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AN (n + 1)-FOLD MARCINKIEWICZ MULTIPLIER THEOREM
ON THE HEISENBERG GROUP

A.J. FRASER

We prove a Marcinkiewicz-type multiplier theorem on the Heisenberg group: for
1 < p < oo, we establish the boundedness on UiJ&n) of spectral multipliers
m(£i ,...,€„, iT) of the n partial sub-Laplacians C\,...,Ln and iT, where m satisfies
an (n + l)-fold Marcinkiewicz-type condition. We also establish regularity and can-
cellation conditions which the convolution kernels of these Marcinkiewicz multipliers
m(Ci,...,£n,iT) satisfy.

1. INTRODUCTION

The Marcinkiewicz multiplier theorem in Rn (see [1, 5, 8]) establishes the bounded-
ness on IP of multiplier operators, for a class of multipliers which is invariant under multi-

parameter dilations. One can view these operators as functions of i——,..., i——, and
ax\ axn

thus natural corresponding operators to consider on the Heisenberg group are functions
m(£, iT) of iT and the sub-Laplacian £, where m satisfies a two-fold Marcinkiewicz-type
condition,

or functions m(£ i , . . . , £„, iT) of iT and the partial sub-Laplacians £ x , . . . , £„, where m
satisfies an (n + l)-fold Marcinkiewicz-type condition,

(1) | (C i%r •••(Sndin)
i»(vdv)

jm(Z,v)\ < Ciy

In [6], Muller, Ricci and Stein study the first case. In this and subsequent papers, we
use their methods to study the second case.

Here, we prove the boundedness on V, 1 < p < oo, of these Marcinkiewicz mul-
tiplier operators and establish regularity and canceUation conditions satisfied by their
convolution kernels. In the proof, multi-parameter methods cannot be used directly on
the Heisenberg group, for, to begin with, multi-parameter scaling is not automorphic.
Moreover, unlike the partial derivatives in Rn, the operators £i , . . . , £ „ and iT on En do
not act independently. However, by lifting to the product group G = H x - - - x H x R ,
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36 A.J. Praser [2]

one pulls apart the intertwined actions of these operators, thus bringing the situation
to a pure product one. Z^-boundedness and product-type regularity and cancellation
conditions on the kernels are known by multi-parameter methods for the lifted Mar-
cinkiewicz multipliers m(Cf,...,£#,iT*) on G. The iZ-boundedness of the operators
m(£i , ...,Cn, iT) on Hn then follows by the method of transference, and the bulk of the
work in this paper consists of transferring the conditions for the kernels down to obtain
conditions satisfied by kernels of Marcinkiewicz multipliers m(£ x , . . . , Ln,iT) on H«.

In fact, these conditions characterise the convolution kernels of Marcinkiewicz mul-
tipliers. A subsequent paper will show their sufficiency, making use of the explicit ex-
pression of Geller [4] for the Gelfand transform of polyradial functions on B^, in terms
of Laguerre functions.

2. PRELIMINARIES

Let Mn denote the 2n + 1-dimensional Heisenberg group. That is, En = C" x R,
with multiplication

(z,t)(w,s) = (z + w,t + s + 2Imz-w).

The identity for this multiplication is (0,0), and the inverse {z,t)~l of (z,t) is (—z, —t).
The Heisenberg group is a connected, simply connected nilpotent Lie group. We define
one-parameter dilations on Hn, for r > 0, by

r(z,t) = {rz,r2t) .

These dilations are group automorphisms. A homogeneous norm on Hn is given by

Using coordinates h = {z,t) = (x + iy,t) for points in Hn, the left-invariant vector

fields Xj, Yj and T on Hn equal to -^—, -5— and — at the origin are given by
axj ayj at

respectively. These 2n + 1 vector fields form a basis for the Lie algebra hn of Hn with
commutation relations

for j = 1 , . . . , n, and all other commutators equal to 0.

A differential operator D on Hn is called homogeneous of degree d if

D(f(r.))=rd(Df)(r.).
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[3] Marcinkiewicz multipliers on the Heisenberg group 37

Thus Xi,...,Xn, Yi,...,Yn are homogeneous of degree one, and T is homogeneous of
degree two.

The homogeneous dimension of H,, is 2n + 2, the sum of the degrees of the homoge-
neous basis elements X\,...,Xn, Y\,...,Yn, and T.

The sub-Laplacian £ on Hn is given by

. 1 n

3=1

and the partialsub-Laplacians C\, ... , Cn by

3 4 3 3

The operators Ci,..., Cn, and iT form a family of commuting self-adjoint operators, and
so, by the Spectral Theorem, for m G i°°((R+)n x R), we can define the joint spectral
multiplier operator m(Ci, - . . , £» , iT) which is then a bounded operator on L2 (!!„). Since
Ci, ... , Cn, iT are left-invariant, m(Ci,..., Cn, iT) commutes with left translations and
is therefore given by convolution with a distribution K € S'(Mn): m{C\,...,Cn,iT)(p =
<p * K, for all tp G £(Hn)-

Given any r G T", the n-torus, define the operator pr on functions / on Hn by

A function / on H« will be called polyradial if / = p T / for all r € T". A distribution
K e <S'(Hn) is said to be polyradial if

K{<p) = K(pT^)

for all T € T" and all <p 6 ^(BI,,). Since A , . . -, A, and iT commute with all pT, for r € T",
so does m(Ci,...,Cn,iT). Therefore the convolution kernel K of m{C\,...,Cn,iT) is
polyradial.

