(A),B)^ttom(A1Ko®B) and [Wœ(A),B] ^ [A,K0 <§> B]. 

Proof. The first statement follows from the definitions of an inverse limit 
and of ^o <8> B, and Proposition 1.5, using the fact that a homomorphism from 
Woo(A) to a C*-algebra (here Bp for some p e S(B)) must factor through some 
Wn(A). The second statement follows from the first by using £(g)C([0,1]) in place 
of B. 

We now show that, under favorable circumstances, the unitization Woo(A)+ 

can be made into a homotopy dual group. 

Definition 1.10. Let A be a C*-algebra equipped with a homomorphism 
Lo : A —> A such that ô ° ô — id& and such that 

V 0 a) 

is homotopic to the zero map from A to M 2(A). We define homomorphisms 
X : W^AT — C,/i : W^AT — W^Af * c^ooC4)+, and t : W^AY — 
Woo(^)+, as follows. We set x(* + A • 1) = A for x e ^ ( / i ) and A G C, and we 
define 

i — lim W (̂>o)+. 

To define /i, we introduce the notation XQOO?? ij) for the element of W00(A) 
defined by the coherent sequence (xn(a,ij)), where xn(a,ij) is taken to be 
zero if n ^ max(/,y). (Thus a i—> (Xoo(#7 /,y))^=1 is the homomorphism from 
A to #o ® ^oo(^) corresponding under the previous proposition to /d^c/i)-) 
We further denote the corresponding elements in the first and second copies 
of Woo(A) inside Woo(A) * Woo(A) by x^(a,ij) and x(^(a,ij) respectively. 
Identifying Woo(A)+ *c^oo04)+ with (Woo(A) *Woo(A))+ in the obvious way, we 
let [i be the unitization of the homomorphism corresponding, under Proposition 
1.9, to the homomorphism from A to K0 (§) (W00(A) * Woo(A)) given by 

(**) a 

1x2(0,1,1) 

1 ° 
0 x(2(a,\,2) 

0 

0 

x{à\a,\,2) 

x™(a,2,l) 

0 

0 

x™{a,2,l) 

xil>(«,2,2) 

0 

0 

Jt^ (a.2,2) 

\ ; 

\ 

/ 
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We point out that /i can be defined directly by the formulas 

MD = i 

fjL(Xoo(a, 2/ - 1,2/ - 1)) = x£\a, ij) 

pixooia, 2/, 2/)) = x{£(a, ij) 

/x(jCoo(a,£,/)) = 0 fox k^ I mod 2. 

Furthermore, in the proof of the theorem below, we will usually write formulas 
of the type (**) by showing only the top left block and part of the next block 
to the right. This will save space; the proof of the homotopy associativity of p 
will use expressions involving 4 x 4 blocks. 

THEOREM 1.11. With the hypotheses and notation of the previous definition, 
(Woo(A), XiPi1) is an obelian homotopy dual group. 

The proof uses the following lemma, which will also be useful later. 

LEMMA 1.12. Any two homomorphisms from Ko (&•••(& Ko to KQ, sending 
rank one projections to rank one projections, are homotopic. 

The proof is easily derived from the ideas in the proof of Theorem 2.3 in [3], 
and is omitted. Note that every such homomorphism is continuous, because the 
domain is a union of C*-algebras and the range is contained in a C*-algebra. 

Proof of Theorem 1.11. We must verify conditions (1) through (5) of Defini­
tion 1.2. We will use the notation x^a^ij) of Definition 1.10, as well as the 
obvious extension of the notation x^(a, ij) to free products with more than two 
factors. 

(1) Using Proposition 1.9 on homotopy classes, the relation 

(p * id A) o / i - {idA * p) ° p 

will follow from the homotopy equivalence of the homomorphisms 

Mi,M2 : A -^Ko <g> {W^A) * W^A) * W^A)) 

given by 

* < I > U 1,1) 0 0 0 x{l\a, 1,2) o 
0 x™(a,Ll) 0 x£\a,l,2) 0 x{^(a,l,3) ... 

0 0 x£\a,l,\) 0 0 0 

0 *<?(a,2,l) 0 x£\a,2,2) 0 x{l\aïï) ... 

and 
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x{i](a,\,l) 0 *<!> (0,1,2) 0 *<I>(o,l,3) 0 

0 x«\a, 1,1) 0 0 0 *£}(o,l,2) . . . 

^ ( a . 2 , 1 ) 0 x ^ (o,2,2) 0 jcîlkû.2,3) 0 

0 0 0 x™W ,D 0 0 

To simplify the notation, set B — Woo W * W^A) * W00(A). Further let 

mA:A->Ko® W^A) 

be the map corresponding to idWoo(A) under Proposition 1.9, and let 

7] : # 0 <g> Woo(A) -> #o 0 (# 0 # ©5) 

be the homomorphism given by 

V(y ®Xoo(a,iJ)) = (y ® 4 o W \ y ) ^ ®x£\a,ij),y ®x£\a,ij)). 

Then one readily verifies that 

M/ = (^i ^>idB)or]omA 

for appropriate homomorphisms 

<pi,</>2 : ^ e ^ o ® ^ o ^ 4 

The homomorphisms </?i and </?2 send rank one projections to rank one projec­
tions. So Lemma 1.12 implies that ip\ ~ ^2, whence /ij ~ /i2, as desired. 

(2) By assumption there is a homotopy t \—• ipt from LQ O J,0 to /J^. Then 

f »— Woo(^)+ 

is a unital homotopy from j, o t to / d v ^ ^ . 
(3) The homomorphism 

ÔWooiAy ° 0 * ̂ oo(i4)+) ° M 

is the unitization of the homomorphism corresponding under Proposition 1.9 to 
the homomorphism 

rr.A-+K0®Woo(A) 

given by 
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T)(a)-
/jai0(a),l,l) 0 

0 x^aXD 

Y 

^ ( 1 0 ( ^ , 1 , 2 ) 

0 

It suffices to prove that 77 is homotopic to the zero map from A to Ko <§) W^A), 
since the unitization of the corresponding map from Wœ(A) to Woo04) is 
e ôo(A)+ ° X- Let t »—• (ft be the homotopy of maps from A to M2(A), with 

<Po(fl) = 
L0(a) 0 

0 a 
and (f\(a) = 0, 

given by the assumption on 6Q. Then the required homotopy is t \—» rjt, where 

t\M) = 
xJ#t(fi)nXl) xJ$t(a)nX\) 

\ : 

The proof that 

e^oo(A)+ ° X - ^^oo(A)+ ° (idWoo(Ar * 0 ° /* 

is the same, except that one uses 

,Mî ô) 

^oo(cpr(a)n,l,2) 

^ ( 9 ^ ) 2 ! , 1,2) 

a t-
0 1 
1 0, 

in place of ipt. 
(4) Proposition 1.9 reduces the proof that 

(X * idWoo{A)+) o fj, ~ idWoo(A)+ 

to proving that 

/o 
0 

0 

^(a.1,1) 

0 

0 

0 

*oo(<U,2) 

. . . \ 

\ 
' • ' / 

is homotopic to 

/x«,(a,l,l) x^ckia) • 

a ( - » ^(0,2,1) x„(fl,2,2) ... 
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This can be proved using Lemma 1.12 in the same way as in the proof of (1). 
(5) The homotopy TWOO(A)+ ° M — M *s obtained in the same way as the homo-

topies in the proof of (1). We omit the details. This completes the proof. 

We should note that the operation \i on Wœ(A)+ really just corresponds to 
the direct sum operation on maps to matrix algebras. (This statement will be 
made precise in Proposition 1.14 below.) The proof just given is slightly more 
complicated than the usual proof of, say, homotopy commutativity of direct 
sums, because of the need to deal with (J^° M* all at once, rather then being 
able to consider the various matrix algebras separately. 

LEMMA 1.13. There is an isomorphism M2(Ko) = Ko, and any two such 
isomorphisms are homotopic as homomorphisms. 

Proof. An isomorphism is given on matrix units by 

eij ® en '—• e2(*-i)+/,2(/-i)+/ for ij <E {1,2} and k, l G N. 

The homotopy statement follows from Lemma 1.12. 

PROPOSITION 1.14. Let A and i$ be as in Definition 1.10, and let B be a 
unital pro-C*-algebra. In [A,KQ <g> B], let 0 be the class of the zero map, let 
— W\ — W ° Lo]> and let 

[if] + [I/J] = [(T] 0 ids) o (idKo ®a)o(<p® i/))], 

where rj is as in the previous lemma, a is the diagonal embedding of B 0 B in 
M2(B), and 

(<p®il>)(a) = (<p(a\il)(a)). 

Then [A,KQ (§) B] is an abelian group which is naturally isomorphic to 
[WooiA^^B]] via the correspondence of Proposition 1.9. 

Proof Of course, we have 

[WooiAr.Bh^lW^A^B]. 

The proof consists of showing that the isomorphism of Proposition 1.9 converts 
the operations given above into those on [H/

00(A)+,5]i. The details are easy and 
are omitted. 

An important example of an algebra satisfying the conditions of Definition 
1.10 is given in the next proposition. 

PROPOSITION 1.15. Let A be a C*-algebra, let qA be the C*-algebra of Section 
1 of [8], and let r : qA —» qA be the involutive automorphism defined following 
Corollary 1.2 in [8]. Then the homomorphism 

fr(x) 0\ 
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from qA to MiiqA) is homotopic to the zero map. 

Proof. This result follows from the correspondence between homomorphisms 
from qA and quasihomomorphisms from A, as in [8]. It can also be seen directly: 
in the notation of [8], the required homotopy is the restriction to qA of the 
homotopy 

(ft : A * A —> M2(A * A) 

given by 

'1(a) 0 
ifMa)) = 

0 i(a) 

and 

cos t sin t \ ( i(a) 0 W cos t sin t 
(pt(i(a)) = _ , . 

\ — smt cost J \ 0 i(a) J \ — s'mt cost 

as t runs from 0 to n/2. 

The algebra P referred to in the introduction will be defined by 

P = Woo(<7C)+. 

We will need later the following explicit description of qC 

PROPOSITION 1.16. The free product C * C w isomorphic to the C*-algebra 

D — \ a : [0,1] —> M2 : a is continuous, a(0) is diagonal, 

1 0 
anda(\)eC t 

via an isomorphism sending the identities of the first and second copies of C 
respectively to the constant function 

1 0 
0 0 

and the function 

This isomorphism identifies qC with {a G D : a(\) = 0}. 
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Proof. The first part is essentially contained in the remarks preceding Def­
inition 9 of [2], where the unitization (C * C)+ , which is isomorphic to 
C*(Z/2Z * Z/2Z), is calculated. (See also the calculation following Proposi­
tion V.1.4) of [28].) The identification of qC then follows by a calculation. 

2. A classifying algebra for RKQ. The purpose of this section is to establish 
a natural isomorphism of abelian groups RK0(A) = [P,A]\ for unital a-C*-
algebras A, where RKo is as defined in [20] and P is the cr-C *-algebra and 
homotopy dual group given in the following definition. 

Definition 2.1. P — Wœ(qC)+, with the homotopy dual group structure ob­
tained from Definition 1.10 and Proposition 1.15. 

The proof of this isomorphism will use the intermediate group F (A), which 
we now define. The isomorphism P(A) = RKo(A) is the best analog we have in 
the a-C*-algebra case of the usual description of KQ{A) in terms of projections 
in matrix algebras over A. The examples in Section 4 of [20] suggest that P(A) 
is about as good an analog as there is. 

Definition 2.2. Let A be a a-C*-algebra. Then P(A) is defined to be the set 
of projections p G M2((K (g) A)+) such that 

-p eM2(K®A), 

modulo homotopy within this set. We define addition in P(A) as follows. First, 
choose an isomorphism 77 : M2(K) —> K. Further let u be the unitary matrix 

1 
0 1 
1 0 

1-

regarded as an element of M^((K ®A)+). Then define 

\p] + [q] = [(M2(ri) (8) idA){u(p 0 q)u*)l 

where as usual square brackets denote homotopy classes. Finally if tp : A 
is a homomorphism of cr-C*-algebras, define </?* : P(A) —> P(B) by 

(f*([p]) = [M2((idK ® p)+)(p)l 

PROPOSITION 2.3. P is a functor from a-C*-algebras to abelian semigroups. 

Proof. Note that 

(M2(rj) ® idA) I u u = 
0N 

0 , 
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Therefore, in the definition of addition, 

( o o / (M2(r/) ®idA)(u(p 0 q)u^ 

is in fact in M2(K <g) A). Thus the definition makes sense. The rest of the propo­
sition is easy. 

It will follow from the isomorphism P(A) = RK0(A), proved in Proposition 
2.8, that P(A) is actually a group. 

We next prove a sequence of lemmas. Many of the proofs are by induction, 
and are done by writing a a-C*-algebra A as an inverse limit limA^. When 

this is done, we will denote the homomorphisms from A to An by Kn and the 
homomorphisms from An+\ to An by itn. We will always assume that these maps 
are surjective, unless otherwise stated. We will also use the letters nn and irn for 
homomorphisms derived from Kn and irn in standard ways, for example 

nn : K ® A <g> C([0, Y\)-+K®An® C([0,1]) 

or 

irn : M(K ® An+{) -^ M(K ® An). 

(Note that Kn and 7r„ do make sense on multiplier algebras, by [19], Proposition 
3.14(1).) 

The next lemma is well known in the C*-algebra case, which is the case we 
use most often. 

LEMMA 2.4. Let Abe a unital o-C*-algebra, let I be a closed ideal in A, and 
let t \—• pt be a continuous path of projections in A such that pt —poE I for all 
t. Then there exists a continuous path t \—• ut of unitaries in A such that uo = 1 
and such that utpou* = pt and 1 — ut £ I for all t. 

Proof Using Proposition 5.3 of [19], we can write A — limA„ in such a way 

that / = lim/n for closed ideals In = /c„(/) in An. We will now construct ut by 

constructing inductively a coherent sequence of continuous paths t »—-» u\n) in An 

such that 

U?)Kn(P0)(u(în))* = Kn(Pt) and 1 - u\n) € In-

The construction of u\l) is standard: choose 0 = r(0) < /(l) < • • • < t(k) = 1 
so that 

||«l(Pr) - K\(Pt(i))\\ <^ foYte WO, t(i + 1)], 
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set 

x® = Kl(ptPm + (l-Pt)(l-pm)) and v^=x^l(x^)*x^]-i 

for t G (7(0, t(i + 1)], and set 

,.(D _ (/) ( i - i ) (0) 
ut — vt vt{i) vt(l)y 

again for t G (/(/), t(i + 1)]. It is easily checked that 1 — x\l) G h for all / and all 
t G (t(i)j t(i + 1)], from which it follows that 1 - u\l) G I\ for all t. 

