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Abstract
We present the novel task of understanding multi-sentence entity-seeking questions (MSEQs), that is, the
questions that may be expressed in multiple sentences, and that expect one or more entities as an answer.
We formulate the problem of understanding MSEQs as a semantic labeling task over an open represen-
tation that makes minimal assumptions about schema or ontology-specific semantic vocabulary. At the
core of our model, we use a BiLSTM (bidirectional LSTM) conditional random field (CRF), and to over-
come the challenges of operating with low training data, we supplement it by using BERT embeddings,
hand-designed features, as well as hard and soft constraints spanning multiple sentences. We find that this
results in a 12–15 points gain over a vanilla BiLSTMCRF.We demonstrate the strengths of our work using
the novel task of answering real-world entity-seeking questions from the tourism domain. The use of our
labels helps answer 36% more questions with 35% more (relative) accuracy as compared to baselines. We
also demonstrate how our framework can rapidly enable the parsing of MSEQs in an entirely new domain
with small amounts of training data and little change in the semantic representation.

Keywords: Question answering; Question understanding; Multi-sentence question parsing; Sequence tagging with partially
labeled data; BERT BiLSTM CRF

1. Introduction
We introduce the novel task of understanding multi-sentence questions. Specifically, we focus
our attention on multi-sentence entity-seeking questions (MSEQs), that is, the questions that
expect one or more entities as answer. Such questions are commonly found in online forums,
blog posts, discussion boards, etc., and come from a variety of domains including tourism, books,
and consumer products.

Figure 1 shows an example of MSEQ from a tourism foruma, where the user is interested in
finding a hotel that satisfies some constraints and preferences; an answer to this question is thus
the name of a hotel (entity) which needs to satisfy some properties such as being a “budget” option.
A preliminary analysis of such entity-seeking questions from online forums reveals that almost
all of them contain multiple sentences—they often elaborate on a user’s specific situation before
asking the actual question.

†Work carried as part of the author’s PhD research at IIT Delhi.
‡Majority of the work carried out when the author was a student at IIT Delhi.
a http://tripadvisor.com
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Fig 1. An MSEQ annotated with our semantic labels.

In order to understand and answer such a user question, we convert the question into amachine
representation consisting of labels identifying the informative portions in a question.We are moti-
vated by our work’s applicability to a wide variety of domains and therefore choose not to restrict
the representation to use a domain-specific vocabulary. Instead, we design an open semantic rep-
resentation, inspired in part by Open QA (Fader, Zettlemoyer and Etzioni 2014), in which we
explicitly annotate the answer (entity) type; other answer attributes, while identified, are not fur-
ther categorized. For example, in Figure 1 “place to stay” is labeled as entity.type while “budget”
is labeled as an entity.attr. We also allow attributes of the user to be represented. Domain-specific
annotations such as location for tourism questions are permitted. Such labels can then be supplied
to a downstream information retrieval (IR) or a QA component to directly present an answer
entity.

We pose the task of understandingMSEQs as a semantic labeling (shallow parsingb) task where
tokens from the question are annotated with a semantic label from our open representation.
However, in contrast to related literature on semantic role labeling (SRL) (Yang and Mitchell
2017), slot-filling tasks (Bapna et al. 2017), and query formulation (Vtyurina and Clarke 2016;
Wang and Nyberg 2016; Nogueira and Cho 2017), semantic parsing of MSEQs raises several novel
challenges.

MSEQs express a wide variety of intents and requirements which span across multiple sen-
tences, requiring the model to capture within-sentence as well as inter-sentence interactions
effectively. In addition, questions can be unnecessarily belabored requiring the system to reason
about what is important and what is not. Lastly, we find that generating training data for parsing
MSEQs is hard due to the complex nature of the task. Thus, this requires the models to operate in
low training data settings.

In order to address these challenges and label MSEQs, we use a bidirectional LSTM
(conditional random field) CRF (BiLSTM CRF) (Huang, Xu and Yu 2015) as our base model and
extend it in three ways. First, we improve performance by inputting contextual embeddings from
BERT (Devlin et al. 2019) into the model. We refer to this configuration as BERT BiLSTM CRF.
Second, we encode knowledge by incorporating hand-designed features as well as semantic con-
straints over the entire multi-sentence question during end-to-end training. This can be thought
of as incorporating constrained conditional model (CCM)-style constraints and inference (Chang,

bWe use the phrases “semantic labeling” and “semantic parsing” interchangeably in this paper.
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Fig. 2. Schematic representation of the QA system.

Ratinov and Roth 2007) in a neural model. Finally, we find that crowdsourcing complete annota-
tions is hard, since the task is complex. In this work, we are able to improve training by partially
labeled questions which are easier to source.

1.1 Contributions
In summary, our paper makes the following contributions:

1. We present the novel task of understandingMSEQs.We define open semantic labels which
minimize schema or ontology-specific semantic vocabulary and can easily generalize across
domains. These semantic labels identify informative portions of a question that can be used
by a downstream answering component.

2. The core of our model uses a BERT BiLSTM CRF model. We extend this by providing
hand-designed features and using CCM inference, which allows us to specify within-
sentence as well as inter-sentence (hard and soft) constraints. This helps encode prior
knowledge about the labeling task.

3. We present detailed experiments on our models using the tourism domain as an example.
We also demonstrate how crowdsourced partially labeled questions can be effectively used
in our constraint-based tagging framework to help improve labeling accuracy.We find that
our best model achieves 15 points (pt) improvement in F1 scores over a baseline BiLSTM
CRF.

4. We demonstrate the applicability of our semantic labels in two different end tasks. (i) The
first is a novel task of directly answering tourism-related MSEQs using a web-based semi-
structured knowledge source. Our semantic labels help formulate a more effective query to
knowledge sources and our system answers 36% more questions with 35% more (relative)
accuracy as compared to baselines. (ii) The second task is semantic labeling of MSEQs in a
new domain about book recommendations with minimal training data.

2. Problem statement
Given an MSEQ, our goal is to first parse and generate a semantic representation of the question
using labels that identify informative portions of a question. The semantic representation of the
question can then be used to return an entity answer for the question, using a knowledge source.
Thus, our QA system consists of two modules (see Figure 2): question understanding (MSEQ
parsing) and a querying module to return entity answers. The modularized two-step architecture
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allows us to tackle different aspects of the problem independently. The semantic representation
generated by the question understanding module is generic and not tied to a specific corpora
or ontology. This allows the answering module to be optimized efficiently for any knowledge
source, and supports the integration of multiple data sources, each with their own schema and
strengths for answering. In this paper, we experiment with the Google Places Web collectionc
as our knowledge source. It consists of semi-structured data including geographic information,
entity categories, entity reviews, etc. The collection is queried using a web API that accepts an
unstructured text string as query.

