7

R and the tidyverse

In the previous chapter, we did some basic data processing with base
R. Is this not enough to solve most of our tasks? Sure, but we can do
better. Working with data in base R is oftentimes limited. Handling data
frames can be difficult, and additional functions for data management
must sometimes be added by importing external packages (e.g., the aggre-
gation functions in the doBy package). Here, a set of packages, together
referred to as the tidyverse, provides a much better and fully integrated
way to work with data. It reflects our basic understanding of data han-
dling very closely and also relies primarily on tables as the main data
structure (variables as columns, rows as observations). The syntax, how-
ever, is much easier to remember, since the tidyverse uses natural names
wherever possible and relies on verbs for actual operations to be carried
out. Overall, this means that your code becomes more readable, not just
for yourself but also for others trying to replicate it.

This chapter walks you through a simple application that demonstrates
the use of the tidyverse’s data management features. Rather than a single
R library, the tidyverse is actually a collection of several R packages
for different purposes, which, however, use a common underlying logic
and syntax. You may be familiar with the ggplot2 package for produc-
ing graphics, but there are also several other extremely powerful pack-
ages that are part of the tidyverse. You can learn more about the entire
tidyverse suite of packages at https://www.tidyverse.org.

All tidyverse packages are carefully designed, provide a wealth
of useful features and are therefore highly recommended. In keeping
with our focus on data management, however, we will only focus

87

https://doi.org/10.1017/9781108990424.010 Published online by Cambridge University Press

https://www.tidyverse.org
https://doi.org/10.1017/9781108990424.010

88 7 R and the tidyverse

on two of them. tidyr provides basic functionality to store data in
rectangular (tabular) data structures, and dplyr offers powerful functions
to manipulate data. To make these (and other) packages available in R,
you need to install the entire tidyverse as described in Chapter 2 (unless
you are using the pre-configured project environment) and then load
it with:

library(tidyverse)

7.1 APPLICATION: GLOBAL PATTERNS OF INEQUALITY
ACROSS REGIME TYPES

In the example for this chapter, we continue to explore the political deter-
minants of inequality, but expand the scope of the analysis. While the
previous chapter focused exclusively on the US, we now adopt a com-
parative perspective and study a global sample of countries over several
decades. In particular, existing scholarship has suggested that inequality
and regime type may be closely related (Acemoglu and Robinson, 2005;
Houle, 2009). Our aim here is to create a dataset for analysis that allows
us to track how patterns of inequality have developed over time in differ-
ent political regimes.

Our main data source on inequality is again the World Inequality
Database (WID, 2020), from which we obtain a cross-sectional time
series dataset of income inequality estimates for many countries. We
again rely on the full dataset, downloaded as a set of CSV files and
merged into a single file for the exercises in this chapter. Again, we use
the share of pre-tax income that goes to the richest 10% as our indicator
for inequality (p90p100), which is available for many years and countries.
The resulting data is available in the file inequality.csv in the data
repository for this chapter.

In addition to the inequality data from the WID, we require data on
the type of political regime that exists in a given country. Scholarship
in political science has made different attempts to measure regime type
along the dimension of autocracy vs. democracy. Our example in this
chapter relies on the well-known Polity IV project (Marshall et al., 2015),
which codes political regimes along a continuous dimension from —10
(full autocracy) to 10 (full democracy). Since political regimes change
over time (e.g., by becoming more democratic or more autocratic),
the Polity scores are provided as annual observations at the country
level.

https://doi.org/10.1017/9781108990424.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.010

7.2 A New Operator: The Pipe 89

7.2 A NEW OPERATOR: THE PIPE

In data management, we often have to apply a series of operations to our
data. We add and recode variables and filter selected cases, and merge our
data set with others. The standard way of doing this in R is to apply a
series of functions, creating intermediate datasets that are used as input
at later stages of the process. Consider the following example of two
artificial datasets with 20 annual observations, each of which contains
a single additional variable (randomly assigned for simplicity):

datasetl <- data.frame(year = 2000:2019, varl = runif(20))
dataset2 <- data.frame(year = 2000:2019, var2 = runif(20))