Now suppose t i—> w^ has been constructed. Using the argument of the 
previous paragraph, construct an arbitary continuous path t »--> wt of unitaries 
in An+\ such that wo = 1 and such that 

wtKn+i(p0)w* = «„+i(pr) and 1 - wt G /„+i 

for all t. Let 5/ be the C*-algebra of Ai given by 

Bi = {# G // + C • 1 : a commutes with /t/(po)}-

It is easily shown that 7rn(Bn+i) = B„. Now regard the path 

as an element of £„(g)C([0,1]). Since its value at 0 is 1, it is in Uo(Bn®C([0,1])). 
Therefore there is a continuous path /1—•> z, of unitaries in #„+i such that 

7T«fe) = 7rw(wr*)wr
(,l). 

Write zt — at + Xt - I, where ar G /w+i and A,GC. The required path is then 

II^+1) = vw0*A0Ar. 

LEMMA 2.5. L r̂ A be a C*-algebra, and let e > 0. Then: 
(1) For /̂?_y projection p G MidK 0 A)+) s«c/z £/za£ 

1 0 \ 

Q oJ-pGM2(^0A), 

there is a homotopy of projections t \—> pt from p to a projection p\ such that 

(\ (T 
0 ,-Pi eM2(K0®A)1 
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with 

( o Q)-Pt^M2(K®A) and \\P'-P\\<€ for all t. 

(2) Let t i—>pt be a homotopy of projections in M2((K 0A)+) such that 

1 0 ' 
Q 0 , p,eM2(K®A) for all t, 

and such that 

1 0 
0 o ' -# G A f 2<*o®A) fori = 0,1. 

Then there is a continuous function (t,s) *—> Pt,s from [0, l ]2 to projections in 
M2((K ®A)+) such that 

1 0 \ 
0 Q ) - P r ^ W ® A ) , 

A,o = A» AM = Po» Pi,5 = P\y and \\pt^s — pt\\ < e /or a// f, s, and such that 
t f—+ A,i ^ ^ homotopy from po to p\ of projections in M2((KQ <§) A)+), differing 
from 

1 0 
0 0 

fry elements of M2(Ko (§> A). 

In this lemma, KQ^KQ 0 A, and homotopies in #o 0 A are as in Definition 
1.8. Here, ^o §) A is of course just the algebraic tensor product 

K0®A = [J(Mk®A), 

since A is a C*-algebra. 

Proof of Lemma 2.5. (1) Let Ac, = A if A is unital, and let Ao = A+ if not. 
Let/* be the identity of M2{M^ ®Ao), so that (/**) is an increasing approximate 
identity of projections in M2(£ 0 Ao), and 

M2(K0 ® A0) = |JAM2(£ 0 A0)A. 

Choose 

^ m i n ( j , I 
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and choose k so large that 

1 0> 

Â 

Set 

0 0 

1 0 

0 0 

-P 

+/* 

fk-

1 0 

0 0 

1 0 

0 0 

-p 

<6. 

A, 

and set at — ta + (1 — t)p. Then 

1 
\\p-at\\ <tè^ - for all f G [0,1]. 

Furthermore, 

1 0 ' 

GS) — ateM2(K®A) and 
1 0 

0 0 
•ai eM2(Mk®A). 

Let h be the function given by 

A(A) = 0 for |A| < ^ and h(X) = 1 for |A — l| < ^ . 

Then h is defined and continuous on sp(at). The desired path of projections 
is given by t i—> pt — h(at). The verification of the required properties is 
immediate. 

(2) Regard the homotopy t >—> pt as an element p G M2((K <g) A ® C([0,1]))+) 
such that 

1 0 

0 0 
- p e A f 2 C K ® A ® C ( [ 0 , l ] ) ) . 

Then apply the argument of (1) top , taking care to choose k so large that/?o?/?i G 
^ 2 ( W t £ M ) + ) - The result is a continuous function (f, s) »—̂  p r ^ satisfying all the 
required properties. (Note that the construction of part (1) yields po,s = po and 
P\,s — Pi for all s, because po,p\ G M2((Mk 0 A)+). The remaining properties 
follow directly from (1).) 

LEMMA 2.6. Let Abe a a-C*-algebra, and let PQ(A) be the set of projections 

p G M2((K0 <g> A)+) such that 

(J ! ) •p eM2(K0®A), 

modulo homotopy within this set. (Homotopy is interpreted as in Definition 1.8.) 
Then the obvious map from PQ(A) to P(A) is bijective. 
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Proof. We must prove the following two statements. 
(1) Every projection p G M2((K ®A)+) with 

* 0\-peM2(K®A) 

is homotopic, through such projections, to a projection q G M2((Ko (§) A)+) such 
that 

1 0 \ 
Q 0 J - 4 G M2(£o ® A). 

(2) If two projections in M2((Ko 0 A)+), both differing from 

1 0 
0 0 

by elements of M2(Ko <g) A), are homotopic through projections in M2((K (g) A)+) 
differing from 

(iî) 
by elements of M2(^ <g) A), then the homotopy can be taken to be an element of 
M2([K0 <g> (A (8) C([0,1]))]+) differing from 

a» 
by an element of M2(A:o & (A <g> C([0,1]))). 

It is convenient to prove both statements at once, where, for the proof of the 
second one, we assume that A = £(g>C([0,1]) and prove it for B rather than for 
A. In that case, we will of course regard A and M2((KQ 0 A)+) as being certain 
algebras of continuous functions on [0,1]. We will denote the corresponding 
evaluation maps by a »—> a(s), for s G [0,1], and use subscript notation for all 
homotopies which take values in A. 

Let A = lim An. (In case (2), we take An = Bn ®C([0,1]) where B — lim#„. ) 

We will construct a continuous path t i—* pt of projections, for J G [0, 00), and 
an increasing sequence of integers n \—->• &(/?), such that the following properties 
hold. 

(HI) po = /?, the given projection in M2((K (g) A)+). 

(H2) ( J ° j - p, G M2(£ ® A) for all t. 
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(H3) «« ( f J o ) ~ P n ) e Ml{Mk{n) ® A) for al1 n' 
(H4) /cw(pr) = /£„(/?„) for r â z. 

In the case (2), p is a homotopy with p(0).p(\) G M2((/fo § #)+)- Thus there is 
an increasing sequence n i—-> &o(«) of integers such that 

/c„(p(0)), «„(p(l)) e M2((Mk0(n) ® fl„)+) for all /i. 

We then impose the following additional conditions. 

(H5) k(n) ^ ko(n) for all n. 

(H6) /?,(0) = p(0) and p,(l) = p(l) for all t. 

If the conditions (H1)-(H4) are satisfied, then p^ = linv-nx,/?, clearly exists, 
lies in M2((Ko 0 A)+), and satisfies 

1 0 \ 
0 0 ) -Poo eM2(K0®A). 

Therefore t \—->/?,, for r G [0, oo], defines the homotopy required for (1). For (2), 
assuming also (H5) and (H6), it follows that /^ is a homotopy in M2((KQ <g) £)+), 
from p(0) to /?(1), which satisfies the required conditions. We therefore need 
only show that conditions (HI) through (H4), or, for (2), through (H6), can be 
satisfied. 

We begin by applying the previous lemma (part (1) in case (1) and part (2) 
in case (2)) to K\(p)9 with e = 1/4, obtaining a continuous path t »—• qt of 
projections in M2((K ® Ai)+), defined for t G [0, 1]. Thus 

q\ G M2((M*(i) 0 Aj)+) for some fc(l), 

which we take larger than &o(l) in case (2). Using the C*-algebra case of Lemma 
2.4, choose a continuous path t >—•» v, of unitaries in M2(^(g>Ai)+ such that vo = 1 
and vr<7ov* = qt- Then 

vGf/o(M2(A-®A,)+(8)C([0,l])), 

so by Lemma 1.11 of [20], there is 

u G U0(M2(K 0 A)+ 0 C([0,1])) 

such that K\(U) = v. We view w as a continuous path t \—mt, and we may clearly 
require that u$ — 1. In case (2), we have #,(0) — qo(0) and #r(l) = <7o0) for 
t G [0,1], so that Lemma 2.4 gives us unitaries in [M2(K ® 2?i ® C0((0,1)))]+. 
Thus we may replace Ax by ^! 0 C0((0,1)) and A by B <g> C0((0,1)). Then the 
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resulting unitaries ut satisfy in addition w?(0), ut(\) G C • 1 for t G [0, 1]. We 
now set pt = utpu* for t G [0,1]. Clearly 

K\(Pt) = qt and I ) -pt G M2(K ®A). 

Furthermore, in case (2), we have pt(0) = p(0) and pt(\) — p{\) by the choice 
of u. 

We now assume inductively that pt has been defined for t G [0, ft], and that 
k(m) has been chosen for m ^ ft, in such a way that the properties above hold on 
[0, n] and for mû n. We apply the previous lemma to Kn+\(Pn), with e = 1/20, 
again using part (1) in case (1) and part (2) in case (2). We obtain a continuous 
path t i—> qt of projections and M2{(K 0 An+\)+), which we take to be defined 
for / G [ft, ft + 1], with 

?* = «/i+ifa/i) and <?n+i G M2((Mk(n+l) ®An+l)
+) for some £(ft + 1). 

We can certainly choose k(n+ 1) ^ &(ft), and, in case (2), ^ ko(n+ 1). To obtain 
/?, for t G [ft, ft + 1], we will first modify qt so that 7r„(gr) = Kn(Pn), and then lift 
<7, up to M2((K <g> A)+) as was done on [0,1]. 

To do the modification, set 

wt = at(a*at)~^, where at = 7rn(^^ + (1 - ^)(1 - qn)). 

Thus r i—> wt is a continuous path of unitaries in M2(K <g> An)
+, and it is easily 

seen to satisfy the following properties: 

(Ul) wn = 1. 

(U2) w*TTn(qn)wt = 7rn(^r). 

(U3) wn+1 G M 2 ( M W ^ A / . 

(U4) | | w r - l | | ^ ~ for all/. 

(The estimate (U4) follows because 

hniqt) - Kn(qn)\\ < ^ implies \\at - 1|| < —, 

whence ||a,(a*a,)_2 — l|| < 3/8.) Furthermore, in case (2) we also have: 

(U5) w,(0) = wt(l) = 1 for all t. 

For / = ft or n + 1, we now let D/ be the C*-algebra of all continuous functions 
t *—> xt from [ft, ft + 1] to M2(K ® A/)+ such that 

xn G C • 1, xn+i G M2(M^+1)®A/)+, 
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and, in case (2), xt(0) and xt{\) are in C • 1 and do not depend on t. Then w 
is a unitary element of Dn which by (U4) satisfies ||w — 1|| = 1/2. Therefore 
w G U0(Dn). Clearly 

is surjective, so there is x G Uo(Dn+\) such that nn(x) = w. Then x is a contin­
uous path of unitaries in M2(K <g>An+\)+ with 

xn£C-\, xn+i G M2(Mk{n+{) 0 4 + i ) + , 

and, in case (2), xt(0),xt(\) G C • 1 for all t. Our modified path of projections is 
then 

t\-^xtqtx*. 

We have 

* 

because xn G C • 1, we have 

7Tn(xtqtX*) = Kn{pn) 

by (U2) and because 7Tn(qn) — Kn(pn), and we still have 

xn+iqn+ix*+l G M2((Mk(n+\)®An+\)+). 

Also, of course, we have 

1 (T 
f *,<7,x, G M2(# ® Aw+i) for all t. 

Finally, in case (2) we have 

(xtqtx*)(i) = qt(i) = qn(0 for / = 0, 1, 

because xt(i) G C • 1. 
We now do the lifting. This argument is the same as the argument used in 

the initialization part of the induction, to define pt for t G [0, 1], and we omit 
the details. The result is a path t \—+ pt, for t G [n, n + 1], of projections in 
M2((K 0 A)+), with pn as already given, 

(I 0 \ 
I o o / ~P î e Ml^K ® A^ Kn+^^ = XtCitXt ' 
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and, in case (2), pt(0) = p(0) and pt(l) = p(l) for t G [n1 n + 1]. This completes 
the induction argument, so the desired path t »—• pt for t G [0, oo] has been 
shown to exist. 

LEMMA 2.7. Let A be a unital a-C*-algebra and let p G Mi({K ® A)+) be a 
projection such that 

Then there is a unitary u G Mi{M{K ® A)) such that 

upu*={l o ) -
Here M(K 0 A) is the multiplier algebra, defined in Section 3 of [19]. We 

regard (K ® A)+ as a subalgebra of it in the obvious way. 

Proof of Lemma 2.7. By the previous lemma, p is homotopic to a projection 
q G M2((K0 <§> A)+) such that 

(o J ) - ^ G ^2(^0® A), 

and, by Lemma 2.4, /? is unitarily equivalent to q. So we can assume that 
p £ M2((KQ ® A)+). 

We now identify M2(M(K (g) A)) with the algebra of bounded operators on the 
Hilbert A-module /2(A) 0 /2(A). (Compare [19], Section 4.) It then suffices to 
find an isomorphism 

v:p(/2(A)0/2(A))-+/2(A). 

Indeed, the same argument will then produce an isomorphism 

w:( l - /7)( / 2 (A)0/ 2 (A))-^/ 2 (A), 

and we define 

w:/2(A)0/2(A)-W2(A)0/2(A) 

by 

We will construct inductively a coherent sequence of isomorphisms 

vn :Kn(p)[l2(An)(Bl2(An)]-^l2(An). 
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Choose an increasing sequence n i—• k(n) of integers such that 

Let / GK®Ai be the identity of Mk(i) ®Ai. Then 

because 

o o / = ^ } 

«i ( ( 0 o ' ~P) GAf2(M i (1 )®/l1). 

Therefore 

(*) Ki(p)[l2(Ai)®l2(Ai))] 

,2,* ,*{..,s fl~f ° ^ ( l - / ) m , ) e ( K i ( p ) - ( ^ Q ) I L / % 4 , ) © / ^ / ! , ) ] 

= /2(A,). 

Here the last isomorphism follows from the stabilization theorem [16], because 

(l-f)l2(Ai)<*l2(Ai). 

Let vi be an isomorphism as in (*). 
Now suppose we are given an isomorphism 

v„ : n„(p)[l2(A„) © /2(A„)] - - /2(A„). 

Use the reasoning of the previous paragraph to produce any isomorphism 

w : Kn+l(p)[l2(An+l) © l2(An+l)] — /2GVi). 

Following our conventions, 7r„ : A„+i —> A„ defines a map 

TT„ : L(Kn+l(p)[l2(A„+l) © /2(A„+1)], /
2(A„+1)) 

— L(Kn(p)[l\An) © /2(A„)], /2(A„)). 

Now v„7T„(w)* is a unitary in L(l2(An)) = M(/C" <8>/t„). Since /T ®A„+1 has a 
countable approximate identity, the map 

TT„ :M(K®An+l)—>M(K®A„) 
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is surjective ([17], Theorem 10). Since U(M(K ®An)) is connected ([15], The­
orem 2.5), there is z G U(M(K 0 An+\)) such that 

Kn(z) = VW7TW(W)*. 

