THE SEMIGROUP OF ONE-TO-ONE TRANSFORMATIONS WITH FINITE DEFECTS

by INESSA LEVI and BORIS M. SCHEIN

(Received 25 March, 1988)

Let \mathscr{G} be the semigroup of all total one-to-one transformations of an infinite set X. For an $f \in \mathscr{G}$ let the *defect* of f, def f, be the cardinality of X - R(f), where R(f) = f(X)is the range of f. Then \mathscr{G} is a disjoint union of the symmetric group \mathscr{G}_X on X, the semigroup S of all transformations in \mathscr{G} with finite non-zero defects and the semigroup \overline{S} of all transformations in S with infinite defects, such that $S \cup \overline{S}$ and \overline{S} are ideals of \mathscr{G} . The properties of \mathscr{G}_X and \overline{S} have been investigated by a number of authors (for the latter it was done via Baer-Levi semigroups, see [2], [3], [5], [6], [7], [8], [9], [10] and note that \overline{S} decomposes into a union of Baer-Levi semigroups). Our aim here is to study the semigroup S. It is not difficult to see that S is left cancellative (we compose functions f, g in S as fg(x) = f(g(x)), for $x \in X$) and idempotent-free. All automorphisms of S are inner [4], that is of the form $f \mapsto hfh^{-1}$, $f \in S$, $h \in \mathscr{G}_X$.

In the present paper, we are concerned with congruences, Green's relations and ideals of S. A large variety of distinct types of congruences on S is present and the main results are the content of Theorems 4, 5 and 6. In the concluding remark we state some unsolved problems and conjectures on congruences on S.

For f, $g \in S$, let $D(f, g) = \{x : f(x) \neq g(x)\}$. The next lemma is easily verified.

LEMMA 1. Let f, g, t be one-to-one transformations. Then

- (i) def(fg) = def f + def g;
- (ii) D(tf, tg) = D(f, g);
- (iii) $t(D(ft, gt)) = D(f, g) \cap R(t)$.

Let \mathcal{L} , \mathcal{R} , \mathcal{H} , \mathcal{D} , \mathcal{J} be the Green's relations on S [1, p. 47-49] and *i* be the diagonal congruence. For an $f \in S$ let $R_f[L_f, J_f]$ denote the principal right [left, two-sided] ideal of S generated by f. Denote by \mathbb{N} the set of all natural numbers. Given $n \in \mathbb{N}$ let

$$C_n = \{f \in S : \operatorname{def} f = n\}, I_n = \bigcup \{C_k : k \ge n\}.$$

It follows from Lemma 1 that for every $n \in \mathbb{N}$, I_n is an ideal of S.

PROPOSITION 2.(i) $\mathcal{L} = \mathcal{R} = \mathcal{H} = \mathcal{D} = \mathcal{J} = i \text{ on } S.$

For every $f \in S$,

(ii) $L_f = J_f = \{f\} \cup I_n$, where n = 1 + def f;

(iii) $R_f = f \cup T(A)$, where A = R(f) and $T(A) = \{g \in S : R(g) \subseteq A\}$.

(iv) A subset I of S is an ideal of S if and only if $I = B \cup I_n$ for some $n \ge 2$ and $B \subseteq C_{n-1}$.

Proof. (i)–(iii) can be easily verified using Lemma 1, while (iv) follows from (ii) and an observation that every ideal is a union of principal ideals.

We remark that not every ideal of S is principal, for example, if B is a proper subset

of C_1 consisting of more than one element, then the ideal $B \cup I_2$ is a non-principal ideal of S.

For an ideal I of a semigroup S the Rees ideal congruence I^* is such that $(f, g) \in I^*$ iff either f = g or $f, g \in I$, where $f, g \in S$. As usual, we write S/I for S/I^* . Observe that Proposition 2 (iv) describes all Rees ideal congruences on S.

Another type of congruences on S is defined as follows. Let α be an infinite cardinal that does not exceed $|X|^+$, the cardinal successor of |X|. Then a relation Δ_{α} on S for which $(f, g) \in \Delta_{\alpha}$ iff $|D(f, g)| < \alpha$ is a congruence on S.

Let δ be a relation on S such that for $f, g \in S$, $(f, g) \in \delta$ iff def f = def g. Lemma 1 ensures that δ is a congruence on S.