Let us assume we want to subset datasetl to observations that
occurred after the year 2007 and merge it with dataset2. This is how
to do this in base R:

datasetl_subset <- subset(datasetl, year > 2007)
final_dataset <- merge(datasetl_subset, dataset2)

When we add more operations on our data, each of them generates a
new intermediate result such as dataset1_subset and adds a new line of
code. The tidyverse introduces a new operator that facilitates this pro-
cess: The pipe %>% allows you to write your code in a more natural fashion,
from left-to-right. What does this mean? In the following example, we
again subset and merge the two datasets, but in a single line of code, and
without intermediate results. Here, I demonstrate the use of the pipe with
the same base R functions we used above — later, we will replace them
with the appropriate ones from the tidyverse:

final_dataset <- datasetl %>% subset(year > 2007) %>% merge(dataset2)

The idea of the pipe is straightforward: It takes a given dataset and
sticks it into a new operation. As you can see in the example, we can chain
several pipe operations and specify a complete “pipeline” in a single line
of code. This code essentially says: “take dataset1, filter it such that it only
contains the years after 2007, and merge the result with dataset2.” This
code is easier to read, expresses the aim behind it more clearly, and the
flow of the data is much more apparent. We also have to type less boiler-
plate code such as subset(datasetl,...) or merge(datasetl_subset,...),
because we are passing data directly from one operation to the next.

You may have noticed that when using the pipe operator, the input it
sends to the next function becomes the first argument of that function;

https://doi.org/10.1017/9781108990424.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.010

90 7 R and the tidyverse

for example, rather than writing subset(datasetl, year > 2007), we can
simply say subset(year > 2007) and the first input to the subset() func-
tion — the data that should be filtered — will be provided by the pipe. In the
tidyverse, all functions are designed for this intuitive use of pipes, while
many functions from outside the tidyverse are incompatible. So, the pipe
is not a generic new operator in R; rather, it works only with the functions
designed for it. If you would like to learn more, I recommend the chapter
on pipes in Wickham and Grolemund (2016) and the documentation of
the magrittr package.

7.3 LOADING THE DATA

As always, we need to load our data into R before we can start process-
ing it. When working with the tidyverse, we use the read_csv() func-
tion for this. This is a new implementation of R’s basic import function
read.csv(), and you can use it in a similar way:

wid <- read_csv(file.path("ch07", "inequality.csv"), na = "")

The read_csv() function assumes that the fields in a row are separated
with a comma — similar to the base R functions, you can use read_delim()
for files with a different separator, which allows you to manually specify
the field separator. For the WID dataset, it is important to specify the
empty string ("") to indicate NA values, otherwise the function would
interpret Namibia’s two-letter code “NA” as NA. Let us now drop again
the unnecessary columns in our data, such that we retain only the ones
we need — the country identifier (a two-letter ISO country code), the year,
and the value of the inequality indicator for the respective country and
year:

wid <- wid %>% select(country, year, value)

Here you can see the pipe %>% in action: We take the original wid dataset
and pass it to the select) function, which we ask to retain three columns.
We store the result in wid, overwriting its original content. What is the
result of this import? Let us take a closer look at the wid object by simply
printing the first three entries. We do so again using the pipe operator, but
stick the wid into a different function: slice(), which is used for subsetting
datasets according to a row range provided:

https://doi.org/10.1017/9781108990424.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.010

7.3 Loading the Data 91

wid %>% slice(1:3)

A tibble: 3 x 3
country year value
<chr> <dbl> <dbl>

1 AE 1990 0.593
2 AE 1991 0.595
3 AE 1992 0.597

When we print the dataset, we see that we are not dealing with a con-
ventional data frame. Rather, the read_csv() creates something similar,
called a “tibble.” A tibble is a modern version of a data frame. Tibbles
serve the same purpose (which is to store tabular data), but with several
tweaks that streamline and improve their use in practical applications.
They have a much nicer default print () method (which is invoked when
simply typing the name of the tibble): It reports the overall dimensions of
the table, the names of the columns, and their types. More about tibbles
can be found in the documentation of the tibble package.