3. T H E LIFTING ARGUMENT

Let Hn denote the n-fold product I x • • • x 1 of the three-dimensional Heisenberg
group H (not to be confused with the 2n +1-dimensional Heisenberg group Hn), and set
G = I * x R Elements

{Zl,Ui,...,Zn,Un,t)

of G, where (zi,Ui) € H and t € R, wiU also be denoted {z,u,t) or {h,t), with (z,u) =
h = (hi,..., hn) € I P , hi = (zj, Ui). The group G is a direct product of stratified groups,
for which the product group results of [6] hold. In this section, we describe the lifting
argument from the Heisenberg group Hn to the product group G = H" x R.
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Each of the partial sub-Laplacians £ , acts on H,, in the ij, yj and t variables, and
so in some sense is acting on just one copy of H in H,,. However, as they all involve the
t variable, the actions of £x, . . . , £ „ and iT are not independent. The lifting argument
consists of lifting the operator m ( £ i , . . . , £„, iT) to the product group H x • • • x H x R,
and thus pulling apart the n copies of H, so that the lifted operators £ * , . . . , £ * , iT*.
do act independently. We establish in Proposition 3.1 the relation between the kernels
of the lifted operators m ( £ * , . . . , £*, iT*) and the kernels of Marcinkiewicz multipliers
m ( £ i , . . . , Cj,, iT) on H,,. This relation will enable us in Sections 5 and 6 to transfer
conditions on the kernels from the product group G down to BU.

We define the homomorphism n: G —¥ EL, by

n(zi,ui,...,zn,un,t)= {z,t + y]tMij.

The kernel of TT is the central subgroup

N = < (z,u,t) : z = 0, t = — ^ t t i >,

which is isomorphic to R". The Heisenberg group Mn can thus be identified with the
quotient group G/N.

On the three-dimensional Heisenberg group H we have the usual left invariant vector

fields X, Y, and T and the sub-Laplacian £ B = -(1/4)(A'2 + Y2). Denoting by Xf,

Y*, and Uf the lifted vector fields on G corresponding to the vector fields X, Y, and

T for the j * copy of H in G, then Cf = -(1/4) \{Xf)2 + (Yf )2] is the lifted operator

corresponding to £Q on the .7th copy of H. We also denote by T* the lifted operator on

G corresponding to — on R. The homomorphism it: G -»• H,, carries these vector fields
at

to EL as follows:

dTr(U?) = dir(T*) = T and &*(£$)= Lj

when j = 1, . . . , n.
The operators £ * , . . . , £ * , and iT* are self-adjoint, commuting operators, with

commuting spectral measures. For m € L°°((R+)n x R), the joint spectral multiplier
m(£f , . . . , £*, iT*) is then a well-defined, bounded operator on L?(G).

For a function / € LX{G), we define the function / b on the quotient G/N S E^ by
integrating over cosets:

f(zuui,...,zn,un,t-y]ui)du.
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Then f G L1^), with

Il/W.) ^ W
If / is a smooth function on G, then / k is smooth on Hn, and for any X 6 g, the Lie
algebra of G,

Thus, [dz.ff = dtif
y.

The kernels of the operators m(£f, . . . ,£* , iT*) and m(£i,..., £,, iT) are related
by the -k operator:

PROPOSITION 3 . 1 . Let m be a C*((R+)n x R) function, supported away from
the axes, and let

m(£*,...,£*,iT*)f = f*K

for f € S(G). Then
m(£1,...,£n,iT)g = g*Ki

PROOF: Since m is a C* function with support away from the axes, the convolution
kernel K on G corresponding to m{£*,...,£*,iT*) is in ^(G).

First, consider functions m of the form m(£,77) = nii(fi)...mn(£Tl)mo(77). The
convolution kernel on G corresponding to mi(£*)... mn{£*)mo(iT*) is

K(z,u,t) = k1(z1,ul)...kn{zn,un)k0(t),

where fcj e Z-^H) is the convolution kernel of T72J(£H) on H for i = l , . . . , n , £ H is
the sub-Laplacian on the three-dimensional Heisenberg group H, and ko e LX(R) is the

convolution kernel of mofi-r-J on R. We have

Ki(z,t) = J^K^z,u,t-J2u^du

= I kl(zl,u1)...kn(zn,un)k0(t-J2ui

Now, £i acts only on the xit yit and t variables in Hn. For a smooth function / on Hn,

where, for z = ( z i , . . . . Zn) € C \ z? = (zu..., Zi_u z j+ i , . . . , Zn) € C1"1 and / ^ is the
function on H given by

{ ) / ( . . , 2 ^ , W, Zi+i, . . . , Zn, s) .
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Thus

, t) = mi (£e) / . r t e , *) = U *H **(a%, *)

where, for ease of notation, {u>, ti}< denotes the element (0 , . . . , to , . . . , 0, u) € Hn> in
which the tu € C appears in the Ith complex entry, and all other complex entries are 0.
Also,

iTf(z,t) = i~Mt)

where fz is the function on R given by fz(s) = f(z, s) and so

mo(iT)/(z,t) = m o ( i ^ ) / 2 ( t ) = /,*B*b(*) = / f{(z,t)(0,s)-1)ko(s)ds .