PROPOSITION 3. (i) For every infinite $\alpha \leq |X|^+$, Δ_{α} is a cancellative congruence on S. (ii) $\Delta_{\aleph_0} \subseteq \delta$.

Proof. While (i) follows from Lemma 1, to prove (ii) let $(f, g) \in \Delta_{\aleph_0}$, D(f, g) = D, f(D) = A, g(D) = B, and $(X - R(f)) \cap (X - R(g)) = C$. Then $X - R(f) = [(X - R(f)) \cap R(g)] \cup [(X - R(f)) \cap (X - R(g))] = [(X - R(f)) \cap B] \cup C = (B - A) \cup C$. Similarly, $X - R(g) = (A - B) \cup C$, and the result follows from the fact that $|A| = |D| = |B| < \aleph_0$.

Now we are in a position to present our main result on congruences on S. These are given in Theorems 4, 5 and 6 below. Theorem 4 describes all the congruences $\lambda \subseteq \Delta_{\aleph_0}$. It is shown that for every such λ there exists $n \in \mathbb{N}$ such that λ coincides with Δ_{\aleph_0} on I_n . Our description of $\lambda \subseteq \Delta_{\aleph_0}$ is given in terms of equivalence series defined below.

Let ρ_k be an equivalence on C_k , $k \ge 1$. We say that an equivalence ρ_l on C_l , l > k, is derived from ρ_k if whenever $(f, g) \in \rho_k$, $t \in S$ with def t = l - k then (ft, gt), $(tf, tg) \in \rho_l$. Every congruence λ on S induces in a natural way an equivalence $\tilde{\lambda}$ on C_k , $k \ge 1$. Given an equivalence ρ_k on C_k such that $\rho_k \subseteq \tilde{\Delta}_{\aleph_0}$ let Σ_k denote a set of equivalences ρ_l on C_l , $l \ge k$, such that for every l > k, $\rho_l \subsetneq \tilde{\Delta}_{\aleph_0}$ and ρ_l is derived from ρ_{l-1} . We refer to such Σ_k as an equivalence series derived from ρ_k . We show (Lemma 10) that every such series is finite and hence we can define a maximal equivalence series Σ_k derived from ρ_k such that if $m = \max\{l : \rho_l \in \Sigma_k\}$ then every equivalence derived from ρ_m coincides with Δ_{\aleph_0} .

THEOREM 4. Let $n \in \mathbb{N}$, $\rho_n \subseteq \tilde{\Delta}_{\kappa_0}$ be a non-trivial equivalence on C_n and Σ_n be an equivalence series derived from ρ_n with $m = \max\{l: \rho_l \in \Sigma_n\}$. Then

$$\rho = i \cup \{\rho_k : \rho_k \in \Sigma_n\} \cup (\Delta_{\aleph_0} \cap (I_{m+1} \times I_{m+1})) \tag{1}$$

is a congruence on S contained in Δ_{κ_0} .

Conversely, if $\lambda \subseteq \Delta_{\aleph_0}$ is a non-diagonal congruence on S then there exists a non-trivial equivalence $\rho_n \subseteq \overline{\Delta}_{\aleph_0}$ on C_n and a maximal equivalence series Σ_n derived from ρ_n such that $\lambda = \rho$ as defined above.

In the following we describe congruences Δ_{α} , $\aleph_0 \le \alpha \le |X|^+$. We observe that every Δ_{α} can be extended in a natural way to a congruence Δ'_{α} on $\mathscr{G}_X \cup S$, (so that for f, $g \in \mathscr{G}_X \cup S$, $(f, g) \in \Delta_{\alpha}$ if $|D(f, g)| < \alpha$). Note that $\Delta_{|X|^+} = S \times S$, the universal congruence on S. Let Λ be the lattice of congruences on S, and if ρ , $\sigma \in \Lambda$, write

$$[\rho, \sigma] = \{\gamma \in \Lambda : \rho \subseteq \gamma \subseteq \sigma\}, \ [\rho) = \{\gamma \in \Lambda : \rho \subseteq \gamma\}, \ (\rho) = \{\gamma \in \Lambda : \rho \subseteq \gamma\}.$$

245

THEOREM 5. (i) Δ_{\aleph_0} is a minimal cancellative idempotent-free congruence on S. For every $\aleph_0 < \alpha \leq |X|^+$ the following holds:

- (ii) Δ_{α} is a group congruence on S and $(\mathscr{G}_X \cup S)/\Delta'_{\alpha} \cong S/\Delta_{\alpha} \cong \mathscr{G}_X/\Delta'_{\alpha}$;
- (iii) $[\Delta_{\alpha}) = \{\Delta_{\beta} : \beta > \alpha\}.$

For $m, n \in \mathbb{N}$, let $\sigma(m, n)$ be a congruence on S such that $(f, g) \in \sigma(m, n)$ if either f = g or def f, def $g \ge m$ and def $f \equiv \text{def } g \mod n$. Evidently $\delta \subseteq \sigma(m, n)$. Moreover, if a congruence γ contains δ , then S/γ is isomorphic to a homomorphic image of $S/\delta \cong (\mathbb{N}, +)$. Hence S/γ is isomorphic to a monogenic subsemigroup of type (m, n), for some $m, n \in \mathbb{N}$. It follows that $\gamma = \sigma(m, n)$. This proves the first part of Theorem 6 below. Now let \mathbb{N}_1 be the lattice of natural numbers ordered by divisibility, \mathbb{N}_1^* be the dual lattice. Let ω be the first infinite ordinal, ω^* be the dual order type. For a lattice A let A^0 denote the lattice obtained from A by adjoining a (new) least element 0.

THEOREM 6. (i) $[\delta] = \{\sigma(m, n) : m, n \in \mathbb{N}\}.$

(ii) $[\delta] \cong (\omega^* \times \mathbb{N}_l^*)^0 (\cong ((\omega \times \mathbb{N}_l)^*)^0).$

(iii) For every n > 1, $\sigma(1, n)$ is a group congruence on S and $S/\sigma(1, n) \cong Z_n$, a cyclic group of order n.

(iv) There is no least group congruence on S.

For every $\alpha > \aleph_0$,

(v) $S/\delta \cap \Delta_{\alpha} \cong (\mathscr{G}_X/\Delta'_{\alpha}) \times (\mathbb{N}, +);$

(vi) $S/\sigma(m, n) \cap \Delta_{\alpha} \cong (\mathscr{G}_X/\Delta'_{\alpha}) \times (\mathbb{N}, +)/\eta(m, n),$

where $\eta(m, n)$ is a congruence on the semigroup $(\mathbb{N}, +)$ such that $(k, l) \in \eta(m, n)$ if either k = l or $k, l \ge m$ and $k \equiv l \mod n$;

(vii) for m, $n \in \mathbb{N}$, $\mathscr{A} \subseteq C_m / \Delta_{\alpha}$, $\mathscr{A} \neq \emptyset$, $A = \bigcup \mathscr{A}$, and $\bar{A} = \left(\bigcup_{i=1}^m C_i\right) - A$

$$\theta(\alpha, m, n, \mathcal{A}) = (\delta \cap \Delta_{\alpha} \cap (\bar{A} \times \bar{A})) \cup (\sigma(m, n) \cap \Delta_{\alpha} \cap ((I_{m+1} \cup A) \times (I_{m+1} \cup A))$$

is a congruence on S.

(viii) every congruence $\gamma \in (\delta \cap \Delta_{\alpha}, \Delta_{\alpha}), \ \gamma \not\equiv \delta$, has the form $\theta(\alpha, m, n, \mathcal{A})$ as described in (vii).

Proofs of Theorems 4, 5 and 6 constitute the remainder of the paper.

LEMMA 7. Given f, g, t, $s \in S$ such that $D(f, g) = D(t, s) = \{x\}$, where $x \in X$, and def f = def g > def s = def t, there exists $l \in S$ with ls = f and lt = g.

Proof. Observe that $g(x) \notin R(f)$, $t(x) \notin R(s)$ and choose a 1-1 function

$$l_1: X - R(s) - \{t(x)\} \rightarrow X - R(f) - \{g(x)\},$$

(note that since def $s < \det f$, l_1 has a finite non-zero defect in $X - R(f) - \{g(x)\}$). Define a function $l: X \to X$ as follows. For a $y \in X$, let

$$l(y) = \begin{cases} f(z) \text{ if } y = s(z) & \text{for some } z \in X, \\ g(x) \text{ if } y = t(x), \\ l_1(y) \text{ if } y \in X - R(s) - \{t(x)\}. \end{cases}$$

Clearly, $l \in S$ and ls = f, also lt(x) = g(x) and for $u \neq x$, lt(u) = ls(u) = f(u), so that lt = f.