3. Related work
To the best of our knowledge, we are the first to explicitly address the task of understanding
MSEQs and demonstrate its use in an answering task. There are different aspects of our work
that relate to existing literature and we discuss them in this section. We begin by contrasting our
work on multi-sentence question understanding and answering with recent work on question-
answering (Section 3.1). We then include a review of related work on semantic representations
of questions (Section 3.2) followed by a brief survey of recent literature on semantic labeling
(Section 3.3). We conclude with a summary in Section 3.4.

3.1 Question answering systems
There are two common approaches for QA systems—joint and pipelined, both with different
advantages. The joint systems usually train an end-to-end neural architecture, with a softmax over
candidate answers (or spans over a given passage) as the final layer (Iyyer et al. 2014; Rajpurkar
et al. 2018). Such systems can be rapidly retrained for different domains, as they use minimal
hand-constructed or domain-specific features. But, they require huge amounts of labeled QA pairs
for training.

In contrast, a pipelined approach (Kwiatkowski et al. 2013; Berant and Liang 2014; Fader et al.
2014; Fader, Zettlemoyer and Etzioni 2013; Vtyurina and Clarke 2016; Wang and Nyberg 2016)
divides the task into two components—question processing (understanding) and querying the
knowledge source. Our work follows the second approach.

We choose to summarize popular approaches in QA systems on the basis of (a) the type of
questions they answer, (b) the nature of knowledge base /Corpus used for answering, and (c) the
nature of answers returned by the answering system (See Table 1).

In this paper, we return entity answers to MSEQs. The problem of returning direct (non-
document/passage) answers to questions from background knowledge sources has been studied,
but primarily for single-sentence factoid-like questions (Berant and Liang 2014; Fader et al. 2014;
Sun et al. 2015; Yin et al. 2015; Saha et al. 2016; Khot, Sabharwal and Clark 2017; Lukovnikov
et al. 2017; Zheng et al. 2018; Zhao et al. 2019). Reading comprehension tasks (Trischler et al.
2016; Joshi et al. 2017; Trivedi et al. 2017; Rajpurkar et al. 2018; Yang et al. 2018; Dua et al. 2019)
require answers to be generated from unstructured text also only return answers for relatively
simple (single-sentence) questions.

Other works have considered multi-sentence questions, but in different settings, such as the
specialized setting of answering multiple-choice SAT exam questions and science questions (Seo
et al. 2015; Clark et al. 2016; Guo et al. 2017; Khot et al. 2017; Palmer, Hwa and Riedel 2017; Zhang
et al. 2018), mathematical word problems (Liang et al. 2016), and textbook questions (Sachan,
Dubey and Xing 2016). Such systems do not return entity answers to questions. Community QA
systems (Pithyaachariyakul and Kulkarni 2018; Qiu and Huang 2015; Shen et al. 2015; Tan et al.
2015; Bogdanova and Foster 2016) match questions with user-provided answers, instead of enti-
ties from background knowledge source. IR-based systems (Vtyurina and Clarke 2016; Wang and

chttps://developers.google.com/places/web-service/intro
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Table 1. Related work: QA

Question type Knowledge type Answer type Related work

Structured (e.g., DBPedia, Freebase) Entity Bordes et al. (2014b); Bordes et al.
(2015); Lukovnikov et al. (2017)



Structured (Open IE style KBs) Entity Berant and Liang (2014); Fader et al.
(2014)



Structured+ Unstructured (Open IE
style KBs with supporting text
passages on entities)

Entity Das et al. (2017)

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Single sentence Structured (databases) Tables/table rows Pazos R. et al. (2013); Saha et al.
(2016)



Unstructured Text spans Trischler et al. (2016); Chen et al.
(2017); Joshi et al. (2017); Trivedi
et al. (2017); Rajpurkar et al. (2018);
Yang et al. (2018); Dua et al. (2019)

Unstructured Text passages Wang and Nyberg (2015); Wang and
Nyberg (2016); Vtyurina and Clarke
(2016)



Multiple choice answers Answers from
specified choices

Guo et al. (2017); Khot et al. (2017);
Palmer et al. (2017); Welbl et al.
(2018); Zhang et al. (2018)



Multi-sentence Unstructured Text (Answer)
passages

Bogdanova and Foster (2016);
Romeo et al. (2016); Singh and
Simperl (2016); Srba and Bielikova
(2016)



Unstructured (QA pairs+Wikipedia) Entity Iyyer et al. (2014)

Semi-structured meta-data+
Unstructured (Entity Reviews)

Entity Our work

Nyberg 2016; Pithyaachariyakul and Kulkarni 2018) query the web for open-domain questions,
but return long (1000-character) passages as answers; they have not been developed for or tested
on entity-seeking questions. These techniques that can handle MSEQs (Vtyurina and Clarke 2016;
Wang and Nyberg 2016; Pithyaachariyakul and Kulkarni 2018) typically perform retrieval using
keywords extracted from questions; these do not “understand” the questions and cannot answer
many tourism questions, as our experiments show (Section 7). The more traditional solutions
(e.g., semantic parsing) that parse the questions deeply can process only single-sentence questions
(Fader et al. 2013, 2014; Kwiatkowski et al. 2013; Berant and Liang 2014; Zheng et al. 2018).

Finally, systems such as QANTA (Iyyer et al. 2014) also answer complex multi-sentence ques-
tions, but their methods can only select answers from a small list of entities and also require large
amounts of training data with redundancy of QA pairs. In contrast, the Google Places API we
experiment with (as our knowledge source) has millions of entities. It is important to note that
for answering an MSEQ, the answer space can include thousands of candidate entities per ques-
tion, with large unstructured review documents about each entity that help determine the best
answer entity. Thus, these documents are significantly longer than passages (or similar length arti-
cles) that have traditionally been used in neural QA tasks. Recently, tasks that require multi-hop
reasoning have also been proposed. This involves simple QA via neural machine comprehen-
sion of longer/multi-passage documents (Trivedi et al. 2017; Welbl et al. 2018; Yang et al. 2018).
Extending such a task for MSEQs could be an interesting extension for future work.

We discuss literature on parsing (understanding) questions in the next section.
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3.2 Question parsing
QA systems use a variety of different intermediate semantic representations.Most of them, includ-
ing the rich body of work in NLIDB (Natural Language Interfaces for Databases) and semantic
parsing, parse single sentence questions into a query based on the underlying ontology or database
schema and are often learned directly by defining grammars, rules, and templates (Zettlemoyer
2009; Liang 2011; Berant et al. 2013; Kwiatkowski et al. 2013; Sun et al. 2015; Yih et al. 2015;
Reddy et al. 2016; Saha et al. 2016; Abujabal et al. 2017; Cheng et al. 2017; Khot et al. 2017;
Lukovnikov et al. 2017; Zheng et al. 2018). Works such as Fader et al. (2014) and Berant and Liang
(2014) build open semantic representations for single sentence questions that are not tied to a
specific knowledge source or ontology.We follow a similar approach and develop an open seman-
tic representation for MSEQs. Our representation uses labels that help a downstream answering
component return entity answers.