Therefore, for / € 5(Hn), mi (A) • • .mB(A.)mo(»T)/(z,t) equals

/ /
mJR

(2)

But,
n v - 1

)(
Thus, changing variables in the s-integration, (2) becomes

/ / / f((z,t)(w,s)-1)k1(w1,u1)...kn(wn,un)ko[s- Y]ui)dsdudw

= f((z,t)(w,s)~1) k1(wi,ui)...kn{wn,un)k0(s- y^tij ) dudwds

= f f{{z,t)(w,s)-1)Ki{w,s)dwds = f*K\z,t)

which proves the proposition for m of the form m(f, TJ) = m i ( ^ ) .
For a general C* function, the result holds by approximating m by sums of functions

of the product form mi(fi) • • • mn(€n)mo(7?). D

4. PRODUCT THEORY

The lifted group G = I H I x . . . H x K i s a product group with automorphic multi-
parameter dilations, in which the lifted operators Cf,... , C*, and iT* act independently
in different variables. Thus this is a pure product setting in which the product group
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results of [6] can be applied. In [6], in analogy to the situation in Rn, a dyadic de-

composition on the Fourier transform side is used to show that Marcinkiewicz multiplier

operators are bounded on IP, 1 < p < oo, and have product-type kernels. We state this

result explicitly in Theorem 4.1 in the context we are interested in here; that is, for the

product group G = H x - - - x H x R

First we define what will be referred to as a product-type kernel on a product group

G = Gi x • • • x GN • We state this in the generality of homogeneous groups (for a definition

of homogeneous groups, see for, for example, [3], or Chapter XIII of [9]). However, in

this paper we only consider the homogeneous groups H,, (where \(z,t)\ = (\z\2 + \t\)1/2,

and the homogeneous dimension Q = 2n + 2), C (where Q = 2), and R {Q = 1).

For j € {1, • • •, N}, we let Gj be a homogeneous group of homogeneous dimension

Qj. Then Gj is equipped with an automorphic one-parameter dilation (which, for r, > 0,

we denote simply by Xj >-» TjXj, for Xj 6 Gj) and a homogeneous norm | • |. Given a basis

{XjiU.. .,Xj,nj} of left-invariant vector-fields, for / € (Z+)" ' (where Z + denotes the set

{0 ,1 ,2 , . . . } ) , the degree of the left-invariant differential operator Xj = Xj\ ... X^. on

Gj will be denoted by d,(J).

NOTATION. Throughout this paper, we shall adopt the following notational conventions

for product groups. For x in a product group G = G\ x • • • x GN, we let

so that, given J £ ( Z + ) w ,

For j € Z + , we denote by j the multi-index (J, ...,j) 6 (Z+) r o for a dimension m which

will always be clear from the context. We set Q = (Qu...,QN), and for a multi-index

/ = (h,.. .,IN), with Ij e (Z+)n>,j = 1, . . . ,N, we also set

The differential operator X1 = X[l • • • Xjf on G, with XJ' on Gj defined as above, then

has degree |d(/) | .

We denote multi-parameter dilation, given r = (rx , . . . , rN) € (R+)w, by

8r{x) = {TXxi,...,rNxN)

for x G G.

Frequently it will be necessary to split a variable x in a product group G into two

component variables. In such cases we shall write i = (xt ,xt), where

xt_ — (xi> • • •.xi)> x± = ixt+\, • • • ,x N )
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for 1 $ £ ̂  N, and

•yJ _ v3\ -yJi yK _ YKt+1 YKl*

for J = (Jx,..., Je) € (Z + ) n i x • • • x (Z+)n< and AT = (K<+ 1, . . . , KN) e (Z+)»<-« x • • • x
( Z + ) n " We also set

Gj_ = Gx x • • • x Gt, G± = G/ +i x • • • x GN,

with corresponding definitions of Q^, Q^, d^_, and dt.

We note that for z € CN, \z\2 = |zx|2 • • • \ZN\2, while |z|2 is the usual norm squared,

We shall define the product-type kernel conditions in terms of normalised bump
functions. A Cf function <p is called a normalised bump function if <p is supported in
the unit ball, and (p and all first order partial derivatives of tp are bounded by a fixed,
pre-determined constant.

A function K on G\ x • • • x GN is said to be a kernel of product-type (or to satisfy
product-type kernel conditions) if it satisfies the following conditions:

(a) the regularity condition:

\XzK{x)\ < Cj\x\-Q-™

for all / = ( / ! , . . . , I N ) , /,- € (Z+)% j = l,...,N;

(b) for each £ = 1,...,N, the canceZ/otion condition inxt :

"I
for all / = (It+l,..., IN), IJ € (Z+)ni, j = £ + 1 , . . . , AT, all normalised
bump functions <p on Gt, and all r € (R+)£.

In addition, for each permutation a G SAT, K must satisfy the conce/Zation condition
in xa(t) obtained from (b) by permuting the indices 1 , . . . , N by a.

In the case where K is a tempered distribution, we assume that K is smooth away
from the "planes" {x € G : Xj = 0}, j = 1,...,N, and the cancellation conditions
are to be understood as follows. Given <p in the Schwartz space S(Gt), we define the
distribution Kv by

for all xp € «S(G^), where <p <g>
The cancellation condition then states that for all normalised bump functions <p on

Gi, and for all r € (R+)*, the distributions K^o^ £ S'(GjJ) are smooth away from the
planes {xt € Gt : Xj = 0}, j = £+1,... ,N, and uniformly satisfy
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for all / = {IM,...,IN)£ (Z+)n<+' x • • • x (Z+)n".
Now, and for the remainder of this paper, we once again let G denote the product

group I P x R . We recall that elements {zx, u i , . . . , Zn, tin, i) € H" x R are also denoted
(M) = (z,u,t), with h = (/11,.,.,/in), hi = fam) € H.