Now set vn+i = zw, so that 

vn+l : «:/7+1(p)[/2(A/7+i) 0 l2(An+{)\ -* /2(A„+1) 

is an isomorphism satisfying 7rw(vw+i) = vn. This completes the induction step, 
and the proof. 

PROPOSITION 2.8. If A is a a-C*-algebra, then P(A) is naturally isomorphic 
to RKQ(A) as defined in [20]. 

Proof. We first consider the case in which A is unital. Recall that 

RK0(A) = (U/U0)(Q(A)\ 

where 

Q(A) = M(K ®A)/(K ®A). 

We define O : P(A) —> RK0(A) as follows. If p G M2((K ® A)+) is a projection 
such that 

0 o ) " ^ 6 ^ ^ ^ ^ 

then by the previous lemma there is a unitary 

u= ( UU Un) eM2(M(K®A)) 
\u2\ un) 

such that 

1 0 
upu = V 0 Q 

The relations 

w "(J o)"*-(i o ) = M ( ( i Sj-'Ke«2<*®A) 
and 
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imply that 

«11WÏ1 — l,«ti«ii — 1 G K <g)A. 

Therefore, with TT : M(K<g>A) —> Q(A) being the quotient map, TT(U\\) is unitary, 
and thus defines a class 0([/?]) G RK0(A). 

We now show that O is well defined. First, if v is some other unitary such 
that 

* (\ 0 
vpv = [o o 

then vu* commutes with 

1 0 

0 0 

and therefore has the form 

; ) 

for x,y E UM(K®A). Using the fact ([20], Lemma 1.9) that UM(K®A) is 
path connected, we can therefore produce a continuous path 

f(ut)\\ (M,)i2 
t \—> ut — I 

V("/)21 («r)22 
in UM2(M(K ®A)) such that «o = «, u\ = v, and 

utpu* = f j for all r. 

Then r i—• 7r((Wf)n) is a continuous path from 7r(u\\) to 7r(vn) in UQ(A), so that 

[TT(WH)] = [TT(VH)]. 

So 0([p]) does not depend on the choice of u. Now let 1i—» pt be a homotopy 
of projections in M2((K ®A)+) with 

J j - p , €Af2(tf®A) for all f. 

Regard this path as a projection in Mi({K ® A ® C([0,1]))+), and using the 
previous lemma choose a unitary 

Un Un) 6Af2(Af(^®A®C([0,l]))) 
"21 «22/ 

https://doi.org/10.4153/CJM-1989-046-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-046-2


1046 N. CHRISTOPHER PHILLIPS 

such that 

upu*={l o)-
By Proposition 3.17 of [19], u can be regarded as a (strictly continuous) function 
t i—> ut from [0, 1] to M2(M(K <g> A)). It follows from Corollary 1.13 of [20] 
that 

M(Wo)l l ) ] = [7T((Wi)ii)] 

in RK0(A). Therefore 

®(lPo]) = M(u0)n)] = W(m)n)] = 0([Pl])7 

as desired. This completes the proof that O is well defined. 
Next we prove surjectivity. Let u G UQ(A). Choose x G M(K ® A) such that 

7T(JC) = u. Then x*x — 1, JUT* — 1 G ^ 0 A . Le t / : [0, oo) —> R be the function 
/(A) = 1 for A ^ 1 and/(A) = A"* for A è 1. Set y = JC/(X*JC), SO that 
7r(j) = w, y*y ^ 1, and yy* ^ 1. Now set 

r = [ n
 y , ,i {1~f*)2 ) eUM2(M(K®A))1 y-(\-y*y)i y* J 

and set 

Then one can check that 

v° °y ^ - 0 -yy)2y yy*-\ J 

Therefore [p] G P(A) and 0([/?]) = [7r(rn)] = [7r(j)] = [u]. So O is surjective. 
We next prove that O is injective. Let p,q G M2((# 0A)+), let 

„ = ( " " "12> | and v = ( V " V ' 2 ) 
V"21 « 2 2 / \V21 V22/ 

be unitaries in Mi(M{K ® A)) such that 

upu = vqv =yQ o j , 
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and suppose that [7r(u\\)] = [7r(vn)] in RKo(A). This is equivalent to 

*(unMv\\)* £ U0Q(A). 

The relations (*) and (**) also imply that 7r(Mi2) = TT(H2I) — 0 and that 7r(«22) 
is unitary. Since by Lemma 1.9 of [20], the group UM2(M(K <g> A)) is path 
connected, it follows that 

Therefore 

V 0 1 / ^oM2(2(^))-

By the stability isomorphism of [20], Theorem 3.4 (1), the map 

H: ï) 
defines an isomorphism from (U/UQ)(Q(A)) to (U /Uo)(M2(Q(A))). Conse­
quently 

7r(mi)7r(M22)* el/oGW). 

Similarly 

n(yn)n(y22)* € UoQ(A). 

Combining these two equations with 

KiunMvn)* e UoQ(A) 

gives 

7r(w22)7r(v22)* 6 U0Q(A). 

Using Lemma 1.11 of [20], choose y,z £ UM(K ®A) such that 

7r(y) = 7r(wn)7r(vii)* and 7r(z) = 7r(w22)7r(v22)*. 

Now replace v by 

(o > 
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Then we still have 

— ( i :)• 
and in addition we now have 7r(vn) = n(u\\) and 7r(v22) = ^("22)- Since in any 
case 7r(wi2) = 7r(M2i) — r̂(vi2) = 7r(v2i) = 0, it follows that u — vE M2(K 0A), 
whence v*w G M2(^®A)+ . 

We now claim that there is a continuous path t »--> JC, in U(M2(K 0 A)+) such 
that xo = v*w and xi commutes with p. For the purposes of proving this claim 
we may assume, using the previous lemma, that 

p = { o o ) -
Let H be a separable infinité dimensional Hilbert space, so that K — K(H), and 
choose a *-strong operator continuous path t i—> ct of isometries on H 0 / / such 
that 

c0 = 1 and d c î = f 0 J . 

Then t 1—» ct can be regarded as a strictly continuous path of isometries in 
M2(M(K <8)A)). To obtain the desired path t \—> xt, write 

v*w = A + a for A G C and a G M2(K ® A). 

Then set 

jcr = ctv*uc* + A(l — ctc*) = A + c,0c*. 

From the first expression, we see that xt is unitary, xo = v*w, and x\ commutes 
with 

From the second expression, we see that xt G M2(K (g) A)+ and that t \—> xt is 
continuous for the seminorm topology on M2(K 0A)+ . This proves the claim. 

Define pt — xtpx*. Then t »—> pt is a continuous path of projections in 
M2((K (g A)+), each differing from 

(J 2) 
by an element of M2(£ 0 A), such that po — q and p\ = p. Therfore [p] = [q], 
and injectivity of O has been proved. 
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It remains to prove that O is a semigroup homomorphism. It suffices to prove 
that if u1 v G UQ(A), then the class of 

u 0 
0 v 

corresponds, under the isomorphism MjiQ^A)) — Q(A) coming from an isomor­
phism M2{K) = K, to the class of uv. This has been essentially done in the 
proof that RK0(A) is abelian, [20], Proposition 2.2. This completes the proof for 
unital A. 

We now do the case in which A is not unital. Note that the map RKo(A) —-> 
RK0(A

+) induces an isomorphism of RK0(A) with the kernel of RK0(A
+) —• 

RKo(C). Therefore it suffices to prove that the map P(A) —• P(A+) induces an 
isomorphism (of semigroups) of P(A) with the kernel of P(A+) —» P(C). To do 
this, we must prove three things: that the composite 

P(A) - • P(A+) -> P(C) 

is zero, that 

P(A) -+ Ker[P(A+) -^ P(C)] 

is surjective, and also that this map is injective. 
The first statement is trivial. To prove the second, let [/?] be a class in P(A+), 

let q be the image of p in Mi{K+) coming from A+ —> C, and assume that 
[q] — 0. Then there is a continuous path t i—• qt of projections in M2(K+), 
differing from 

1 0 
0 0 

by elements of M2(K), such that 

1 0 
q0 = q and qx x 

Lemma 2.4 provides a unitary path t \—» ut in M2(K
+) such that 

u,q,u* = ( J and wi = 1. 

Regard r i—> wr as a path in M2(K 0 A+)+ via C —• A+, and set pr = «,/?«*. Then 

( o o ) - ^ G A f 2 ( ^ ® A + ) for all r, 
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and p\ = p. So [po] — [/?], and one checks that po is in fact M2((K ® A)+), with 

1 0 ' 
0 0 , PoeM2(K(g)A). 

This proves surjectivity. 
For injectivity, let t \—> pt be a homotopy of projections in M2((K 0 A+)+) 

such that 

1 °0] - Pt £ M2(K ® A+) for all f 

and such that 

Po,P\ eM2((K®A)+). 

Let qt be the image of pt mM2(K
+), obtained from the map A+ —+ C. By Lemma 

2.4, there is a path 1»—> w, in U(M2(K)+) such that 

'̂B' = ( i o)' UQ = 1, and 1 — M, G M2(K). 

Since «i commutes with 

1 0 
0 0 

we can write u\ — v\ 0 wi with vi, w>i G U(K+) and 1 — vi, 1 — w\ G AT. Since 
{z G U(K+) : 1 — z G # } is connected, we can find paths t \—> vh wt in this group 
such that vo = WQ = 1 and vi, w\ are as above. Replacing ut by (v, ÇBwt)*ut, we 
can assume u\ — 1. Now regard / »—» M, as a path in U(M2(K 0 A+)+) via the 
map C —> A+. Then /• i—• M,/?,M* is a homotopy of projections in M2((K <g> A)+), 
and one checks that 

0 ) -utptu* eM2(K®A). 

Since UQ = u\ — 1, this path shows that [pol — [Pil m ^0^)> and injectivity is 
proved. This completes the proof of the proposition. 

COROLLARY 2.9. For any o-C*-algebra A, the semigroup P(A) is an abelian 
group, with identity 

n o 
VO 0 
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LEMMA 2.10. Let A be a a-C*-algebra which has a countable approximate 
identity. Then there is a natural isomorphism of abelian groups 

P0(A)^[qC1K0^A]. 

Here Po(A) is defined as in the statement of Lemma 2.6, and the group structure 
on [qC,Ko ® A] is as in Proposition 1.14. 

Note that in Proposition 1.14 we only proved that [qC,Ko <g> A] is an abelian 
group if A is unital. However, it will follow from this lemma that this result also 
holds when A has a countable approximate identity. 

The proof requires the following generalization of a lemma from [20]. 

LEMMA 2.11. Let A be a a-C*-algebra with a countable approximate identity. 
Then the unitary group UM(K (g)A) is path connected. 

Proof In the proof of Lemma 1.9 of [20], replace all references to Theorem 
2.5 of [15] by references to [9]. 

Proof of Lemma 2.10. We define 

as follows. Let p G M2{{KQ eg) A)+) be a projection such that 

Write A — \m\An. Then there is an increasing sequence n »—• k(n) of positive 

integers such that 

Kn(p)eM2Wk(n)®A„)+). 

Consequently there are homomorphisms 

<pn:C*C->M2Wk(n)®An)
+) 

such that the images under (fn of the generating projections eo and /o of C * C 
are 

(J o) andp 

respectively. It follows from the definition of qC that 

<p„(qC)CM2(Mkin)®A„). 
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It is easily seen that we obtain a homomorphism 

^ : qC —> M2(K0 <§) A) 

such that K^CX^ is <̂ „ followed by the inclusion of M2{Mk{n)®An) in M2(Ko 0 A„), 
for every «. Chose an isomorphism 

77 : M2(#0)-^Ko 

as in Lemma 1.13, and define 

V([p]) = [(T7®i^)o^]. 

This class clearly does not depend on the choice of the numbers k(ri), and, 
by Lemma 1.13, it also does not depend on 77. Because of our definition of 
homotopy in KQ <8> A (see Definition 1.8), it is easily seen that ¥([/?]) depends 
only on the homotopy class of [p]. So *F is well defined. 

We now prove that *¥ is surjective. Let c/?o '• qC —> KQ <g) A be a homomor­
phism. Let ip — M2((PQ) be the corresponding homomorphism from M2(qC+) 
to M2((Ko (§) A)+). Using Proposition 1.16, we can identify M2(qC+) with the 
algebra of all continuous functions a : [0,1 ] —> M4 such that, when 4 x 4 ma­
trices are regarded as 2 x 2 block matrices with 2 x 2 matrices as entries, the 
entries of a(0) are all diagonal and the entries of a(l) are all scalar multiples of 
the identity. Let ej G M2(qC+) be the projections given by 

e(t) = I * and 

fit) 

t 

0 
0 

for t e [0,1]. Then 

^ W l 0 0 

and /? = (/?(/") is a projection in M2((K <g) A)+) such that 

/ l (T 
Q Q f -p€Àf 2 ( t f 0®A). 
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We claim that *¥(\p]) = [</>0]. First, we define us G UM2(M(qC)), for s G 
[0,7r/2],by 

1 0 0 0 
0 cos(s) 0 — sin(s) 
0 0 1 0 

^0 sin(s) 0 cos(s) 

regarded as a constant function on [0,1]. Further identify eo,fo with the projec­
tions 

1 0\ f t y/t{\-f)\ 
f '—M « „ ) and t \- ' • 

o oy yVt(i -t) \-t J ' 

as in Proposition 1.16. Next, set 

e w = « , ( « 0 © ( ° i ) ) « : and / w = « , ( / o © ( J J ) ) » î 

for s G [0, 7r/2]. Then <?(5) and f{s) are projections in M2{M(qC)) such that 
(̂•s) _fis) ç M2(qC), and which vary continuously with 5. Therefore there is a 

homotopy s >—•> 75 of homomorphisms from #C to M2(qC) such that 

7,(*o - /o ) = ^ ~f{s) and 7,(*o(eo - /o)) = e{s\e{s) -f(s)). 

(Recall that qC is generated as a C*-algebra by eo —/o and ^0(̂ 0 —/o)- ) N° w 

70(JC) = 1 0 0 

while 

7 /̂2(^0 - /o ) = e-f and 7 /̂2(^0(^0 - /o)) = e(e - / ) . 

If i/> : gC —> M2(Â o §> ^) is the homomorphism determined by p as in the 
definition of VF, so that *F([/?]) = [(77(g)/d )̂01/;], then it follows that \j) = ^07^/2. 
Therefore (7/ (g) / ^ ) o 1/; is homotopic to (77 0 /d^) o ip o 70, which is given by the 
formula 

x \-^(r)®idA)((p0(x)®0). 

By Lemma 1.12, this map is homotopic to ipo. So *F([/?]) = [c/?o]> and surjectivity 
is proved. 

