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Let if be the semigroup of all total one-to-one transformations of an infinite set X.
For an / e V let the deject of/, def/, be the cardinality of X - R(J), where R(f) =f(X)
is the range of /. Then Sf is a disjoint union of the symmetric group ^x on X, the
semigroup 5 of all transformations in y with finite non-zero defects and the semigroup S
of all transformations in 5 with infinite defects, such that 5 U 5 and S are ideals of Sf. The
properties of *3X

 a nd S have been investigated by a number of authors (for the latter it
was done via Baer-Levi semigroups, see [2], [3], [5], [6], [7], [8], [9], [10] and note that
S decomposes into a union of Baer-Levi semigroups). Our aim here is to study the
semigroup S. It is not difficult to see that S is left cancellative (we compose functions /, g
in 5 as/g(x) =/(g(*)), for x e X) and idempotent-free. All automorphisms of 5 are inner
[4], that is of the form f^hfh~\f€S,he <SX.

In the present paper, we are concerned with congruences, Green's relations and
ideals of 5. A large variety of distinct types of congruences on S is present and the main
results are the content of Theorems 4, 5 and 6. In the concluding remark we state some
unsolved problems and conjectures on congruences on 5.

For/, g e S, let D(J, g) = {* :f(x)3=g(x)}. The next lemma is easily verified.

LEMMA 1. Let f, g, t be one-to-one transformations. Then
(i) def(/g) =

(ii)

Let i?, 3?, X, 2>, $ be the Green's relations on 5 [1, p. 47-49] and * be the diagonal
congruence. For an / e 5 let Rf\Lf, Jf\ denote the principal right [left, two-sided] ideal of
5 generated by /. Denote by f̂J the set of all natural numbers. Given n e N let

C = {/ eS :def/ = n), ln = \J {Ck:k>n}.

It follows from Lemma 1 that for every n e N, /„ is an ideal of 5.

PROPOSITION 2.(i) i? = 91 = W = 2) = $ = t on S.

For every f eS,
(ii) Lf=Jf = {/} U /„, where n = 1 + def/;

(iii) Rf = / U T(A), where A = /?(/) and T(A) = {ge S:R(g)^A}.
(iv) A subset I of S is an ideal of S if and only if I = B\JIn for some n>2 and

Proof, (i)-(iii) can be easily verified using Lemma 1, while (iv) follows from (ii) and
an observation that every ideal is a union of principal ideals.

We remark that not every ideal of 5 is principal, for example, if B is a proper subset
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of Cx consisting of more than one element, then the ideal B UI2 is a non-principal ideal
of S.

For an ideal / of a semigroup 5 the Rees ideal congruence I* is such that (/, g) e /* iff
either f = g or /, gel, where /, g eS. As usual, we write S/I for 5//*. Observe that
Proposition 2 (iv) describes all Rees ideal congruences on 5.

Another type of congruences on S is defined as follows. Let a be an infinite cardinal
that does not exceed \X\+, the cardinal successor of \X\. Then a relation A,, on S for
which (/, g) e A,, iff \D(f, g)\ < a is a congruence on S.

Let 6 be a relation on 5 such that for /, g e S, (/, g) e 6 iff def/ = def g. Lemma 1
ensures that 6 is a congruence on 5.

PROPOSITION 3. (i) For every infinite or < \X\+, Aais a cancellative congruence on S.
(ii) A ^ c S .

Proof. While (i) follows from Lemma 1, to prove (ii) let (/, g) e A^, D(f, g) = D,
f(D) = A, g(D) = B, and (X - R(f)) D(X- R(g)) = C. Then X - R(f) = [(X - /?(/)) n
R(g)] U [(X - /?(/)) n (X - R(g))] = [(X - /?(/)) nB]UC = (B-A)OC. Similarly,
X - R(g) = (A - B) U C, and the result follows from the fact that \A\ = \D\ = \B\ < Xo.

