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Jawahar Sivabharathy Samuthira Pandi! and Sanjay Mittal'>f

! Department of Aerospace Engineering, Indian Institute of Technology Kanpur, UP 208016, India

(Received 26 May 2022; revised 8 November 2022; accepted 19 January 2023)

Numerical simulations for flow past a finite rectangular wing with a NACA 0012 section
at Re = 1000 for various semi-aspect ratios (0.25 < sAR < 7.5) over a range of angles of
attack (0° < o < 14°) reveal streamwise vortices, which increase in strength and number
to occupy an increasing spanwise extent with increase in «. They result in non-monotonic
spanwise variation of local force coefficients and increased strength of wing-tip vortex
for o > 8°. Viscous and pressure drag dominate for low and high sAR, respectively.
The time-averaged drag coefficient first decreases and then increases with increase in
sAR. Vortex shedding for o = 14° is single cell and parallel for sAR < 3. Shedding
is in two cells with an oblique angle that varies with time, leading to large spanwise
variation in the root mean square of local force coefficients for higher sAR. Various types
of dislocations, reported earlier in wakes of bluff bodies, are seen for different o and
SAR. Dislocations for o = 14° appear at the same spanwise location for sAR = 3 and
at different spanwise locations for sAR > 4. Vortex shedding for ¢ = 12° and sAR =5
exhibits one cell structure in the near wake and two cells in the far wake due to splitting and
reconnection of vortices near the mid-span in the moderate wake. Linkages form between
counter-rotating spanwise vortices for sAR > 1. Additional linkages between shed- and
wing-tip vortices are observed for lower sAR. At each «, the strength of the wing-tip vortex
and radius of its core, estimated using Rankine and Lamb—Oseen models, increases up to
a certain sAR beyond which it is approximately constant.
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1. Introduction

The aerodynamic efficiency of a finite wing, reflected by its lift-to-drag ratio (Mueller
& DeLaurier 2003), depends on its planform, aspect ratio, airfoil section and angle
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of attack. Aspect ratio is defined as AR = b/c, where b and c are respectively the span and
mean aerodynamic chord of the wing. The pressure difference between the lower and upper
surfaces causes the flow to spill and curl at the ends of the wing to form ‘wing-tip vortices’,
thereby lowering the aerodynamic efficiency compared with an end-to-end wing (Prandtl
1918, 1921). Prandtl (1918) proposed the lifting line theory for modelling inviscid flow
past a finite wing via a horseshoe vortex that consists of a bound vortex and two trailing
vortices. The lift is generated by the bound vortex. The trailing vortices, that model the
wing-tip vortices, induce downwash on the wing resulting in an induced angle of attack,
which tilts the local lift at each spanwise location leading to induced drag and overall loss
of lift. The induced drag is inversely proportional to the aspect ratio of the wing. The
theory was later modified to represent the wing by a large number of horseshoe vortices,
each with a different length of bound vortex. All the bound vortices are coincident along
the ‘lifting line” (Prandtl 1921). For a wing with a rectangular planform, the induced angle
is maximum at the wing tip and decreases towards the wing root.

The evolution of flow past a nominally two-dimensional (2-D) end-to-end wing (EEW),
with increase in Re, has received considerable attention (Hoarau et al. 2003; Bourguet et al.
2009; Deng, Sun & Shao 2017; He et al. 2017; Pandi & Mittal 2019). The steady flow looses
stability beyond a certain Re, leading to vortex shedding. The wake undergoes transition
from a two- to three-dimensional state with a further increase in Re with the development
of spanwise undulations in the primary vortices and streamwise flow structures (Hoarau
et al. 2003; Bourguet et al. 2009; Deng et al. 2017; He et al. 2017; Pandi & Mittal 2019).
For example, the wake of an Eppler 61 airfoil, at a 10° angle of attack, transitions to a
three-dimensional state via the mode C instability and hairpin vortices at Re = 1280.9
(Pandi & Mittal 2019). Linear stability analysis for a NACA 0015 airfoil shows mode C
instability at Re = 1082 for o« = 12.5° and at Re = 730 for o« = 15° (Deng et al. 2017).
He et al. (2017) reported short and long wavelength modes for three NACA airfoils (0009,
0015, 4415) via linear stability analysis at Re = 600 for « = 20°.

In contrast to a nominally 2-D EEW, there have been relatively fewer studies for low
Re flow past a finite wing. Taira & Colonius (2009) investigated flow past rectangular
wings with aspect ratio I < AR < 4, modelled as a flat plate, at Re = 300 and 500 and
0° < «a < 60°. Computations were carried out for the full span of the wing. In another
study, Zhang et al. (2020) investigated flow past a wing with a NACA 0015 section for
0° < o <30° at Re = 400. Their computations were carried out on only one half-span
of the wing. The ‘semi-aspect ratio’, defined as sAR = b/2¢, was varied in the range 1 <
SAR < 6. A symmetry boundary condition was imposed at the mid-span of the wing. In
both the studies it was observed that the wing-tip vortex suppresses vortex shedding at low
angles of attack in low aspect ratio wings. Hairpin vortices form at high angles of attack
for low aspect ratio wings while vortex shedding is observed in relatively high aspect
ratio wings. For example, flow is steady for o < 12° for the entire range of sAR studied at
Re = 400 (Zhang et al. 2020). Hairpin vortices are observed for sAR = 1, braid-like vortex
structures for SAR = 2 and vortex dislocations form for sSAR > 4 (Zhang et al. 2020). Pairs
of counter-rotating vortices connect to form vortex loops near the wing tip (Zhang et al.
2020). A similar connection of counter-rotating vortices has been reported in flow past
a circular cylinder near a side wall (Mittal, Pandi & Hore 2021). Unlike at large Re, the
drag coefficient for the steady flow past a wing is found to be independent of aspect ratio.
Furthermore, for the unsteady flow, it was found that the drag coefficient increases with
increase in aspect ratio.

The Reynolds number for studies by Taira & Colonius (2009) and Zhang et al. (2020)
is relatively low where the flow past an EEW is two dimensional up to a relatively large
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angle of attack. Therefore, the three dimensionality in the flow is largely due to the finite
wing effect. The present study is carried out at a relatively higher Re (= 1000) where
the flow exhibits three dimensionality even for the EEW. In addition to the variation of
aerodynamic force coefficients with «, SAR and Re, we also investigate the effect of these
parameters on the flow. One such aspect is related to cellular shedding. It has been studied
quite comprehensively for the flow past a circular cylinder, wherein the vortices are shed
inclined to the axis of the cylinder owing to end conditions and form ‘cells’ along the span
(Slaouti & Gerrard 1981; Williamson 1989; Behara & Mittal 2010; Mittal ef al. 2021). The
oblique angle of vortices depends on the thickness of the boundary layer on the side wall
(Behara & Mittal 2010). The vortex shedding frequency remains uniform across a cell and
changes from one cell to another. The cellular structure is affected by Reynolds number
and the ratio of the span length to diameter of the cylinder (Gerich & Eckelmann 1982;
Williamson 1989; Konig, Eisenlohr & Eckelmann 1990; Behara & Mittal 2010; Mittal
et al. 2021). Owing to the difference in vortex shedding frequency, dislocations appear
periodically at the boundaries of adjacent cells (Williamson 1989). They were referred
to as ‘knots’ by Gerrard (1978) and ‘vortex splitting’ by Eisenlohr & Eckelmann (1989).
The dislocation frequency is related to the difference in vortex shedding frequency in
adjacent cells (Williamson 1989; Behara & Mittal 2010). Mittal er al. (2021) reported
three types of dislocations: fork-, connected fork- and mixed-type dislocations. Fork-type
dislocations connect two vortices of the same polarity, from a cell with higher vortex
shedding frequency, to one vortex of the same polarity in the adjacent cell with lower
vortex shedding frequency. In the connected-fork type, in addition to fork-type structure,
vortices of opposite polarity connect to form a ring-like vortex structure. The mixed-type
dislocation exhibits characteristics of fork type and connected fork type at different time
instants. Zhang et al. (2020) reported dislocations in the wake of a finite wing that undergo
spanwise translation.

Another interesting aspect of flows at low Re is the spanwise distribution of the
local force coefficients and its relationship with flow structures. The lifting line theory
provides a reasonable approximation for flow past finite wings at large Re (Anderson
2017). According to lifting line theory (Prandtl 1918, 1921), the sectional lift coefficient
of a rectangular wing is maximum at the wing root and decreases monotonically across
the span towards the wing tip. Bastedo & Mueller (1985) performed experiments on

rectangular wings at Re = 2 x 10°. The spanwise variation of the sectional lift coefficient
is monotonic and is in very good agreement with predictions from the lifting line theory.
Garmann & Visbal (2015) also reported a monotonic spanwise distribution of lift on a
finite wing at Re = 2 x 10*. They reported that impingement of a streamwise vortex at a
certain span location increases the effective angle of attack, thereby increasing the local
sectional lift coefficient. Zhang et al. (2020) observed a non-monotonic spanwise variation
of the local lift coefficient for a rectangular wing at Re = 400. Flow structures near the
wing tip cause a local peak in local lift. Lee ef al. (2012), in their study of flow past a finite
flat plate at Re = 100 and 300, found that three-dimensional flow structures are responsible
for the generation of lift near the wing-tip region. We further explore the non-monotonic
spanwise variation of local force coefficients in this study and the possible presence of
streamwise vortex structures in the near wake of the wing.

There have been several efforts in the past to characterize the wing-tip vortex in terms
of its strength and core radius. Garodz & Clawson (1991, 1993) recorded tangential
velocity in the outer core of the vortex generated by various aircrafts as they fly past
a tower instrumented with hot-wire anemometers. They estimated the circulation of the
wing-tip vortex and its radius by modelling it as a Hoffman—Joubert vortex (Hoffmann
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& Joubert 1963). Edstrand et al. (2018) estimated the strength of the wing-tip vortex at
various streamwise locations for Re = 1000 flow past a wing with a NACA 0012 section,
via computation of circulation on a contour line of time-averaged streamwise vorticity
(wy = —0.8). Zhang et al. (2020) utilized the same methodology for Re = 400 flow past
a wing with a NACA 0015 section by using a contour corresponding to w, = —1.5. Both
studies concluded that the strength of the wing-tip vortex decreases with an increase in
streamwise distance from the wing. We employ two vortex models to study the variation
of strength and the radius of the wing-tip vortex with o and sAR: Rankine vortex (Rankine
1877) and Lamb—-Oseen vortex (Saffman 1995; Jacquin et al. 2005).