THEOREM 4 . 1 . Let m be a function on (R+)n x R satisfying the Marcinkiewicz-
type condition (1) for n , . . . , w < 9"- Then m{Cf,...,£*,iT*) is bounded on L?{G)
for 1 < p < co. If (1) holds for all »i , . . . , in, j G Z+, then the convoiution iernei K onG
corresponding to the operator m(£f,..., £*, iT*) is a product-type iernei. That is, K is
smooth away from the planes {(z, u, t) : (z*, Ui) = 0}, i = 1,.. -, n and {(z, u, t) : t = 0},
satisfies the size condition

(3)

for all I,J e (Z+)n, A: € Z+, and the following cancellation conditions: for each £,

(4)
- » - »

for aiJ normalised bump functions tp on W, r e (R+)', / , J € (Z+)n~*, and k € Z+;

(5) /
ffxR

it dit K(z, u, , t)) ± dt -4-I-2J

for all normalised bump functions ( p o n t f x R , r e (R+)'+1, and I,J € (Z+)n~l; as well
as all conditions obtained from (4) and (5) by permuting the indices 1 , . . . , n; and

(6) IbidiK{z,u,t)<p{Tt)dt -I-2J

for all normalised bump functions (p on R, / , J € (Z+)n and r > 0.

COROLLARY 4 . 2 . Let m be a function on (R+)n x R satisfying the Marcinkie-
wicz-type condition (1) for ii,...,in,j ^ 9n. Then m is the almost-everywhere hmit of
a sequence mi ofC* functions supported away from the axes, uniformly bounded in L°°,
and such that the operators mi(£*,.. .,Cf,iT*) are uniformly bounded on ISifi) for
1 < p < co.

If (1) holds for all i i , . . . , z,,, j e Z+, then the functions mt are in Cf, and the size
and cancellation conditions (3)-(6) of Theorem 4.1 are satisfied uniformly in £ by the
convolution kernels Kt on G of the operators mt(Cf,..., C*, iT*).

5 . BOUNDEDNESS OF MARCINKIEWICZ MULTIPLIER OPERATORS ON THE

HEISENBERG GROUP

The boundedness on IS (En) of the Marcinkiewicz multiplier operators mt(£i,
..., £„, iT) follows from Corollary 4.2 by the method of transference.
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PROPOSITION 5 . 1 . (Transference) Let K € Lr(G) andTf = f*K. Then the
operator 7* given by T>f = f * Kb is bounded on ^(H,,) , 1 ^ p < oo, and

\\T\\LP(G)-*U>(G)-

P R O O F : See [2], or the method of descent in Chapter XI of [9].

THEOREM 5 . 2 . (Marcinkiewicz Multiplier Theorem on Ek) Let
be a function on (R+)n x R, satisfying t ie Marcinkiewicz condition (1) for all * i , . . . , t,,,
j < 9n. Tien m(Ci,..., £ , , iT) is a bounded operator on I ^Ek) , 1 < p < oo.

The method of lifting to a product group necessarily requires a large number of deriva-
tives, though the number 9ra can perhaps be improved upon slightly. In [7], Muller, Ricci
and Stein develop different methods in order to avoid this problem for Marcinkiewicz
multipliers m(C,iT). In recent work [10], Veneruso improves Theorem 5.2 above by
these other methods.

P R O O F : Prom Corollary 4.2, we can write m as the almost-everywhere limit of a
sequence mi of C* functions, supported away from the axes, such that ||m/||£,oo are
bounded uniformly in I. By the Spectral Theorem, given / e

mid,...,£n,iT)f = Urn m ^ A , - . . , £ „ ,
I—>oo

in L2(Mn), and consequently, there exists a subsequence mtj(Ci,...,Cn,iT)f(z,t) con-
verging almost-everywhere on H,,.

Since each mi is a C* function, supported away from the axes, the convolution kernels
Kt corresponding to mt(Cf,..., £#, iT*) are in L1 and so we may apply transference to
them. Thus, mt{Ci,...,£„,iT), which, by Proposition 3.1, have convolution kernels K\,
are bounded on L^Hn), with

^ \\mt{Ct,...,C*,iT*)\\mG)^{C)

for 1 ^ p ^ oo. But by Corollary 4.2, the lifted operators mt{Cf,...,C*,iT*) are
uniformly bounded on ViG), 1 < p < oo. Thus, for / G LP^) n L^EU), 1 < p < oo,
by Fatou's lemma

|K(
and the result follows. D

6. KERNELS OF MARCINKIEWICZ MULTIPLIER OPERATORS ON THE HEISENBERG

GROUP

We now obtain regularity and cancellation conditions necessarily satisfied by the
kernels of Marcinkiewicz multiplier operators m(Cx,...,£„,iT) on B^.
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THEOREM 6 . 1 . Let m be a function on (R+)n x R satisfying the Mardnkie-
wicz-type condition (1) for all ix,...,in,j G Z + . Then t ie convolution kernel K on HQ
corresponding to the operator m(£i,...,£n,iT) is polyradial, smooth away from the
planes Zi = 0, and satisfies t ie size condition

(7)

for all I G (Z+)n, fc € Z+ , as well as t ie following cancellation conditions: for all £,

(8) | jT̂  disd?K(z,t)<p(6r(zt))dz

for all normalised bump functions <p on 0, r G (R"1")', / G (Z+)n~', and A: G Z + ;

(9) | £ jT a^ 1-2-/

for all normalised bump functions ip on C x R, r G (R+) '+ 1 , and 7 € {Z+)n~e; all
conditions obtained from (8) and (9) by permuting the indices 1 , . . . , n; and

(10) [ dlK(z,t)<p(rt)dt 1-2-7

for all normalised bump functions <f> on R, r > 0, and / G (Z+)n.

The core of the proof consists of the following proposition (proved below) for L1

kernels, in which the product-type regularity and cancellation conditions on H" x R are
transferred down to conditions (7)-(10) on H,,.