LEMMA 8. Let $(f, g) \in \Delta_{\chi_0}$, $f \neq g$. Then there exist $f_1, \ldots, f_n \in S$ such that $|D(f_i, f_{i+1})| = 1$, for $i = 1, \ldots, n-1$, and $f_1 = f$, $f_n = g$.

Proof. Let |D(f, g)| = m. We prove the result by induction on m. Assume that the statement is true for every pair of functions in S that differ on at most m-1 points. Let D(f, g) = D, f(D) = A and g(D) = B. Consider two cases: (i) $A \neq B$.

Choose $b \in B - A$, and let g(d) = b, where $d \in D$. Let $f_1 = f$ and define f_2 as follows: $f_2|_{X-\{d\}} = f_1|_{X-\{d\}}$ and $f_2(d) = b$. Then $D(f_1, f_2) = \{d\}$ and $D(f_2, g) = D - \{d\}$. By induction supposition there are $f_3, \ldots, f_n \in S$ such that $f_n = g$ and $|D(f_i, f_{i+1})| = 1$ for every $i = 2, 3, \ldots, n-1$. Thus $f_1, f_2, f_3, \ldots, f_n$ is the required sequence.

(ii) A = B.

Using an observation that A = B implies that $X - (R(f) \cup R(g)) \neq \emptyset$, choose $x \in X - (R(f) \cup R(g))$. Choose $d \in D$, let $f_1 = f$ and define f_2 so that $f_2|_{X-\{d\}} = f_1|_{X-\{d\}}$ and $f_2(d) = x$. Let g_1 be such that $g_1|_{X-\{d\}} = g|_{X-\{d\}}$ and $g_1(d) = x$.

Then $D(f_1, f_2) = D(g_1, g) = \{d\}$ and $D(f_2, g_1) = D - \{d\}$, so there exist $f_3, \ldots, f_n \in S$ with $f_n = g_1$ and $|D(f_i, f_{i+1})| = 1$ for every $i = 2, \ldots, n-1$. The result follows.

LEMMA 9. Let λ be a congruence on S, $\lambda \subseteq \Delta_{\aleph_0}$. Let

 $N = \{ \det f : f \in S, |[f]| \neq 1, [f] \in S/\lambda \}, \text{ and for every } n \in N \text{ let} \\ L(n) = \{ |D(f, g)| : f, g \in S, f \neq g, (f, g) \in \lambda, \det f = n \},$

 $\Psi_n: L(n) \to \mathbb{N}$ be defined by $\Psi_n(l) = n + l + 1$, $l \in L(n)$. Let m_n be a minimum value of Ψ_n and

$$m = \min\{m_n : n \in N\}.$$

Then $\lambda \cap (I_m \times I_m) = \Delta_{\aleph_0} \cap (I_m \times I_m).$

Proof. Let $m = m_n = n + l + 1$, for some $n \in N$ and $l \in L(n)$. Let $f, g \in S$ such that $(f, g) \in \lambda, f \neq g$, def f = def g = n and |D(f, g)| = l. Let $(t, s) \in \Delta_{\aleph_0}$ with def $t = def s = k \ge m$. In view of Lemma 8 we can assume that |D(t, s)| = 1. Let $D(t, s) = \{x\}, D(f, g) = D$. Choose $d \in D$, $a \in X - D$ and $q \in S$ with $R(q) = (X - D) \cup \{d\} - \{a\}$ and q(x) = d. Then $D(fq, gq) = \{x\}, def fq = def gq = n + |D| = m - 1 < k$, and so Lemma 7 implies there exists $l \in S$ such that lfq = t, lgq = s, so that $(t, s) \in \lambda$.

LEMMA 10. Every equivalence series Σ_k derived from $\rho_k \subseteq \overline{\Delta}_{\aleph_0}$ is finite.

Proof. The result follows from the proof of Lemma 9 and an observation that the relation *derived from* is transitive, that is if $l_i \in \mathbb{N}$, i = 1, 2, 3 and ρ_{l_i} is an equivalence on C_{l_i} such that $\rho_{l_{i+1}}$ is derived from ρ_{l_i} , i = 1, 2, then ρ_{l_i} is derived from ρ_{l_i} .