We investigate the incompressible flow past a rectangular wing with a NACA 0012
section. The Reynolds number, based on the chord, is Re = 1000. Simulations are carried
out for half the span for 0.25 < sAR < 7.5 and 0° < o < 14°. The symmetry of flow
about the mid-span of the wing is verified by carrying out simulations for a full wing
span for a few cases. Computations are also carried out for an EEW that spans the entire
computational domain. These enable us to cull out the three-dimensional effects in the
flow due to finiteness of the wing. The study addresses the following questions. (1) What
are the modifications to the flow past an EEW due to the formation of wing-tip vortices on
a finite wing and how do they vary with aspect ratio? (2) Is the vortex shedding cellular
along the span? How does it vary with change in aspect ratio of the wing? What is the
nature of dislocations that form between cells? (3) It is well known that at high Re the
drag coefficient decreases with an increase in aspect ratio of a finite wing. Is the variation
similar for Re = 1000? (4) How do the various flow structures affect the spanwise variation
of the mean and root mean square (r.m.s.) of the aerodynamic force coefficients, and what
is the effect of aspect ratio? (5) How does the spanwise variation of local aerodynamic
force coefficients compare with the predictions from lifting line theory? (6) How does the
strength of the wing-tip vortex change with the angle of attack and aspect ratio? What is
the streamwise variation of the radius of the wing-tip vortex?

2. Governing flow equations and finite element formulations

Let 2 C R™4 and (0, T') be the spatial and temporal domains, respectively, where nyy is
the number of space dimensions and let I" denote the boundary of §2. The spatial and
temporal coordinates are denoted by x and 7. The equations that govern the incompressible
flow of fluid are

9
p(a—L;—!—u-Vu)—V-a:O on 2 x (0,T), @.1)

Veu=0 onf x(0,7T). 2.2)

Here p, u, and o are the density, velocity and stress tensor, respectively. For a Newtonian
fluid, the stress tensor is

o=-pl+T, T=2pem), e@w=1[(Vu)+ V)], (2.3a—c)

where p, I and p are the pressure, identity tensor and dynamic viscosity, respectively. The
associated boundary conditions used for solving (2.1) and (2.2) are described in § 3.

A stabilized finite element formulation is utilized to solve the governing flow equations
in the primitive variable form. The details of the formulation can be found in our
earlier work (Tezduyar, Mittal & Shih 1991; Mittal 2000, 2001; Behara & Mittal
2009). The terms that provide numerical stabilization to the computations are based on
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the streamline-upwind/Petrov—Galerkin (SUPG) and pressure-stabilizing/Petrov—Galerkin
(PSPG) stabilizing techniques (Tezduyar et al. 1992). The second-order accurate-in-time,
Crank—Nicolson scheme is employed for time integration. The error estimates for the
stabilized finite element method as applied to the advective—diffusive model can be found
in the paper by Franca, Frey & Hughes (1992). The analysis for the formulation as applied
to the incompressible Navier—Stokes equations and the generalization of the method to
higher-order equal-order-interpolation elements can be found in the work by Franca &
Frey (1992). The interested reader can also refer to the work by Shakib & Hughes (1991)
for the Fourier stability and accuracy analysis of this class of methods, both in the context
of space—time and semi-discrete formulations. The finite element discretization results
in nonlinear equations that are solved using the generalized minimal residual technique
(Saad & Schultz 1986) in conjunction with diagonal preconditioners. The formulation is
implemented on a distributed memory parallel system. Message passing interface (known
as MPI) libraries have been used for interprocessor communication. For more details
regarding the parallel implementation, the interested reader may refer to the work by
Behara & Mittal (2009).

3. Problem set-up and finite element mesh
3.1. Computational domain and boundary conditions

Flow past a rectangular wing of span length b and with a NACA 0012 section of chord
length c is considered. The Reynolds number, based on the chord of the wing, free-stream
speed of the incoming flow and kinematic viscosity of fluid, is 1000. A schematic of
the problem set-up and computational domain is shown in figure 1. We simulate only
one half of the span of a rectangular wing to reduce the requirement of computational
resources. Symmetry flow conditions are imposed at the mid-span on the plane ADHE.
The semi-aspect ratio of the wing is defined as sSAR = b/2c¢. The upstream (ABCD)
and downstream (EFGH) boundaries are located at a distance of L,, and L,y from the
leading edge of the airfoil. Here Ly is the separation between the lateral boundary faces
CDHG and ABFE. These dimensions for the present study are L, = 4.5¢, Lyg = 15.5¢
and Ly = 10c. The spanwise extent of the computational domain is L; + b/2. For each
sAR, the value of L, is chosen so that the boundary face BCGF is sufficiently far from
the tip of the wing. Toppings & Yarusevych (2021) and Toppings, Kurelek & Yarusevych
(2021) used L, = 0.5c¢ in their experimental investigations for 1.25 < sAR < 2.75 carried

out at Re = 1.25 x 10°. Here L, varies with sAR in the present study to ensure that
the computations are unaffected by the location of the lateral boundary. It is 2.75¢ for
SAR = 0.25 while it is 14.5¢ for sAR = 7.5, which is the largest span considered in the
study. A no-slip condition for velocity is imposed on the surface of the wing. An inflow
with a uniform free-stream speed U along the x direction is prescribed on the upstream
boundary face ABCD. At the downstream boundary face EFGG, corresponding to the
outflow boundary, the stress vector is assigned a zero value. The component of velocity
normal to the plane and the component of stress vector on the lateral boundary faces ABFE
and CDHG are prescribed to zero value. To test the assumption of symmetry of the flow
about the mid-span of the wing, a few simulations are carried out for a wing with full
span. The details of the set-up as well as the comparison of the results from full- and
half-span computations are presented in Appendix C. It is found that the flow features and
time-averaged aerodynamic coefficients for the full span and half-span, with symmetry
conditions imposed at the mid-span, are identical. Therefore all simulations are carried
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BCGF

w=0;0,_=0; e =

Figure 1. Flow past a finite wing: schematic of the computational domain along with the boundary conditions.
One half of the wing span is considered and symmetry conditions are imposed at the plane ADHE. It lies at
mid-span of the wing and is shaded in the sketch for ease of identification.

out using half-span. A few computations have also been carried out for an EEW where
an airfoil spans the entire lateral extent of the computational domain. The span length of
the wing for these computations is 5S¢ and symmetry conditions are imposed on the lateral
walls (ADHE and BCGF).

3.2. Finite element mesh

The finite element mesh for the EEW is formed by stacking, along the span of the wing,
several copies of the 2-D mesh around an airfoil. The 2-D mesh consists of a structured
region around the airfoil and downstream of it to resolve the boundary layer, its separation
and ensuing wake. The height of the first element lying on the surface of the airfoil is
0.005¢. The mesh outside the structured zone is obtained via Delaunay triangulation. The
combination of the structured and unstructured mesh is similar to that described in our
earlier work for the Eppler airfoil (Pandi & Mittal 2019). Such a mesh enables adequate
resolution of the flow structures while keeping the number of unknowns to a reasonable
level. A mesh convergence study is first carried out for the 2-D mesh. The flow at Re =
1000 and o = 14° is used as a test case. The details are presented in Appendix A.l. It
is found that a mesh with 43474 nodes and 86 602 triangular three-noded elements is
adequate to resolve this flow. A view of the mesh close to the airfoil is shown in figure 2.
This mesh consists of 250 nodes on the surface of the airfoil. The lift and drag coefficients
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Figure 2. Flow past a finite wing: close-up view of the 2-D mesh M%D (details are listed in table 1 of
Appendix A.1) for NACA 0012 airfoil in the xy plane at @ = 14°.

obtained from present computations with this mesh and those from the literature (Mittal
& Tezduyar 1994; Liu et al. 2012; Kurtulus 2015; Meena, Taira & Asai 2017; Di Ilio et al.
2018) for various « are presented in Appendix A.1. They are in very good agreement.

The mesh for the EEW is generated by stacking N, = 160 copies of the 2-D mesh for
the airfoil. A convergence study, by utilizing an additional mesh with twice the number of
elements along the span, is presented in Appendix A.2.1. The mesh for the finite wing is
formed by stacking copies of two different 2-D meshes. As for the EEW, the mesh on the
finite wing is formed by stacking copies of the 2-D mesh for the airfoil. An additional
2-D mesh is generated from the mesh around the airfoil by introducing nodes inside
the region occupied by the airfoil. The number of nodes and elements of this mesh are
45760 and 91 421, respectively. Copies of this 2-D mesh are stacked beyond the spanwise
extent of the finite wing. Unlike in the mesh for EEW, the copies of the 2D mesh are not
uniformly spaced along the span, but rather stacked in a manner such that they form a finer
mesh towards the wing tip to adequately resolve the wing-tip vortex and the boundary
layer at the face of the wing tip. The size of the element at the wing tip is 0.0035c.
The convergence study for the finite wing with sAR =5 for Re = 1000 and o = 14° is
presented in Appendix A.2.2. Three meshes of varying spanwise resolution are utilized.
It is found that the mesh with 186 elements along the span of the wing provides adequate
spatial resolution for the range of parameters in this work. Meshes for wings with other
sAR are generated to keep the same resolution along the span. We extend the convergence
study for the finite wing with sAR = 1.25 for Re = 1000 and « = 5° by utilizing two
meshes (see Appendix A.2.3). Both meshes result in almost the same result and it is in
excellent agreement with that reported by Edstrand et al. (2018). The details are presented
in Appendix A.2.3.

3.3. Identification of vortex structures

One of the objectives of the present study is to identify the various flow structures and
their interactions in the presence of a wing-tip vortex. Epps (2017) and Zhang et al. (2018)
presented a brief review of several vortex identification methods. Some of the widely used
methods are based on the Q (Hunt, Wray & Moin 1988), 1> (Jeong & Hussain 1995) and 2
criterion (Liu et al. 2016). These are described in Appendix B. Our earlier studies (Pandi
& Mittal 2019; Mittal et al. 2021) utilized Q criterion to visualize the vortex structures.
Mittal et al. (2021) showed that all three methods (Q, 4> and §2) give identical vortical
structures. A similar analysis is carried out in this study, using Q and A; criterion, for

958 A10-7


https://doi.org/10.1017/jfm.2023.80

https://doi.org/10.1017/jfm.2023.80 Published online by Cambridge University Press

J.S.S. Pandi and S. Mittal

(a)

Hairpin vortices

L

Figure 3. Flow past an EEW at Re = 1000: Q(= 0.1) isosurface for an instantaneous flow coloured with the
spanwise component of vorticity (w, = £2) for « = (a) 8°, (b) 12° and (c¢) 14°. Also shown in (¢) is a close-up
view of the hairpin vortices. The spanwise extent of the domain is 5c.

various flows and is presented in Appendix B. It is found that the Q and A, methods reveal
identical flow structures. The Q criterion is used for identification of vortices in this work.