Next, we prove that *F is injective. Thus, let pojPi G M2((Ko (§) A)+) be 
projections such that 

(0 o)~ A ' G M 2 ( ^°® A ) ' 
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and suppose that ^([po]) = ^ilpi])- This means that the corresponding maps 

(Pi : qC - • M2(K0 <g> A) 

are homotopic, via, say, a homotopy t i—• ipt. For simplicity write B = 
A 0 C([0, 1]). Then we can regard z1 >—•> y?, as a homomorphism 

V? : qC -^ M2(K0 ® B). 

Just as if # were a C*-algebra, <£> determines a quasihomomorphism 

(*) ( a , â ) : C=3E>J -^ M2(K ® B), 

as in Section 1 of [8]. Indeed, (*) is obtained as the inverse limit of the quasi-
homomorphisms 

) : C —-> En >Jn —* M2(K (g) Z?„) 

determined by Kn o <̂  : </C —> M2(K®Bn). Identify M2(K ®B) with the algebra 
of compact module morphisms of the right Hilbert Z?-module H — l2(B) 0 
/2(#). Since # has a countable approximate identity and / is separable (being 
generated as a a-C*-algebra by a(l) — â(l) and a(l)(a(l) — â(l))), the Hilbert 
B-module JH is countably generated. The stabilization theorem ([19], Theorem 
5.12) therefore yields isomorphisms 

V! : 12{B) 0 a(\)JH-> l2(B) and 

v2 :(1 - a(l)) JH 0 l2(B) -> 12{B). 

(Note that a(l) acts on JH because or(l) can be regarded as a multiplier of 7. 
The same holds, of course, for â(l) . ) Then u = vi 0 v2 is an isomorphism 

u : l2(B)®JH(Bl2(B) -> /2(£) 0 /2(£) 

such that 

1 (T 
w ( l 0 a ( l ) 0 O K 

and g = u(\ 0 â(l) 0 0)w* satisfies 

1 0 ' 
0 Q l qeM2(K®B). 

Thus, q can be regarded as a homotopy f i—> gr of projections in M2((K ® A)+) 
such that 

(o o) ~ ^ G M # ® 4 
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Thus fa,] = foi] in P(A). 
We now show that [/?/] = [qi] in P(A). It will then follow that [p0] = \p{[ in 

F (A), and so by Lemma 2.6 also in Po(A). This will complete the proof of the 
injectivity of x¥. Let // be the image of / under the homomorphism 

evt : M2(K 0 f i ) - > M2(K <g) A) 

given by evaluation at /. Thus, // is the sub-a-C*-algebra of M2(K§§A) generated 
by 

1 0 
0 0 

and 
1 0 

0 0 
1 0 
0 0 

-Pi 

Furthermore, 

Ji(HA)®HA)) = (eViWH). 

(See Section 4 of [19].) Define 

£ : [0, 1] —» / 04) : £ is continuous and 

£( i ) e 
1 0 

0 0 
•J,(12(A)(BI2(A)) 

and 

^ : [0, 1] —> / (A) : ^ is continuous and 

0 0 
$ 0 ) € 

0 1 
•J AHA)® HA)) 

It is easily checked that the definitions of E\ and E2 make sense when l2(A) ® 0 
and 0 0 /204) are identified with I2(A) in the obvious way, because 

1 °) and (° 0 

0 0 / \o 1 

are multipliers of//. Furthermore, E\ and E2 are countably generated Hilbert 
B-modules. Using the stabilization theorem as before, we obtain an isomorphism 

w : l2(B) 0 Ex 0 E2 © l2(B) -> /2(£) 0 /2(5) 

such that 

1 0 
0 0 

0 )w* 
1 0 

0 0 
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and r = w(l 0 pt 0 0)w* is a projection satisfying 

(Here we regard 

1 0 
0 0 

and pi 

as the operators on E\ ©£2 given by the corresponding constant functions.) Now 
(<?vi)*(w) and (ev,-)*(w) are both isomorphisms of 

l2(A) 0 Ji(P(A) 0 /2(A)) © /2(A) 

with l2(A) 0 /2(A) which send 

1 0 
0 0 

>0 

to 

Since 

1 0 
0 0 

UL(l\A))^UM(K®A) 

by [19], Theorem 4.2(6) and Remark 4.8, it is path connected by Lemma 2.11. 
Therefore there is a homotopy of such isomorphisms, also sending 

1 
1 0 
0 0 

>0 

to 

1 0 
0 0 

from (evi)*(w) to (ev/)*(w). This yields a homotopy from r\ = (ev\)*(r) to g,, 
so that [r\] — [qt] in P{A). Furthermore [r\] — [ro] in P(A), using the homotopy 
r. An argument similar to the one just given shows that 

[>o] = [Pi] + 
1 0 

0 0 
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Since 

[(i S)] 
is the identity in P(A) by Corollary 2.9, we obtain [/?/] = [qi\. This completes 
the proof that *F is injective. 

It remains only to prove that *¥ is a group homomorphism. Of course, addition 
in Po(A) is defined the same way as in P(A), except using an isomorphism 
M2(Ko) = Ko (from Lemma 1.13) instead of an isomorphism M2(K) = K. We 
may disregard the isomorphism M2(Ko) = Ko used in the definition of ¥([/?]), 
and thus take the codomain of *F to be [qC,M2{Ko <S> A)]. Addition in it is given 
by 

M + W = [0?o ® idA) o (idM2(K0) ® °) ° (<P ® VOL 

where 

and where 770 is an isomorphism of M^Ko) with Â Ĉ To)- If w e take 

rjo(x) = M2(rj)(uxu*), 

where u is as in Definition 2.2 and 77 : MiiK^) —> Ko is the isomorphism 
used in the definition of addition in Po(A)9 then the formula for *F defines a 
homomorphism even before taking homotopy classes. In the case in which A is 
not unital, one should also check that the identity and inversion are in fact given 
by the formulas in Proposition 1.14. This is easy and is omitted. The proof is 
now complete. 

THEOREM 2.12. Let A be a unital a-C*-algebra. Then there is a natural 
isomorphism of abelian groups [P,A\\ = RK$(A). 

Proof. We have natural isomorphisms of abelian groups 

LP, Ah *Ê [Woo(^C)+, A]! <* [qC,Ko <§> A] ^ P0(A) *Ê P(A) ~ RK0(A), 

using, in order, Definition 2.1, Proposition 1.14, Lemma 2.10, Lemma 2.6, and 
Proposition 2.8. 

3. A classifying algebra for RK\. In this section we prove the analog for 
RK\ of the theorem of the last section. We will not use any of the results of 
the last section, and we will use only a small part of the material in Section 
1. (In Section 4, we will come back and explain the connection between our 
classifying algebra for RK\ and the results of Section 1.) 
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Definition 3.1. Let Unc(n) be the "noncommutative unitary group" defined at 
the end of [7]. That is, Unc(n) is the universal unital C*-algebra on the generators 
xnjj for 1 ̂  ij ^ n, subject to the relations that the n x n matrix 

• I 

be a unitary element of Mn(Unc{n)). (The subscript nc stands for "noncommu­
tative".) Define a unital homomorphism (pn : Unc(n + 1) —» Unc{ri) by 

I xnjj 1 ̂  /,7 û n 
<Pn(Xn+l,ij) = \ 1 / = j = n + 1 

v 0 otherwise. 

Then define Unc — lim Unc(n) with respect to the homomorphisms <pn. We write 
<— 

xoo,ij f° r the element of Unc determined by the coherent sequence whose value 
is xnjj for n ^ max(/,y) and whose value is 5/y for n < max(/,y). Define unital 
homormorphisms x • Unc —> C,/x : f/w —-» (7wr * c ^ o ar*d ^ : Unc ~^ Unc as 
follows: 

Xv^oo,/,y) — Vij 

o 

Mv-^00,/,7) — / 7
 v 

H-Xoo,/,./) — xoo J,i* 

In the formula for /x, we have written JC^ • • for the generator of the /-th copy 
of Unc in the free product corresponding to the generator x^j of Unc. 

PROPOSITION 3.2. (Unci x? M? 0 ^ ^ ^M(^ group in the sense ofVoiculescu [29]. 

Proof. One easily checks that the homomorphisms (pn preserve the standard 
dual group structure on Unc(n) (see [29], 5.6), and that the formulas for x?M, 
and 1 define the inverse limits over n of the corresponding homomorphisms for 
Unc(n). 

The goal of this section is to prove that RK\{A) = [UnciA]\ for unital a-C*-
algebras A. As in the previous section, the proof will proceed via an intermediate 
group which is of interest in its own right, given as follows. 

Definition 3.3. If A is a unital a-C*-algebra, we define 

0(A) = (U/Uo)((K®A)+). 

As in the introduction, U stands for the unitary group, UQ for its path com­
ponent of the identity, and U /UQ for the quotient. We will also use this notation 
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for such algebras as (Ko 0 A)+, with Ko 0 A as in Definition 1.8. By analogy 
with the definition of homotopy in Ko 0 A (see Definition 1.8), we will take 
Uo((Ko 0 A)+) to be the set of unitaries in (Ko 0 A)+ which can be connected 
to the identity via a unitary path of the form t \—> at + \ t • 1, where Xt G C and 
£ f—> a, defines an element of Ko ® (A® C([0,1])). This is, at least apparently, 
a stronger condition than the existence of some continuous path of unitaries in 
(K0®A)+. 

We will also adopt throughout this section the convention that whenever we 
write A = lim/4„, then the An are C*-algebras, the maps Kn : A —> An are 

surjective, the map from An+\ to An is called nn, and maps on multiplier algebras, 
tensor products, etc. determined by K„ and irn are also called nn and nn. 

LEMMA 3.4. Let A be a united o-C*-algebra. Then the obvious homomorphism 
from Do(A) = (U/Uo)((Ko 0 A)+) to 0(A) is an isomorphism. 

This lemma asserts that every unitary in (K 0 A)+ is homotopic to one in 
(Ko 0 A)+, and that two unitaries in (Ko <S> A)+ which are homotopic in (K (8) A)+ 

are in fact homotopic in (Ko 0 A)+. The proof is similar in concept to the proofs 
of Lemmas 2.5 and 2.6, but technically simpler. We therefore omit most of the 
details, noting only that extensive use is made of the function a t—> a(a*a)~ï 
from invertible elements to unitaries, and that appropriate paths of unitaries can 
be lifted directly using the surjectivity of Uo(B) —• Uo(C) when B —> C is a 
surjective map of unital o-C*-algebras ([20], Lemma 1.11). 

PROPOSITION 3.5. There is a natural isomorphism of groups [Unc^A\\ = 0(A) 
for unital G-C*-algebras A. 

Proof. We will actually establish a natural isomorphism of Wom\(Unci A) with 
the group 

G(A) = {u£ U((K0 0 A)+) :l-ueK0®A}. 

Here, the group structure on Homi(UnciA) comes from the dual group structure 
on Unc, as in [29], 2.3. Applying this result with A0C([0,1]) in place of A will 
then give a natural isomorphism 

[UnciAh^G(A)/Go(A), 

where Go(A) is the path component of the identity in G(A). Since every element 
of U((K0 0 A)+) can be written uniquely as (ju, with £ G S1 and u G G(A), it 
follows easily that 

G(A)/G0(A) * (U/U0)((K®A)+). 

By the previous lemma, the right hand side is 0(A). 
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Given a unitary u G G(A), with A = limA„, we can write 

Kn(u) = 1 -en + un, 

where un G U(Mk{n) ® A„), e„ is the identity of M^n) (g) An, and n i—• £(AZ) 
is an increasing sequence of integers. We can then define <pn : Unc —» Aw to 
be the unital homomorphism such that ipn(Xoo,ij) — (un)i,j for ij ^ k(n) and 
ipn(Xoo,ij) — ŷ otherwise. Note that ipn is a continuous homormorphism because 
it factors through Unc(k(n)). Also notice that it does not depend on the choice 
of k(n), as long as nn(u) G (Mk(n) ® An)

+ and satisfies 1 — Kn(u) G Mk(n) 0 4 -
Clearly the ipn define a coherent sequence of unital homomorphisms from Unc 

to An, and therefore a unital homomorphism ^ : Unc —» A. It is also clear that 
the assignment M »—• y? is bijective. (A homomorphism ip can only correspond 
to an element of G(A) because Kno ip must factor through some Unc(k(n)), so 
that the corresponding unitary u satisfies 1 — nn(u) G Mk^n) <g)An.) It is easy to 
prove that the assignment u t—» (p is a group homomorphism. 

We now want to relate 0(A) to / ^ ( A ) . The first step is to show that 0 is 
part of a generalized cohomology theory on a-C*-algebras. 

LEMMA 3.6. Extend the definition of 0 to general o-C*-algebras by defining 
D(A) to be the kernel of the obvious map 0(A+) —> 0(C) for a not necessarily 
unital cr-C*-algebra A. Then 0 becomes a well defined homotopy invariant 
functor from a-C*-algebras to abelian groups such that if 

0 - ^ / - » A ^ £ - > 0 

is an exact sequence of cr-C*-algebras, then there is a functorial long exact 
sequence 

y 0(SI) -> £7(SA) -+ 0(SB) - • 0(1) -> 0(A) -+ 0(B), 

where SA is the suspension Co(R) <8> A for any A. 

The proof is similar to, but simpler then, the proofs of the corresponding 
statements for RK0 in Propositions 2.2 and 2.4 and Corollary 2.5 of [20]. We 
omit the details. 

LEMMA 3.7. If A is a nonunital a-C*-algebra, then the obvious map 

(U/U0)((K®A)+)-^0(A) 

is an isomorphism. 

Proof This proof uses standard ^-theory techniques. For surjectivity, one 
needs to use the fact that if A —> B is surjective and A and B are unital, then 
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Uo(A) —> Uo(B) is surjective ([20], Lemma 1.11), and for injectivity one needs 
the fact that U(K+) is path connected. We omit further details. 

COROLLARY 3.8. For any a-C*-algebra A there is a natural isomorphism 
Û(K®A)^Û(A). 

Proof. There is an isomorphism K<g)K = K, which is unique up to homotopy. 

LEMMA 3.9. For any unital C*-algebra B and any unital cr-C*-algebra A, 
the group U(B 0min M(K 0 A)) is path-connected. 

Proof. The proof is the same as the proof of Lemma 1.9 of [20], replacing 
everywhere M(K®A) by B ®M(K®A) and M(K®An) by B ®M(K®An). The 
references to Theorem 2.5 of [15] and its corollary remain valid in this more 
general situation. 

COROLLARY 3.10. For any C*-algebra B and any unital a-C*-algebra A, we 
have 

U(B®minM(K®A)) = 0. 

Proof Consider the split exact sequence 

0-+K®B®minM(K®A) 
L 

-> (K®B)+ (g)min M(K 0 A)->M(K 0 A) -> 0. 
7T 

If u G U ((K (g) B 0min M(K (g) A))+), then by the lemma there is a path t »—> ut 

in U((K <g)B)+ ®min M (AT <g> A)) which connects w to 1. Then 

t \—> vt — ut{t o TT)(U*) 

is a continuous path in U ([K <g> B ®m[n M (K <g) A)]+) connecting v0 = u(io7r)(u*) 
to 1. Since 

ue(K®B (g)min M(K (8) A))+, 

the element (to7r)(w*) is a scalar multiple of 1, and thus can be trivially connected 
to 1. So 

u e U0([K ® B ®min Af(JST ® A)]+). 