Proof of Theorem 4. That ρ defined in (1) is a congruence on S follows from the definition of a congruence series derived from ρ_n and Lemma 10.

To show the converse let $\lambda < \Delta_{\aleph_0}$ be a non-diagonal congruence on S and let n be the minimal integer such that $\lambda \cap (C_n \times C_n) \neq i \cap (C_n \times C_n)$, m be the maximal integer with

 $\lambda \cap (C_m \times C_m) \neq \Delta_{\aleph_0} \cap (C_m \times C_m)$ if $\lambda \cap (C_n \times C_n) \neq \Delta_{\aleph_0} \cap (C_n \times C_n)$ and m = n otherwise. Then for every k, $n \le k \le m$, λ induces in a natural way equivalences ρ_k on C_k . The set of all these equivalences forms a maximal congruence series Σ_n derived from ρ_n and the result follows.

COROLLARY 11. (i) Every right [left] cancellative congruence η on S contains Δ_{\aleph_0} . (ii) Every group congruence on S contains Δ_{\aleph_0} .

Proof. (i) Assume $\eta \supseteq \Delta_{\aleph_0}$ is right cancellative, and let $(f, g) \in \Delta_{\aleph_0}$. Let *m* be such that $(\Delta_{\aleph_0} \cap \rho) \cap (I_m \times I_m) = \Delta_{\aleph_0} \cap (I_m \times I_m)$ (Lemma 9) and $t \in C_m$. Then $(ft, gt) \in \Delta_{\aleph_0} \cap \eta$, so that $(f, g) \in \eta$ since η is right cancellative.

(ii) Follows from (i).

The next lemma is self-evident.

LEMMA 12. For any $f \in \mathscr{G}_X \cup S$, $n \ge 0$ there exists $g \in \mathscr{G}_X \cup S$ with def g = n and $(f, g) \in \Delta'_{\aleph_0}$, where $\aleph_1 = \aleph_0^+$.

Proof of Theorem 5. (i) It is not difficult to verify that Δ_{\aleph_0} is a cancellative congruence. Hence, in view of Corollary 11 (i) it is sufficient to show that Δ_{\aleph_0} is idempotent-free. This follows from an observation that for any $f \in S$, $D(f, f^2) = D(f_{i_X}, f^2) = D(i_X, f)$ (where i_X is the identity mapping on X), so that $|D(f, f^2)| \ge \aleph_0$ and $(f, f^2) \notin \Delta_{\aleph_0}$.

(ii) It is sufficient to show the existence of the indicated isomorphisms. For that let $f \in S$, $h \in \mathcal{G}_X$, [f] and [h] be Δ'_{α} -classes of f in S and h in \mathcal{G}_X respectively. We show that $[f] \cup [h]$ is the Δ'_{α} -class of f (or, equivalently, h) in $\mathcal{G}_X \cup S$ if any only if $(f, h) \in \Delta'_{\alpha}$. While the necessity is clear the sufficiently follows from the observation that if $(f, h) \in \Delta'_{\alpha}$ and A is the Δ'_{α} class of f in $\mathcal{G}_X \cup S$ then $A \cap \mathcal{G}_X = [h]$ and $A \cap S = [f]$.

(iii) Let γ be a congruence on S containing Δ_{α} . Since $S/\Delta_{\alpha} \cong \mathscr{G}_X/\Delta_{\alpha}$ there exists a homomorphism from $\mathscr{G}_X/\Delta'_{\alpha}$ onto S/γ , so that there is a congruence γ' on \mathscr{G}_X such that $\mathscr{G}_X/\gamma' \cong S/\gamma$. But then $\gamma' = \Delta_{\beta}$ for some $\beta \ge \alpha$ and so

 $S/\gamma \cong \mathscr{G}_X/\Delta'_{\beta} \cong S/\Delta_{\beta}$, and $\gamma = \Delta_{\beta}$.

The next result describes some properties of the congruence δ . Recall that $(f, g) \in \delta$ if def f = def g.

PROPOSITION 13. (i) $\delta \vee \Delta_{\aleph_1} = S \times S$.

(ii) δ is the unique congruence on S such that $S/\delta \cong (\mathbb{N}, +)$, where $(\mathbb{N}, +)$ denotes the semigroup of positive integers under addition.