4. End-to-end versus finite wing
4.1. Flow structures

The flow past an EEW is investigated at various angles of attack. The Q(= 0.1) isosurface
for the fully developed unsteady flow at a time instant corresponding to the peak value of
lift coefficient is shown in figure 3 for various angles of attack. The vortices are coloured
with the spanwise component of vorticity (w, = £2). The flow stays steady for o < 7°
and becomes unsteady thereafter via primary instability of the wake leading to vortex
shedding. A similar observation was made by Kurtulus (2015) and Di Ilio er al. (2018)
via a 2-D calculation. The shed vortices are parallel to the axis of the wing. They develop
spanwise undulations causing the wake to transition from a two- to three-dimensional
state via a mode C instability (Zhang et al. 1995; Yildirim, Rindt & van Steenhoven
2013) for « > 12°. Pandi & Mittal (2019); Deng et al. (2017) reported a similar transition,
but at different Re and «, for the Eppler 61 and NACA 0015 sections. As observed by
Pandi & Mittal (2019) for an Eppler 61 airfoil, each wave of the mode C instability,
along the span, evolves to a hairpin vortex (see the close-up view in figure 3c). The two
limbs of each hairpin vortex are associated with a streamwise vorticity of opposite sign.
Pandi & Mittal (2019) presented detailed features of the mode C instability in terms of
the RT symmetry (R denotes reflection about the wake axis and 7" denotes translation
in time) and time periodicity of the three-dimensional flow. The flow in the present
study has the same characteristics. It exhibits neither odd-RT nor even-RT symmetry
and has a time period of 27, where T corresponds to the time period of primary vortex
shedding. The flow at o = 14° is regular and periodic along the span. The spanwise
wavelength (1;) estimated from the streamwise flow structure is 0.33¢. Hoarau et al. (2003)
proposed the length scale for an airfoil, placed at an angle of attack «, to be d = csina.
The spanwise wavelength of the flow structures, based on this scaling, is A; ~ 1.36d and
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Figure 4. Flow past the sAR = 5 wing at Re = 1000: Q(= 0.1) isosurface for an instantaneous flow coloured
with the spanwise component of vorticity (w, = +2) for @ = (a) 8°, (b) 10°, (c¢) 12° and (d) 14°. The wing-tip
vortex, central and end cells, dislocations, vortex splitting, vortex linkages and arch vortices are identified in the
images. The inset in (d) shows the flow mirrored about the mid-span of the wing to visualize the arch vortices.

is close to the value reported by Pandi & Mittal (2019) (1.12d < A, < 1.45d), Deng et al.
(2017) (1.35d < A; < 1.62d) and He et al. (2017) (1.63d < A; < 1.95d) for other airfoils.
Pandi & Mittal (2019) presented characteristics of various modes of instabilities that cause
transition to three dimensionality in flow past airfoils and a circular cylinder, from past
studies. It was shown that the onset Reynolds number and wavelength of the instability for
the circular cylinder and airfoils are comparable if one uses a diameter as the length scale
for the cylinder and d = ¢ sin « for the airfoil.

The difference in pressure between the upper and lower surfaces of the wing results
in modification of the flow near the wing tip of a finite wing, causing the formation of
a wing-tip vortex. This streamwise vortex interacts with the vortex shedding to further
modify the flow. We compare the flow past a finite wing of sAR = 5 with that past an
EEW to understand the differences and their effect on aerodynamic coefficients at various
o. The Q(= 0.1) isosurface of instantaneous flow coloured with the spanwise component
of vorticity (w, = £2) for an SAR = 5 wing at various angles of attack is shown in figure 4.
The wing-tip vortex suppresses the vortex shedding near the tip of the wing. In addition,
it weakens the vortex shedding over the bulk of the span compared with that for the EEW.
As aresult, at @ = 8°, the vortex shedding for the finite wing is quite weak compared with
that of the EEW (see figures 3a and 4a).

According to Helmholtz’s theorem (Batchelor 1967), a vortex must extend to the
boundaries of the fluid or form a closed path. The spanwise vortices of an EEW extend
to the lateral boundaries of the computational domain (see figure 3). However, owing to
the wing-tip vortex, linkages form between vortices of opposite polarity near the tip of
a finite wing. They are clearly seen in figure 4(b—d) for o« > 10°. Figure 5 shows the
linkages via the Q isosurface as well as a few vortex lines that pass through the core
of an adjacent pair of counter-rotating vortices and connect to form a closed loop. We
note that the linkages are not clear for « = 8° from the Q isosurface (figure 4a). However,
vortex lines in figure 5(a) clearly show the linkages even at this «. Similar linkages have
been reported for a finite wing (Zhang et al. 2020) and flow past a circular cylinder near
the side wall (Mittal et al. 2021). Another flow feature observed at o = 14° is the arch
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Figure 5. Flow past the sSAR = 5 wing at Re = 1000: Q(= 0.1) isosurface for an instantaneous flow coloured
with the spanwise component of vorticity for « = (a) 8° and (b) 10°. A few vortex lines that pass through the
core of the adjacent pair of counter-rotating vortices connect to form a closed loop.

vortices in the mid-span region and at streamwise locations far downstream of the wing.
These appear more clearly in images that show the flow for the full span of the wing.
The inset in figure 4(d) shows a close-up view of the arch vortices for the full span. This
image is constructed by mirroring the flow about the mid-span of the wing. A study to
assess the effect of the symmetry boundary condition at the mid-span to constrain the
flow is presented in Appendix C. The flow for the full span of the wing is computed for
certain cases and compared with those for the half-span. It reveals that computations with
half-span and full span lead to the same results. Arch vortices for sSAR = 1 and 4 are shown
in the appendix. They are very similar to those reported in earlier studies for flow past a
non-stationary wing (Visbal, Yilmaz & Rockwell 2013; Rockwood et al. 2019; Visbal &
Garmann 2019).

An interesting aspect of vortex shedding on a wing of finite span is the formation
of cells. This has been studied in detail for bluff body flows (Gerrard 1978; Eisenlohr
& Eckelmann 1989; Williamson 1989; Behara & Mittal 2010; Mittal et al. 2021). The
variation of frequency of vortex shedding along the span is used to identify the number
of cellular structures in the wake (Williamson 1989; Behara & Mittal 2010; Mittal et al.
2021). The frequency of vortex shedding is constant within a cell. Similar to the flow of
an EEW, the axis of the primary vortices shed from a wing of SAR =5 and o = 8° is
parallel to the span of the wing and the frequency of vortex shedding is the same at all
spanwise locations, resulting in a single cell across the span. With an increase in angle of
attack, the primary vortices are no longer parallel to the span of the wing. Furthermore,
the vortex shedding occurs in two cells for « > 10°. We refer to the cell near the mid-span
as the central cell and the one towards the wing tip as the end cell. The frequency of vortex
shedding changes across the boundary of adjacent cells. A larger number of vortices, per
unit time, are shed along one part of the span compared with other. Periodically in time,
the extra vortex in the cell with a larger number of vortices connects with the neighbouring
vortices in the adjacent cell leading to the formation of ‘knots’ (Eisenlohr & Eckelmann
1989) or ‘dislocations’ (Williamson 1989; Zhang et al. 2020; Mittal et al. 2021).
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Dislocations can be of several kinds (Mittal er al. 2021). For example, a pair of vortices
of the same polarity in one cell may connect with a single vortex of the same polarity
in an adjoining cell to form a fork-type (Dy) dislocation. A modification to the fork-type
dislocation was reported by Mittal et al. (2021) wherein vortices of opposite polarity form
an additional linkage along with those in a fork-type dislocation. This is referred to as the
connected fork-type dislocation. Another variant is the mixed-type dislocation that is of a
fork type at one instant and a connected fork type at another instant (Mittal et al. 2021).
Vortex dislocations are marked in figure 4(b—d). Mixed-type dislocations are observed at
o = 10° while they are of fork type at « = 14°. The mixed-type dislocations have been
observed earlier in bluff body flows. However, they are being reported for a finite wing for
the first time. An interesting feature of the dislocations at « = 12° is that the vortices split
and reconnect in the far wake forming fork-type and reverse fork-type dislocations. As a
result, a single cell in the near wake degenerates to two cells in the far wake. We note that
this phenomenon has not been reported earlier in any flow.

4.2. Review of lifting line theory

We briefly review the lifting line theory for a finite wing and propose a small modification
to apply it to relatively low Re flows. Consider a rectangular wing of span b with no
twist and the same airfoil section of chord length ¢ all along the span (see figure 1),
placed in a uniform flow at an angle of attack, «. We refer to « as the geometric angle
of attack. The airfoil is assumed to be symmetric. The lifting characteristic of the wing is
modelled by an infinite number of horseshoe vortices. The bound vortex of each horseshoe
vortex lies along the quarter-chord line of the wing forming a ‘lifting line.” The downwash
induced by the vortices, estimated using the Biot—Savart law, results in tilting of the local
lift vector at each spanwise station by «;(z), referred to as the induced angle of attack.
The effective angle of attack experienced by the local airfoil at each spanwise section
is therefore o, (z) = @ — @;(z). Assuming that the flow along the span is not significant,
the local lift coefficient at each span location is estimated from the Kutta—Joukowski
theorem as C;(z) = 21"(z)/Uc, where I'(z) is the circulation at each spanwise section
(Bertin 2002; Anderson 2017). Here C;(z) is also related to the effective angle of attack as
Ci(2) = ae(2)a,, where a, is the lift curve slope of the airfoil section. Equating the local
lift coefficient obtained from these two approaches results in the following equation for
circulation:

2I(2) 1 (P2 drjdz
o= +—
aoUc AU J_ppp 20 — 2

dz. 4.1)

Using a transformation z= —b/2cosf, 0 <6 < m, the spanwise variation of
circulation is approximated using a Fourier sine series with N coefficients: I'(0) =
2bU Z]IV Ay, sin nf. Substitution of this approximation of I" in (4.1) and rearranging
the terms results in the following equation that can be utilized to estimate the Fourier
coefficients for I"(0):

2w XL N sinng
o= a XI:A,, sinn6 + Xl:nAn g “4.2)

A collocation method is used to generate N equations at the same number of
discrete spanwise locations. The collocation points are distributed all along the span.
However, their density increases towards the wing tip. The resulting Fourier coefficients
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Figure 6. Flow past an EEW and sAR = 5 wing at Re = 1000: variation of the time averaged (a) Cy, (b) Cp

and (c) C /Cp with angle of attack. The data obtained using lifting line theory (LLT) (Prandtl 1921) are plotted
in each image. The best linear fit for the lift coefficient of an EEW is shown in (@) via the dashed green line.

are utilized to estimate the spanwise distribution of the coefficient of lift (C;(0) =

4bUc Zjlv A, sinnf), the total lift coefficient for the finite wing (Cr = Ajmbc) and the
total induced drag coefficient (Bertin 2002; Anderson 2017):

CL2 N A, 2
Cpi=——11 — . 4.3
b nAR( +22:”(A1> (43)

In the classical lifting line theory, the slope of the variation of the local lift coefficient

with angle of attack is assumed to be 27 rad~! for a thin airfoil (Bertin 2002; Anderson
2017). Unlike at large Re, the lift curve slope (a,) for the airfoil section at Re = 1000 is
much lower. We estimate a,, from direct numerical simulations at various « for an EEW,
and utilize this estimated value in (4.1) and (4.2) to obtain the coefficients of a finite wing.