Recent works build neural models that represent a question as a continuous-valued vector
(Bordes, Chopra, and Weston 2014a; Bordes, Weston, and Usunier 2014b; Chen et al. 2016; Xu
et al. 2016; Zhang et al. 2016), but such methods require significant amounts of training data.
Some systems rely on IR and do not construct explicit semantic representations at all (Sun et al.
2015; Vtyurina and Clarke 2016); they rely on selecting keywords from the question for querying
and as shown in our experiments do not perform well for answering MSEQs. Work such as that
by Nogueira and Cho (2017) uses reinforcement learning to select query terms in a document
retrieval task and requires a large collection of document-relevant judgments. Extending such an
approach for our task could be an interesting extension for future work.

We now summarize recent methods employed to generate semantic representations of
questions.

3.3 Neural semantic parsing
There is a large body of literature dealing with semantic parsing of single sentences, especially
for frames in PropBank and FrameNet (Baker et al. 1998; Palmer, Gildea and Kingsbury 2005).
Most recently, methods that use neural architectures for SRL have been developed. For instance,
work by Zhou and Xu (2015) uses a BiLSTM CRF for labeling sentences with PropBank predicate
argument structures, while work by (He et al. 2017, 2018) relies on a BiLSTM with BIO-encoding
constraints during LSTM decoding. Other recent work by Yang and Mitchell (2017) proposes
a BiLSTM CRF model that is further used in a graphical model that encodes SRL structural
constraints as factors. Work such as Bapna et al. (2017) uses a BiLSTM tagger for predicting
task-oriented information slots from sentences. Our work uses similar approaches for labeling
(parsing) MSEQs, but we note that such systems cannot be directly used in our task due to
their model-specific optimization for their label space. However, we adapt the label space of the
recent deep SRL system (He et al. 2017) for our task and use its predicate tagger as a baseline for
evaluation (Section 6).

3.4 Summary
In summary, while related work shares aspects with our task there are three main distin-
guishing features that are not jointly addressed in existing work: (i) Question type: A major
focus of existing work has been on single sentence questions, sometimes with the added com-
plexity arising out of entity relations and co-reference. Such questions are often posed as
“which/where/when/who/what” questions. However, our work uses multi-sentence questions
which can additionally contain vague expression of intents as well as information that is irrele-
vant for the answering task. (ii) Knowledge: Most information-seeking questions either answer
factoid-style questions from knowledge graphs and structured knowledge bases or answer them
from paragraphs of text which contain explicit answers. In contrast, our work uses unstructured or
semi-structured knowledge sources and our querying representationmakes no assumptions of the
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underlying knowledge store. (iii) Answer-type: Existing QA systems either return answer spans
(reading comprehension tasks), or documents (from the web or large text collections) to fulfill a
knowledge-grounded information query that relies on explicit mention (or with some degree of
semantic gap) of the answer. In contrast, our QA pipeline returns entity answers from a (black
box) web API that accepts a text string as query and internally uses structured and unstructured
data including entity reviews containing subjective opinions to return an answer.

In the next section, we describe our question representation (Section 4) followed by details
about our labeling system (Section 5). We present experiments in Section 6 and details of our
answering component in Section 7. We finally conclude the paper in Section 8 along with
suggestions for future work.

4. Semantic labels for MSEQs
As mentioned earlier, our question understanding component parses an MSEQ into an open
semantic representation. Our choice of representation is motivated by two goals. First, we wish to
make minimal assumptions about the domain of the QA task and, therefore, minimize domain-
specific semantic vocabularyd. Second, we wish to identify only the informative elements of a
question, so that a robust downstream QA or IR system can meaningfully answer it. As a first step
toward a generic representation for an MSEQ, we make the assumptions that a multi-sentence
question is asking only one final question, and that the expected answer is one or more entities.
This precludes Boolean, comparison, “why”/“how,” and multiple part questions.

We have two labels associated with the entity being sought: entity.type and entity.attr, to capture
the type and the attributes of the entity, respectively. We also include a label user.attr to capture
the properties of the user asking the question. The semantic labels of entity.type and entity.attr
are generic and will be applicable to any domain. Other generic labels to identify related entities
(e.g., in questions where users ask for entities similar to a list of entities) could also be defined.
We also allow the possibility of incorporating additional labels which are domain-specific. For
instance, for the tourism domain, location could be important, so we can include an additional
label entity.location describing the location of the answer entity.

Figure 1 illustrates the choice of our labels with an example from the tourism domain. Here,
the user is interested in finding a “place to stay” (entity.type) that satisfies some properties such as
“budget” (entity.attr). The question includes some information about the user herself, for exam-
ple, “will not have a car” which may become relevant for answering the question. The phrase
“San Francisco” describes the location of the entity and is labeled with a domain-specific label
(entity.location).

5. MSEQ semantic labeling
We formulate the task of outputting the semantic representation for a user question as a sequence
labeling problem. There is a one-to-one correspondence between our token-level label set and the
semantic labels described in Section 4. We utilize a BERT BiLSTM CRF for sequence labeling, and
as described previously, we extend the model in order to address the challenges posed by MSEQs:
(a) First, we incorporate hand-engineered features especially designed for our labeling task. (b)
Second, wemake use of a CCM (Chang et al. 2007) to incorporate within-sentence as well as inter-
sentence constraints. These constraints act as a prior and help ameliorate the problems posed by
our low-data setting. (c) Third, we use Amazon Mechanical Turk (AMT) to obtain additional
partially labeled data which we use in our constraint-driven framework.

dOur representation can easily be generalized to include domain-specific semantic labels, if required.
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5.1 Features
We incorporate a number of (domain-independent) features into our BERT BiLSTM CRF
model where each unique feature is represented as a one-hot vector and concatenated with the
BERT embedding representation of each token. In experiments with BiLSTM CRF models with-
out BERT, we replace the BERT embeddings with pre-trained word2vec (Mikolov et al. 2013)
embeddings that are concatenated with the one-hot feature embeddings.

Our features are described as follows: (a) Lexical features for capitalization, indicating numer-
als, etc., token-level features based on part-of-speech tags and named-entity recognition labels.
(b) Hand-designed entity.type and entity.attr specific features. These include indicators for guess-
ing potential types, based on targets of WH (what, where, which) words and certain verb classes;
multi-sentence features that are based on dependency parses of individual sentences that aid in
attribute detection—for example, for every noun and adjective, an attribute indicator feature is
on if any of its ancestors is a potential type as indicated by the type feature; indicator features for
descriptive phrases (Contractor et al. 2016), such as adjective–noun pairs. (c) For each token, we
include cluster ids generated from a clustering of word2vec vectors (Mikolov et al. 2013) run over
a large tourism corpus. (d) We also use the counts of a token in the entire post, as a feature for
that token (Vtyurina and Clarke 2016).