Now we are in a position to present our main result on congruences on 5. These are
given in Theorems 4, 5 and 6 below. Theorem 4 describes all the congruences A c A^. It
is shown that for every such A there exists n e N such that A coincides with A^ on /„. Our
description of A c A^ is given in terms of equivalence series defined below.

Let pk be an equivalence on Ck, k>l. We say that an equivalence p,on C,, l>k, is
derived f r o m pk i f w h e n e v e r ( / , g ) e p k , t e S w i t h d e f t = l - k t h e n ( / / , gt), (tf, tg) e p , .
Every congruence A on 5 induces in a natural way an equivalence A on Ck, k>l. Given
an equivalence pk on Ck such that pk c Ax,, let 2* denote a set of equivalences p, on C,,
l>k, such that for every / > k, p, g A^ and p, is derived from p,_x. We refer to such Xk

as an equivalence series derived from pk. We show (Lemma 10) that every such series is
finite and hence we can define a maximal equivalence series 2* derived from pk such that
if m = max{/:p, e 2*.} then every equivalence derived from pm coincides with A^.

THEOREM 4. Let n eN, pn c A,̂  be a non-trivial equivalence on Cn and 2n be an
equivalence series derived from pn with m = max{/:p; e £„}. Then

p=iU{pk:pk<E2B} U (A*n (/m+1 X /m+1)) (1)

is a congruence on S contained in A^.
Conversely, if 2 c A^ is a non-diagonal congruence on S then there exists a non-trivial

equivalence pn c: A^ on Cn and a maximal equivalence series 2n derived from pn such that
X = p as defined above.

In the following we describe congruences Aa, Ko^ a^\X\+. We observe that every
Aa can be extended in a natural way to a congruence A^ on ^Sx U 5, (so that for /,
geVxUS, (f,g)eAa if \D(f, g)\ < a). Note that A|Ari+ = 5 x 5 , the universal con-
gruence on S. Let A be the lattice of congruences on 5, and if p, oe A, write

[P> "] = { y e A : p c y c f f } , [p) = {y e A:p c y}, (p) = {y e A : p g y}.
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THEOREM 5. (i) A^ is a minimal cancellative idempotent-free congruence on S.
For every Xo < a ̂  \X\+ the following holds:
(ii) Aa is a group congruence on S and (^Sx U S)/A'a s S/Aa = ^ / A i ;

(Hi) [Aa) = {Af,:p>a}.

For m, neN, let o(m ,n) be a congruence on S such that (/, g) e a{m, n) if either
/ = g or def /, def g^m and def / = def g modn. Evidently 6 c a{m, n). Moreover, if a
congruence y contains 6, then S/y is isomorphic to a homomorphic image of
S/6 = (N, +). Hence Sly is isomorphic to a monogenic subsemigroup of type (m, n), for
some m, n eN. It follows that y = o(m, n). This proves the first part of Theorem 6 below.
Now let f̂ J| be the lattice of natural numbers ordered by divisibility, Ĵ* be the dual lattice.
Let o) be the first infinite ordinal, a>* be the dual order type. For a lattice A let A0 denote
the lattice obtained from A by adjoining a (new) least element 0.

THEOREM 6. (i) [8) = {o(m, n):m, neN}.
(ii) [6) = (a>*xM*)0(S((ft,x^)*)0).

(iii) For every n>\, a(l, n) is a group congruence on S and S/o(l, n) = Zn, a cyclic
group of order n.

(iv) There is no least group congruence on S.
For every a > Xo,
(v) S/«nA,a(»,/Ai)X(N,+);

(vi) SIa{m, n) n Aa = (<9X/K) x (N, +)/»j(m, n),
w/iere r/(m, n) is a congruence on the semigroup (N, +) suc/i f/iaf (fc, /) e r\(m, n) if either
k = l or k, / a m and k = l mod n;

(vii) /orm, neN, slcCjAa, si¥=0, A = \Jsi, andA = [\J CA-A

d(a, m, n, s4) = (6nAan(Ax A)) U (o(m, n)HAan ((/m+1 U A) X (/m+1 U A))

is a congruence on S.
(viii) every congruence y e {6 D A,,, A,,), y £ 6, /ias f/ie form d(a, m, n, si) as

described in (vii).
Proofs of Theorems 4, 5 and 6 constitute the remainder of the paper.