Before we proceed, let us explore a bit more on how to work with
tibbles in practice. Tibbles support all the basic operations you can do
with data frames. For example, you can rename columns (which in fact is
done much more elegantly as compared to data frames in base R):

wid <- wid %>% rename(p90p100 = value)

Apart from a nicer way to print, tibbles come with very useful features
that make working with data much easier. In certain cases, however, you
may have to explicitly convert a tibble to a proper data frame; this can be
done using as.data. frame(). While you can use the [] and $ syntax for
extracting data from tibbles in a similar way as for standard data frames,
I strongly recommend that you use the corresponding functions provided
by the tidyverse for this if possible. They are designed to work with the
pipe operator and improve readability of the code. We have already used
the select() and the slice() functions, as well as the filter() function
to extract rows based on a search condition. It is important to emphasize
that these functions always return tibbles; this reduces confusion in com-
parison to the corresponding functions for data frames, which sometimes
return a vector rather than a data frame (e.g., the $ operator).

In addition to the data from the WID, we also require data on political
regimes from the Polity IV project. This data is distributed both in Excel
and SPSS format, and we choose the former. Since the Excel file contains
a properly formatted data table, the import does not cause any issues. We

https://doi.org/10.1017/9781108990424.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.010

92 7 R and the tidyverse

use the readxl package, which is also part of the tidyverse and hence
creates a tibble:

library(readxl)
polity <- read_excel(file.path("ch07", "polity.xls"))

Since the Polity IV database contains many variables we do not need
for our analysis, we only keep the main Polity indicator (polity2) in
addition to the country (ccode) and year (year) identifiers:

polity <- polity %>% select(ccode, year, polity2)

We now have all the necessary data in two tibbles, wid and polity,
which we use to generate a single dataset for our analysis.

7.4 MERGING THE WID AND POLITY IV DATASETS

Our next task is to merge the wid and polity datasets. Both contain
annual observations at the country level, but merging them is compli-
cated by the fact that there is no common country identifier yet. The
WID refers to countries with a two-letter code, while the Polity database
includes Correlates of War (COW) country codes, a system widely used
in international relations and conflict research. Hence, we need to match
the two-letter country codes in the WID to the COW codes. This task is
greatly facilitated by the excellent countrycode library for R, which can
translate between different codes and names for states. We can use the
main translation function countrycode() from this package, which needs
to know in which column the country identifier is stored that we want to
translate (in our case, this is the country column). Also, it requires us to
specify the coding system from which we want to translate (the ISO two-
letter country code used in the WID, “iso2¢”), and what coding system
we want as output (“cown” is used to denote the numeric COW coding
system). To store the result of the translation in a new column named
ccode, we use the mutate() function:

library(countrycode)
wid <- wid %>% mutate(ccode = countrycode(country, "iso2c", "cown"))

Note that we get a warning from the countrycode function that two
countries could not be merged. One of them is Palestine (two-letter code
PS), which is not contained in the COW list of independent states. The
second one is Serbia, where countrycode uses the old two-letter code for

https://doi.org/10.1017/9781108990424.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.010

7.5 Grouping and Aggregation 93

Yugoslavia and therefore does not produce the correct COW code (345).
We can fix the second issue by manually inserting the correct COW code
for Serbia, using again the mutate() function to change the ccode variable:

wid <- wid %>% mutate(ccode = if_else(country == "RS", 345, ccode))

The if_else() function in the statement has three parts. It basically
says: If the two-letter code is RS, use code 345 as the new value for ccode,
otherwise use the existing ccode value as the new one. With a common
country identifier, it is now straightforward to merge the two datasets
based on ccode and year. Functions for merging in the tidyverse are
called join functions, which is the technical term for combining tables in
relational databases (we will learn more about joins in the next chapters).
You may recall from the previous chapter that the default mechanism for
joining datasets is to keep only those observations that have at least one
match in the other dataset. This is called an inner join. Let us first try to
use this function for merging Polity and the WID based on the ccode and
year variables:

dataset <- polity %>% inner_join(wid, by = c("ccode", "year"))

The entire polity table has 17,562 observations, while the merged
dataset has only 3,142. This is due to the fact that the WID only covers a
subset of countries — if we now retain only observations from Polity with
a match in the WID, all the countries that are contained in Polity but not
in the WID are removed from the merged dataset. This is the standard
behavior of all inner joins. If you need to retain all records from the first
(the left) or the second (the right) dataset — similar to the all.x and all.y
parameters of the merge() function in Chapter 6 — you could use a “left”
or a “right” join, which can be executed with the left_join() and the
right_join() function.