4.3. Force coefficients

Figure 6 shows the variation of time-averaged aerodynamic force coefficients and
aerodynamic efficiency, with o/, for an EEW and sAR = 5 wing at Re = 1000. As expected,
the lift coefficient of a finite wing is lower than that for the EEW at each «. It is inline with
lifting line theory (Prandtl 1921) wherein the finite wing, unlike an EEW, experiences a
reduction in the effective angle of attack at each spanwise section. The prediction from the
lifting line theory, with a small modification to account for the low Re flow, is also shown in
figure 6(a). Compared with flows at high Re (Winkelmann et al. 1980; Sheldahl & Klimas
1981), the lift curve slope at Re = 1000 is much lower. Consistent with the observations
of Taira & Colonius (2009) and Zhang et al. (2020), unlike at high Re, as indicated by
the CL — a curve, the flow does not exhibit stall at low Re. The drag coefficient shown in
figure 6(b) from the lifting line theory is the sum of Cp for the EEW and the estimate of
the induced drag coefficient for the finite wing. The induced drag is due to the tilting of
the local lift vector. Also shown in the figure is the time-averaged drag coefficient from
the computations for the viscous flow for the EEW as well as the sAR = 5 finite wing.
Contrary to the prediction from the lifting line theory, the present results show that the
drag coefficient for the finite wing is lower than that for the EEW. Computations have
also been carried out to obtain the steady flow by leaving out the unsteady terms in the
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Figure 7. Flow past the sSAR = 5 wing at Re = 1000: spanwise variation of the time-averaged sectional force
coefficient (a) C; and (b) C; at various «. The sectional force coefficient distribution from the simulation is
compared with theoretical data obtained using lifting line theory (LLT).

governing equations. It is found that the drag coefficient for the EEW and sAR = 5 wing
are quite comparable; the values for the EEW are marginally higher. Furthermore, they
are both lower than those for the time-averaged flow. The higher difference in the drag
coefficient for the unsteady flow, between the finite wing and EEW, is primarily because
of reduced vortex shedding activity in the finite wing owing to the wing-tip vortex. We
investigate this further in a later section in the paper. The loss in lift for the finite wing
outweighs the decrease in drag leading to its overall decrease in aerodynamic efficiency
compared with the EEW, as shown in figure 6(c).

Figure 7(a) shows the spanwise variation of the local lift coefficient for the
time-averaged flow for different «. Also shown in the figure is the distribution from the
lifting line theory (Prandtl 1921). As per the lifting line theory, the local lift coefficient
on a wing with a rectangular planform is maximum at the wing root and decreases
monotonically towards the wing tip. The lift distribution from the computations at Re =
1000 is in good agreement with that from the lifting line theory for o < 8°. However,
a non-monotonic variation is revealed for o > 10°. A local maximum is seen near the
wing-tip region for o > 12°. A similar observation was made by Zhang et al. (2020)
for flow at large o at Re = 400. We attribute the non-monotonic distribution of Cj
to streamwise vortices that alter the distribution of circulation along the span. This is
explained later in § 7 via a discrete vortex model. The spanwise variation of Cy is shown
in figure 7(b). Also plotted is the prediction from the lifting line theory. It is obtained by
adding the induced drag coefficient at each section from the tilting of the local lift vector
to the drag coefficient for the EEW. The figure brings out the limitation of the lifting line
theory in prediction of drag at low Re.

5. Effect of aspect ratio
5.1. Flow structures

We investigate the effect of sAR at two representative angles of attack: o« = 8° and 14°.
Vortex shedding is quite weak at @ = 8° for the EEW. The wing-tip vortex on a finite
wing weakens it further by reducing the suction on the upper surface of the wing, thereby
reducing the adverse pressure gradient. As a result, the flow for SAR <4 at o = 8° is
devoid of vortex shedding. Vortex shedding is quite strong at @ = 14° and its interaction
with the wing-tip vortex results in interesting flow features. To further understand the
interplay between the vortex shedding and wing-tip vortex, we explore the strength and
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Vortex linkage

Figure 8. Flow past a finite wing at « = 14° and Re = 1000: Q(= 0.1) isosurface for an instantaneous flow
coloured with the spanwise component of vorticity (w, = £2) for sAR = (a) 0.25, (b) 0.5, (¢) 1, (d) 2,
(e) 3, (f) 4 and (g) 7.5. Various flow features such as central and end cells, dislocations, hairpin vortices,
vortex linkages and arch vortices are identified in the images. The insets in (b) that show hairpin vortex and
linkage for sAR = 0.5 are with the flow mirrored about the mid-span of the wing.

structure of the wing-tip vortex later in the paper. The Q isosurface of instantaneous flow
for various sAR is presented in figure 8. Vortex shedding is suppressed in the region close
to the wing tip; the flow achieves a steady state for sSAR < 0.25 (figure 8a) while shedding
is observed away from the wing tip for larger sAR. Vortex shedding for sAR = 0.5 occurs
via hairpin vortex structures (figure 8b). These hairpin vortices are different than those that
appear in the wake of the EEW as a result of the mode C instability (figure 3¢). The hairpin
vortices resulting from the mode C instability, also reported by Pandi & Mittal (2019), have
a significantly smaller spanwise wavelength compared with those for an sAR = 0.5 wing.
Similar hairpins are seen for a finite wing, away from the wing tip, albeit for high sAR
(see inset of figure 8g). The interaction of the hairpin vortices with the wing-tip vortex for
sAR = 0.5 as it convects downstream results in undulations and the formation of linkages.
The structure of the linkage is highlighted in the inset in figure 8(b) that shows a close-up
view of the flow mirrored about the mid-span of the wing. The flow for sSAR = 0.5 was also
computed for the full span of the wing. It is found that the flow retains symmetry about
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the mid-span and is identical to the flow for the half-span. Vortex linkages for sAR > 2
have a very different structure compared with that for SAR = 0.5. As shown in figures 5
and 8(d—g), they form between spanwise vortices of opposite polarity and do not link them
with the wing-tip vortices. The linkages for sAR = 1 have attributes that are common to a
low and high sAR wing. They are shown in the close-up view in figure 8(c) and marked via
broken lines and form in the near wake to link spanwise vortices of opposite polarity. As
in the case of sSAR = 0.5, they form an additional linkage with the wing-tip vortex as they
convect downstream. Arch vortices form in the far wake near the plane of symmetry for
SAR > 1. Unlike a hairpin vortex whose limbs are aligned streamwise (Zhang et al. 2020),
the limbs of an arch vortex are in the cross-flow direction (Visbal et al. 2013; Rockwood
et al. 2019; Visbal & Garmann 2019). The wake consists of one cell for sAR < 2. Two
cells are observed for sSAR > 3 with a fork-type dislocation (described later in the paper)
at their boundary. The vortex dislocation forms at the same spanwise location, at different
time instants, for SAR = 3. However, it is generated at different spanwise locations for
SAR > 4.

5.2. Force coefficients and comparison with lifting line theory

The variation of the time-averaged lift and drag coefficient with sAR is plotted in
figures 9(a) and 9(b), respectively. For reference, the coefficients for the EEW along with
the estimates from lifting line theory for the finite wing are also shown. We note that
the lifting line theory cannot be expected to yield good predictions for low sAR wings
owing to the intrinsic three dimensionality of the flow. The lift coefficient increases with
an increase in SAR and approaches the value for an EEW. The drag coefficient, predicted
by the viscous computations, shows a very interesting trend with an increase in sAR. As
per the lifting line theory, it decreases with an increase in sAR due to a decrease in induced
drag. However, the viscous computations for the finite wing reveal a non-monotonic
variation of the time-averaged drag coefficient with an increase in sAR (see figure 9b).
It decreases with an increase in SAR for sAR < 0.5 and increases thereafter. Furthermore,
for all sAR, it is smaller than that for the EEW. To explore this curious behaviour, we
study the pressure and viscous contributions. It is found that the lift is primarily due to
the pressure distribution and has very little contribution from viscous force (not shown
here). The contributions from both the components is significant for drag and are shown
in figure 9(c). Viscous force is the dominant contributor to drag for low sAR(= 0.25).
Its contribution decreases while the pressure contribution increases with an increase in
SAR. This explains the non-monotonic variation of Cp with sAR. The steady increase in the
pressure contribution with sAR causes the net drag coefficient to increase for sAR > 0.5,
unlike the prediction from lifting line theory. We note that the wing-tip vortex reduces the
suction on the upper surface near the wing tip. This leads to a reduced adverse pressure
gradient and, thereby, reduced flow separation compared with an EEW. The fraction of
wing span affected by the wing-tip vortex reduces with an increase in sAR, thereby causing
a reduction in its effect. We explore the effect of a wing-tip vortex on vortex shedding.
Figure 10(a) shows the spanwise variation of v/v’ at (x/c = 2.74, y/c = 0.051) for various
sSAR along with that for an EEW. The Reynolds stress is significantly smaller near the
wing tip for all sAR, indicating suppression of vortex shedding at those locations due
to the wing-tip vortex. The net unsteadiness across the span, for each sAR, is estimated

via spanwise integration of the Reynolds stress as Vv = ( fob 12 (z)dz)/( f(f /2 dz). Its
variation with sAR is shown in figure 10(b). We note that v’v’ increases with an increase
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Figure 9. Flow past a finite wing at « = 14° and Re = 1000: variation of the time averaged (a) Cr and (b) Cp
with sAR along with the prediction from lifting line theory for Cy and Cp. Also shown in (c) is the variation of
time averaged pressure (Cp,) and the viscous component (Cp,) of drag coefficient with sAR. The sectional C
for steady and time-averaged flows is compared in (d).
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Figure 10. Flow past a finite wing at « = 14° and Re = 1000: spanwise variation of (a) v’v’ sampled at (x/c =

2.74,y/c = 0.051) for various sAR. The net unsteadiness in the wake (1)75/), estimated via spanwise integration
of v/v’, is plotted in (b). Also shown in (a,b) is the data for the EEW.

in SAR and approaches the value for an EEW, signifying the increasing strength of vortex
shedding with an increase in sAR. The trend is similar to the variation of drag coefficient
with AR (figure 9b).