Proof. (i) Let $f, g \in S$. According to Lemma 12, there exists $k \in S$ such that $(f, k) \in \delta$, $(k, g)\Delta_{\aleph_1}$, so that $(f, g) \in \Delta_{\aleph_1} \circ \delta \subseteq \delta \vee \Delta_{\aleph_1}$.

(ii) We show that if θ is a homomorphism from S onto $(\mathbb{N}, +)$ then $\theta^{-1} \circ \theta = \delta$. Firstly observe that if $f \in C_m$ and $g \in C_n$ with m < n, then $\theta(f) < \theta(g)$, for there exists $q \in S$ such that qf = g and $\theta(q) + \theta(f) = \theta(g)$. Since θ is onto, $\theta(C_1) = 1$ and so $\theta(C_m) = m$, for every $m \in \mathbb{N}$ (indeed, if $f \in C_m$ then there exist $f_1, f_2, \ldots, f_m \in C_1$ such that $f = f_1 f_2 \ldots f_m$, so that $\theta(f) = \theta(f_1) + \theta(f_2) + \ldots + \theta(f_m) = m$). Proof of Theorem 6. Let $\sigma(m, n) \rightarrow (m, n)$ be a mapping of (δ) onto $\mathbb{N} \times \mathbb{N}$. The result then follows from an observation that $\sigma(m_1, n_1) \subseteq (m_2, n_2)$ if and only if $m_2 \leq m_1$ and n_2 divides n_1 .

(iii) Follows from the fact that a monogenic semigroup of type (m, n) is a group if m = 0 and Proposition 13.

(iv) Observe firstly that $\bigcap \{\sigma(1, n) : n \in \mathbb{N}\} = \delta$, indeed, if $(f, g) \in \bigcap \{\sigma(1, n) : n \in \mathbb{N}\}$, then def $f \equiv \text{def } g \mod n$ for every $n \in \mathbb{N}$, so that def f = def g, or $(f, g) \in \delta$. If there is the least group congruence τ on S, then $\tau \subseteq \sigma(1, n)$ for every n, so that $\tau \subseteq \bigcap \{\sigma(1, n) : n \in \mathbb{N}\} = \delta$. It follows that δ is a group congruence (for $S/\delta \cong (S/\tau)/(\delta/\tau)$, which is a homomorphic image of the group S/τ , a contradiction to Proposition 13).

The verification of (v)-(vii) is trivial.

(viii) Let $\gamma \in (\delta \cap \Delta_{\alpha}, \Delta_{\alpha})$, $\gamma \notin \delta$, *m* be the minimal integer for which there exists $f \in S$ with def = *m* such that the γ -class of *f* does not coincide with the $(\delta \cap \Delta_{\alpha})$ -class of *f*. Let \mathscr{B} be the set of all classes of γ that contain an element *g* of C_m and that do not coincide with the *g*-class of $\delta \cap \Delta_{\alpha}$ and $\mathscr{A} = \{C_m \cap B : B \in \mathscr{B}\}$. Let $k = \min\{\det g : (f, g) \in \gamma, (f, g) \notin \delta\}$ and n = k - m. Clearly, γ coincides with $\delta \cap \Delta_{\alpha}$ on $\bigcup \{C_l : 1 \le l \le m - 1\}$. We show firstly that

$$\gamma \cap (I_{m+1} \times I_{m+1}) \supseteq \sigma(m, n) \cap \Delta_{\alpha} \cap (I_{m+1} \times I_{m+1}).$$
⁽²⁾

For $f \in S$ let $S(f) = \{x \in X : f(x) \neq x\}$ and shift f = |S(f)|.

Let $(f, g) \in \gamma$ with def f = m, def g = m + n. We observe that for every $t \in C_1$ with shift $t = \aleph_0$, $(t^n f, g) \in \delta \cap \Delta_{\alpha} \subseteq \gamma$, so that $(f, t^n f) \in \gamma$. Moreover, for any integer l > 0,

$$(f, t^{\prime n} f) \in \gamma, \tag{3}$$

since $(f, t^n f) \in \gamma$ implies $(t^n f, t^{2n} f) \in \gamma$, so that $(f, t^{2n} f) \in \gamma$ etc.