PROPOSITION 6 . 2 . If K € L1 (BT* x R) satisfies t ie product kernel conditions
(3)-(6) on W x R, tien if* satisfies (7)-(10) with constants that depend only on the
constants in the conditions (3)-(6) (for example, they do not depend on \\K\\x,i)-

PROOF OF THEOREM 6.1: Prom Corollary 4.2, the operators mt{C\,...,Cn,iT)
converge strongly on L2(Mn) to m(Ci,... ,£n,iT), and each mi is C°°, with compact
support away from the axes. By Proposition 3.1, the convolution kernel on Hn of
me{£u - . . ,£» , iT) is K\, where Kt is the convolution kernel on G of mt(£f, •••,£*, iT*).
Letting K be the distribution convolution kernel on G of m(C*,..., £#, iT*) we denote
by K* the distribution convolution kernel on H,, of m{Ci,...,£»,iT). We must show
that K* is smooth away from the Zj = 0 planes, and satisfies (7)-(10). Since

f*K*t—•/*A*in Z^Hn) as I -> oo

for all / G 5(Hn), the Sobolev Embedding Theorem implies that K\ — \ K* in the
sense of distributions, as £ —>• oo. From Corollary 4.2, the kernels Kt satisfy (3)-(6) with
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constants that do not depend on I. Since each Kt is in Ll{Cf), then by Proposition 6.2,
K\ satisfy (7)-(10) uniformly in L

We consider first the regularity condition, (7). Since K\ satisfy this uniformly in
£, then by the Ascoli-Arzela theorem, K* is equal to a smooth function away from the
Zi = 0 planes, which satisfies (7).

Next, for the cancellation condition (10) in t, we let (p be a normalised bump function
on R and r > 0. Since K\ converge in S'{En) to K*, then (K^)voir converge in 5'(C") to
K^,^. That K\ satisfy (10) uniformly in £, means precisely that the smooth functions

satisfy

uniformly in t. Thus by the Ascoli-Arzela theorem, -Kj* .̂ is equal to a smooth func-
tion away from the z* = 0 planes, which satisfies (11); in other words, K* satisfies the
cancellation condition (10). Conditions (8) and (9) on iC1 follow by similar arguments. D

P R O O F OF PROPOSITION 6.2:

S T E P 1. We prove here that if a kernel K on H" x R satisfies the regularity condition
(3) and the cancellation condition (6) in t, then the derived kernel Kb on H,, satisfies
the regularity condition (7) and the cancellation condition (10) in t. We do this by
induction, taking the -k operation iteratively. That is, for £ = 1 , . . . , n, we define Kirt on
C* x H""* x R by

= / . . . dut

Jit *~ ~*

and we show that /fki* satisfies the conditions

(12)

for all I = ( » ! , . . . , i») € (Z+)n, J = 0*+i, • • •, J») € (Z+)"-*, k e Z + , and

(13) I / 3 X K*{z,,hi,t)<p(rt)dt

for all / e (Z+)n, J = (JM-i.---.in) € (Z+)n"', all r > 0, and all normalised bump
functions (p on R.

Notice that Kb'n = K\ and if £ = n, conditions (12) and (13) are the required
estimates (7) and (10).

Before proceeding, we observe that the conditions (12) and (13) are invariant under
1-parameter dilations of C* x H""' x R = H(X W~e. That is, if g on C* x H""' x R
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satisfies (12) and (13), then so does gr, with the same constants C/j,* and Citj. Here,

gr(z±,h±,t)-r

Therefore, in order to show (12), it suffices to prove it only for \t\ = 1.

The proof of (12) and (13) is inductive in I, and we shall see that each step reduces
to the following Lemma o n l x R , which we state now, but prove below.

LEMMA 6 . 3 . Let 7 > 0, a > 0. Suppose f G X^H x R) satisfies

cidyi{\z\2 + \u\y
2-{i/2)-j{a+iti)-1"*(14)

for all i, j , k 6 Z+, and

(15) aiatf(z, u, t)v(rt) dt cid-r(\z\2 + \u\)~
2-^2^

for alli,j € Z+, all r > 0, and all normalised bump functions <p on R. Tien

f(z,t)= [ f(z,u,t-u)du

satisfies

(16)

for \t\ = 1 and for alli,k€ Z+, and

(17) l-2-i

for alii e Z+, all r > 0, and all normalised bump functions <p on R. Tie constants Cije,
Ci in (16) and (17) depend only on the constants in (14) and (15).

Now, take £ to be 1. To prove (12) with \t\ = 1 and (13), we fix {z±,u±) =
(22,u2, . . . ,zn ,un)£ W-\ and 7, J € (Z+)"-1. Since K satisfies (3) and (6) on H" x R,
then d[ D^ K, viewed as a function of zuui, and t, satisfies (14) and (15), with a = 0,

' 2 Jand 7 = \hiy\'
4~'~2J . Thus by Lemma 6.3, (12) and (13) hold for

To show the inductive step, that if (12) (with |t| = 1) and (13) hold, then the
same conditions also hold when £ is replaced by £+ 1, we fix (zt ,/fc+i) € C x H""'"1,
/ = {ii,...tittiM,...,i») € (Z+)"-1, and J = {jl+2,..., jn) €~(Z+)n-'-1, set z^ =
{ze,zt+l), and view

as a function of zi+i, ui+i, and t. Conditions (12) and (13) then give us (14) and (15),
with a = \z^\2, and 7 = \z±\~2~'±\fk±i\~

4~I'-±i~2J. Hence by Lemma6.3, (12) and (13)
hold for K^+l, thus concluding the proof of Step 1.
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S T E P 2. We now prove estimates (8), cancellation in some of the z-variables, and (9),
cancellation in some of the z-variables and in t. Given £, 1 ^ £ ^ n, by relabelling
variables, it suffices to prove the cancellation conditions in z( = (zi,...,zt) and in
{z±,t) = {z1,...,zt,t).