The spanwise variation of sectional lift coefficient for the time-averaged flow for o =
14° is shown in figure 9(d) for several sAR. As is observed for sSAR = 5 (see figure 7a),
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peak C; is not at the root but close to wing tip for all SAR. The non-monotonic spanwise

variation in C; is due to the streamwise vortices that are formed near the wing-tip region.
Images of the flow demonstrating the same are shown later in the paper. The peak C;
increases with an increase in sAR for sSAR > 0.5; C; at the wing root also increases with

an increase in sAR. Figure 9(d) shows the C; distribution for the steady flow, computed by
dropping the unsteady terms in the governing equations. We note that, compared with the

steady flow, C; is higher for the unsteady flow indicating that vortex shedding enhances C;.
The higher unsteadiness for the EEW compared with the finite wing is also the reason for

larger Cp for the former, as shown in figure 6(b). A further observation is that C; for the
steady flow at the wing root is quite similar for all the sAR shown in the figure. Therefore, a

larger increase of C; for higher sAR for the unsteady flow is indicative of a stronger vortex
shedding. This is consistent with the observation from figure 8. Contrary to the prediction
from lifting line theory, the peak C; for the steady flow is also not at the wing root but at a
location close to that for the unsteady flow. We will address this in a later section.

6. Cellular shedding and vortex dislocations
6.1. Frequency of vortex shedding

The number of cells in the wake can be identified from the frequency of vortex shedding
measured at probes located at various locations along the span (Williamson 1989; Behara
& Mittal 2010; Mittal et al. 2021). The frequency is constant within a cell. The varying
frequencies from multiple cells leave an imprint in the time histories of aerodynamic
forces integrated along the span. The time histories of lift coefficient for various sAR
along with their frequency spectra are presented in figure 11. For reference, the plots for
the EEW are shown as well. The frequency is non-dimensionalized with the free-stream
speed and a length scale corresponding to d = csina (Hoarau et al. 2003). The flow is
steady for SAR = 0.25 and the associated lift coefficient is invariant with time (not shown
in the figure). Single cell shedding for sSAR < 2 and two cell shedding is observed for
sAR > 3 (see figure 8). The difference in the frequencies of central and end cells lead
to low frequency modulation in the time histories (figure 11a). The Strouhal number
for the two frequencies are referred to as Stc and Stg, respectively, and are marked in
figure 11(b). The frequency of vortex shedding has also been estimated from the time
variation of the cross-flow component of velocity at various span locations in the near wake
at (x/c = 1.25,y/c = —0.068). The frequencies so measured are identical to those marked
in figure 11(b). The flow is explored in more detail later in the paper. The fluctuation in lift
coefficient is largest for the EEW and decreases with a decrease in sAR.

The variation of St¢ and Stg with sAR is shown in figure 12(a). Here St¢ increases with
an increase in sAR and approaches the St for the EEW. The vortex shedding frequency
in the end cell is smaller than in the central cell. The difference in St and Stz is related
to the beat frequency in the time signals of force coefficients and the probes lying at the
boundary of the cells (Williamson 1989; Mittal et al. 2021). It increases with an increase
in SAR up to SAR = 5 beyond which it saturates to a constant value. Both St¢ and Stg reach
close to their respective saturated values at SAR = 5. The variation of St¢ and Stg with « is
explored for the sSAR = 5 wing; see figure 12(b). Also plotted is the St for the EEW. Vortex
shedding is very weak at o = 8° for the finite wing; the flow is close to steady near the
wing tip (see figure 4a). Nevertheless, the Strouhal number is close to that for the EEW at
this «. The vortex shedding at « = 10° is relatively stronger and occurs in two cells (see
figure 4b). The frequency of vortex shedding in the central cell, near the root, is close to
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Figure 11. Flow past a finite wing at @ = 14° and Re = 1000: (a) time histories of Cy, for the EEW and finite
wing of various sAR, and (b) their frequency spectra. The Strouhal number corresponding to the dominant
frequency for each spectrum is marked in the figure.

that for the EEW; it is smaller in the end cell. A very interesting phenomenon is observed
at o = 12°. The near wake exhibits shedding in a single cell (figure 4c). However, vortex
splitting downstream in the wake leads to two cells of vortex shedding in the far wake.
Therefore, probes located in the near wake (x/c = 1.25, y/c = —0.068) show a single cell
with the same frequency of shedding along the span (St¢ = 0.159), but indicate two cell
shedding in the far wake (x/c = 11.62, y/c = —0.026) (Stg = 0.159, Stc = 0.145). We
note that the St shown in figure 12(b) for « = 12° is in the near wake where the shedding
is in a single cell. The central cell experiences a decrease in shedding frequency in the
downstream wake. Unlike at other o, St¢ is smaller than Stg. The frequency of occurrence
of dislocation, the difference in Stz and St¢, increases with an increase in .

The dislocations in two cell vortex shedding are of a varied kind depending on the
combination of sAR and «. They are of mixed type (Dy—r) (Mittal et al. 2021), fork
type (Dy) (Williamson 1989; Mittal er al. 2021) and a mix of fork (Dy) and reverse fork
type (D,r) reported for the first time in the present study. Figure 13 shows a summary of
the various states of flow in the sAR—« plane. The classification is based on the type of
dislocations and number of cells in the flow. The parameters for which the flow achieves
a steady state is also shown. The boundaries of the various regimes are indicative extents
where a similar flow structure is expected. The hatched region in the figure shows the
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Figure 12. Flow past a finite wing at Re = 1000: variation of non-dimensional vortex shedding frequency in
the central cell (St¢) and end cell (Stg) with (a) sAR for @« = 14° and (b) o for SAR = 5. The St for EEW is
also marked. The frequency is estimated from probes placed along the span in the near wake at (x/c = 1.25,
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Figure 13. Flow past a finite wing: classification of the flow in the sAR—« plane on the basis of the number of
cells, type of dislocation and its formation along the span. The boundaries of the various regions are not exact,
but indicative in nature and are based on the cases for which computations have been carried out and marked
by hollow symbols. The cases for which a full-span simulation is initiated from the solution from half-span, by
reflecting it about the mid-span, are highlighted using solid symbols. The dislocations, for two cell shedding,
are generated at the same spanwise location except in the hatched zone where they are formed at different
spanwise locations at different time instants. Here Dy, Dy, and D,y indicate fork-type, connected fork-type and
reverse fork-type dislocations.

regime for which the dislocation is generated at various spanwise locations. These features
are described in detail in the following sections.

6.2. Mixed-type dislocation (Dy_.) generated at the same spanwise location: SAR =5,
a = 10°

Dislocations occur at the boundary of cells with a different vortex shedding frequency.
We present an example of flow wherein the dislocation is always generated at the
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Figure 14. Flow past the sSAR =5 wing at « = 10° and Re = 1000: (a) spatio-temporal variation of Sty
obtained using a probe placed at x/c = 1.25 and y/c = —0.068. The Q(= 0.1) isosurface for an instantaneous
flow coloured with the spanwise component of vorticity (w, = £2) at two time instants is presented in
(b,c). Fork-type (Dy) and connected fork-type (Df.) dislocation is marked in (b,c). Results are shown for
(b) t = 178.386, (c) t = 180.886.

same spanwise location. We estimate St, from each time period of the time history of
the cross-flow component of velocity at various spanwise locations in the near wake
(x/c =1.25,y/c = —0.0068). We note that St,, is the unsteady vortex shedding frequency
estimated from each time period while that shown in figure 12 is from the fast Fourier
transform of the entire time history of the unsteady signal. The spatio-temporal variation
of St is presented in figure 14(a). Vortex dislocations can be identified from a spatial
change in the local vortex shedding frequency, St, (Mittal et al. 2021). Behara & Mittal
(2010) further observed that the appearance of vortex dislocations coincides with local
minima in 3‘}1, followed by its sharp rise. Three dislocations, D, D, and D3, are marked
in figure 14(a). They appear at t = 175.23, 196.23 and 217.33, respectively, at the same
spanwise location. The time period of formation of the dislocations is ~21 time units and
corresponds to a frequency of 0.0476. The frequency of appearance of dislocations can
also be estimated from the beat frequency in the time signal near the junction of the cells
(Williamson 1989; Mittal et al. 2021). The beat frequency estimated from the time history
of the cross-flow component of velocity is 0.0458, and is in good agreement with the
estimate from the variation of SN'tv.

Images of the isosurface of Q coloured with the spanwise component of vorticity
are presented in figure 14(b,c) at two time instants. The dislocation is of a fork type
at t = 178.386 (figure 14b). At t = 180.886 (figure 14c¢), a linkage between vortices of
opposite polarity results in the formation of a ring-type vortex structure in addition to a
fork-type dislocation. Mittal et al. (2021) referred to this as the mixed-type dislocation in
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Figure 15. Flow past the sSAR =5 wing at o = 14° and Re = 1000: (a) spatio-temporal variation of Sty
obtained using a probe placed at x/c = 1.25 and y/c = —0.068. The Q(= 0.1) isosurface for an instantaneous
flow coloured with the spanwise component of vorticity (w, = %2) at various time instants is presented in
(b—e). Also marked are the dislocation D; in (b—c) and D3 in (d—e). Results are shown for (b) t = 60.176,
(c) t =061.842, (d) t =T77.994, (e) t = 79.298.

their investigation of flow past a cylinder in the presence of a side wall. To the best of our
knowledge, this type of dislocation is being reported for the first time in the wake of wings.

6.3. Fork-type (Dy) dislocation generated at varying spanwise locations: SAR =5,
a = 14°
Dislocations are formed at varying spanwise locations for sAR > 4 at o = 14° (see
figure 13). The spatio-temporal variation of St, for sSAR = 5 is shown in figure 15(a).
Dislocations formed at various time instants are marked in the figure as D1 — Dg. Each
occurrence is at a different spanwise location between z/c¢ = 0.89 to 1.9. The time period
between successive occurrence also varies. The average dislocation frequency is estimated
to be 0.091. It is in good agreement with the beat frequency (= 0.092) estimated from the
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time signal of the cross-flow component of velocity in the near wake. The instantaneous
flow is shown in figure 15(b—e). The first two images show dislocation D as it convects
downstream, while the other two images show D3. Both D; and D3 are of a fork type
(Dy) and appear at different spanwise locations resulting in a time-varying span length of
the end and central cells. However, once generated, each dislocation convects along the
same spanwise location. Unlike in the present study, the dislocation at lower Re(= 400)
undergoes a spanwise movement as it convects (Zhang et al. 2020).

6.4. Fork (Dy) and reverse fork-type (D) dislocations due to vortex splitting and
reconnection: SAR =5, o = 12°

Unlike for other flows, a = 12° exhibits formation of dislocations in the far wake (x/c ~
8). The spatio-temporal variation of St, for a probe in the near wake shows a single cell
shedding while it shows the appearance of dislocations rather close to the wing root in the
far wake. Figure 16(a) shows that the vortex shedding frequency at the wing root shows
periodic variations with time while it is approximately constant with time, over the outer
span. The instantaneous flow presented in figure 16(b) shows that the vortices are released
from the wing at an oblique angle in the wake. They tend to align themselves parallel
to the wing, especially near the wing root, as they convect downstream. In the process
they undergo splitting and reconnection leading to a dislocation in the far wake. A reverse
fork-type dislocation (D,y), on the far right, is marked in the image. The dislocation forms
when two vortices of the same polarity in the end cell connect to a vortex of the same
polarity in the adjoining cell. Some of the vortices marked in the near wake in this panel are
identified in figure 16(c) at a later time as they convect downstream. While the dislocation
seen in figure 16(b) is washed out of the frame at a later time, a new dislocation appears in
figure 16(c) as a result of splitting and reconnection of vortices as shown. Also, a fork-type
dislocation (Dy) forms in the later part of the wake. The convection of the vortices and the
dislocations lead to the state shown in figure 16(d). Dislocation Dy is washed out, while
D¢ moves in the far wake.