Take $(p, q) \in \sigma(m, n) \cap \Delta_{\alpha} \cap (I_{m+1} \times I_{m+1})$, and let f be as above. Since def p > m = def f there exists an s in S such that p = sf. Without loss of generality assume that def q-def p = an, $a \in \mathbb{N}$, a > 0. Now (3) implies that $(sf, st^{an}f) \in \gamma$, or $(p, st^{an}f) \in \gamma$. Also, def $(st^{an}f) = def q$ and $D(st^{an}f, q) \subseteq D(p, q) \cup f^{-1}(S(t^{an}))$, so that $|D(st^{an}f, q)| < \alpha$ and $(st^{an}f, q) \in \delta \cap \Delta_{\alpha} \leq \gamma$. We conclude that $(p, q) \in \gamma$.

To complete the proof it suffices to show that if $(u, v) \in \gamma \cap (I_{m+1} \times I_{m+1})$ then $(u, v) \in \sigma(m, n)$. Assume $m < \det u < \det v$ and let $(\det v) - (\det u) = bn + r$, where b, $r \in \mathbb{N}$, $0 \le r < n$. Let f and t be chosen as above. We show that if r > 0 then $(f, t'f) \in \gamma$, a contradiction to the choice of n that assures that r = 0 and so $(u, v) \in \sigma(m, n)$. Observe that there exists $w \in S$ and $l \in \mathbb{N}$, l > 0 such that $t^{ln}f = wu$. But then $(wu, wv) \in \gamma$ implies that $(t^{ln}f, wv) \in \gamma$, so that using (3) we conclude that $(f, wv) \in \gamma$. Note that def wv = (l+b)n + m + r and since $\gamma \supseteq \delta \cap \Delta_{\alpha}$ we have $(f, t^{n(l+b)+r}f) \in \gamma$. By (3), we have that $(t'f, t^{n(l+b)+r}f) \in \gamma$, so that $(f, t'f) \in \gamma$.

REMARK. In this paper we described certain large classes of congruences and parts of the lattice of congruences on S. A description of *all* congruences and the lattice of congruences of S is as yet an open problem. In particular, we conjecture that for every infinite cardinal $\alpha \leq |X|$, every congruence in the interval $(\Delta_{\alpha} \cap \delta, \Delta_{\alpha^{+}} \cap \delta)$ can be described in terms of a finite equivalence series derived from a given equivalence λ on C_k for some $k \ge 1$ such that $\tilde{\Delta}_{\alpha} \le \lambda \le \tilde{\Delta}_{\alpha^+}$ as was done in Theorem 4 for congruences $\rho \le \Delta_{\aleph_0}$.

REFERENCES

1. A. H. Clifford and G. B. Preston, Algebraic theory of semigroups, Math Surveys No. 7, Amer. Math. Soc., Providence, R.I., Vol. I (1961).

2. I. Levi, B. M. Schein, R. P. Sullivan and G. R. Wood, Automorphisms of Baer-Levi semigroups, J. London Math. Soc. (2) 28 (1983), 492-495.

3. I. Levi and G. R. Wood, On maximal subsemigroups of Baer-Levi semigroups, Semigroup Forum, 30 (1984), 99-102.

4. I. Levi, Automorphisms of normal transformation semigroups, Proc. Edinburgh Math. Soc., 28 (1985), 185-205.

5. D. Lindsey and B. Madison, The lattice of congruences on Baer-Levi semigroup, Semigroup Forum 12 (1976), 63-70.

6. B. W. Mielke, Regular congruences on Croisot-Teissier and Baer-Levi semigroups, J. Math. Soc. Japan 24 (1972), 539-551.

7. B. W. Mielke, Régular congruences on a simple semigroup with a minimal right ideal, *Publ. Math. Debreceen* 20 (1973), 79-84.

8. B. W. Mielke, Completely simple congruences on Croisot-Teissier semigroups, Semigroup Forum 9 (1975), 283-293.

9. B. M. Schein, Symmetric semigroups of one-to-one transformations, Second all-union symposium on the theory of semigroups, summaries of talks, Sverdlovsk (1979), 99 (Russian).

10. E. G. Shutov, Semigroups of one-to-one transformations, Dokl. Akad. Nauk. SSSR 140 (1961), 1026-1028.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF LOUISVILLE LOUISVILLE, KENTUCKY 40292

Department of Mathematical Sciences University of Arkansas Fayetteville, Arkansas 72701