We prove these estimates together by reducing to the previous estimates (7) and (10)
as follows. Given any I € (I,+)n~t, and r 6 (R"1")* we show that, viewed as a function of
(h±,t) eW1-' xR,

±, t) = k{z±, uA, t)= f f di K(z, u, t - ] T Ui) <p(6r{zjj) dzt du^

satisfies (3) and (6) on H""* x R with the factor 7 = \h^ |~4"7 included in the right hand
side of each estimate. Prom Step 1 (with n replaced by n — £), it then follows that the
derived kernel

k\z^,t) = / ^ kizj^,u±,t- 52 mJ du^

satisfies (7) and (10) on ![„_/. But

\zA,t) = f [ d*ZtKUu,t-Y^u?)<p{6T(z,)) ±du

and so this amounts to showing (8) and (9) for K* on BU. (In fact, this proves (9) only for
product-type normalised bump functions ip = (pi®(p% on C* xR, where <pi is a normalised
bump function on Ce and y>2 is a normalised bump function on R. However, the result
for any normalised bump function tp on C' x R can then easily be seen, for example, by
expanding ip in a Fourier series.)

Therefore (8) and (9) are proved once we have shown that k(zt ,uc ,t) satisfies (3)
and (6) on M"~e x R. Fixing (ze ,ue), we observe that this is equivalent to showing that
k(zt ,Ui,t) satisfies, in the t-variable, the standard kernel estimates on R with factor

1. 1-4-/

Since K satisfies (3)-(6) on IP1 x R, then, fixing (z^,v.jj and viewing ^ / f a s a

function of {zt, ut, t) only, we see that it is a product-type kernel o n i ' x R , with factor

7 = I ht I ~4"7. Now, if we integrate a product-type kernel o n i ' x R against a normalised

bump function on Ce, we still obtain a product-type kernel on R'+1. (Lemma 6.4 in

Section 6 below.) Thus as a function of (ut ,t),

j ^
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is a product-type kernel on R'+ 1 (with this same factor 7). But integrating a product-
/+i

type kernel on R/ + 1 over the parallel planes £ Ui = constant (that is, the flat operation

on R'+ 1), yields a standard kernel on R (Lemma 6.6 below). Consequently,

1*4, *) = £ fci di^K (z, «,<-£

satisfies, in the £-variable, the standard kernel estimates on R (with factor 7), as required.
This concludes Step 2 and hence the proof of Proposition 6.2.

TECHNICAL DETAILS

We now establish Lemmas 6.3, 6.4 and 6.6, which were used in the proofs above.

P R O O F O F LEMMA 6.3: We first remark that (15) also holds for translates of
dilated normalised bump functions (p(r(- + s)). To see this, we let 77 be a normalised
bump function on R such that 17 = 1 on [—1/2,1/2], and write

f &zdif(z, u, t)<p(r{t + s)) dt= f didtHz, u, t)<p{r{t + s))r,(rt) dt

+ f didLHz, u, t)<p{r{t + s)) (1 - r,(rt)) dt.
JR

Since <p(r(t + s))r](ri) is a dilate by r of the normalised bump function

on R, then (15) gives the required estimate for the first term. The second term, by (14),
is bounded by

Cijl(\z\2 + M)- 2 - ( i / 2 ) - ' ' L 1 / 2 r (a + |*|)-X dt
7 | /

independently of s, as required. The cancellation condition (17) now follows immediately
after changing variables in t:

[ &zf
b{z,t)(p(rt)dt= f [ &zf{z,u,t-u)<p(rt)dtdu

u JR JR

= f I dif(z,u,t)(p(r(t + u))dtdu
JRJR

a t {\z\2 + \u\y2-ii/2) du ^ ca \z\
JR

- 2 - J

Next, we denote the partial derivative in the u variable on I x R by 9i, and the
partial derivative in the t variable by 82 •
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In the case where a ̂  max{l, |z |2}, the regularity condition (16) follows immediately
by integrating (14) out in u:

d,%f(z,u,t-u) du

(\z\2 + \u\Y2-m(a + \t- ul)-1"* du

2-i{a+ |z|2 + I)"1"* -

For a ^ max{l, |z | 2}, we must take into consideration the cancellation in the last
component of / . It suffices to show that

Letting r = l/max{l, |z|2} and letting 77 be a normalised bump function on R, supported
in [-1/2,1/2] and such that T? = 1 on [-1/4,1/4], and \v{i)\ ^ Ck for i = 1 , . . . , k + 1,

:a*/b(z,t) = a* /eif(z,t-u,u)du

= of /" ̂ '/(z, t - u,u)v(ru)du + &? f VJiz,t-u,u)(l-
J*. JR

du

For Ii, we write

h=J [%eif{z, t-u,u)- a*flj/(«, t, u)] r?(ru) du + ^ #£/(*, t, «)i7(ru) du.