6.5. Role of cellular shedding in spanwise variation of r.m.s. of aerodynamic coefficients

We explore the effect of cellular shedding observed for sAR > 3 (see figure 8) on the
unsteadiness of flow via spanwise variation of the r.m.s. of the lift and drag coefficient and

/v’ component of Reynolds stress in the near wake. The same is shown in figure 17 along
with the flow for SAR = 2 and 4 associated with a single cell and two cells, respectively.

The r.m.s. coefficients and u/v’ are maximum close to the wing root for SAR = 2. However,
the unsteadiness in the flow is closer to the wing tip than the wing root for sAR = 4.
For example, C;,, . achieves a maxima at z/c ~ 2.6. We note the nearly parallel shedding
for sSAR = 2 and varying oblique angle of the vortices in the near wake for sSAR = 4. The
spanwise minima in the unsteadiness for sAR = 4 occurs at the location where the oblique
angle of the shed vortices is maximum. The unsteadiness near the wing tip is very weak
for both sAR.

7. Streamwise vortices

Figures 7 and 9(d), that show the spanwise variation of sectional aerodynamic coefficients,
reveal a significant departure of the present results from the predictions of lifting line
theory. We attribute the difference to the presence of other streamwise vortices in addition
to the wing-tip vortices. Figure 18(a,b) shows the instantaneous flow at « = 12° and 14° for
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Figure 16. Flow past the sSAR =5 wing at « = 12° and Re = 1000: (a) spatio-temporal variation of Sty
obtained using a probe placed at x/c = 1.25 and y/c = —0.068. The Q(= 0.05) isosurface for an instantaneous
flow coloured with the spanwise component of vorticity (w, = %1) at various time instants is presented in
(b—d). The vortex splitting and reconnections are illustrated using coloured solid lines. The filled black circles
show the inter-connection between the vortices. Here Dy and D,y refer to fork-type and reverse fork-type
dislocations, respectively. Results are shown for (b) t = 189.61, (¢) t = 192.61,(d) t = 200.61.
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Figure 17. Flow past a = 14° wing at Re = 1000: (a,b) spanwise variation of sectional r.m.s. of lift and
drag coefficient, (¢,d) Q(= 0.1) isosurface for an instantaneous flow coloured with the spanwise component of

vorticity (w; = £2) and (e, f) 'v’ component of Reynolds stress on the y—z plane at x/c = 3.5. The quantities
are for sSAR = 2 (left) and sAR = 4 (right).

the sSAR = 5 wing. Superimposed on these images is the Q isosurface for the time-averaged
flow at respective «. Both flows show strong wing-tip vortices. The time-averaged flow
reveals additional streamwise vortices. The prominent ones are a result of the vortex
linkages as they convect downstream in the wake. Figure 19 shows the Q isosurface for
a time-averaged flow for various sAR at o = 14°. The streamwise vortices are stronger
near the wing-tip region and weaker towards the wing root.

7.1. Do streamwise vortices exist in a steady flow?
Figure 9(d) shows that, unlike the prediction from lifting line theory presented in
figure 7(a), the sectional lift coefficient for the steady flow also shows a peak closer to
the wing tip and not at the wing root. A natural question that arises is: ‘Is the steady flow
also associated with streamwise vortices other than wing-tip vortices?” The Q isosurface,
coloured with the streamwise component of vorticity, is shown in figure 20 for the steady
flow for the SAR = 5 wing at various «. The flow is obtained by dropping the unsteady
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Figure 18. Flow past the sSAR = 5 wing at Re = 1000: Q(= 0.1) isosurface for an instantaneous flow coloured
with the streamwise component of vorticity (w, = %1, blue-white-red) for « = (a) 12° and (b) 14°. Also
superimposed is the Q iso-surface for time-averaged flow coloured with streamwise component of vorticity
(wy = %1, cyan-white-yellow) in each figure.

Figure 19. Flow past a finite wing at @ = 14° and Re = 1000: Q(= 0.01) isosurface for a time-averaged flow
coloured with the streamwise component of vorticity (wxy = £2) for sAR = (a) 0.5, (b) 1, (¢) 3 and (d) 5.
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Figure 20. Flow past the SAR = 5 wing at Re = 1000: Q(= 0.01) isosurface for a steady flow coloured with
the streamwise component of vorticity (w, = £2) for o = (a) 10°, (b) 12°, (c¢) 14°. Also presented in (d) is the
flow of the sSAR = 7.5 wing at o« = 14°.

terms from the flow equations. The time-averaged and steady flows are very similar for
o < 8° (not shown here) as the vortex shedding is relatively weak; the wing-tip vortices
are the only prominent streamwise vortices. Additional streamwise vortices appear near
the wing tip at larger . As seen from figure 20, they increase in number, originate from
a larger length of the span and become stronger with an increase in «. At o = 14° they
virtually occupy the entire span (figure 20c¢). Interestingly, for a wing with larger sAR
(for example, sAR = 7.5, shown in figure 20d), the spanwise extent of the generation of
streamwise vortices is similar to that for sAR = 5 (figure 20c¢).

7.2. Effect of streamwise vortices on spanwise lift distribution

We attempt to explain the local maximum observed in the spanwise distribution of
the sectional lift coefficient by using a discrete model of the streamwise vortices.
Figure 21(a,b) shows the cores of streamwise vortices corresponding to the steady and
time-averaged flows for « = 14° and the sAR = 5 wing. Also shown in this schematic is
the bound vortex on the wing. The circulation of each streamwise vortex is estimated by
carrying out line integration of the velocity field along a closed curve, enclosing the vortex,
in the y—z plane at x/c = 3.5. To enable a good estimate, the closed curve is chosen to be as
large as possible while ensuring that it does not include adjacent vortices. The circulation is
non-dimensionalized using the free-stream speed and chord of the airfoil. The streamwise
component of vorticity in the y—z plane at x/c = 3.5 is presented in figure 21(d,e) for the
steady and time-averaged flows, respectively. A streamwise vortex with a component of its
vorticity pointing in the positive x direction is considered positive and is marked in red in
the schematics shown in figure 21(a,b). The circulation of each vortex ‘i’ is denoted by I
with the index increasing from the wing tip towards the mid-span. The indices for all the
major streamwise vortices are marked in figure 21(a—e) and their respective I; plotted in
figure 21(f, g); I, for example, denotes the strength of the wing-tip vortex. Also shown
in figure 21(f, g) is the circulation, I, along the bound vortex. It is estimated at various
spanwise locations via line integration of the velocity field on a closed curve in the x—y
plane that encloses the airfoil section. We utilize a circle whose centre is located at the
mid-chord of the airfoil. The value of I, estimated on various circular curves with radius
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Figure 21. Flow past the sSAR = 5 wing at « = 14° and Re = 1000: schematic showing the bound vortex and
core of streamwise vortices including the wing-tip vortex for a (a) steady and (b) time-averaged flow. The
wing surface is shown in a grey colour and the bound vortex in a solid black line. The sign convention for
the circulation around the bound vortex is also shown in (c¢). Streamwise component of vorticity on the y—z
plane at x/c = 3.5 is shown for asteady flow in (d) and a time-averaged flow in (e). Shown in (f,g) is the
spanwise variation of circulation (/%) in the x—y plane enclosing the airfoil section along with the sectional
lift coefficient (C;) for the steady and time-averaged flows, respectively. Also shown in the same plot is the
circulation of streamwise vortices I'; and the strength of the bound vortex (/).

0.51¢ — 1cis very close. The sign convention is indicated in figure 21(c). We recall that I,
is related to the sectional lift coefficient via the Kutta—Joukowski theorem for 2-D flows
(Bertin 2002; Anderson 2017). A reasonable match is seen between I, and C;/2 for both
the time-averaged and steady flows except in the region of the wing tip, where, expectedly,
the flow is highly three dimensional.

Using the discrete vortex model, as shown in figure 21(a,b), we estimate the strength

of the bound vortex at a spanwise location z; by the expression I(z;) = 2;21(_1})-
The same is shown in figure 21(f,g). For both, steady and time-averaged flows, I}(z;)
shows qualitatively the same behaviour as I, and C;/2 confirming that the local peak
in the spanwise variation of the sectional lift coefficient is due to streamwise vortices.
Figure 21(a,b) shows that the streamwise vortices that are fairly evenly spread over the span
of the wing in a steady flow relocate away from the root of the wing for the time-averaged
flow, leading to an increased interaction and vortex strength. In general, the strength of

vortices in the time-averaged flow is larger than in the steady flow. For example, I'7 and
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Figure 22. Flow past a wing at Re = 1000: variation of strength of the wing-tip vortex, I", with (a) « for
SAR = 5 and (b) sAR for « = 8° and 14°. Here I" is non-dimensionalized using a free-stream speed and chord
of the airfoil.

I for the time-averaged flow are larger compared with the steady flow, even though their
locations are quite comparable.

8. Wing-tip vortex
8.1. Strength of wing-tip vortex

We explore the dependence of the strength of the wing-tip vortex with angle of attack and
aspect ratio of the wing. The circulation is estimated by carrying out integration along
a closed curve lying in the y—z plane at x/c = 3.5. The effect of the spatial extent of the
curve on I is assessed for the time-averaged flow at @« = 14° and presented in Appendix D.
Isovorticity curves (wy = C) are utilized to carry out the integration. It is found that a curve
corresponding to a value of |C| < 0.1 provides a good estimate of I". The same has been
utilized in this study. Figure 22(a) shows the variation of circulation, corresponding to
the steady and time-averaged flows for the SAR = 5 wing, with angle of attack. Here I”
increases with an increase in «. The variation is linear for the steady flow. However, the
slope of the curve changes at o = 8°; it is larger for the variations beyond o = 8°. We
recall that the streamwise vortices, other than the wing-tip vortices, become prominent
beyond o = 8° (see figure 20). We attribute this change in slope of I — « variation to the
appearance of additional streamwise vortices across the wing span. For the time-averaged
flow, the linear variation up to o = 8° is followed by a nonlinear increase of I" with «. In
this regime the strength of the wing-tip vortex for the time-averaged flow is higher than
that of the steady flow. This is also seen from figure 21( f,g) for « = 14°. The effect of the
aspect ratio of the wing on the strength of the wing-tip vortex is presented in figure 22(b)
for « = 8° and 14°. For o = 8°, the vortex strength increases with an increase in SAR up
to SAR = 2 and does not show any significant change beyond it. The variation in I is
more significant at o« = 14°. It increases with sAR up to SAR = 5 and does not show any
appreciable increase beyond it. For each sAR, the strength of the wing-tip vortex for the
time-averaged flow is larger than that for the steady flow.