5.2 Constraints
Since we label multiple-sentence questions, we need to capture patterns spanning across sen-
tences. One alternative would be to model these patterns as features defined over nonadjacent
tokens (labels). But this can make the modeling quite complex. Instead, we model them as global
constraints over the set of possible labels.

We design the following constraints: (i) type constraint (hard): every question must have at
least one entity.type token; (ii) attribute constraint (soft) which penalizes absence of an entity.attr
label in the sequence; (iii) a soft constraint that prefers all entity.type tokens occur in the same
sentence. The last constraint helps reduce erroneous entity.type labels but allows the labeler, to
choose entity.type-labeled tokens from multiple sentences only if it is very confident. Thus, while
the first two constraints are directed toward improving recall, the last constraint helps improve
precision of entity.type labels.

In order to use our constraints, we employ CCMs for our task (Chang et al. 2007) which use an
alternate learning objective expressed as the difference between the original log-likelihood and a
constraint violation penalty:∑

i
wTφ(x(i), y(i))−

∑
i

∑
k

ρkdCk(x
(i), y(i)) (1)

Here, i indexes over all examples and k over all constraints. x(i) is the ith sequence and y(i) is its
labeling. φ and w are feature and weight vectors, respectively. dCk and ρk, respectively, denote the
violation score and weight associated with kth constraint. Thew parameters are learned analogous
to a vanilla CRF and computing ρ parameters resorts to counting. Inference in CCMs is formu-
lated as an integer linear program (ILP); see Chang et al. (2007) for details. The original CCM
formulation was in the context of regular CRFs (Lafferty, McCallum and Pereira 2001) and we
extend its use in a combined model of BERT BiLSTM CRF with CCM constraints (referred to as
BERT BiLSTM CCM) that is trained end to end (Figure 3).

Specifically, let Y be the set of label indicese. Let T be the sequence length and x0 · · · xT−1 be
the tokens, φ(xi) ∈R

|Y | be the feature vector for the ith token (the output of the feed-forward
layer in the BiLSTM-CRF), and φ(xi)[j] denoting the feature associated with the ith token and jth

eWe overload the notation for labels and their associated indices. So lt ∈Y denotes an index of a label, while entity.type ∈Y
denotes the index associated with entity.type.
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Fig. 3. BERT BiLSTM CCMwith features for sequence labeling.

label. Let w ∈R
|Y |×|Y | be the transition matrix, with w[i, j] denoting the weights associated with

a transition from i→ j. Then

max
1

C1(1)=
∑
l∈Y

φ(x(i))[l]10,l +
T−1∑
i=1

∑
ls∈Y

∑
lt∈Y

(φ(x(i))[lt]+w[ls, lt])1i,ls,lt

s.t ∀l∈Y10,l ∈ {0, 1}
∀i∈1···T−1∀ls∈Y∀lt∈Y1i,ls,lt ∈ {0, 1}∑
l∈Y

10,l = 1

∀i∈1···T−2∀l∈Y
∑
1s∈Y

1i,ls,l =
∑
1t∈Y

1i,l,lt

(2)

defines the Viterbi decoding for a linear chain CRF. The variable 10,l = 1 if the first token of the
sequence is tagged l in the optimal Viterbi sequence, and zero otherwise. Furthermore 1i,ls,lt = 1
if the ith token is tagged with label lt and the (i− 1)th token is tagged ls in the optimal Viterbi
sequence, and is marked zero otherwise.

Type label constraints (hard): In order to model the type-based hard constraint (there has to be
at least one entity.type label in the sequence), we add the following constraint to the optimization
problem:

10,entity.type +
T−1∑
i=1

∑
ls∈Y

1i,ls,entity.type ≥ 1 (3)

Here, 10,entity.type = 1 if the first token is tagged as a type, while
∑

ls∈Y 1i,ls,entity.type = 1 if the ith
token is tagged as an entity.

Attribute label constraints (soft): In order to model the attribute-based constraint (the nonex-
istence of an entity.attr label in the sequence is penalized), we introduce a dummy variable d
for our ILP formulation. Then, given the constraint violation penalty η, we change the model
optimization problem as
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max
1,d

C2(1, d)= C1(1)− η · d
s.t d ∈ {0, 1}

10,entity.attr +
T−1∑
i=1

∑
ls∈Y

1i,ls,entity.attr + d ≥ 1

(4)

Here, if the constraint is violated, then d = 1 and the objective suffers a penalty of η. Conversely,
since it is a minimization over d as well, if the constraint is satisfied, then d = 0 and the objective
is not penalized.
Inter-sentence-type constraint:We model the constraint that all entity.type labels should appear
in a single sentence. We implement this as a soft constraint by imposing an L1 penalty on the
number of sentences containing an entity.type (thereby insuring that fewer sentences contain type
labels). Let the number of sentences be k. Let ei denote the index of the start of the ith sentence,
such that {xj, ei ≤ j< ei+1} are the tokens in the ith sentence (note that e0 = 0). Define z0, ..., zk−1
tomodel sentence indicators, with zi = 1 if the ith sentence contains a type. Let η2 be the associated
penalty. We modify the optimization problem then as follows:

max
1,d,Z

C2(1, d)− η2 ·
(∑

i
zi

)

s.t ∀izi ∈ {0, 1}
∀i∀j,ei≤j<ei+1zi −

∑
ls

1j,ls,entity.type ≥ 0

(5)

Here, the variable j indexes over the tokens for the ith sentence.
∑

ls 1j,ls,entity.type = 1 if the jth
token is a type, and is 0 otherwise. Hence if any of the tokens in the ith sentence is labeled a type,
zi = 1. Note that combined with Equation (3), we also have

∑
i zi ≥ 1.

5.3 Partially labeled data

Data collection: In order to obtain a larger amount of labeled data for our task, we make use of
crowdsourcing (AMT). Since our labeling task can be complex, we divide our crowd task into
multiple steps. We first ask the crowd to (i) filter out forum questions that are not entity-seeking
questions. For the questions that remain, the crowd provides (ii) user.∗ labels and (iii) entity.∗
labels. Taking inspiration fromHe, Lewis and Zettlemoyer (2015), for each step, instead of directly
asking for token labels, we ask a series of indirect questions as described in the next section that
can help source high-precision annotations.

5.3.1 Crowdsourcing task
We defined three AMT tasks in the form of questionnaires:

• Questionnaire 1 : To identify posts of relevance for our task. This is to filter posts that may
be unrelated to our taskf.

• Questionnaire 2 : To identify the user entities and its labels.
• Questionnaire 3 : To identify the answer entities and its labels.

In the first questionnaire (AMT Task 1) we ask the users to identify any non-entity-seeking
questions as well the number of entity types requested in a given query. We remove any posts that

fForum posts can often contain reviews, advertisements, etc., apart from types of questions that we exclude in this paper.
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Fig. 4. Snippet of the second questionnaire given to AMT workers.

ask for multiple entity typesg. The second questionnaire (AMTTask 2) asks the following question
to the AMT workers. We paid $0.20 to each worker for this task.