Then by (15) we obtain the required estimate for the second term. For the first term, by
the mean value theorem and (14),

|
0<|s|<|t.| I

V r M sup (I*!2-Mt-3|)-3-(</2)-*(o + lul)-1

o M | |

But for |u| ̂  l/2r = max{l, |z|2}/2, |z|2 + 1 - |v| > (|z|2 + l) /2. Thus, since 77 is
supported in [—1/2,1/2], the first term of h is bounded by

f du r (|

as required.

r (|2|2 + !r2- ( i / 2 )- f c < <- . n.,2 , ^-2"(t/2)-*
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For J2, if \z\2 ^ 1, we can simply integrate the rough estimate (14),

-77(^5)) du

V r / (N2 + l*-«l t*!) "1

If 1 ^ |z|2, however, this gives too many powers of l^l"1. We therefore first change
variables in u, so that the t-derivatives will fall on the final component of / :

=ib(k) [ %&(*>«. * - «)ifc-i(* -«) d«
,_n \J / •'R

where ipo{y) = 1 - »7(y), and
{\y\ 2 1/4}, (14) gives

for £ 6 N. As all of the i>e are supported in

f
f
f {

d£Sif{z, u, t - u)^k.j(t - u) du

(\z\2 + \u\)-2~{i/2)

{\z\2 + \u\y2-{i/2) du ^

- u])-1-* du

+1) "1"*

which concludes the proof of Lemma 6.3. D

LEMMA 6 . 4 . If K e V- (W1 x R) satisfies the product kernel estimates on H" x
E (with factor 7 > 0 included in the right-hand side of each estimate), then given a
normalised bump function <p on C", and r € (R+)n, t ie function K^ on Rn + 1 defined
by

K<n\u,t)= [ K{z,u,t)<p(6r(z))dz

satisfies t ie product kernel estimates on Rn+1 fwiti factor j), with constants that depend
only on those in the product kernel conditions K satisfies.
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P R O O F OF LEMMA 6.4: The regularity condition on AT(n) is easily obtained by
integrating out in the z-variables the regularity condition on K:

I \dlb*K(z,u,t)\dz
JC1

Next, we show the product-type cancellation conditions for K^ on Rn+1. Given
< £ ^ n, it suffices to prove cancellation in ue and in (ue ,t).

Given any normalised bump functions 77 on R* and 770 on R, J = {jt+i, • • •, jn) €
+)n~t, k e Z + , s e (BL+Y and s0 > 0, we must estimate

Jcp-t

and

JTSS.t+1

= f f If %< K(z> u> *Mso*) * ] v(4.(«)M*.(«t) du, dz, dz

We observe first that for fixed zt, <p(6r(z)) is a dilate of the normalised bump function
tp(zt) = (p(zt ,ST( (zi)) on C*. Now, from the product kernel conditions satisfied by K
on BP x R, it follows that, viewed as functions of (zt ,ut),

dit %K(z,u, t), and / & K(z, u, t)r)0{sot) dt

satisfy the product kernel conditions on H', with factors 71 = \ht \~*~2J\t\~l~k and 72 =
\ht |~*~2J respectively. Therefore, applying the following lemma, and then integrating
in zt, we obtain the required estimates. D

LEMMA 6 . 5 . IffE L^H") satisfies the product kernel conditions on H" witi a
factor 7 > 0 included in the right-hand side of each estimate, then

f{z,u)<p{6T{z))n{5s{u))dzdu

for all normalised bump functions <p on C , 77 on Rn, and all r,s 6 (R+)n. The constant
C depends only on the constants in the product kernel conditions satisfied by f.
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P R O O F OF LEMMA 6.5: Relabelling coordinates if necessary, we assume

r f < Sj fori = l , . . . , n i , and r? > s, for t = ni + l , . . . , n .

Then
/ Tl rni . .
( ) ( - • • , tin,,

has bounded derivatives, but it is not a normalised bump function, as its support in the
first set of z-variables, and the second set of it-variables is too large. We therefore split
the integral up according to the size of these variables, by introducing a normalised bump
function ip on C, with ^ = 1 on {w e C : |w| < 1/2}, and a normalised bump function
/ i o n E such that / i = l o n [-1/2,1/2]. Then inserting the factors 1 = ip(y/5izi) + (l —
ip{y/sizi)), for i = 1,...,nx and 1 = niijuj) + (l - n{ijUj)), for j = nx + 1 , . . . , n in the
integrand, we can write

as a sum, for 1 < no < ni < n2 < n of I 1)[ x ) terms obtained by permuting
\no / \n2 - n i /

the variables z\,...,Znu and the variables «„,+!, . . . ,u» in

/ =
l - • • • ( l "

Without loss of generality, we consider only this term.

Setting h = {h1,h"), with h! = {h,...,h^,hnl+u...,K2), hi = (*,«*) then

VK f I f f(z, «)*(»-.--) (^(^'. u'))dz' du'l d/' dtt"

where i2 = (y/s^,..., y/s^, r n i + 1 , . . . , rni) € (R+)fcl, A=i = no + n2 - ni, *2 = n - *i,

fi = {(«", u") € (C x R)fcj :|zi| ^ 1 / 2 ^ , \ui\ < 1/sj, for i = no + 1,. -., m,

|zj| ^ l /r i 5 |ixj| ^ l/2r?, for j = n* + 1, - -., n}

and given (z", u") e (C x R)*J, we define $(*»,„«) on Hfcl by

2
rni+l

https://doi.org/10.1017/S0004972700019092 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700019092


54 A.J. Eraser [20]

Then we observe that $(*",««) is a normalised bump function on H*1, since
ri/y/sl < 1 for i = 1 , . . . , no and Sj/r* < 1 for j = nt + 1 , . . . , n^- Thus by cancella-
tion in (zf, u') on / , we estimate the inner integral by

I / f(z,u)*w)(5R(z!,u'))dz'du'
I Jmki

L»|—4

where the constant C is independent of the normalised bump function $(z",u") and hence
of (z",u"). Thus | / | is bounded by

n -f
«O+l ** •/I

n h

t=no+l j=ti2+l

LEMMA 6 . 6 . Let 7 > 0. Suppose K e L1(RB+1) satisfies t ie product kernel
conditions on Rn+1 witi t ie factor 7 included in the right-hand side of each estimate.
Then the function Kb on R given by

is a standard icernei on R, t ia t is,

" 1 - * , a n d

for aJi normalised bump functions (p on R, ailr > 0, and A; € Z + .