8.2. Model of wing-tip vortex

We utilize two models to estimate the radius of the wing-tip vortex: Rankine vortex
(Rankine 1877) and Lamb—Oseen vortex (Saffman 1995; Jacquin et al. 2005). The core of
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Figure 23. Flow past a finite wing for Re = 1000: schematic of the Rankine (forced-free) vortex and
Lamb-Oseen vortex model where R, I, o, ngo, ngr and Vj, , represents the radius of the vortex, strength of
the wing-tip vortex, core of the vortex, velocity for the Rankine (forced-free) vortex and Lamb—Oseen vortex,
respectively. The variation of velocity distribution across the wing-tip vortex for a time-averaged flow of an
SAR = 5 wing at @ = 14° is shown in (b) x/c = 3.5 and (¢) x/c = 10. Also shown in broken lines are the curve
obtained using the theoretical expressions. The variation of R/c, obtained using the Rankine and Lamb—Oseen
vortex, with x/c along with best linear fit is presented in (d).

a Rankine vortex is modelled by a forced vortex of strength I and radius R while the outer
zone is approximated by a free vortex. The Lamb—Oseen vortex is an exact solution of the
Navier—Stokes equation. The velocity across the vortex decreases exponentially beyond its
core of radius R. The tangential velocity distributions for the Rankine and Lamb—Oseen
vortex are, respectively,

Vg = 1y, = I (8.1a,b)
o = 2qR2 0 T omp e
F _r2/R2
VQLO = E(l —e ) (82)

A schematic of the two models is shown in figure 23(a). The models are applied to the
time-averaged flow past the SAR = 5 wing at o = 14°. Figure 23(b,c) shows the velocity
distribution in the y—z plane along lines parallel to the y and z axes and passing through
the core of the wing-tip vortex at two streamwise locations x/c = 3.5 and 10, respectively.
Also shown in the figures, with broken lines, is the velocity distribution from the models
given by (8.1) and (8.2). The value of I" is estimated from the computations (see figure 22).
The value of R is estimated from each of the two models as shown in figure 23(b,c) for
the best approximation to the velocity profiles from direct time integration. Here R is
estimated using this procedure for various streamwise locations. The streamwise variation
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Figure 24. Flow past a wing at Re = 1000: variation of R/c estimated at x/c = 3.5 with (a) « for an sSAR =5
wing and (b) sAR at « = 8° and 14°.

of R alongside the best fit is shown in figure 23(d). We note that both the models yield
virtually the same value of R. It increases linearly with an increase in x/c. A similar
variation is also seen for the steady flow (not shown here). It is found that R is larger for
the time-averaged flow compared with the steady flow. Figure 24(a,b) shows the variation
of R, at x/c = 3.5, with « and sAR, respectively. Here R increases with an increase in the
angle of attack. For a fixed «, R increases with an increase in sAR up to sAR = 2, beyond
which it does not change with any further increase in sAR.

9. Conclusions

An incompressible flow past a rectangular wing with a NACA 0012 airfoil section for
Re = 1000 has been investigated via a stabilized finite element method. Computations
for an EEW for various angles of attack reveal transition of the wake. While the flow is
steady at low angles of attack, vortex shedding commences at o« ~ 8°. The flow becomes
three dimensional for « beyond 12° via the mode C instability that evolves to hairpin
vortex structures. Simulations for a finite wing have been carried out for one half of the
wing. The semi-aspect ratio and angle of attack considered in the study is 0.25 < sAR <
7.5 and 0° < o < 14°. The suitability of symmetry conditions at the mid-span has been
demonstrated via computations for the wing of the full span.

A finite wing is associated with wing-tip vortices that interact with vortex shedding
leading to rich structures. The strength of the wing-tip vortex increases with an increase
in . At each «, it increases with an increase in sAR up to a certain aspect ratio, beyond
which it achieves an almost constant value. Flow past an EEW has been compared with
that on a finite wing for various sAR and «. Vortex shedding is suppressed along the
entire span of the wing at @ = 8° for sAR < 4. Weak vortex shedding is observed away
from the wing tip while it continues to be suppressed near it for sAR = 5. The range of
SAR for which the flow is steady is smaller at larger angles of attack. At o = 14°, the
flow is steady for sAR < 0.25. Hairpin vortices are shed at the mid-span for AR = 0.5.
They interact with the wing-tip vortices from the starboard and port sides of the wing,
as they convect downstream, creating undulations and form linkages between them. The
strength of vortex shedding in the mid-span region increases with an increase in sAR.
However, the region near the wing tips continues to be devoid of shedding. As a result,
the spanwise vortices of opposite polarity join to form linkages in the outboard region.
The linkages for the SAR = 0.5 and sAR > 2 are qualitatively different. A mix of the two
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types of linkages is observed for sAR = 1. The interactions also result in the formation of
arch vortices in the mid-span region for sAR > 1. The hairpin vortex structures, associated
with mode C instability in the EEW (Pandi & Mittal 2019), are not observed for low
sAR. However, they appear in the central cell for higher sAR. It is to be noted that the
hairpin vortices associated with SAR = 0.5 are different than those at higher sAR. The
former are not due to the mode C instability and have a significantly larger spanwise
wavelength.

Unlike for an EEW, where the axes of shed vortices are parallel to the wing and
frequency of shedding is constant across the span, vortex shedding on a finite wing is
oblique and cellular. For example, two cells form along the span of the wing for sSAR > 3 at
o = 14°. The vortex shedding frequency in the central cell, that lies in the mid-span region,
approaches that for the EEW. It is lower in the end cell that spans the outboard region of
the wing. A dislocation demarcates the cells, with differing vortex shedding frequency.
Various types of dislocations are observed for different combinations of & and sAR. These
are the classical fork-type (Williamson 1989), connected fork-type (Mittal et al. 2021)
and the mixed-type (Mittal er al. 2021) dislocations. In certain cases, the dislocations are
generated at the same spanwise location at different times, while in others the dislocations
appear at different spanwise locations with respect to time. However, in all cases, their
convection is primarily streamwise with almost no spanwise movement. An additional
type of dislocation, that is being reported for the first time, has been observed for o = 12°
for the sSAR = 5 wing. It is a consequence of splitting and reconnection of vortices as
they convect away from the wing. The vortex shedding frequency in the very near wake
is constant along the span. However, two cells are observed in the moderate to far wake
downstream of the reconnection of vortices. These dislocations form fork-type and reverse
fork-type connections in the vortices between the central and end cells.

The results from the computations are compared with the predictions from the lifting
line theory. Unlike in the classical lifting line theory, where the lift curve slope for an
airfoil is estimated for an inviscid flow, it is estimated from computations for the EEW at
Re = 1000 in the present work. A surprising finding, for low Re, is that the drag coefficient
for the finite wing is lower than that for the EEW. This is contrary to the prediction from
the lifting line theory, according to which the drag coefficient for the finite wing should
be higher owing to the induced drag. The present analysis reveals that the spillage of the
flow at the wing tip reduces the peak suction on the upper surface, thereby resulting in a
lower adverse pressure gradient. This leads to weaker vortex shedding and a lower pressure
drag for the finite wing, compared with the EEW. The increase in unsteadiness in the flow
is quantified by the increase in V'V’ in the wake integrated over the span. Furthermore,
since the effect of spillage reduces with an increase in aspect ratio of the wing, the drag
coefficient increases with an increase in sAR for sAR > 0.5, unlike the prediction from
lifting line theory. As expected, the force coefficients for the finite wing approach the
values for an EEW with an increase in sAR.

The spanwise variation of the time-averaged sectional lift coefficient for o > 10° is
found to be non-monotonic. Unlike the prediction from lifting line theory that predicts
a maxima at the wing root, its maximum value is near the wing-tip region. Analysis of
the flow reveals streamwise vortices in addition to the wing-tip vortex. They are observed
in the steady flow as well. The wing-tip vortices are stronger for the unsteady flow as
compared with the steady flow. The increase in their strength, with an increase in «, is
linear for the steady flow and nonlinear for the unsteady flow. The number and strength
of vortices increases with an increase in the angle of attack. A discrete vortex model
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is utilized to relate the strength of the streamwise vortices to the spanwise variation of
sectional lift coefficient. It is concluded that the non-monotonic spanwise variation of
lift coefficient is caused by the streamwise vortex structures. It would be interesting to
follow their evolution with an increase in Re in a future study. The Rankine (forced-free)
and Lamb—Oseen vortex model has been proposed for the wing-tip vortex. The radius of
the vortex increases linearly with streamwise location. At a fixed streamwise location the
radius is fairly constant for sSAR > 2.

The fluctuating component of the sectional force coefficients also show an interesting
variation along the span. They are maximum near the wing root for sAR <2 when
there is only one cell of vortex shedding and the vortices are shed parallel to the
wing axis. However, their maxima is achieved at an outboard location on the wing for
sAR > 3 that are associated with two cells of shedding and the oblique angle of the shed
vortices, with respect to the wing axis, varies with time and along the span. The load
distribution on the wing has an implication on the design of its structure and, therefore, its
weight.
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Appendix A. Mesh convergence
A.l. Mesh in two dimensions

The spatial convergence of the finite element mesh in two dimensions is investigated at
o = 14° and Re = 1000. Table 1 lists the three finite element meshes considered. The
number of points on the surface of the airfoil are 200, 250 and 300 for meshes M%D,
M%D and M;’D, respectively. The time integration of governing flow equations are carried
out using a time step size At = 0.002. The time-averaged force coefficients along with
their fluctuations obtained using three meshes are in good agreement. The difference in
the lift and drag coefficients for meshes M%D and M%D is 1.7 % and 0.8 %, respectively.
The corresponding values for meshes M%D and Mg p are 0.35 % and 0.65 %, respectively.
As the difference between meshes M%D and M;’D is relatively low, we proceed with M%D.
To study the effect of time step size, computations are carried out on mesh M%D using
At = 0.001. The difference in the lift and drag coefficients for Az = 0.002 and 0.001
is 0.14 % and 0.04 %, respectively. This shows that mesh M%D and Ar = 0.002 provides
adequate spatial and temporal resolution for Re = 1000. The results computed on mesh
M%D are compared with the data from past studies for a NACA 0012 airfoil at Re = 1000
for various «. Figure 25(a,b) shows the variation of time-averaged lift and drag coefficients
with angle of attack along with the data from earlier studies (Mittal & Tezduyar 1994; Liu
et al. 2012; Kurtulus 2015; Meena et al. 2017; Di Ilio et al. 2018). Very good agreement is
observed between the results from various studies.
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Mesh  Nodes Elements C; Cy Clyms Clrms

MéD 19070 37964 0.6338  0.2446  0.0933  0.0131
M 43 474 86 602 0.6447  0.2427  0.0943  0.0135
75435 150414  0.6470  0.2443  0.0952  0.0134

Table 1. Flow past a NACA 0012 airfoil at @ = 14° and Re = 1000 in two dimensions: details of the finite
element mesh along with the computed time-averaged coefficients and fluctuations.