7.5 GROUPING AND AGGREGATION

The WID only covers a subset of all countries worldwide, and even for
these, the inequality measure (p90p100) contains many missing values. We
should first get a better overview of our dataset as regards the countries
and time periods it covers, but also the countries/years for which we have
valid observations from the WID. To generate some useful statistics to
answer these questions, we use grouping and aggregation. Recall from
Chapter 3 that data aggregation is the definition of different groups

https://doi.org/10.1017/9781108990424.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.010

94 7 R and the tidyverse

or subsets of data, with an aggregation function applied to each of
these groups separately. As we have seen in the previous chapter, in a
conventional data frame these groups can be dynamically defined in the
summaryBy () function.

In a tibble, however, this mechanism is slightly different. Tibbles allow
you to define the grouping as a feature of the tibble, which is then used
whenever grouping functions are applied to it. Grouping is enabled with
the group_by() function:

dataset <- dataset %>% group_by(country)
dataset

A tibble: 3,142 x 5

Groups: country [107]
ccode year polity2 country p90pl00
<dbl> <dbl> <dbl> <chr> <dbl>

1 2 1913 10 US 0.423
2 2 1914 10 US 0.430
3 2 1915 10 US 0.422
... with 3,139 more rows

You can see in the output that the tibble now has the grouping by
country enabled, and that there are 107 different groups (countries). We
can now summarize the tibble, which will automatically be done sepa-
rately for each of the groups. To see how many observations we have per
country, we use the aggregation function n() that counts the number of
cases in each group:

dataset %>% summarize(count_obs = n())

A tibble: 107 x 2
country count_obs

<chr> <int>
1 AE 27
2 AL 17
3 A0 28
... with 104 more rows

The output of this function creates a new tibble containing the sum-
mary statistics we computed. While we have 100 or more years’ worth of
data for countries such as France and the US, for many others the coverage
is much more limited. For our analyses below, it would be useful to know
since what year particular countries are covered in the WID, such that we
can adjust our period of analysis accordingly. Therefore, we expand our
summary such that it outputs the first year with an inequality estimate

https://doi.org/10.1017/9781108990424.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.010

7.5 Grouping and Aggregation 95

during the observation period. To do that, we use the minimum as an
aggregation function:

dataset %>% summarize(firstyear = min(year))

A tibble: 107 x 2
country firstyear

<chr> <dbl>
1 AE 1990
2 AL 1996
3 A0 1990
. with 104 more rows

The example shows that data aggregation in the tidyverse is very
elegant, and is a considerable improvement over the mechanism we used
in the previous chapter. One of the main advantages is that we can define
aggregation functions only for particular columns they should be applied
to, and have full control over the naming of the columns holding the
aggregated values. As you can see in the output, for many countries, there
are few inequality estimates for years earlier than 1990, which is why we
restrict our analysis below to the years 1990 and later. Before we do that,
however, we disable grouping of our main dataset with ungroup(), since
the next operations on the dataset do not need grouping:

dataset <- dataset %>% ungroup() %>% filter(year >= 1990)

To track patterns of inequality by regime type, we need a dataset with
average annual values of inequality, computed separately for democra-
cies and autocracies. As a first step, let us introduce a new binary vari-
able democracy, which identifies those countries that are democracies in
a given year. Following the standard convention, we code country-years
with polity2 >= 6 as democracies. Since we have missing values in the
polity2 variable, we drop these observations before computing the aggre-
gation:

dataset <- dataset %>%

filter(!is.na(polity2)) %>%
mutate(democracy = if_else(polity2 >= 6, T, F))

Since we need average inequality values for each year and separately
for democracies and autocracies, we need two levels of grouping. We
therefore enable grouping again with:

dataset <- dataset %>% group_by(year, democracy)

https://doi.org/10.1017/9781108990424.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.010

96 7 R and the tidyverse

Now, we can summarize our data as introduced above and compute
the average level of inequality, separately for the democracies/autocracies
and each year in our sample:

data_agg <- dataset %>%
summarize(mean_ineq = mean(p90p100))

The result of the aggregation is stored in a new dataset, data_agg, which
we use in the next section.