LEMMA 7. Given f, g, t, s eS such that D(f,g) = D(t,s) = {x}, where x e X, and
def/ = def g > defs = def t, there exists I eS with Is =f and It = g.

Proof. Observe that g(x) $ R(f), t(x) $ R(s) and choose a 1-1 function

l1:X-R(s)-{t(x)}^X-R{f)-{g(x)},

(note that since def s < def/, lx has a finite non-zero defect in X — /?(/) - {g(x)}). Define
a function /: X-* X as follows. For a y e X, let

{/(z) if y = s(z) for some z eX,

g(x)ity = t(x),
ly(y) if yeX-R(s)-{t(x)}.

Clearly, / e S and Is =f, also lt(x) = g(x) and for u =£x, lt(u) = ls(u) =/(u) , so that It =/ .
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LEMMA 8. Let ( / , g) e AXo, f±g. Then there exist fu ...,fneS such that \D(Jh fl+l)\ =
l,fori = l,...,n-l, and fr =f, f n = g .

Proof. Let \D(f, g)\ = m. We prove the result by induction on m. Assume that the
statement is true for every pair of functions in S that differ on at most m — 1 points. Let
D(f, g) = D, f(D)=A and g(D) = B. Consider two cases:

(i) A * B.

Choose b e B -A, and let g{d) = b, where d e D. Let fx = / and define f2 as follows:
filx-id) =fx\x-w and /2(<Q = b. Then D(fu f2) = {d} and D(f2, g) = D- {d}. By indu-
ction supposition there are f3, . . . , / „ e 5 such that /„ =g and \D(fit fi+x)\ = 1 for every
i = 2, 3 , . . . , n - 1. Thus flt f2, U, • ••, /„ is the required sequence.

(ii) A = B.

Using an observation that A = B implies that X — (/?(/) U R(g))=£0, choose xe
X-{R(f)UR(g)). Choose deD, let / , = / and define f2 so that f2\X-{d) =Mx-w and
fz(d)=x. Let gj be such that gt\X-{d)= g\x-w and gx(d) = x.

Then D(fu f2) = D(gl, g) = {d} and D(f2, gi) = D- {d}, so there exist f3, . . . , / „ e S
with /„ = gi and \D(Jh /+i) | = 1 for every i = 2, . . ., n - 1. The result follows.

LEMMA 9. Let A be a congruence on S, Ac A^. Let

N = {def/:/ e 5, |[/]| # 1, [/] e SIX), and for every neNlet
L(n) = {\D(f, g)\:/, geS,f*g, (f, g)ek, def/ = n},

<?„: L(n)-> N be defined by ¥„(/) = n +1 + 1, / e L(n). Ler mn be a minimum value of Wn
and

m = min{mn : n e N}.

Then A D (Im X /m) = A^ D (/„ x /m).

Proo/. Let m=mn=n + l + l, for some «eJV and / e L(«). Let f, g eS such that
(/> ?) e A, f±g, def/ = def g = n and \D(f, g)\ = I. Let (t, s) e A^ with def t = def 5 = * 2
m. In view of Lemma 8 we can assume that \D(t, s)\ = 1. Let D(t, s) = {x}, D(f, g) = D.
Choose deD, aeX-D and qeS with R(q) = (X-D)U {d} - {a} and q(x) = d. Then
D(fq,gq) = {x}, deffq = defg^ = « + |D| = m - l < A : ) and so Lemma 7 implies there
exists / e 5 such that Ifq = f, /g<? = s, so that (/, s) e A.