• “Which continuous sequences of words (can be multiple sequences) in the QUESTION
describes the nature/identity/qualities of USER?”

The QUESTION refers to the actual question posed by a user on a forum page and the answer to
these questions gives us the user.attr labels. Figure 4 shows a sample snippet of the questionnaire.

The last questionnaire asks the following questions to the AMT workers.

• “Given that the USER is asking only a single type of recommendation/suggestion, which
sequence of words (only one sequence from a single sentence, prefer a continuous sequence)
in QUESTION tells you what the USER is asking for?”

• “What is the shortest sequence of words in ‘A1 (Answer to Question 1)’ describes a category?
For example, place to stay, restaurant, show, place to eat, place to have dinner, spot, hotel,
etc.”

• “What words/phrases (need not be continuous, can be multiple) in the QUESTION give a
sense of location about the ANSWER or ‘A2’ (Answer to Question 2)?”

• “What words/phrases (need not be continuous, can be multiple) in the QUESTION give more
description about the ANSWER or the ‘A2’ (Answer to Question 2)?”

These questions give us the entity.type, entity.location, and entity.attribute labels. We paid $0.30
to each worker for this task.

We obtain two sets of labels (different workers) on each question. However, due to the complex
nature of the task we find that workers are not complete in their labeling and we therefore only use
token labels where both set of workers agreed on labels. Thus, we are able to source annotations
with high precision, while recall can be low. Table 2 shows token-level agreement statistics for
labels collected over a set of 400 MSEQs from the tourism domain. Some of the disagreement
arises from labeling errors due to complex nature of the task. In other cases, the disagreement
results from their choosing one of the several possible correct answers. For example, in the phrase
“good restaurant for dinner,” one worker labels entity.type= “restaurant,” entity.attr = “good,”
and entity.attr = “dinner,” while another worker simply chooses the entire phrase as entity.type.

gThis is only so that additional work on resolving attributes and entities is not required. Resolving entities and their
corresponding attributes is a useful direction for future work.
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Table 2. Agreement for entity labels on AMT

type attr loc

Avg. token-level agreement 47.98 37.78 68.56

5.3.2 Training with partially labeled posts
We devise a novel method to use this partially labeled data, along with our small training set of
expert labeled data, to learn the parameters of our CCM model. We utilize a modified version
of constraints-driven learning (CoDL) (Chang et al. 2007) which uses a semi-supervised iterative
weight update algorithm, where the weights at each step are computed using a combination of the
models learned on the labeled and the unlabeled set (Chang et al. 2007).

Given a data set consisting of a few fully labeled as well as unlabeled examples, the CoDL learn-
ing algorithm first learns a model using only the labeled subset. This model is then used to find
labels (in a hard manner) for the unlabeled examples while taking care of constraints (Section 5.2).
A new model is then learned on this newly annotated set and is combined with the model learned
on the labeled set in a linear manner. The parameter update can be described as

(w(t+1), ρ(t+1))= γ (w(0), ρ(0))+ (1− γ )Learn(U(t)) (6)
Here, t denotes the iteration number,U(t) denotes the unlabeled examples, and Learn is a func-

tion that learns the parameters of the model. In our setting, Learn trains the neural network via
back-propagation. Instead of using unlabeled examples in U(t), we utilize the partially set whose
values have been filled in using parameters at iteration t, and inference over the set involves pre-
dicting only themissing labels. This is done using the ILP-based formulation described previously,
with an added constraint that the predicted labels for the partially annotated sequences have to be
consistent with the human labels. γ controls the relative importance of the labeled and partial
examples. To the best of our knowledge, we are the first to exploit partial supervision from a
crowdsourcing platform in this manner.

6. Experimental evaluation
The goal of our experimental evaluation was to analyze the effectiveness of our proposed model
for the task of understandingMSEQs.We next describe our data set, evaluationmethodology, and
results in detail.

6.1 Data set
For our current evaluation, we used the following three semantic labels: entity.type, entity.attr,
and entity.location. We also used a default label other to mark any tokens not matching any of the
semantic labels.

We use 150 expert-annotated tourism forum questions (9200 annotated tokens) as our labeled
data set and perform leave-one-out cross-validation. This set was labeled by two experts, including
one of the authors, with high agreement. For experiments with partially labeled learning, we add
400 partially annotated questions from crowdsourced workers to our training set. As described
in Section 5.3.1, each question is annotated by two workers and we retain token labels marked
the same by two workers, while treating the other labels as unknown. We still compute a leave-
one-out cross-validation on our original 150 expert-annotated questions (complete crowd data is
included in each training fold).

6.2 Methodology
Sequence-tagged tokens identify phrases for each semantic label; therefore, instead of reporting
metrics at the token level, we compute a more meaningful joint metric over tagged phrases. We
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define a matching-based metric that first matches each extracted segment with the closest one in
the gold set, and then computes segment-level precision using constituent tokens. Analogously,
recall is computed by matching each segment in gold set with the best one in extracted set. As
an example, for Figure 1, if the system extracts “convenient to the majority” and “local budget”
for entity.attr (with gold entity.attr being “budget”, “best,” and “convenient to the majority that
first time visitors would like to see”), then our matching-metric will compute precision as 0.75
(1.0 for “convenient to the majority”(covered completely by “convenient to the majority that first
time visitors would like to see”) and 0.5 for “local budget”(partially covered by “budget”)) and
recall as 0.45 (1.0 for “budget” (completely covered by predicted entity “local budget”), 0.0 for
“best” (not covered by any predicted entities), and 0.333 for “convenient to the majority . . . like
to see”(covered by predicted “convenient to the majority”)).

We use the Mallet toolkith for our baseline CRF implementation and the GLPK ILP-based
solveri for CCM inference. In the case of BiLSTM-based CRF, we use the implementation pro-
vided by Gardner et al. (2017). The BiLSTM network at each time step feeds into a linear chain
CRF layer. The input states in the LSTM are modeled using a 200-dimension word vector rep-
resentation of the token. These word vector representations were with pre-trained using the
word2vec model (Mikolov et al. 2013) on a large collection of 80,000 tourism questions. In case of
BERT BiLSTMCRF, we use the contextualized BERT embeddings from the BERT-small pretrained
model as an input to the LSTM layer and BERT implementation fromHuggingFace Transformers
(Wolf et al. 2019). For CoDL learning, we set γ to 0.9 as per original authors’ recommendations.