P R O O F OF LEMMA 6.6: For n = 1, this is proved in Lemma 6.7 below. The general
result follows by induction on n, since

K\t)= , . . . , «„, t -

and by Lemma 6.7 below, if*'1 is a product-type kernel on Rn with factor 7.
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LEMMA 6 . 7 . Suppose K e Lx(Rn+1) satisfies the product kernel conditions on
En + 1, with a factor j included in the right-band side of each estimate. Then the function
K*'1 on Rn given by

Ki'1(u)= f K(vVll,x,Un-x)dx

satisfies the product kernel conditions on Rn, with the factor 7 included in the rigbt-band
side of each estimate, and constants depending only on the constants in the product kernel
conditions satisfied by K on Rn+1.

PROOF OF LEMMA 6.7: For the regularity condition, along with the cancellation
condition in the final variable u,, of A*'1, given / = (*i,..., in-i) € (Z"1")""1 and fixing
14,-1, we observe that

is a product-type kernel in (x,y) on R2, with factor 7 = Itu-i l"1"7 . The result then
follows from the fact shown in Lemma 6.8 below, that a product-type kernel on R2 when
integrated over parallel lines x + y = t yields a standard kernel in t.

For the cancellation conditions on K*'1, given l ^ £ < n — l , b y relabelling of
variables, it suffices to obtain cancellation i n u ( , and in (ut ,«»). Let 77 a normalised
bump function on R*, / = (^+i , . . . , i n_i) € (Z+)"-'-1, and r € (R+)*. Then setting

/ ^A"(tt_i,x, y)T](Sr(u,)) du.

is a product-type kernel in (i, y) on R2, with factor 7 = |u ' | * 7, and the result follows
from Lemma 6.8. D

LEMMA 6 . 8 . Let 7 > 0. Suppose f 6 L^R2) satisfies the product kernel condi-
tions on R2, with the factor 7 included in the right-hand side of each estimate. That is,
f satisfies

(18)

for all i, j e Z+,

Crr\y\-1-(19) / d>f(x,y)<p(rx)dx

for all j € Z+, all r > 0, and all normalised bump functions tp on R,

I — 1 — *(20)

for all i 6 Z+, ail r > 0, and all normalised bump functions (p on R,
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(21)

for all r1} r2 > 0, and all normalised bump functions <p on R2. Then

/b(t)= ff(x,t-x)dx
JSL

is a standard kernel on R, with the factor 7 included in the right-hand side of each
estimate:

Ckl , and f\t)<p(rt)dt

for all k £ Z + , r > 0, and all normalised bump functions ip on R. Tie constants C* and
C depend only on the constants in the conditions (18)-(21).

P R O O F : By homogeneity, it suffices to prove the regularity condition for \t\ = 1.
Letting 77 be a normalised bump function on R, supported in [-1/2,1/2], with 77 = 1 on
[-1/4,1/4], and 1^1 ^ Ck for i = 0 , . . . , k + 1, we write

/(*)=# [ f{x,t-x)dx
JR

f(x,t-x)(l-r,(x))dx =

Now,

= f [%f[x,t- x) - b*f{x,t)]V(x) dx + J b*f(x,t)V(x) dx .

We estimate the second term directly, using (19). Next, by the mean value theorem and

(18),

|x| sup \b*+1f(x,t-s)\
o | | < | |

^Ck-r\x\ sup |x|-1|«-s|-fc-2

o<t«KN

for |x| ^ 1/2, |t| = 1, and so the estimate for the first term of I\ follows, since 77 is
supported in [-1/2,1/2].

Next, for h, changing variables in x to ensure that no t-derivatives fall on the second
component of / (so that cancellation can be used in this second variable), we obtain

=L ̂ "x ' x ) ( l ~v { t ~
dx = Y (k) f &f{t - x x)rpk.(t - x) dx
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where V'o(y) = 1 — v(y)> a Qd rl>j(y) = —»7 (̂y) for j € N. Each ipj is thus supported
in {|y| ^ 1/4}. We now split the integrand of the Ith term according to the size of the
second component of / :

f • f
I d\f{t — x,x)ipk-i(t — x)dx= I 5?/(t — xtx)r}(x)il>k-i(t — x)dx

JR JR
+ f %f(t - x, x) (1 - i7(*))^fc_*(* - x) dx.

JR

The function r)(x)ipk^i(t — x) is a normalised bump function in x, and thus we estimate
the first term exactly as we did Iy. For the second term, using (18)

I / Sif(t - x,x)(l - i 7 ( s ) ) ^ _ , ( t -x)dx $ c [ \ 8 t f ( t - x,x)\ dx

But the last integral is bounded, thus proving the regularity condition.

Next, by homogeneity, it suffices to show the cancellation condition for r = 1. By
Fubini, and a change of variables in t,

1= f f\t)<p(t) dt= f f f{x, s)<p(s + x)dsdx.
JR JR JR

Letting 77 be a normalised bump function on R, such that 77 = 1 on [—1/2,1/2], and
including the factor 1 = 7/(x) + (l — 77(1)) in the integrand, we can split / correspondingly
into two terms: / = h + h- Observing that r](x)(p(s + x) is a dilate by 1/4 of the
normalised bump function

h(x, s) = 7](4x)(p(4s + Ax)

on K2, then by (21), we obtain the required estimate for Ii. For 72, we split the integral
further, according to the size of |s|, and write

= f
JR?

f
JR?
f {

JR?

Now, (l — 7)(x)) tp{s + x) T]{s) is a dilate of a normalised bump function in 1 and s, and
so we estimate the first term using (21). Using the regularity condition (18), we bound
the second term by

which concludes the proof of Lemma 6.8. D
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