(@03 (b) 0.25
+ Present -m- | Present -W-
Di Ilio et al. (2018) & Di Ilio et al. (2018) &>
Meena et al. (2017) @ I Meena et al. (2017) ®
Kurtulus (2015) v L

06 - Liueral (2012) A
- Mittal & Tezduyar (1994)

FErEr PR B PRI BN B | 0.10 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

Figure 25. Flow past a NACA 0012 airfoil at Re = 1000: comparison of time-averaged (a) lift and (b) drag
coefficients with the data from earlier studies (Mittal & Tezduyar 1994; Liu et al. 2012; Kurtulus 2015; Meena
et al. 2017; Di Ilio et al. 2018). The data reported in the present study is obtained using mesh M%D.

Mesh N, Nodes  Elements Cr Cp Clrms Carms ~ Az/c

M%D 160 6.95M 13.76M  0.5941  0.2305 0.0625 0.0094 0.33
M%D 320 27.62M  27.62M  0.5928 0.2303  0.0595  0.0089  0.33

Table 2. Flow past an EEW of span L; = 5c¢ at o« = 14° and Re = 1000: details of the finite element meshes
along with the computed time-averaged coefficients and fluctuations. Also listed is the spanwise wavelength of
the three-dimensional flow structures. Here N; is the number of copies of mesh M%D stacked uniformly along
the span.

A.2. Mesh in three dimensions

A.2.1. End-to-end wing

Copies of mesh M%D are stacked uniformly along the span to generate a mesh in three
dimensions for the EEW. The span of the wing is L, = 5c¢. Computations are carried out
at o = 14° and Re = 1000. Two meshes are considered: mesh M%D with N, = 160 and
M%D with 320 copies along the span. The details of the meshes as well as the results from
the computations are listed in table 2. Also shown in the table is the spanwise wavelength
of the three-dimensional vortex structures. The results from both the meshes are in very
good agreement reflecting the adequacy of mesh M% p that is associated with an element
size of Az ~ 0.031c¢ along the span.
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Mesh N, Nwing Nodes Elements a CfD Clyms Carms

M;D 160 100 8.57T™M 14.05M  0.5298 0.2178  0.0200  0.0030
MgD 237 186  1042M  20.68M  0.5273 0.2172  0.0208 0.0032
M 316 263 13.85M  27.53M  0.5255 0.2167 0.0214  0.0033

Table 3. Flow past the sSAR = 5 wing at @ = 14° and Re = 1000: time-averaged aerodynamic coefficients and
their fluctuations obtained using three finite element meshes. Here N, denotes the number of copies of a 2-D
mesh stacked along the lateral extent of the computational domain. Of these, Ny is the number of sections
that lie on the wing.

I3""IA'1"'I'5"'_ (b)04 T
DT A:’[w"' M3p= l\
o 0.2 frl i
G 0 :
,,,,,, 0.2
""" 04 PR PR PR PR PR
0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
x/c x/c

Figure 26. Flow past the sSAR = 5 wing at « = 14° and Re = 1000: chordwise distribution of time-averaged
(@) Cp and (b) Cy distribution on the wing surface at z/c = 1.75 obtained using three different finite element
meshes.

A.2.2. Finite wing: SAR =5
The mesh convergence study is extended to a finite wing with sAR = 5 at o = 14° and

Re = 1000. The finite element mesh for a finite wing is generated by stacking mesh M%D on

the wing and another mesh, M%D o> Outside the span of the wing. Here M%D o 18 1dentical

to M%D outside the airfoil section, but contains additional grid points inside. It consists of
45760 nodes and 91 421 elements. Unlike for the EEW, the 2-D mesh for the finite wing is
stacked non-uniformly along the span. The element size Az is approximately 0.031¢ at the
wing root and 0.0035¢ near the wing tip. Three meshes with N, copies of the 2-D meshes,
out of which N,;,e lie on the wing, are utilized for the convergence study. The details of
the meshes along with the results obtained with them are listed in table 3. The difference
in lift and drag coefficients for meshes M%D and M§D is 0.47 % and 0.27 %, respectively.
The corresponding values for the difference between values for meshes M§D and Mg p are
0.34 % and 0.23 %, respectively. The results from all the three meshes are in very good
agreement. This is further highlighted in figure 26, which shows the chordwise variation
of time-averaged coefficients for surface pressure and skin friction on the wing at a span
location corresponding to z/c = 1.75. All the simulations in the present study for the finite
wing with SAR = 5 are carried out with mesh Mng. The mesh for other sAR is obtained by
maintaining a similar spanwise resolution.

A.2.3. Finite wing: SAR = 1.25
The effect of the mesh is investigated for a finite wing with sAR = 1.25 at « = 5° and
Re = 1000. The lateral boundary of sSAR = 1.25 is located at a distance of L, = 3¢ from
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Mesh N, Nying Nodes Elements Cr Cp

M? 95 59 4.23M 8.34M 0.154 0122

Mifg 156 116 6.91M 13.67TM 0.153  0.123

Table 4. Flow past the sSAR = 1.25 wing at « = 5° and Re = 1000: aerodynamic coefficients obtained using
two finite element meshes. Here N, denotes the number of copies of a 2-D mesh stacked along the lateral extent
of the computational domain. Of these, Ny, is the number of sections that lie on the wing.

the tip of the wing, while it is 10c for the sSAR = 5 wing (see figure 1). The procedure to
generate the mesh is similar to that of sSAR = 5 but with fewer copies of the 2-D meshes

M%D and M%D o along the spanwise dimension. Two meshes are considered. These meshes
have the same 2-D mesh and differ in the number of 2-D sections stacked along the span.
The details of the two meshes along with the results obtained from computations utilizing
them are listed in table 4. The computations yield a steady flow. The results obtained
from the two meshes are virtually identical. The lift and drag coefficients from the present
study are in excellent agreement with those reported by Edstrand et al. (2018) (Cr = 0.158,
Cp = 0.125), confirming the adequacy of the present methodology and mesh to resolve

the flow satisfactorily.

Appendix B. Vortex identification criteria

Several methods have been proposed in the past to identify vortex cores in a flow. Some of
the popular methods are the O, A, and £2 criterion proposed by Hunt ez al. (1988), Jeong
& Hussain (1995) and Liu et al. (2016). The velocity gradient tensor is decomposed as
Vu=w+S, where w = %[Vu —(Vu)"land S = %[Vu + (V)] are respectively skew
symmetric and symmetric. We further define two scalars: Q = %[wywu —S§;S;land £2 =
w;i®;i/(S;S;j + w;j®;). According to the Q criterion, an eddy is identified by a positive
value of Q. Let 41 , A7 and A3 be the eigenvalues of the symmetric matrix ? + S? such
that A; is the largest and A3 the smallest eigenvalue. In the A, method, negative values
of A are utilized to identify the minimum pressure in a plane normal to the axis of the
vortex. Here £2 represents the ratio of vorticity to the rate of deformation. According to the
£2 method, a vortex corresponds to a value of £2 > 0.5. We compare Q and A> methods
for various flows at @ = 14°. The isosurfaces of Q (left) and A, (right) obtained for an
instantaneous flow are presented in figure 27. In each image the isosurface is coloured
with the spanwise component of vorticity (w, = £2). The flow shown on the top row is
for an EEW while the middle row for sAR = 5. Shown on the bottom row is the vortex
structure for a steady flow for sAR = 5. The two methods virtually give the same flow
structures for all the cases.

Appendix C. Effect of symmetry boundary conditions at mid-span

The effect of applying symmetry boundary conditions at the mid-span, to utilize only
one half of the wing for savings in computational resources, is assessed by carrying out
a few computations for the full span. The fully developed unsteady flow computed with
half the wing span is mirrored about the wing root and used as an initial condition for
computations with the full wing. Three cases are chosen: («, AR) = (12°, 10), (14°, 2) and
(14°, 8). Figure 28 shows the instantaneous Q isosurface for the three cases. In all cases the
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Figure 27. Flow past a wing at o = 14°: vortex structures analysed using Q(= 0.1) (a,c,e) and A>(= —0.1)
(b,d,f) criterion. The instantaneous flow of a (a,b) EEW and (c,d) sSAR = 5 wing. Also shown in (e, f) is the
isosurface for a steady flow of an sAR = 5 wing. The isosurface is coloured with the spanwise component of
vorticity (w; = %2) in each image.

flow retains its symmetry about the mid-span. To further assess the difference between the
results from the half-span and full-span computations, figure 28(b) shows the flow from
the two computations at the same phase in the two halves of the image. We note that all
the features of the flow such as vortex splitting, arch vortices and linkages are identical in
the two sets of results; similar to the case with force coefficients (not shown here).

Appendix D. Evaluation of contours for estimating circulation

The effect of the contour chosen to estimate the circulation of a streamwise vortex is
evaluated. Figure 29(a) shows the time-averaged streamwise vorticity (w,) in the y—z plane
at x/c = 3.5 for the wing-tip vortex of a finite wing with SAR = 5 at « = 14° and Re =
1000. Various curves corresponding to a constant value of w, are identified. These curves
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Figure 28. Flow past the full span of a finite wing at Re = 1000: Q(= 0.1) isosurface coloured with the
spanwise component of vorticity (w, = £2) for (o, AR/SAR) = (a) (12°, 10/5), (b) (14°, 2/1) and (c) (14°,
8/4). The flow in () is superimposed with the solution obtained from the simulation with half-span.
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Figure 29. Flow past a wing at « = 14° and Re = 1000: (a) streamwise vorticity field (w,) for the wing-tip
vortex for the time-averaged flow for sSAR = 5 at x/c = 3.5. The largest contour used for estimating circulation
is marked by the broken line in a red colour. (b) Variation of strength (I”) of the wing-tip vortex with sAR
estimated using curves corresponding to isocontours of .

are utilized to carry out line integration of the velocity field to estimate circulation. The
curve corresponding to wy = —0.003 is replaced by the curve (dashed red line) for the
integration. The study is extended to wings of other sAR. The estimate of I" for various
contours and sAR is summarized in figure 29(b). As expected, the choice of contour has
a very significant impact on the estimate of I". A contour that is sufficiently far from the
core of the vortex should be utilized for a good estimate. We note from figure 29(b) that a
contour corresponding to wy = —0.1 provides a reasonably good estimate.
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