6.3 Results
Table 3 reports the performance of our semantic labeler under different incremental configura-
tions. We find that the models based on BiLSTM CRF and the BERT BiLSTM CRF (middle and
lower halves of the table) outperform a CRF system (upper half of the table) in each compara-
ble setting—for instance, using a baseline vanilla CRF-based system using all features gives us an
aggregate F1 of 50.8 while the the performance of BiLSTM CRF and BERT BiLSTM CRF using
features are 56.2 and 64.4, respectively. As a baseline, we use the neural predicate tagger from the
deep SRL system (He et al. 2017) to utilize our label space and we find that it performs similar to
our CRF setup. The use of hand-designed features, CCM constraints in the BERT BiLSTM CRF
(referred to as BERT BiLSTM CCM), along with learning from partially annotated crowd data
has over a 15 pt gain over the baseline BiLSTM CRF model. Further, we note that the usage of
hand-curated features, within-sentence and cross-sentence constraints as well as partial supervi-
sion, each help successively improve the results in all configurations. Next, we study the effect of
each of these enhancements in detail.

6.3.1 Effect of features
In an ablation study performed to learn the incremental importance of each feature, we find
that descriptive phrases and our hand-constructed multi-sentence type and attribute indicators
improve the performance of each label by 2–3 pt. Word2vec features help type detection because
entity.type labels often occur in similar contexts, leading to informative vectors for typical type
words. Frequency of non-stopword words in the multi-sentence post is an indicator of the word’s
relative importance, and the feature also helps improves overall performance.

6.3.2 Effect of constraints
A closer inspection of Table 3 reveals that the vanilla CRF configuration sees more benefit in
using our CCM constraints as compared to the BiLSTM CRF-based model (4 vs. 1 pt). To under-
stand why, we study the detailed precision-recall characteristics of individual labels; the results for

hhttp://mallet.cs.umass.edu/
i https://www.gnu.org/software/glpk/
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Table 3. Sequence tagger F1 scores using CRF with all features (feat), CCM with all features and con-
straints, and partially supervised CCM over partially labeled crowd data. The second set of results
mirrors these settings using a bidirectional LSTM CRF. Results are statistically significant (paired t test,
p value< 0.02 for aggregate F1 for each CRF and corresponding CCMmodel pair). Models with “PS” as
a prefix use partial supervision

Model F1 (entity.type) F1 (entity.attr) F1 (entity.loc) F1 (aggr)

Deep SRL (He et al. 2017) 48.4 47.8 53.2 49.8
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CRF (all features) 51.4 45.3 55.7 50.8
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CCM 59.6 50.0 56.1 55.2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CCM (with all crowd data) 55.1 42.2 46.7 48.0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PS CCM 58.5 50.6 60.3 56.5

BiLSTM CRF 53.3 47.6 52.1 51.0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BiLSTM CRF+ Feat 58.4 48.1 62.0 56.2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BiLSTM CCM+ Feat 59.4 49.8 62.3 57.2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PS BiLSTM CCM+ Feat 62.9 50.4 61.5 58.3

BERT Labeling 59.6 50.6 59.5 56.6
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BiLSTM BERT CRF 63.4 56.5 73.4 64.4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BiLSTM BERT CRF+ Feat 63.9 57.9 69.2 63.7
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BiLSTM BERT CCM+ Feat 66.5 56.7 72.9 65.3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PS BERT BiLSTM CCM+ Feat 70.8 56.0 72.4 66.4

Table 4. (i) Precision and recall of entity.typewith and without CCM inference

Algorithm Prec Recall F1

CRF (all features) 66.9 41.7 51.4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CCM (all features) 62.1 57.2 59.6

BiLSTM CRF with features 54.1 63.6 58.4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BiLSTM CCMwith features 55.1 64.5 59.4

BiLSTM BERT CRF with features 66.4 61.5 63.9
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BiLSTM BERT CCMwith features 65.0 68.0 66.5

entity.type are reported in Table 4. We find that the BiLSTM CRF-based model has significantly
higher recall than their equivalent vanilla CRF counterpart while the opposite trend is observed
for precision. As a result, since two of the three constraints we used in CCM are oriented toward
improving recallj, we find that they improve overall F1 more by finding tags that were otherwise
of lower probability (i.e., improving recall). Interestingly, in case of the BERT BiLSTMCRF-based
model, we find that precision-recall characteristics are similar (higher precision than recall) to
those seen in the vanilla CRF-based setup, and thus again, the benefit of using constraints is larger.

jRecall that we require at least one entity.type (hard constraint) and prefer at least one entity.attr (soft constraint).
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6.3.3 Effect of partial supervision
In order to further understand the effect of partial supervision, we trained a CCM-based model
that makes use of all the crowdsourced labels for training, by adding conflicting labels for a ques-
tion as two independent training data points. As can be seen, using the entire noisy crowd-labeled
sequences (row labeled “CCM (with all crowd data)” in upper half of Table 3) hurts the perfor-
mance significantly resulting in an aggregate F1 of just 48.0 while using partially labeled data
with CCM results in an F1 of 56.5. The corresponding F1 scores of partially supervised BiLSTM
CCM and BERT BiLSTM CCM systems (trained using partially labeled data) are 58.3 and 66.4,
respectively.
Overall: Our results demonstrate that the use of each of hand-engineering features, within-
sentence and inter-sentence constraints, and use of partially labeled data help improve the
accuracy of labeling MSEQs.

7. MSEQ semantic labels: Application
We now demonstrate the usefulness of our MSEQ semantic labels and tagging framework (i) by
enabling a QA end-task which returns entity answers for multi-sentence MSEQs—to the best of
our knowledge, we are the first to attempt such a QA task—and (ii) by demonstrating the creation
of an MSEQ labeler for a different domain (books recommendation).

7.1 MSEQ Labeler based QA system
Our novel QA task evaluation attempts to return entity answers for multi-sentence tourism forum
questions. We use our sequence tagger described previously to generate the semantic labels of the
questions. These semantic labels and their targets are used to formulate a query to the Google
Places collection, which serves as our knowledge sourcek. The Google Places collection contains
details about eateries, attractions, hotels, and other points of interests from all over the world,
along with reviews and ratings from users. It exposes an end point that can be used to execute free
text queries and it returns entities as results.

We convert the semantic-labels-tagged phrases into a Google Places query via the transfor-
mation: “concat(entity.attr) entity.type in entity.location.” Here, concat lists all attributes in a
space-separated fashion. Since some of the attributes may be negated in the original question,
we filter out these attributes and do not include it as part of the query for Google Places.
Detection of negations:We use a list of triggers that indicate negation. We start with a manually
curated set of seed words, and expand it using synonym and antonym counter fitted word vec-
tors (Mrksic et al. 2016). The resulting set of trigger words flags the presence of a negation in a
sentence. We also define the scope of a negation trigger as a token (or a set of continuous tokens
with the same label) labeled by our sequence tagger that occurs within a specified window of the
trigger word. Table 5 reports the accuracy of our negation rules as evaluated by an author. The
“Gold” columns denote the performance when using gold semantic label mentions. The “System”
columns are the performance when using labels generated by our sequence tagger.