7.6 RESULTS: GLOBAL PATTERNS OF INEQUALITY
ACROSS REGIME TYPES

Figure 7.1 plots the aggregated values for democracies and autocracies
over time. Keep in mind that the WID does not cover all countries world-
wide, so this result must be treated with some caution. The plot shows
there are notable differences in the level of inequality between democratic
and autocratic countries. In democracies, around 40% of the income go to
the richest 10% of the population, which is a large share. In autocracies,
however, this share is even higher, with values of more than 50%. So
clearly, democracies seem to be doing better than autocracies in creating
a more equal society. However, the figure also shows that in democracies,
the level of inequality is increasing over time, while it is slightly decreas-
ing in democratic countries. We should mention though that by simply
averaging over all countries, our simple comparison hides much variation
within each of the two categories. In particular, there are considerable
differences among democratic countries when it comes to inequality in
the population.

0.6 1
=
m .
2 o5 T~ —\ Regime type
2 s = Autocratic
S 041 LI IR S = = Democratic
o R I I
@ ot
E .

031, ! !

1990 2000 2010

Year

FIGURE 7.1. Trends in inequality over time, for democracies and autocracies.

https://doi.org/10.1017/9781108990424.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.010

7.7 Other Useful Functions in the tidyverse 97

7.7 OTHER USEFUL FUNCTIONS IN THE TIDYVERSE

Before we conclude this chapter, let us briefly review some other functions
that can be really helpful to quantitative work in the social sciences.

7.7.1 Lags of Variables

The first of the functions help us create a lag of a variable (e.g., the value of
that variable in the previous time period). Continuing with our example
above, we may want to do a simple regression analysis of how democracy
affects inequality. For analyses of this type, it is common to lag the main
independent variable — in other words, this means that we predict the level
of inequality with the previous year’s democracy score for the respective
country. For this, we need to extend our dataset such that in addition to
the contemporary democracy scores in the polity2 variable, we also have
a new variable with the democracy scores from the previous year.

To create this variable, we use the mutate() function that you already
know from above. In this function, we use the 1ag() function applied to
the polity2 variable, which is the variable we want to lag. This function
also needs to know which variable specifies the temporal order of the
data, in our case the year. Since we want to compute the lags separately
for each country, we group() our dataset first, and ungroup() it after the
operation is complete:

dataset <- dataset %>%
group_by(ccode) %>%
mutate(polity2_lag = lag(polity2, order_by = year)) %>%
ungroup O

With the lagged predictor polity2_lag now being a new variable in our
dataset, we can, for example, run a simple linear regression to test again
our above result that democracies tend to have lower values of inequality.

7.7.2 Converting between Wide and Long Tables

The tidyverse also contains functions to convert between “long” and
“wide” tables. What was this again? Recall our discussion in Chapter 3,
where we talked about the features of a well-designed table. Good tables
are those where you can add data by adding more rows to the table. Our
dataset above is such a table: If additional data about more countries
and/or years became available, we could just add a new row for each
country-year we want to insert. This type of table is also called a “long”

https://doi.org/10.1017/9781108990424.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.010

98 7 R and the tidyverse

table. However, some of the data we use in social science projects comes in
poorly designed tables. For example, for country-level data with annual
observations, you sometimes encounter tables with one row per country,
and a column for each year covered in the dataset. This format is called
a “wide” table.