In view of Lemma 3.7, we have shown that 

0(K 0 ^ 0min M(AT 0 A)) - 0, 

as desired. 
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COROLLARY 3.11. For any unital cr-C*-algebra A there is a natural isomor­
phism 0(SQ(A)) ^ 0(A), where Q(A) = M(K ®A)/(K ®A). 

Proof. Apply Lemma 3.6 to the natural short exact sequence 

0 -> K ® A -> M(K <g> A) -+ Q(A) -* 0 

to obtain the natural exact sequence 

0(SM(K®A)) -+ 0(SQ(A)) -+ 0(K®A) -> 0(M(K®A)). 

According to the previous corollary, the two end terms are zero, and according 
to Lemma 3.8, we have 0(K®A) = 0(A) naturally. 

To complete the proof that [UnC7A]\ = RK\(A), we now have to show that 
0(SQ(A)) ^ RKi(A), that is, that (U/U0)([K ® SQ(A)]+) is isomorphic to the 
kernel of the map 

(U/U0)(Q((SA)+)) — (U/U0)(Q(Q). 

This requires three more lemmas. The first generalizes Lemma 1.12 of [20] and 
its corollary, in the same direction in which Lemma 3.9 generalizes Lemma 1.9 
of [20]. If if : A —» B is a unital homomorphism of a-C*-algebra, then 

Q^:Q(A)-^Q(B) 

will denote the homomorphism provided by Lemma 1.6 of [20], and, for any 
a-C*-algebra A, 

evx \C(X,A)-+A 

will be evaluation at x G X. 

LEMMA 3.12. Let B be a unital nuclear C*-algebra, and let A be a unital 
a-C-algebra. Ifu G U(B ® (?C([0, 1],A)), then 

(idB ® Qev0)(u) • [(idB <8> Qev{)(u)T G U0(B <g> Q(A)). 

Proof. We can clearly assume that (/d# ® QeviXw) = 1. Then the proof is 
obtained from the proof of Lemma 1.12 of [20] by replacing Q(-) by B <g> Q(-) 
and M (•) by B (g)M(-) throughout. Of course, we use our Lemma 3.9 in place of 
Lemma 1.9 of [20]. The only other point that requires comment is in the second 
paragraph of the proof, where we now need to know that 

(*) (U/U0)(B ® C([0,1], Q(An))) — (U/U0)(B <g> GC([0,1], A,)) 
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is an isomorphism. The lemma following Proposition 1.13 of [15] no longer 
applies directly, but does give an isomorphism 

(**) (U/U0)([R 0min M(K 0 S)]/[R 0min (K 0 S)])^ (U/U0)(Q(R 0m i n S)), 

for any unital C*-algebras R and S. If R is nuclear, then the algebra on the left 
hand side is R 0 Q(S). Using (**) with R = B 0 C([0,1]) and S = A„, and 
again with /? = B and 5 = C([0, 1],A„), we obtain (*). 

LEMMA 3.13. Let B be a unital nuclear C*-algebra, and let A be a unital 
o-C*-algebra. Then there is a natural isomorphism 

(U/U0)(B 0 Q(A)) * (U/U0)([K0 0 (B 0 Q(A))]+). 

Proof. We take K — K(H), where H is a separable infinite dimensional 
Hilbert space. Fix a countable family u\^U21... of isometries in L(H) with 
pairwise orthogonal ranges which span H. We now define homomorphisms 

O : (U/U0)(B 0 Q(A)) — (U/U0)([K0 0 (£ 0 G(A))]+) 

and 

¥ : (U/U0)([K0 0 (£ 0 GG4))]+) — (f//t/o)(£ 0 2(A)). 

Let (^-) be a standard set of matrix units in Ko, so that KQ is their linear span. 
Then every element x of KQ (g> (B (g> 2(A)) can be written as 

oo 

x = Yl eV®XiJi 
' , 7 = 1 

where Xy G B 0 2(A) and this sum is finite in each continuous C*-seminorm 
on B 0 Q(A). Now define 

0([v]) = [en<8>v + ( l - e n ) ® l ] 

and, for H> = JC + A • 1 G £/([#0 § (B 0 2(A))]+) with je G £ 0 0 (# 0 2(A)), 
define 

¥([*>]) A + 2_] UiXtjU* 

The sum in the definition of *¥ is finite in each continuous C*-seminorm on 
B 0 Q(A), and is easily seen to define a unitary in B 0 Q(A). The elements w7 

are regarded as being in B 0 Q(A) via the composite 

L(H) -> £ 0 L(//) 0 A -+ 5 0 M(K 0 A) -> B 0 2(A). 
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For each n choose a *-strong operator continuous path 11—> u^ of isometries 
in L(H) such that u^ = 1 and u[l) — un. This path defines an element in M(K 0 
C([0,1])) and hence an element un <E B ® gC([0,1], A). For v G £/(£ 0 g(A)), 
we now observe that 

^oO([v]) = [u{vu*{ + 1 - u{u\]. 

Then 

v = U\(y 0 lc([0,i]))"î + ! - "i"î 

is an element of U(B 0 gC([0,1], A)) such that 

(/d# 0 ô^vo)(v) = v and (/d^ (8) (?evi)(v) = wjvw* + 1 — u\u\. 

It follows from the previous lemma that *F o 0([v]) = [v]. 
We now consider the composite in the other order. Let 

w G U([K0 ® ( B 0 Q(A))]+). 

Writing elements of [Âo 0 (B 0 Q(A))]+ as matrices with entries inf i® Q(A), 
we have 

/W\\ W1 2 . . . \ 

and O o ̂ ([w]) is the class of 

(Y,Z=\UiWiJul ° ° --A 
0 1 0 . . . 

x - 0 0 1 . . . • 

\ ; ; ; • . / 

Now define xs+n, for n G N U {0} and s G (0, 1], inductively by XQ = x and 

xs+n = [ 1 0 / ? W + I + ( / W 0 C S ® 1 )0 (1 -pw + i)] 
• *„[1 0/Vhl + Un ® Q 0 1 )0 (1 -/?w+l)]*, 

where pw+i = Xw=i uiuh where s 1—• c5 is a continuous path of unitaries in M2 
with 

c ° = ( i 1) and ti = (i i)' 
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and where In is an n x n identity matrix. 

xn = 

I U\W\\U[ + 1 — U\U\ U\W\2U*2 

U2W2\U* U2W22U*2 + 1 — U2u\ 

Eoo * 

\ \ • • • / 

and that the upper left (n — I) x (n — 1) block of xt agrees with that of xn for 
t ^ n. If now p is any continuous C*-seminorm on A, then there is k such 
that p(Wij) = 0 unless ij ^ &. With Ap = A/Ker(p), the image of r f—> x, in 
[K0 0 (£ 0Q(AP))]+ actually lies in (M* 0 £ 0Q(AP))+, and furthermore has a 
limit as t »—> oo. Therefore r I—)- xt defines a homotopy in U([Ko 0 (#00(A))]+) 
from x to 

-^oo =:= 

I U\W\\U\ + 1 — Mi«j 

[ W2W21W* 

W3W31W* 

\ 

S o O o ¥ ( M ) . = [ U 
Now define Je G £/([# 0 £ (8) gC([0,1], A)]+) by replacing in the formula for 

XOQ each un by wn and each Wy by w/7 0 lc([0,i])- Then 

(id{Kmy 0 gevo)(x) = w and (id{Kmy ® ôevi)(*) = . w 

By the previous lemma, w and x^ therefore define the same class in (U /Uo) 
((K ®B)+ 0 Q(A)). To see that they define the same class in (U/U0)([K ®B® 
g(A)]+), let t »—• zt be a homotopy from w to Xoo. Let 

L:(K®B)+® Q(A) -+ (K 0 £)+ 0 g(A) 

be the homomorphism coming from the map b + À • 1 i—• A • 1 from (K <g> B)+ 

to (£ 0 £)+ . Then t 1—• z^(zr*) is a homotopy in £/([£ 0 B 0 G(A)]+) from a 
scalar multiple of w to a scalar multiple of x^. So [w] = [JCQO] in (U/Uo)([K 0 
B 0 Ô(A)]+), and so also in (U/U0)([K0 0 (£ 0 g(A))]+) by Lemma 3.4. Thus 
O o % ] ) = [w]. 

LEMMA 3.14. Le£ B be a unital nuclear C*-algebra and let A be a unital 
a-C*-algebra. Then there is a natural isomorphism 

Then one checks that 

U\W\2U\ W1W13W3 

W2W22W2 + 1 — W2W2 W2W23W3 

W3W32W2 W3W33W3 + 1 — W3W3 

* : (t//£/0)(* 0 2(A)) — (U/U0)(Q(B 0 A)). 
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This lemma generalizes the lemma following Proposition 1.13 in [15], except 
for the nuclearity hypothesis (which is probably unnecessary). Of course, the map 
comes from the map B <g)Q(A) —> Q(B <g>A) that one gets from B <g)M(K®A) —> 
M(K®B®A). 

Proof of Lemma 3.14. Consider the following commutative diagram with exact 
rows: 

0-+K®B®A-+B®M(K®A)^>B®Q(A)-^0 

(*) I I I 
0 - • K®B <g> A - • M(K ® B ® A)^Q(B ® A) -> 0 

(Note that the top row is exact if A is a C*-algebra, because B is nuclear. To 
show that it is exact in the case at hand, we note that Proposition 5.3(2) of [19] 
can be applied, because of the surjectivity statements in Lemmas 1.5 and 1.6 of 
[20].) The left hand vertical map in (*) is the identity, and the middle vertical 
map is injective. Therefore the right hand vertical map is injective. Consequently 
we can identify B ® Q(A) with a subalgebra of Q(B ® A). 

We now prove that O is injective. This is the same as showing that 

U(B <g> Q{A)) H U0Q(B ®A)C U0(B <g> Q{A)). 

Let u be an element of the left hand side. By [20], Lemma 1.11, there is x G 
UM(K ®B®A) such that ir(x) = u. But then we must actually have 

xeU(B®M(K®A)\ 

since u G B (g) Q(A). Now U(B ®M(K 0A)) is path connected by Lemma 3.9, 
so it follows that 

u = n(x) e U0(B (8) Q(A)), 

as desired. 
Before proving that <E> is surjective, we establish the following claim: If B 

and A are unital C*-algebras, with B nuclear, and if 

D — {a : [0,1] —> Q(B <g) A) : a is continuous, 

a(0) e C • 1, and a{\) eB® Q(A)}, 

then U(D) is connected. To prove it, let u G U(D). Without loss of generality, 
we can assume u(0) — 1. We want to find a continuous function 

v:[0,1]2->UQ(B®A) 
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such that v(f, 0) = u(t), v(f, 1) = 1, v(0, s) E C • 1, and v(l, s) E B ® g(A), for 
all £, s E [0,1]. Begin by choosing a continuous function 

z : [ 0 , l ] 2 ^ [ / g ( ^ A ) 

such that z(f, 0) = w(r) and z(f, 1) = 1 for all t. Replacing z(7,5) by z(0, s)*z(f, 5), 
we may also assume that z(0, s) — 1. Using the fact that 

(U/U0)(B ® g(A)) — (U/Uo)(Q(B ® A)) 

is an isomorphism (by the lemma in [15] we are generalizing), we can write 

z(l,s) =x(s)y(s) 

with 

XEU0C([0,11Q(B®A)) and y E t/C([0, X\,B <g> 2(A)). 

Furthermore, we will have x(0) = w( l)y(0)* and x(l) = .y(l)* in the same 
component of U(B <g> Q(A)). Replacing x(s) by x(s)c(s) and y(s) by c(s)*y(s) 
for an appropriate c E £/C([0,1],# ® <Q(A)), we may also assume that x(0) = 
* ( 1 ) = 1 . 

As in the proof of Lemma 3.12, the lemma we are generalizing also implies 
that 

(U/U0)(C(Sl)®B <8> Q(A)) - • (U/U0)(C(Sl) ® g(5 0 A)) 

is an isomorphism. Therefore there is a factorization x(s) = w(l,s)d(s), where 

w : [0, lf-^UQ(B®A) 

satisfies w(f,0) = w(r, 1) and W(0,J) = 0 (so w(l,-) E f/otCCS1) ®Q(B ® A))), 
and where d(s) E £/(£ ® g(A)) for all 5. Replacing vv(f, 5) by w(f, s)w(t, 0)* and 
d(.s) by w(l,0)d(s), we may assume in addition that w(t,0) = w(f, 1) = 1 for 
alU. (Note that w(l, 0) = x(\)d(\f E 5 0 g(A). ) Now define 

v(t,s) = w(f, s)*z(t, s). 

The only property required of v that we must check is that v(l, s) E B ® Q(A). 
However, we have 

v(l1s) = (d(s)x(sr)(x(s)y(s))J 

and d(s),y(s) E B (g) g(A). This proves the claim 
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Now we prove that O is surjective. We return to the case in which A is a 
cr-C*-algebra limA„. Let u G UQ(B (g)A). We construct by induction continuous 

paths t \—» v$ in UQ(B 0A„), defined for t G [0, oo] and satisfying 

u® = u[n) G U(B <g) Q(An)) for t^n and T T ^ ^ ) = uf for all f. 

To start, use the isomorphism 

(U/UoXB^QiA,)) * (U/U0)(Q(B ®An)) 

from the lemma following Proposition 1.13 in [15] to choose u{p in UQ(B ®A\) 
such that 

wf = K{(u) and M^ G B <g> g(Ai). 

Then set w(/} = w^ for f ^ 1. Given u%\ we use the surjectivity of 

Q(B®An+l)-^Q(B®An) 

([20], Lemma 1.6) and the corresponding surjectivity of the components of the 
identity of the unitary groups to lift the path 

to a path 11—• ct in £/<2(# (8)An+i), and we define 

unl\ = Kn+\(u)c*0Ct for t G [0, Al]. 

Next, use the argument above to choose a path 11—> vt from vo = u^}x to some 
V! G U(B®Q(An+l)). Then 

n - ^ ^ X ^ ) * 

is a path in UQ(B <g> A„) which is 1 at t = 0 and is in £/(£ <g> G(An)) at r = 1. 
Let D/, for / = w, /z + 1, be the result of putting A/ for A in the definition of the 
algebra used in the claim above. Then Dn+\ —> Dn is surjective. By the claim, 
there is therefore a unitary path t »—• wt defining an element of Dn+\ whose 
image in Dn is 

Now set 

Un+\ = WQ\v*vt for t G [0, 1]. 
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This gives the correct value for w^\, satisfies 

*„(«£?>) = 1 • (Trn(v,)(u^)ynn(vt) = «<»> 

as required, and gives 

"nTl0 = " 0 ^ 1 G U(B ® G(^+ l)) 

by the definition of Dn+\. So we can set 

u% = u<£P f o r r ^ n + 1 , 

thus completing the induction. 
We now set vfl) equal to the element of UQ(B ® A) determined by the coherent 

sequence (u$). Then 

« = «(w(oo))* • K(OO), 

where W(M(OO))* G U0Q(B ® A) and w(oo) € £/(£ ® G(A)). So O is surjective. This 
completes the proof. 