7.1.1 Baseline
Since there are no baselines for this task, we adapt and re-implement a recent complex QA system
(calledWebQA) originally meant for finding appropriate Google results (documents) to questions
posed in user forums (Vtyurina and Clarke 2016). WebQA first shortlists a set of top 10 words in
the question using a tf-idf-based scheme computed over the set of all questions. A supervised
method is then used to further shortlist three to four words, to form the final query. In our setting,
we lack the data to train a supervised method for selecting these words from the tf-idf-ranked
list. Therefore, for best performance, instead of using supervised learning for further shortlisting

khttps://developers.google.com/places/web-service/
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Table 5. Performance of negation detection using gold sequence labels and system
generated labels

Gold System

P R F1 P R F1

Negations 86 66 74.6 85 62 71.7

Table 6. QA task results using theGoogle placeswebAPI as knowledge source

System Acc@3 (%) MRR Recall (%)

WebQA 31.6 0.28 19.5
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

WebQA (manual) 41.8 0.35 39.4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MSEQ-QA 56.7 0.46 53.6

keywords (as in the original paper), in our implementation an expert chooses 3–4 best words
manually from the top 10 words. This query executed against the Google Places collection API
returns answer entities instead of documents.

We randomly select 300 new unseen questions (different from the questions used in the pre-
vious section), from a tourism forum website, and manually remove 110 of those that were not
entity-seeking. The remaining 190 questions form our test set. Our annotators manually check
each entity answer returned by the systems for correctness. Inter-annotator agreement for rele-
vance of answers measured on 1300+ entities from 100 questions was 0.79. Evaluating whether
an entity answer returned is correct is subjective and time consuming. For each entity answer
returned, annotators need to manually query a web-search engine to evaluate whether an entity
returned by the system adequately matches the requirements of the user posting the question.
Given the subjective and time-consuming nature of this task, we believe 0.79 is an adequate level
of agreement on entity answers.

7.1.2 MSEQ-QA: Results
Results: Table 6 reports Accuracy@3, which gives credit if any one of the top three answers is a
correct answer. We also report mean reciprocal rank (MRR). Both of these measures are com-
puted only on the subset of attempted questions (any answer returned). Recall is computed as
the percentage of questions answered correctly within the top three answers over all questions. In
case the user question requires more than one entity typel, we mark an answer correct as long as
one of them is attempted and answered correctly. Note that these answers are ranked by Google
Places based on relevance to the query. As can be seen, the use of our semantic labelsm (MSEQ-
QA) results in nearly 15 point higher accuracy with a 14 point higher recall compared to WebQA
(manual), because of a more directed and effective query to Google Places collection.

Overall, our semantic labels-based QA system (MSEQ-QA) answers approximately 54% of the
questions with an accuracy of 57% for this challenging task of answering MSEQs.

7.1.3 MSEQ-QA: Qualitative study and error analysis
Table 7 presents some examples of questionsn answered by the MSEQ Labeler-based QA sys-
tem. As can be seen our system supports a variety of question intents/entities, and due to our
choice of an open semantic representation, we are not limited to specific entity types, entity

lA question can ask for multiple things, for example, “museums” as well suggestions for “hotels”.
mWe use the best performing parsing system PS BERT BiLSTM CCM with features.
nActual questions posted on forums at TripAdvisor.com
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Table 7. Some sample questions from our test set and the answers returned by our system. Answers in green are identified
as correct while those in red are incorrect

No. Question Entity type System answer

1 My family andmy brother’s family will be in Salzburg over
Christmas 2015. We have arranged to do the Sleigh Ride on
Christmas day but are keen to do a local-style Christmas Day
dinner somewhere. Any suggestions?

Special dinner place St. Peter
Stiftskulinarium,
Sankt-Peter-Bezirk 14,
5020 Salzburg



2 Heading to Salzburg by car on Friday September 18th with my
wife and her parents (70s) and trying to make the most of the
one day. Thinking about a SOM tour, but not sure what the
best tour is, not a big fan of huge groups or buses, but would
sacrifice for my Mother in Law (LOL). Also thinking about Old
Town or the Salzburg Fortress. Any suggestions? Where to
park to have easy access as well as a great place for
dinner.Thanks so much!

Tour Bob’s Special Tours,
Rudolfskai 38, 5020
Salzburg, Austria



3 What can you do in Helsinki on a Sunday morning? What
would you recommend a tourist to do or see on a Sunday
morning? I’ll be arriving at 7 in the morning, and it seems like
everything closed on a Sunday morning—either it’s not open
on Sundays or else it’ll open but later on in the day.

Things to do/see Senate Square, 00170
Helsinki, Finland
Ateneum, Kaivokatu 2,
00100 Helsinki, Finland



4 I am planning to visit Agra for 2 days in mid-Dec with my
friends.My plan is to try some street food and do some local
shopping on day 1 and thus wish to stay in a good budget
3-star hotel (as I won’t be spending much time in the hotel) at
walking distance from such street food local shopping
market. Then on the second day, I want to just relax and enjoy
the hotel.(I have booked a premium category hotel, Radisson
Blu for this day hoping for a relaxed stay). Please suggest
some good hotel or market around which I should book an
hotel for my first day.

Hotel with location
constraints

Hotel Taj Plaza, Agra, Taj
Mahal East Gate, Near
Hotel Oberoi Amar Vilas,
VIP Road, Shilpgram,
Agra, Uttar Pradesh
282001, India



5 Hi there. I am going to Tallinn in a month from just one night
on a Saturday. I am 28 and am going with five of my friends.
Where should we stay so we are near the best clubs in the
city? Any recommendations are appreciated!!! Thanks.

Place to stay close to
clubs

Club Prive, Tallinn,
Estonia



6 A few friends and I are coming up to Newport for a couple of
nights and are looking for restaurant suggestions. We are
thinking something casual for the first night. Is Flo’s any
good? And then something nicer on Saturday
night. . ..preferably a restaurant with good seafood. Also, any
suggestions for good breakfast?

Restaurant based on
cuisine

The Red Parrot
Restaurant, 48 Thames
St, Newport, RI 02840,
United States

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 Dear All forummembers, I am Yash Khatri from Delhi. I am
traveling to Srinagar from July 13th, 2016, to July 17th, 2016.I
am going there for a show, and I’ll be free on July 15th and
16th, 2016. I was thinking to hire a bike at Srinagar and travel
to Gulmarg or Pahalgam.Queries: (1) Where can I rent a bike
at Srinagar and howmuch will it cost me? (2) What is better
for a quick visit; Gulmarg or Pahalgam? Please help! Thanks

Motorcycle rental Kashmir Bikers – Bike
Rentals, Sheikh
complex, Shiraz chowk,
Khanyar, Near J&K
Bank, Khanyar, Srinagar,
Jammu and Kashmir,
190003



8 In a couple of weeks, we will have an almost 2-hour layover in
Zagreb before flying on to Dubrovnik. Any recommendations
for lunch ?