Let us use the data from the WID to illustrate how we can convert
tables between long and wide formats. The original data is contained in
wid, which is a “long” table. For illustration purposes, we simplify the
table a bit and retain only three countries with observations from three
years, and we also drop the COW code:

wid_simple<- wid %>%
select(-ccode) %>%
filter(year >= 2000 & year <= 2002) %>%
filter(country %in% c("FR", "US", "DE"))

We can convert the table to a “wide” format with the pivot_wider()
function from tidyverse. You need to specify the variable in the table that
contains the values for the new header names (in our case, this is the year
column), as well as the variable that contains the values you want in the
converted table (in our case, the inequality levels in the p90p166 column).
It is useful to sort the table with arrange() beforehand, such that the new
columns are properly ordered:

wid_wide <- wid_simple %>%
arrange(year) %>%
pivot_wider (names_from = year, values_from = p90pl100)

This is what our new table looks like:

wid_wide

A tibble: 3 x 4
country "2000° 2001 "2002°
<chr> <dbl> <dbl> <dbl>

1 DE 0.316 0.316 0.317
2 FR 0.331 0.334 0.328
3 US 0.439 0.428 0.427

Since “wide” tables are usually difficult to deal with, we usually need
to convert them to a “long” format rather than vice versa. This works
with the pivot_longer() function:

wid_long <- wid_wide %>%
pivot_longer(-country, names_to = "year", values_to = "p90pl00")

https://doi.org/10.1017/9781108990424.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.010

7.8 Summary and Outlook 99

This returns the data again in a long table, the format that should be
preferred for most of the work we do in the social sciences:

wid_long

A tibble: 9 x 3
country year p90pl00
<chr> <chr> <dbl>

1 DE 2000 0.316
2 DE 2001 0.316
3 DE 2002 0.317
... with 6 more rows

7.8 SUMMARY AND OUTLOOK

This chapter introduced the tidyverse framework for R, a collection of
different R packages that integrate well with each other and use a consis-
tent grammar. Although we have used the tidyverse only for simple data
management operations here, its functionality goes well beyond this (e.g.,
with the ggplot2 package for graphics). Much work in the tidyverse is
done using a new operator, the pipe, which allows you to write code that
is simple and intuitive to understand. I demonstrated how to work with
tibbles, an extended version of the usual R data frame. The tidyverse
offers a number of functions to perform standard data operations, such as
selection, aggregation and merging of tables. It also has new and improved
functions to import and export data from various different file types (see
also the examples in Chapter 4).

In general, it is highly recommended to perform your data work with
the tidyverse and its associated packages. It is elegant, powerful, and
efficient, and allows your code to be easily understood and replicated by
others. Although for some specialized types of data (e.g., spatial data), the
integration with the tidyverse is not without pitfalls, all common tables
with numbers and/or text can easily and conveniently be processed with
it. It even interfaces well with relational databases, which we cover in the
next chapters. Nevertheless, as an apt user of R, you should know both
“worlds” well — base R, and how it differs from the tidyverse. You can
then decide which one is the best choice for a given project. From this
chapter, there are a number of recommendations for your work:

o Use the pipe wherever possible: The pipe operator allows for an
improved, much more logical workflow for most data management
operations. For example, in base R, users tend to create new R objects
for every intermediate step of a data processing sequence. This can

https://doi.org/10.1017/9781108990424.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.010

100 7 R and the tidyverse

be confusing and error-prone. Arranged as a pipeline with the pipe
operator connecting the different steps, there are no intermediate
results we need to deal with — all that matters is how we get from the
input to the final result.

o Try not to mix: Being fluent both in base R and the tidyverse, it is
possible to switch back and forth between the different approaches
in a single script. You should try to avoid this. If you opt for the
tidyverse in your script, try to stick with it and implement the entire
workflow using its functions. This makes your code consistent and
easier to follow for others.

o Watch out for potential issues with the tidyverse: Despite the consid-
erable advantages that the tidyverse has for most data management
tasks, there are some potential drawbacks you should keep in mind.
The tidyverse includes a wealth of functions, which means that con-
flicts can occur if other packages include functions with the same name.
You see a message alerting you to (usually uncritical) conflicts with
base R functions when you load the tidyverse. Once other packages
are loaded, these conflicts can be problematic. Also, due to its size, the
tidyverse depends on a large number of other packages, so your R
installation will grow considerably and installation issues can arise.

e Remember the conversions between long and wide tables: As we have
seen in the chapter, the tidyverse offers a convenient way to convert
between wide and long tables. This is a task you may encounter from
time to time, since existing tables are often formatted for humans to
look at (and may therefore be distributed in a wide format). You should
resist the temptation to manually convert them, and instead rely on R
to do this.

https://doi.org/10.1017/9781108990424.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.010