THEOREM 3.15. There is a natural isomorphism 

(U/UoXiK^A^^RK^A) 

for any CJ-C*-algebra A. 

Proof. We first consider the case in which A is unital. Then we have the 
following chain of natural isomorphisms, each of which follows easily from 
previous results as listed below: 

RKi(A) = RKo(SA) 9* Ker[RK0(C(Sl)®A) -+ RK0(A)] 

= Ktr[(U/U0)Q(C(Sl)®A) — (U/U0)Q(A)] 

* Ktv[(U/U0)(C(Sl) ® (2(A)) — (U/U0)Q(A)] 

<* KeW/UoWo ® (C(Sl) ® GW))]+) 

— (U/U0)([Ko ® G(A)]+)] 

^ Kerft/tCCS1) ® 2(A)) — £/(G(A))] 

^ £/(SQ(A)) ^ <7(A) = (U/U0)((K®A)+). 

On the first line, the equality is the definition of RK\ and the isomorphism is 
obtained by applying the long exact sequence for RK* to the split exact sequence 

(*) 0 -» SA -> C(Sl ) (8) A - > A - • 0 . 
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The equality which comes next is the definition of RKQ. The three isomorphisms 
connecting the second line to the second line from the end are, in order, Lemmas 
3.14, 3.13, and 3.4. The isomorphism between the second last line and the last 
line is obtained by applying Lemma 3.6 to the sequence (*), the isomorphism 
Û(SQ(A)) = Û(A) is Corollary 3.11, and the equality at the end is the definition 
of 0(A). 

Now we consider the case in which A is not unital. Naturality in the unital case, 
and the results RK{(A

+) ^ RKX(A) and 0(A+) ^ 0(A), give RKX(A) ^ (7(A), 
and 0(A) ^ (U/U0)((K ® A)+) is Lemma 3.7. 

THEOREM 3.16. Let A be a unital o-C*-algebra. Then there is a natural 
isomorphism of abelian groups [Unc,A]\ = RK\(A). 

Proof. Combine the previous theorem with Proposition 3.5. 

4. The /^-theory of the classifying algebras. In this section we compute 
RK*(P) and RK*(Unc), where P and Unc are the classifying algebras of the 
previous two sections. In order to be able to handle them both in the same 
way, we prove, as a preliminary result, that Unc is isomorphic to WOQ(S)+ for 
an appropriate algebra S. Our /^-theory results will enable us to show that the 
algebras of continuous functions on the traditional classifying spaces for K-
theory do not work in the noncommutative setting, even for the AT-theory of 
C*-algebras. 

LEMMA 4.1. Let S = {/ G COS1) : / ( l ) = 0}, where Sl is identified with 
{( G C : | ( | = 1}. Then there are isomorphisms Unc(n) = Wn(S)+ which respect 
the maps of the corresponding inverse systems. 

Proof. First observe that S is the universal C*-algebra on the single generator 
s subject to the relations ss* — s*s = —s — s*. (The element s + 1 is unitary in 
S+; conversely, if u is a unitary element of any unital C*-algebra, then s = u— 1 
satisfies the given relations.) Therefore Wn{S)+ is the universal C*-algebra on 
the generators xn(s,ij) and 1, subject to the relations that 1 be an identity and 
that the matrices 

xn(s) = (xn{s,iJ))n
ij=lX 

satisfy 

xn{s)xn{sf = xn(s)*xn(s) = -xn(s) -xn(s)*. 

The equations xn^j = xn(s, ij) + 6ijl relate these generators and relations to the 
standard generators and relations for Unc(n) in Definition 3.1. Naturality with 
respect to the maps of the inverse systems is immediate. 

PROPOSITION 4.2. Let (WOQ(S)+, X? M? 0 be tne homotopy dual group obtained 
via Definition 1.10 from the algebra S of the previous lemma, with LQ : S —• 
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S given by io(f)(0 ~ /(C)- Let (£/„«;., x', M V ) be the dual group of Defini­
tion 3.1. Then there exists an isomorphism p : Woo(S)+ —> Unc such that 
x' ° ^ — XJ I1' ° ^ — (^ * P) ° M> and i' o ip = ip o i. 

This proposition implies that WOQ(S)+ and Unc are homotopy equivalent as 
homotopy dual groups. It follows that, for unital cr-C*-algebras A, we have a 
natural isomorphism 

RKl(A) = [W00(S)+
1A]u 

so that we have unified the construction of the classifying algebras for RKQ 
and RK\. Note in particular that this proposition implies that Unc is homotopy 
abelian. 

Proof of Proposition 4.2. We first check that LQ satisfies the conditions of 
Definition 1.10. We certainly have to °^o — ids- To construct a homotopy 
from 

a]~*{ 0 a) 

to the zero homomorphism, let s(Q = £ — 1 be the generator of S and choose a 
continuous path t »—• wr of scalar unitary matrices such that 

wo = 1 and «i = 

Then let ^ • S —• Mi(S) be the homomorphism sending s to 

V o 1 / v° ^ + i y 

We now let ^ : Woo(S)+ —-» £/wc be the inverse limit of the isomorphisms 
of the previous lemma, taking the generator s of S as above. Obviously 99 is 
an isomorphism satisfying \' ° <£ = X- To check that */ o ^ = p o £, we let 
(p : S -^ Ko (g> Unc be the homomorphism corresponding to p under Proposition 
1.9. Then the homomorphisms corresponding to 1'cup and <poi are (idKQ®L')o(p 
and p t 0 respectively. These are equal because both send s to (p(s*). 

Finally, we prove that [if o p ~ (p * p) o p. This is the same as proving that 

p! 2̂  (ip * <p) ° [i ° v^- • 

If XQQ is the matrix over Unc whose ij entry is Xoo,/,/» and if x^ and x^ are the 
analogous matrices over Unc * c ̂ nc using the generators of the first and second 
free factors respectively, then //(Xxy,y) is the ij entry of the matrix product 

0 1 
1 0 
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x$x$. Also it is easily shown that ( < / J * 0 O / I O ^
 1(-̂ oo,/,y) is the ij entry of 

the matrix product y(1)_y(2), where 

/ 
y(V = 

X o o , l , l 0 r d ) 0 
\ 

0 1 0 0 

r ( l ) 
x 00,2,1 

0 r ( 1 ) 0 

0 0 0 1 

• • • / 

and 

y (2) = 

\ 

1 0 0 0 
...\ 

0 r ( 2 ) 

X o o , l , l 
0 r ( 2 ) 

x oo,l,2 

...\ 

0 0 1 0 

0 r ( 2 ) 0 r(2) J 
••./ 

Thus, if t 1—-» ap> is a homotopy connecting /d{/m. to a homomorphism o^ sending 
•*oo,i,y to the // entry of y(/), for / = 1,2, then 

t »-• (^1} * of}) o / / 

is a homotopy connecting n' to ((p * ip) o n o <p~l. 
To produce of \ we identify Unc with Woo(,S)+ via (/?, and then use Proposition 

1.9. Let 

ms : S -> #o®Woo(S) 

be the homomorphism corresponding to idWoo(S)- Then the homomorphisms 

s'^Ko&WooiS) 

corresponding to o-(/} have the form (r/(/) ® / d ^ s ) ) ° m 5 , for appropriate homo­
morphisms ry(/) : ̂ 0 ~*• ^0 sending rank one projections to rank one projections. 
(On matrix units eiJ9 we have r/(1)(^//) = e^-i^j-i and r/(2)(^) = 2̂1,2/.) The exis­
tence of the desired homotopies then follows from Lemma 1.12 and Proposition 
1.9. This completes the proof. 

We now turn to the computation of the AT-theory of Unc and P. 

LEMMA 4.3. Let A be a C*-algebra. Then the homomorphisms 

nn:Wn+l(A)^Wn(A) 
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of Definition 1.7 are all isomorphisms on K-theory. 

Proof. Define tpn : Wn(A) —•» A by 

ifn(x„(a,ij)) = 6n8j\a. 

Since ipn o irn — (pn+\, it suffices to show that each pn is an isomorphism on 
^-theory. Let m& : A —-»• Mn(VKn(A)) be given by 

m^a) = (xn(a,iJ))"J=l. 

Then Mn(ip) o m^ sends a G A to the « x AZ matrix whose (1,1) entry is a and 
whose other entries are zero. Identifying K*(Mn(A)) with K*(A) in the standard 
way, we see that Mn((p)* o (mA)* is the identity on K*(A). 

We now consider the composite in the other order, namely 

mAo<p:Wn(A)-+Mn(Wn(A)). 

Under the identification of Proposition 1.5, this map corresponds to the homo-
morphism rj : A —» Mni{Wn{A)) given by 

ï]{a) 

/(xn(a,ij)yij=l 0 
0 0 

\ 0 0 

In this expression each 0 is an n x n zero matrix. The homomorphism r/ is easily 
seen to be homotopic to the homomorphism À defined by 

A(a) 

//xn(a,ij) 0 ... 0\\n 

11 0 0 0 

\ 0 0 .. . O/Jij: 

In this expression each matrix is n x n. It follows that m A o ip is homotopic to 
the homomorphism i/> : Wn(A) —• Mn(Wn(A)) corresponding to A. Since i/j is just 
the standard embedding 

xn(a, ij) 

fxn(a,i,j) 0 . . . 0 \ 
0 0 . . . 0 

0 0 . 0 / 

of Wn(A) in the upper left corner of Mn(Wn(A)), it follows that (/?* o (ra^)* is the 
identity on K*(Wn(A)). 
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Note that, in cases for which it makes sense, we have actually proved that 
Wn{A) and A are KK-equivalent. 

COROLLARY 4.4. For any C*-algebra A there is a natural isomorphism 

RK^W^A)) * K*(A). 

Proof. Use the previous lemma and the Milnor lim1 -sequence, [20], Theorem 

3.2. 

PROPOSITION 4.5. (1) With P as in definition 2. 1, we have RKQ(P) = Z2 and 
RK{(P) = 0. 

(2) With Unc as in Definition 3. I, we have RK0(Unc) ^ Z andRKx(Um) ^ Z. 

Proof. (1) Proposition 1.16 yields an obvious exact sequence 

0 -> Co((0, 1)) <g) M2 - • qC —> C 0 C -> 0. 

Examining the corresponding long exact sequence in A^-theory, it is easily shown 
that Ko(qC) = Z, generated by the class of the quasihomomorphism 

C=tC*CtX7C, 

and that K\(qC) — 0. The result now follows from Corollary 4.4. 
(2) By Proposition 4.2, we have Unc = W00(kS)+, while clearly S = C0(R). 

The result now follows from Corollary 4.4. 

We should point out that Lemma 4.3 and Corollary 4.4 are also valid for 
a-C *-algebras, since 

^ ( l i m A , ) ^ l i m ^ ( ^ ) . 
k k 

This enables one to compute the /^-theory of some of the dual groups defined 
in [29]. For example, GLnc(n) is isomorphic to Wn(A)+, where A is the universal 
pro-C*-algebra on the generators v0 and z0, subject to the relations 

yozo = zojo = —yo — ô-

Equivalently, A+ is the universal unital pro-C*-algebra on generators y and z 
(namely, _yo + 1 and zo + 1) subject to the relations 

yz = Zy = 1. 

One can then show that A+ is homotopy equivalent to C(Sl) by using an ap­
propriate variation on the retraction (t,x) i—-> x(x*jc)-r/2, for t G [0, 1] and x 

https://doi.org/10.4153/CJM-1989-046-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-046-2


CLASSIFYING ALGEBRAS 1075 

invertible, from the group of invertible elements of a C*-algebra to its unitary 
group. It follows that 

RK0(GLnc(n)) * RK{(GLnc(n)) = Z. 

This can also be obtained more directly by using the retraction above to show 
that GLnc(n) is homotopy equivalent to Unc(n). 

We also note that Proposition 4.5 shows that the ^T-theory of our classifying 
algebras is about as simple as it could be. In fact, we will prove in the next 
section that there are natural isomorphisms 

[Ker(x : P - • C), A] ^ RK0(A) and 

[Ker(X :Unc-^C),A] ^RK{(A) 

for arbitrary cr-C*-algebras A, with the restriction in the RKo case that A have a 
countable approximate identity. For the first of these kernels, we have RKo = Z 
and RK\ = 0, while for the second we have RKo = 0 and RK\ = Z. In either 
case, the element of RK*(A) corresponding to a homomorphism (p : Ker(x) —• A 
is ip*(r]) for an appropriate generator rj of RK*(Ker(x))-

This situation is rather different from what happens in the case of spaces. We 
will take as our standard models for the classifying spaces the infinite unitary 
group U = lim U(n) for RKl and the space Z x BU for RK°. (See for instance 

Example 2.2 of [1].) The representable ^-theory of these spaces is known, and 
will be described in the proof of the next proposition. In both cases, it is quite 
large. In particular, we have 

RK*(P) ¥ RK*(C(Z x BU)) and RK*(Unc) ¥ RK*(C(U)). 

It follows that the a-C*-algebras C(Z x BU) and C(i/), of all continuous com­
plex valued functions on Z x BU and U, cannot be used as classifying algebras 
for RK* on the category of a-C*-algebras. Indeed, we would otherwise have 
homotopy equivalences 

P - C ( Z x BU) and Unc ~ C{U), 

which contradicts the ^-theory results above. (This is a standard result in cate­
gory theory; see the Yoneda Lemma and its corollary on page 61 of [14].) 

In fact, our results are strong enough to show that C(Z x BU) and C(U) do 
not even classify ^-theory for C*-algebras. This justifies the construction of our 
noncommutative analogs of these algebras. We need a lemma, which generalizes 
the remark on operations at the end of [24]. 

LEMMA 4.6. Let A \—> i/^ be a natural transformation from K{ to itself (i = 
0 or 1), where K[ is regarded as a functor from unital C*-algebras to sets. 
Then ^A has the form 

^AW) — mr1 + ̂ [1] for some m, n £ Z. 
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{Of course, the second term is zero if i — 1. ) 

Proof. We cannot directly apply the remark of [24] referred to above, since 
we assume neither that tyA is a group homomorphism nor that it is natural with 
respect to nonunital homomorphisms. However, using [8], we see that every 
element 77 of KQ{A) has the form 7* o j$~x o (a+)*(77o), where a : qC —•» K 0 A 
is some homomorphism, f3 : A+ —> {K (g) A)+ is 

/?(a + A • 1) = a ® / j + A • 1 

for some fixed rank one projection p £ AT, 7 : A+ —> A is 

7(tf + A • 1,4+) = a + A • U , 

and 770 G ^o(gC+) is the class determined by the homomorphism qC —> gC+ . 
Now 

ipqc
+(Vo) — ^^7o + «[1]7 for some m, AI G Z, 

by the proof of the previous proposition, and the argument of [24] implies that 
V'AO?) = mr\ + " [ ! ] • This does the case / = 0. The case / — 1 is done similarly, 
using Co(R) and geometric realization as in Lemma 3.1 and Remark 3.2 of [23], 
in place of qC and quasihomomorphisms. 