A location for lunch that
can be visited in a 2 hour
layover

Hotel Dubrovnik, Gajeva
ul. 1, 10000, Zagreb,
Croatia



9 Hi, I am looking for a good hotel in Shillong (preferably near
Police bazar) which would offer free Wi-Fi and spa, and are
okay with unmarried couples. My budget is 3k
maximum.Please suggest the best place to stay.

Hotel with location and
budget constraints

Hotel Pegasus Crown,
Ward’s Lake Road,
Police Bazar, Shillong,
Meghalaya, 793001,
India
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Table 8. Classification of errors made by our MSEQ-labels-based answering system (using Google Places web
API as knowledge source)

Error type Error (%) Examples

Incorrect answer returned due to incorrect
entity.type

23 Bad entity.type extractions results in incorrect
answers

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Incorrect answer returned by knowledge
source

23 entity.attribute criteria was not fulfilled—for
example, shop allows renting bicycles but not
for tours

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Incorrect answer returned due to incomplete
labeling

17 entity.attribute not getting extracted

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Incorrect answer/answer not returned due to
knowledge source limitations

37 Query requesting places “around” a city, or
between two cities, entity.type extracted as
“day trips”, “cruises”, etc. Requests for
entity.typewhere queries were about bus
services, activities, and train stations

instances, attributes, or locations. For example, in Q1 the user is looking for “local dinner sugges-
tions” on Christmas eve, and the answer entity returned by our system is to dine at the “St. Peter
Stiftskulinarium” in Salzburg, while in Q2 the user is looking for recommendations for “SOM
tours” (Sound of Music Tours). A quick internet search shows that our system’s answer, “Bob’s
Special Tours,” is famous for their SOM tours in that area. This question also requests for restau-
rant suggestions in the old town, but since we focus on returning answers for just one entity.type,
this part of the question is not attempted by our system. Questions with more than one entity.type
requests are fairly common and this sometimes results in confusion for our system especially if
entity.attribute tags relate to different entity.type values. Since we do not attempt to disambiguate
or link different entity.attribute tags to their corresponding entity.type values, this is often a source
of error. Our constraint that forces all entity.type labels to come from one sentences mitigates this
to some extent, but this is can still be a source of errors.Q4 is incorrect because the entity returned
does not fulfill the location constraints of being close to the “bazar” while Q5 returns an incorrect
entity type.

Q9 is a complicated question with strict location, budget, and attribute constraints, and the
top-ranked returned entity “Hotel Pegasus Crown” fulfills the most requirements of the usero.
Error analysis: We conducted a detailed error study on 105 of the test set questions and we find
that approximately 60% of questions were not answered by our QA system pipeline due to limi-
tations of the knowledge source while approximately, 40% of the recall loss in the system can be
traced to errors in the semantic labels. See Table 8 for a detailed error analysis.

7.2 Understanding MSEQs in another domain
In contrast to methods that require tens of thousands of training data points, our question
understanding framework works with a few hundred questions. We demonstrate the general
applicability of our features and constraints by employing them on the task of understanding
multi-sentence questions seeking book recommendations.

Using questions collected from an online book reading forum,p we annotatedq 95 questions
with their semantic labels. We retrained both CRF- and CCM-based supervised systems as before

oThe hotel does not offer a spa and even with manual search we could not find a better answer.
phttps://forums.onlinebookclub.org/
q Inter-annotator agreement measured on 30% of the data was 0.75.
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Table 9. Labeling performance for book recommendation questions (paired t test,
p value < 0.01 for aggregate F1 in vanilla CRF and CCM model pairs & BiLSTM CRF
and CCMmodel pairs)

Algorithm F1 (type) F1 (attr) F1 (aggr)

CRF 41.5 42.1 41.8
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CCM 52.1 43.8 47.9

BiLSTM CRF 52.6 39.9 46.3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BiLSTM CRF+ Feat 54.6 45.1 49.9
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BiLSTM CCM+ Feat 55.9 44.6 50.3

BiLSTM BERT CRF 68.44 53.7 61.1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BiLSTM BERT CRF+ Feat 70.8 52.0 61.4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BiLSTM BERT CCM+ Feat 69.4 55.8 62.6

on this data set. Because location is not relevant for books, we use the two general labels: entity.type
and entity.attr.

We train the labeler with no feature adaptation or changes from the one developed for tourism,
retaining the same constraints as before. We tune the hyper-parameters with a grid search. Table 9
shows the performance of our sequence labeler over leave-one-out cross-validation. We find that
that our generic features for type and attr defined earlier work acceptably well for this domain as
well and we obtain F1 scores comparable to those seen for tourism. These experiments demon-
strate that simple semantic labels can indeed be useful to represent multi-sentence questions and
that such a representation is easily applicable to different domains.

8. Conclusion and future work
We have presented the novel task of understanding MSEQs. MSEQs are an important class of
questions, as they appear frequently on online forums. They expose novel challenges for semantic
parsing as they contain multiple sentences requiring cross-sentence interactions and also need to
be built in low-data settings due to challenges associated with sourcing training data. We define a
set of open semantic labels that we use to formulate a multi-sentence question parsing task.

Our solution consists of sequence labeling based on a BiLSTM CRF model. We use hand-
engineered features, inter-sentence CCM constraints, and partially supervised training, enabling
the use of crowdsourced incomplete annotation. We find these methods results in a 7 pt gain over
baseline BiLSTM CRFs. The use of contextualized pretrained embeddings such as BERT result in
an additional 6–8 pt improvement. We further demonstrate the strength of our work by applying
the semantic labels toward a novel end-QA task that returns entity answers forMSEQs from a web
API-based unstructured knowledge source that outperforms baselines. Further, we demonstrate
how our approach allows rapid bootstrapping of MSEQ semantic parsers for new domains.

We see our paper as the first attempt toward end-to-end QA in the challenging setting of
multi-sentence questions answered directly on the basis of information in unstructured and semi-
structured knowledge sources. Our best model answers 54% of the questions with an Accuracy@3
of 57%. Our work opens up several future research directions, which can be broadly divided in
two categories. First, we would like to improve on the existing system in the pipelined setting.
Error analysis on our test set suggests the need for a deeper IR system that parses constructs from
our semantic representation to execute multiple sub-queries. Currently, about 60% of recall loss
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is due to limitations in the knowledge source and query formulation, while a sizeable 40% may be
addressed by improvements to question understanding.

As a second direction, we would like to train an end-to-end neural system to solve our QA
task. This would require generating a large data set of labeled QA pairs which could perhaps be
sourced semiautomatically using data available in tourism QA forums. However, answer posts
in forums can often refer to multiple entities and automatically inferring the exact answer entity
for the question can be challenging. Further, we would have to devise efficient techniques to deal
with hundreds of thousands of potential class labels (entities). Comparing the performance of the
pipelinedmodel and the neural model and examining if one works better than the other in specific
settings would also be interesting to look at.

We will make our training data and other resources available for further research.
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