LEMMA 10. Every equivalence series ~Zk derived from pk c A^ is finite.

Proof. The result follows from the proof of Lemma 9 and an observation that the
relation derived from is transitive, that is if /, eN, i = 1, 2, 3 and pt. is an equivalence on
Clt such that p/j+1 is derived from p,., i = 1, 2, then p,3 is derived from ph.

Proof of Theorem 4. That p defined in (1) is a congruence on 5 follows from the
definition of a congruence series derived from pn and Lemma 10.

To show the converse let A < A^ be a non-diagonal congruence on 5 and let n be the
minimal integer such that A n (Cn x Cn)¥=i f~l (Cn x Cn), m be the maximal integer with
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An(C m xC m )¥=A^n(C m xC m ) if kn(CnxCn)* A^n (CHxCn) and m = n
otherwise. Then for every k, n<k^m, A induces in a natural way equivalences pk on
Ck. The set of all these equivalences forms a maximal congruence series 2n derived from
pn and the result follows.

COROLLARY 11. (i) Every right [left] cancellative congruence r\ on S contains A^.
(ii) Every group congruence on S contains A^.

Proof, (i) Assume r\ g A^ is right cancellative, and let (/, g) e A^,. Let m
be such that (A* D p) D (/m x Im) = A^ n (lm x Im) (Lemma 9) and teCm. Then
{ft, gt) e A^ n 7], so that (/, g) e i\ since t] is right cancellative.

(ii) Follows from (i).
The next lemma is self-evident.

LEMMA 12. For any f e {SA- U 5, n ^ 0 there exists g e ^ U S w/tfi def g =F n
(/, g) e A^, w/iere X, = Xo

+.

Proof of Theorem 5. (i) It is not difficult to verify that A,̂  is a cancellative
congruence. Hence, in view of Corollary 11 (i) it is sufficient to show that A^ is
idempotent-free. This follows from an observation that for any / e 5, D(f, f2) =
D(fix, f2) = D{ix, f) (where ix is the identity mapping on X), so that \D(f, / 2 ) | > Xo and

2

(ii) It is sufficient to show the existence of the indicated isomorphisms. For that let
f eS, he ^x, [f] and [h] be A^-classes of / in 5 and h in <&x respectively. We show that
[/] U[h] is the A^-class of / (or, equivalently, h) in 5^U5 if any only if (/, h) € A;.
While the necessity is clear the sufficiently follows from the observation that if (/, h) e A'a
and A is the A; class of / in <SX U 5 then A n <3X = [h] and A n 5 = [/].

(iii) Let y be a congruence on 5 containing Aa. Since S/Aa = 'Sx/^a there exists a
homomorphism from ^x/^'a

 o n t o Sly, so that there is a congruence y' on <§x such that
'Sx/y' = Sly. But then y' = A^ for some j8 a a and so

S/y^'Sx/A'p^S/Ap, and y = A .̂

The next result describes some properties of the congruence 6. Recall that (/, g) e 6 if
def/ = def g.

PROPOSITION 13. (i) d v A*, = 5 x 5.

(ii) 6 is fne unique congruence on S such that S/6 = (N, +), where (N, +) denotes the
semigroup of positive integers under addition.

Proof, (i) Let /, g e S. According to Lemma 12, there exists k e 5 such that
( / k) e 8, (k, g)AKl, so that (/, g) e AKl°6 c 6 v AKl.