PROPOSITION 4.7. (1) There is no natural isomorphism of sets 

K0(A)*é[C(LxBU),Ah 

for unital C*-algebras A. 
(2) There is no natural isomorphism of sets 

KX{A)~[C{U),A}X 

for unital C*-algebras A. 

Note that, in this proposition, we do not assume any structure of homotopy 
dual group on C(Z x BU) or C(U). 

Proof of Proposition 4.7. Let / = 0 or 1, let Z = Z xBU or U as appropriate, 

and let E = \imEn be W^B)* = \imWn(B)+, with B = qC or C0(R) as 

appropriate. Further let Zo be a compact subset of Z such that 7* : K*(Z) —* 

AT*(Zo) is surjective; ZQ will be chosen at the end of the proof in such a way as 

to obtain a contradiction. 
The fact that Z is a classifying space for RKl on countable direct limits of 

compact spaces implies that there is a canonical element 7/0 G RKl(Z) such that 
the isomorphism [X,Z] = RKl(X) is determined by \f] »—>/*07o). (The existence 
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of 770 follows abstractly from the Yoneda Lemma, on page 61 of [14].) Similarly, 
there is a canonical element £0 £ RKi{E) such that the canonical isomorphism 

*¥A:[E,A\x-^RKi{A) 

is given by ¥4([<£>]) = (f*(£o). (Note that £0 is a generator of RKÏ(KQT(E —> C)). ) 
Clearly the abelianization E/[E,E] of E, where [£,£] is the closed ideal in E 
generated by all commutators xy — yx, is a classifying algebra for RKj of com­
mutative unital a-C*-algebras. The usual Yoneda Lemma argument, together 
with Proposition 5.7 of [19], therefore yields a unital homotopy equivalence 
E/[E,E] ~ C(Z). Composing it with the quotient map produces a unital homo-
morphism n : E —+C(Z) such that 7r*(£o) = lo- Let 

n*A:[C(Z),A]l-+[E,A]l 

denote the function induced by IT. 
Now suppose that we are given some natural isomorphism 

&A:[C(Z),A]l-+Ki(A) 

for unital C*-algebras A. Then 

A^^Aoir*AoOA
l=AA 

is a natural transformation of sets from K[(A) to Ki(A). Therefore there are, by 
the previous lemma, m, n G Z such that 

AA(rj) = mr) + n[l] for all A and all 77 G Kt(A). 

Using the definition of TTA and *¥A, and 7r*(£o) = Vo, we obtain 

<P*07o) - n • [U] = /WOA(M) 

for every unital (f : C(Z) —> A. If A is restricted to be of the form C(X) 
for X compact, then [<p] »—• <p*(77o) is bijective, whence m = ±1 . Therefore 
[if] 1—> </9„C(T7O) is bijective from [C(Z),A]i to £,-(A) for all A, commutative or 
not. 

Let p : C(Z) —> C(Zo) be the restriction map. Then p o 7r has a factorization 
as À o Kn for some «, with Kn : E —> En being the canonical map, and for some 
À : En —•» C(Zo). Choose, by the previous paragraph, a unital homomorphism 
a : C(Z) —• £„ such that 0-*(T7O) = (««)*(£())• Then 

(A o <T)*(T/O) = (p ° O*(4o) = A*0?o), 

so that \oa and p must be homotopic. Since p* = /* is surjective, A* must also 
be surjective. 
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It now remains only to choose ZQ such thatj* : Kl(Z) —> Kl(Zo) is surjective, 
but such that there is no surjective map from Kj(En) to Kl(Zo) for any n. For 
/ = 0 and Z = Z x BU, we note that 

BU = \imBU(n) and BU(n) = \imGn(C
N), 

where Gn(C
N) is the Grassmannian of ^-dimensional subspaces of CN. The 

representable /£-theory of these spaces is known: it is in every case concentrated 
in degree 0, and we have 

RK°(BU) * Z[[d, c2 , . . J], RK°(BU(n)) 9É Z[[c,, c 2 , . . . , c„]], 

and 

RK°(Gn(C
N)) * Z[[c,, c 2 , . . . , cw]]//nA 

for some suitable ideal /w^ • The canonical maps between these spaces are all the 
obvious ones, and are surjective. (See [27], 16.32 and 16.33, and [11], IV.3.19, 
IV.3.22, and its proof.) Take Z0 = Gi(C3) = CP2, embedded in BU as above 
and thence in Z x BU by identifying BU with {0} x BU. Then /C°(Z0) = Z3, 
while Kç)(En) = Z2 for all n, by Lemma 4.3 and Proposition 4.5(1). Since there is 
no surjective homomorphism from Z2 to Z3, we have the desired contradiction. 

For / = 1 and Z — U — lim U(n), we observe that it is known that K*(U(n)) 

is an exterior algebra over Z on odd degree generators /?i,...,/3«, with the 
homomorphism from K*(U(n + 1)) to K*(U(n)) given by killing (3n+\. (I am 
grateful to Jonathan Rosenberg for pointing this out to me.) However, we do 
not need the full strength of this statement, but only the fact that the rational 
A'-theory K*(U(ri)) ® Q is an exterior algebra over Q, with generators and 
homomorphisms as above. This version is much more easily derived from results 
in the literature: for example, use the computation of H*(U(ri), Z) in Theorem 
VII.4.1 of [31], and the fact that the Chern character is a rational isomorphism. 
The reasoning of the main part of the proof applies equally well to rational 
A'-theory, and the necessary contradiction is supplied by observing that there is 
no surjective linear map from K\(Unc(n)) (g) Q = Q to K{(U(2)) = Q2, for any 
n. 

As a corollary of the proof, we obtain: 

Example 4.8. There exists a unital C*-algebra A and a class r\ G K\(A) such 
that T] is not represented by any unitary matrix over A whose entries and their 
adjoints commute with each other. Indeed, it is easily derived from the proof 
above that 

A — Unc(2) and rj = *2,1,1 *2,1,2 

*2,2,1 *2,2,2 

https://doi.org/10.4153/CJM-1989-046-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-046-2


CLASSIFYING ALGEBRAS 1079 

is such an example. (Note that 77 = feMCo)- ) 

It seems very difficult to produce such an example directly. Obviously we 
cannot take A to be commutative, and it is only slightly less obvious that we 
cannot take A to have the form Mn (g) C(X). On the other hand, it seems quite 
possible that no such example exists with A simple. Indeed, in all known ex­
amples with A simple and unital, every class in K\(A) is already represented 
by a unitary in A. (See Section 7 of [6] for a more detailed discussion of the 
evidence.) 

We should also point out that our computations show that the "noncommuta-
tive" unitary groups Unc(n) are topologically quite different from the ordinary 
unitary groups U(n). Similar considerations hold for the "noncommutative" fi­
nite approximations Wn(qC) to Z x BU and their abelianizations, which are 
presumably homotopy equivalent to the algebras of continuous functions on 
certain finite disjoint unions of Grassmannians. 

5. Other classifying algebras. In this section we define and discuss several 
other pro-C*-algebras which classify RK$ and RK\ for a-C*-algebras. One of 
our constructions can be generalized to produce classifying algebras for functors 
of the form KK°(D,—). These constructions are in certain ways more natural 
than the definitions of P and Unc, but they do not yield a-C*-algebras. The 
resulting algebras are therefore much harder to handle. In particular, we do not 
know whether or not the various classifying algebras we construct for RKQ and 
RK\ are homotopy equivalent to each other. 

Our constructions come from two sources. One source is a noncommutative 
analog of the loop space functor, originally defined in Section 2.6 of [21]. This 
functor sends a classifying algebra for RKt to one for RK^j. The other source 
is an adjoint W to the functor K (g) —, which can be used in place of WQQ. We 
consider the loop algebra construction first. 

We will find it convenient to work with pointed (pro-)C*-algebras and their 
reduced ^f-theory. The category of pointed (pro-)C*-algebras is a noncommu­
tative analog of the category of pointed spaces. Thus, the version of our earlier 
results in terms of pointed algebras, given in Theorem 5.4 below, is actually 
the most direct analog of the standard topological approach, which uses pointed 
spaces and pointed maps. 

Definition 5.1 ([21], Definition 2.5.1). A pointed (pro-)C*-algebra is a pair 
(A, a) consisting of a unital (pro-)C*-algebra A and a unital homomorphism 
a : A —• C. A pointed morphism y> : (A, a) —> (B, (3) is a unital homomorphism 
(continuous and adjoint preserving, as always) cp : A —> B such that (5 o (p — a. 

We will generally omit the homomorphism a from the notation. If A is any 
(pro-)C*-algebra, then A+, equipped with the homomorphism a + À • 1 1—> A, 
is a pointed (pro-)C*-algebra. In fact, A *—• A+ and (p —> cp+ is easily seen 
to be a category equivalence from (pro-)C*-algebras and arbitrary homomor-
phisms to pointed (pro-)C*-algebras and pointed morphisms. The inverse is 
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(A, a) i—+ Ker(a). One should also note that (X, JC) >—+ (C(X), ev*), where <?vA is 
evaluation atx, defines a category equivalence from the category of pointed com­
pact Hausdorff spaces (respectively, pointed completely Hausdorff quasitopolog-
ical spaces) and basepoint preserving continuous maps to the category of pointed 
commutative C*-algebras (respectively, pointed commutative pro-C*-algebras) 
and pointed morphisms. By abuse of language, we will therefore refer to a in 
the pair (A, a) as the basepoint of the algebra A. 

The pointed category has noncommutative analogs of wedge and smash prod­
ucts, given by 

A+VB+ = ( A 0 £ ) + and A+ AB+ = (A ®£) + . 

Of course the usual ambiguity concerning tensor products of C*-algebras extends 
to the smash product. As a special case, suspension in the pointed category is 
A i—> 1A = C(Sl) A A, where the basepoint of C(Sl) is taken to be ev\. There 
is also a pointed free product, namely 

(A+,£+) f -+A + * c £ + = (A*B)+. 

Extending our earlier notation, the set of pointed morphisms between pointed 
(pro-)C*-algebras A and B is denoted by Hom+(A,£), and the set of homotopy 
classes in Hom+(A,#) is denoted by [A,#]+. Note that pointed homotopy has 
an obvious formulation in terms of pointed morphisms from A to B AC([0, l])+ 

which is analogous to the usual formulation of homotopy in terms of homomor-
phisms from A to B ® C([0, 1]). 

Definition 5.2. If (A, a) is a pointed <7-C*-algebra, then the reduced repre-
sentable K-theory of A is 

RKM) = Ker[a* : /?#*(A) .-*/Mr#(C)]. 

Of course, we have RK*(A+) = RK*(A). In particular, 

RK0(A
+) ^ RK0(A

+) 0 Z and fl#i(A+) ^ RKX(A+). 

Note that /?AT* is functorial for pointed morphisms. 
If (A, x,AM) is a homotopy dual group, then (A,x) is a pointed (pro-)C*-

algebra. We did not require the maps and homotopies in the definition of a 
homotopy dual group to be pointed. However, in the definition of the homotopy 
dual groups Unc and Woo(A)+, the maps are all pointed, and in the proof of 
Theorem 1.11, all homotopies are in fact pointed. Thus, we have: 

PROPOSITION 5.3. The homotopy dual groups W^A)* of Definition 1.10 and 
Unc of Definition 3.1 are abelian homotopy dual groups in the category of 
pointed pro-C*-algebras. 
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For abelianness of Unc, see Proposition 4.2. It follows from this proposition 
that [Woo(A)+,B]+ and [Unc,B]+ are abelian groups in a natural way. 

The pointed version of our earlier theorems is then: 

THEOREM 5.4. (\) If A is a a-C*-algebra with a countablejipproximate iden­
tity, then there is a natural isomorphism of abelian groups RKo(A+) = [P,A+]+. 

(2) IfA^is any a-C*-algebra, then there is a natural isomorphism of abelian 
groups RK{(A

+)^[Unc,A
+]+. 

Presumably we do not actually need the assumption in (1) that A have a count­
able approximate identity. In our proof, it enters through Lemma 2.10, where 
we used the stabilization theorem for Hilbert modules and the contractibility of 
the unitary group of M(K 0 Ap) for a C*-algebra quotient Ap of A. 

Proof of Theorem 5.4. (1) We have natural isomorphisms of sets 

RK0(A
+) *Ê RK0(A) 9* P(A) <* P0(A) 

^[qC,K0^A]^[Woo(qC),A] 

^ [Woo(^C)+, A+]+ = [P,A+]+. 

These follow from, in order, the definition of RKo, Proposition 2.8, Lemma 2.6, 
Lemma 2.10, Proposition 1.9, the definition of a pointed morphism, and the 
definition of P. Comparing the composite of these isomorphisms with the proof 
of Theorem 2.12 now yields a commutative diagram with bijective horizontal 
arrows: 

R~K0(A
+) — ^ - * [PAX 

v v 

RK0(A
+) — = - > [P,A\ 

Since the left vertical arrow is injective, so is the right one. That the top hori­
zontal arrow is a group homomorphism now follows from the fact that the other 
three arrows are group homomorphisms. 

(2). Let a be the basepoint of A+, let 

if = (idKo (8) a)+ : (K0 ® A+)+ — K+, 

and let 

iP:(K0®A+)+-+C 

be the obvious map. Set 

G(A) = {ue U((KQ <§> A+)+) : ^(u) = 1} 
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and 

U+(A) = {ue U((K0 <8> A+)+) : <p{u) = 1}, 

and let GQ(A) and UQ(A) be the path components of the identity in G(A) 
and U+(A). In the proof of Proposition 3.5, it was shown that [Unc,A

+]\ = 
G(A)/G0(A), and essentially the same proof yields [Unc,A

+]+ = U+(A)/U^(A). 
An easy argument, using the path connectedness of 

G(C) = {ue U(K+) :u-\£KQ}, 

shows that 

U+(A)/U+(A) — G(A)/G0(A) 

is an isomorphism. (Note that G(C)/G0(C) = RK\(C) = 0. ) Therefore we have 
isomorphisms 

RK{(A
+) = RKdA+) = [UnciA

+h 

* G(A)/G0(A) * U+(A)/U+(A) * [Unci A
+J+, 

as desired. (The second isomorphism is Theorem 3.16.) 

This theorem can be restated without using pointed algebras, as follows. 