(ii) We show that if 6 is a homomorphism from S onto (N, +) then 6 lo6 = d.
Firstly observe that if / e Cm and geCn with m<n, then 0(/) < 0(g), for there exists
qeS such that q/ = g and 6(q) + 6(f) = 6(g). Since 6 is onto, 0(C!) = 1 and so
Q{Cm) = m, for every m e N (indeed, if / e Cm then there exist / i , / 2 , . . . ,fmeCx such
that / =/, /2 . . . /m, so that 0(/) = 0(/O + 0(/2) + • • • + 0(/m) = m).
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Proof of Theorem 6. Let a(m, n)-*(m, n) be a mapping of (6) onto ÎJ x N. The
result then follows from an observation that o(mx, nx) c (m 2 , n2) if and only if m2^m1

and n2 divides nx.
(iii) Follows from the fact that a monogenic semigroup of type (m, n) is a group if

m = 0 and Proposition 13.
(iv) Observe firstly that f]W(l, n):n eN} = 6, indeed, if (/, g) e(~) M l , n):n e

N}, then def/ = def g mod n for every n e N, so that def/ = def g, or (/, g) e d. If there is
the least group congruence T on 5, then i c a ( l , n ) for every n, so that r e
Pi {tf(l> «):« e N} = 6. It follows that 6 is a group congruence (for 5/6 = (S/T)/(<5/T),
which is a homomorphic image of the group Six, a contradiction to Proposition 13).

The verification of (v)-(vii) is trivial.
(viii) Let y e (<5 n La, Aa), y ^ <5, m be the minimal integer for which there exists

f eS with def = m such that the y-class of/does not coincide with the (<5 D Aa)-class off.
Let S8 be the set of all classes of y that contain an element g of Cm and that do not
coincide with the g-class of 6 n Aa and J^ = {Cm n B: B e 38}. Let fc = min{def g: (/, g) e
y> (/» ?) G <5) a nd n = k — m. Clearly, y coincides with 6 n Aa on LJ {C, : l < / < m - l } .
We show firstly that

y n (/m+1 x Im+l) 2 o(m, n) n Aa n (/m+1 x /m+1). (2)

For / € S let S(f) = {xeX :f(x) ¥=x} and shift / = |5(/)|.
Let (/, g) e y with def/ = m, def g = m + n. We observe that for every teCx with

shift f = Ko, (t
nf, g) e 6 D Aa c y, so that (/, T/) e y. Moreover, for any integer / > 0,

(f,tlnf)ey, (3)

since (/, ff) € y implies (tnf, i^f) e y, so that (/, f2"/) e y etc.
Take (p, q)e a{m, n ) f l A , n (/m+1 x /m + 1) , and let / be as above. Since def p >m =

def/ there exists an s in S such that p = sf. Without loss of generality assume that
def q-def p = an, a e N, a > 0. Now (3) implies that (sf, sf"f) e y, or (p, rt"Y) e y. Also,
def(sr/) = defg and D{stanf, q)^D(p, q)Uf-\S{tan)), so that |D(rt*Y.9)l<* and
{sff, q) e 6 n Aa < y. We conclude that (p, <?) 6 y.

To complete the proof it suffices to show that if (u, v) e y D (/m+1 x Im+l) then
(w, v) e a(m, n). Assume m < def M < def v and let (def u)—(def u) = bn + r, where b,
r eN, Q<r<n. Let/and t be chosen as above. We show that if r >0 then (/, trf) e y, a
contradiction to the choice of n that assures that r = 0 and so (u, u) e a(m, n). Observe
that there exists w e S and / e N, / > 0 such that t'"f = wu. But then (wu, wv) e y implies
that (tlnf, wv) € y, so that using (3) we conclude that (/, wv) e y. Note that def wv =
(/ + b)n + m + r and since y 2 6 n Aff we have (/, f«+b)+y) e y. By (3), we have that
{ff, fn(/+fc)+7) e y, so that (/, ff) e y.

REMARK. In this paper we described certain large classes of congruences and parts of
the lattice of congruences on 5. A description of all congruences and the lattice of
congruences of 5 is as yet an open problem. In particular, we conjecture that for every
infinite cardinal a^\X\, every congruence in the interval (Aa f) 6, Aa+ D 6) can be
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described in terms of a finite equivalence series derived from a given equivalence A on Ck

for some k ^ 1 such that A,, < A < Aa+ as was done in Theorem 4 for congruences
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