COROLLARY 5.5. (1) If A is a a-C*-algebra with a countable approximate 
identity, then there is a natural isomorphism 

RKoM^lWooiqQiA]. 

(2) If A is any a-C*-algebra, then there is a natural isomorphism 

RK{(A)*[Ker(Unc-+C),Al 

where Unc —> C is given by Xoo,/,/ t—> £//• 

This version is not as nice as the previous version because Woo(qC) and 
Kev(Unc —» C) are not homotopy dual groups. The reason for introducing pointed 
pro-C *-algebras is to be able to state this result in the form of Theorem 5.4. 

We now construct the noncommutative analog of the loop space. (Compare 
Section 2.6 of [211). We include here an easy direct proof of its existence, not 
relying on the generator and relation material in Section 1.3 of [211. 

THEOREM 5.6. There is a functor A \—> QA from pointed pro-C*-algebras to 
pointed pro-C*-algebras such that there are natural isomorphisms of sets 

Hom+(QA,£) ^ Hom+(A,I£) and [QA,£]+ = [A,I£]+ 

https://doi.org/10.4153/CJM-1989-046-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-046-2


CLASSIFYING ALGEBRAS 1083 

for any pointed pro-C*-algebra B. 

Proof. Let A have the basepoint a : A —> C. Let D be the set of isomorphism 
classes of pairs (Z, (nç\es

l) *n which Z is a pointed pro-C*-algebra and each ir^ 
is a pointed morphism from A to Z, satisfying the following conditions: 

(1) (a,Ç) i—> 7i((a) is (jointly) continuous. 
(2) 7Ti = sz o a. (Recall that £Z : C —• Z is given by ez(\) = 1. ) 
(3) Z is the C*-algebra generated by Uc&s1 M^)-
For d G D choose a representative (Z^, (7r̂ )̂ GiSi ). Define d ^ e if there exists 

a pointed morphism (necessarily unique) ipd€ : Z^ —-> Ze such that 

V?̂  ° 7*f — ^l f°r all £ G S *. 

This makes D a partially ordered set, and it is in fact directed, as can be seen 
by looking at the C*-subalgebra of Zd(BZe generated by all (^(a), 7^(0)). Then 
set 

QA = limZj, 
deD 

taken with respect to the maps (p^, and let TT^ : A —> QA be the obvious pointed 
morphisms. 

Define a map Hom+(QA,B) —» Hom+04,Z#) by sending 1/; to the pointed 
morphism given by 

77(0X0 = V> ° ^"c(a) for <? G A and C G S '. 

It suffices to prove that this map is defined and bijective when B is a pointed 
C*-algebra, by the definition of an inverse limit. Continuity of 77 follows from 
the joint continuity of (a, 0 »—• 7r̂ (a) and the fact that Sl is compact. Injectivity 
of the assignment -0 —̂̂  77 is obvious. For surjectivity, let 77 : A —> IB be 
a pointed morphism, and define 0̂  : A —->• 5 by cr̂  = ev^o rj. Let Z be the 
pointed C*-subalgebra of 5 generated by Uces1 aC^)- ^ n e readily checks that 
(Z, (cr^e5i ) defines a class in D. (Joint continuity of (a, 0 f—» a^(a) follows from 
the definition of the norm on 1£.) Then ip is the composite QA —>Z—+B. This 
shows that 

Hom+(QA,B) ^ Hom+(A,I£). 

Naturality is obvious. 
To prove that [QA,B]+ = [A,£#]+, use the previous result with BAC([0, 1])+ 

in place of B. 

The loop algebra construction gives as_a new set of classifying algebras by 
using the Bott periodicity isomorphisms RK,(LA) = RK\^j(A), as follows. 

https://doi.org/10.4153/CJM-1989-046-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-046-2


1084 N. CHRISTOPHER PHILLIPS 

COROLLARY 5.7. (1) If A is any o-C*-algebra, then there is a natural isomor­
phism 

Rk0(A
+)^[£lUnc,A

+]+. 

(2) If A is a a-C* -algebra with a countable approximate identity, then there 
is a natural isomorphism 

RK{(A
+)^[QP,A+]+. 

The usual considerations concerning //-space structures from topology (see 
Sections 1.5 and 1.6 of [26], especially the example following Theorem 1.5.7 
and the remark following Corollary 1.6.11) carry over to homotopy dual group 
structures on loop algebras; we will not worry about the details here. 

Unfortunately, this corollary does not imply the analog of the "original" Bott 
periodicity theorem (see for example Theorem 11.60 of [27]), which would be 
the existence of homotopy equivalences ClUnc ~ P and QP ~ Unc, because 
QUnc and QP are not cr-C*-algebras. We do not know whether or not these 
homotopy equivalences hold. It does, however, seem to be possible to construct 
a certain canonical quotient QQA of QA which for A = Unc or A = P would 
be a pointed cr-C*-algebra still satisfying [£IQA,B] = [A,£#] for a-C*-algebras 
B. Then one could conclude that Q^Unc ^ P and ÇloP ~ Unc. (This would, 
incidentally, enable one to remove the countable approximate identity hypotheses 
in Theorem 5.4(1) and Corollary 5.7(2).) We hope to investigate this possibility 
in a future paper. 

We now consider a more straightforward method of obtaining classifying 
algebras from C(S{) and qC, which, however, also has the disadvantage of 
giving uncountable inverse limits of C*-algebras. 

PROPOSITION 5.8. There exists a functor A \—> W(A) from pro-C*-algebras to 
pro-C*-algebras such that there are natural isomorphisms of sets Hom(VK(A), B) 
~ Hom04, K <g> B) and [W(A),B] ^[A,K® B] for any pro-C*-algebra B. 

Proof. Let D be the set of all isomorphism classes of pairs (Z, (x(-, zj)°°=1)) 
such that Z is a C*- algebra and the x(-, ij) are functions from A to Z satisfying: 

(1) The infinité matrix x(a) — (x(a1 ij))fj=i is in K ®Z. 
(2) a i—• x(a) is a homomorphism from A to K 0 Z. 
(3) U/j==i X(A, ij) generates Z a s a C * - algebra. 

Note that D is not empty: take Z = 0. Pick representatives (Zdl(x
d(',iJ))), 

define a partial order on D, and define homomorphisms (f^e '• Zd —y Ze for 
d è e, as in the proof of Theorem 5.6. 

To show that D is directed, let J, e GD, define JC(-, ij) : A—> Zd®Ze by 

x(a, ij) = (xd(a1 ij),x
e(a, /,;)), 
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and let Z be the C*-subalgebra of Z\ 0 Z 2 generated by (J; •,x(A, ij). To verify 
that (1) holds for (Z, (x(-, ij)))9 let pn be the sum of the first n standard rank 
one projections in K, and regard pn as a multiplier of K 0 (Zj 0 Z2) in the 
obvious way. Then pnx(a)pn —+ x(tf) in ^ 0 (Zj 0 Z2), and pnx(a)pn is clearly 
in £ (8) Z. Therefore x(a) is in fact in K 0 Z. Condition (2) is now immediate, 
and (3) holds by definition. So D is directed. 

We can now set 

W(A) = limZd. 

One shows that 

Hom(W(A), B) 9* Hom(A, £ 0 5 ) and [W(A), B]^[A,K®B] 

by the same reasoning as was used to get the analogous statements in the proof 
of Theorem 5.6, except that the continuity arguments are easier here. 

Unfortunately, there is no reason to think that W(A) is a a-C*-algebra. 
Note that W(A) is generated by elements x{a,i,j) whose images in Zj are 

xd(a, i,j) and that the obvious map x : A —-> K® W(A) is the homomorphism cor­
responding to the identity map of W(A). The assignment jt(<z, ij) i—> Xoo(tf? / J ) , 
where JCoo(a, / , / ) is as in Definition 1.10, extends to a homomorphism from W(A) 
to WooW which has dense range. 

PROPOSITION 5.9. Let A and LQ : A —> A be as in Definition 1.10. 7Yie« W(A)+ 

/las a structure of pointed abelian homotopy dual group, with \ '• W(A)+ —• C 
being the obvious map, i — W(LQ), and with 

[i : W(A)+ -> W(A)+ * CW(A)+ 

given as follows. Define 77 : A —> K ® (W(A) * W(A)) by 

xil)(a,l,l) 0 

0 jc ( 2 )(a,l , l) 

j t ( 1 )(a,l ,2) 0 

0 JC(2) (0,1,2) 

x ( 1 )(o,2,l) 0 

0 ;t(2)(tf,2,l) 

jc(1)(a,2,2) 0 

0 x (2)(^,2,2) 

^ 

VV/Ẑ AT x(/)((2, / , j) /$ f/îe element of the l-th copy ofW(A) in the free product cor­
responding to x(a, ij) G W(A). Then \i is the unitization of the homomorphism 
W(A) —> W(A) * W(A) corresponding to rj under the previous proposition. 
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Proof. The proof is the same as the proof of Theorem 1.11, using Proposition 
5.8 in place of Proposition 1.9 and using the (well known) analog of Lemma 
1.12 with K replacing K0. 

It follows that W(qA)+ is a pointed abelian homotopy dual group for any 
C*-algebra A. (See Proposition 1.15.) Furthermore, with 

S = {feC(Sl):f(l) = 0} 

as in Lemma 4.1, W(S)+ is a pointed abelian homotopy dual group. (In fact, 
without allowing homotopy, W(S)+ is a nonabelian dual group with p and i 
given by formulas analogous to those in the definition of Unc. The dual group 
W(S)+ is the "noncommutative" analog, in the sense of Voiculescu [29], of the 
group {ue U(K+): u-leK}.) 

PROPOSITION 5.10. (I) If A is a a-C*-algebra with a countable approximate 
identity, then there is a natural isomorphism of abelian groups 

RKç>(A+)^[W(qC)\A+]+. 

(2) If A is any a-C*-algebra, then there is a natural isomorphism of abelian 
groups 

RK{(A
+) = [W(S)+,A+]+. 

Note that the canonical homomorphisms W(qC)+ —-> P and W(S)+ —-> Unc 

thus induce isomorphisms on the sets of pointed homotopy classes of maps to 
A+ for any cr-C*-algebra A (with a countable approximate identity in the case 
of W(qC)+ —> P). In the commutative situation, it is known, for example, that 

U - ) { M G U(K+) \U-\ eK} 

is in fact a homotopy equivalence. Unfortunately, it is far from clear whether or 
not, say, W(S)+ —> Unc is a homotopy equivalence. 

Proof of Proposition 5.10. (1) Replacing KQ (§) A everywhere in the proof of 
Lemma 2.10 by K' ® A yields a proof that [qC,K <g> A] = P(A). Now use the 
natural isomorphisms 

RK0(A
+) ^ RK0(A) ^ P{A) 

* [qC,K®A] *É [W(qC\A] * [W(qC)\A+]+. 

where the second step is Proposition 2.8, the second last step is the définition 
of W, and the last step is the definition of pointed homotopy. 

(2) We combine modifications to the proof of Proposition 3.5 analogous to 
the modification used above on Lemma 2.10 and analogous to the modifications 
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used in the proof of Theorem 5.4(2). This yields a proof that [W(S)+,A+]+ 
is naturally isomorphic to (U/Uo)((K 0 A+)+). Using Theorem 3.15, we have 
isomorphisms 

(U/U0)((K ® A+)+) £* RK{(A
+) *É RKX(A+). 

This completes the proof. 

Just as before, we now also get natural isomorphisms 

RK0(A
+) * [n(W(S)+\A+]+ 

if A is a a-C* -algebra and 

^ , (A + )^[Q(W(?C) + ) ,A + ] + 

if in addition A has a countable approximate identity. One can now ask whether, 
for example, there is a homotopy equivalence Ç1(W(S)+) ~ W(qC)+. This might 
be true even if QUnc ~ P fails. 

The functor W also enables us to construct classifying algebras for KK-theory, 
at least for C*-algebras. The following result is immediate from the definition. 

PROPOSITION 5.11. If A and B are C*-algebras, then there is a natural isomor­
phism of abelian groups ofKK(A,B) as in Definition 1.5 of [8] with [W(qA),B], 
equipped with the group structure it gets by being identified with [W(qA)+, B+]+. 

If A and B are separable, then the group KK(A,B) as defined in [8] is the 
same as the usual KK°(A,B) as defined in [12] or in [5]. See Theorem 3.6.5 of 
[18] for a detailed proof. 

For KK\ there are two alternatives. One is to use W(eA), where eA is as 
defined in [32]. The other is to use periodicity in KK -theory and the loop 
algebra, which gives 

KKl(A,B)*[Q(W(qA)+),B+]+ 

if, say, A and B are separable. These results suggest that one might hope for a 
close relationship between £l(W(qA)+) and W(£A)+. 

Proposition 5.11 suggests two other questions. First, when can one use 
Woo(<7̂ 4) instead of W(qA)l This is an advantage because W^qA) is a <J-C*-

algebra. Unfortunately, the answer seems to be "almost never". One would need 
to be able to deform, for any (separable) B, any homomorphism from qA to 
K (&B so as to have its range contained in KQ <§) B. Thus, qA would presumably 
have to be semiprojective in the sense of Effros and Kaminker [10]. We have 
seen that this happens with qC and with Co(R), but in general it is very rare, 
even rarer than A itself being semiprojective. Note, for example, that Loring has 
shown in [13] that C(Sl x Sl) is not semiprojective. 
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The second question is to what extent Proposition 5.11 holds for the KK-
theory defined by Weidner in [30] when A and B are no longer C*-algebras. 
Weidner's theory uses an analog of a Kasparov bimodule which consists of a 
Hilbert B-module E, a representation of A in L(£), and, rather than a single 
operator in L(E), a whole family of operators on the Hilbert #p-modules Ep 

obtained from the continuous C*-seminorms p on B. HA and B are a-C*-
algebras, then it should be possible to use an induction argument to show that 
one needs only a single operator on E. One should then be able to generalize 
Proposition 5.11 to this case. However, we have no idea of what happens in the 
general case. 

Returning to representable /£-theory, we see that we have accumulated quite 
a number of definitions of groups isomorphic to RKQ(A). If, say, A is a pointed 
cr-C *-algebra such that the kernel of its basepoint has a countable approximate 
identity, then the following eight groups are all isomorphic: 

[Woo(<?C)+,A]+, [«t/„c,A]+, 

[W(qC)\A]+1 [QiWiSf^A]^ 

Ker[F(A) — F(C)]7 Ker[(t//t/0)G(A) — (U/U0)Q(C)h f/(2A), 

Ker[KK(C, A) —• KK(C, C)] as defined in [30]. 

Question 5.12. If A is allowed to be an arbitrary pointed pro-C*-algebra, 
which of these groups are still isomorphic? Which ones gives the "right" defi­
nition of the representable K-theory of A? 

Note that we don't know that M(K ®A)/(K ® A) is complete, so there are 
two possible choices for Q(A), making nine groups in all. We can, of course, 
also ask the analogous question for RK\. 
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