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1. Introduction

The main result of this paper is the following:

Theorem A. Let G be a n-separable finite group with Hall n-subgroup H. Suppose
0eIrr(H). Then there exists a unique subgroup M, maximal with the property that it
contains H and 9 can be extended to a character of M.

If H<iG, this result is a trivial consequence of Gallagher's theorem (see Corollary 8.16
of [3]). In this case, 0 extends to its stabilizer T=IG(d) and any subgroup to which 9
extends must stabilize 9 and so is contained in T.

In fact, Gallagher's extendibility theorem generalizes (for ^-separable groups) to the
situation where the Hall rc-subgroup H is not necessarily normal. If H £ u c G and 9 is
"invariant" in U in the sense that 6(x) = 9{y) whenever x,yeH are conjugate in U, then
9 extends to U. (See Theorem 8.1 of [5].)

This generalization does not prove Theorem A, however, because the concept of the
"stabilizer" of 0 is not available when H is not normal. In fact, Theorem A can be
viewed as asserting that an irreducible character of H does have a well-defined
stabilizer. This is all the more surprising when it is realized that if 9 is reducible , then
there need not be a unique largest subgroup containing H in which 9 is "invariant". We
provide an example to illustrate this.

The irreducibility of 6 turns out not be be crucial for the generalized Gallagher's
theorem, although the proof in [5] certainly uses it. By means of the deeper theory in
[4], it is very easy to prove a stronger result and we do so here.

Theorem B. Let G be n-separable with Hall n-subgroup H and let 0eChar(H) satisfy
9(x) = 9(y) whenever x,yeH are conjugate in G. Then 9 extends to a character of G.

2. Theorem A

Let G be 7t-separable. The set S£n{G) of "ft-special" irreducible characters of G was
defined by D. Gajendragadkar [1] and has some quite remarkable properties. We will
not give the definition here, but we list a few facts which we shall need.
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Proposition 2.1 Let G be n-separable and let / / £ G be a Hall n-subgroup.

a) Restriction defines an injection

b) The image of the map in (a) is exactly the set of Oe Irr (H) which extend to G.

c) / / N <i G and % e OEJfi), then every irreducible constituent of XN ̂ es I n ^"n(^0-

d) / / N o G with G/N a n'-group and 8 e &n(N) is invariant in G, then 6 extends to G.

e) / / N<3 G with G/N a n-group and 6 e 9Cn{N), then every irreducible constituent of 9G

lies in 3CJG).

Proof. All but (b) are in [1] and (b) follows from Theorem 8.1 of [5]. •

Lemma 2.2. Let G be n-separable with Hall n-subgroup H and suppose NoG with
NH = G. Let Oelrr(H) and let (p be an irreducible constituent ofdNnll. Then 6 extends to
G iff cp extends to N.

Proof. First, suppose 6 extends to G. By Proposition 2.1(b), we have 0 = %H f° r some
re-special £Elrr(G). Now %N has some irreducible constituent \ji which lies over (p. By
Proposition 2.1(c), ip is re-special and since NnH is a Hall re-subgroup of N, we
conclude that i//NnH is irreducible by Proposition 2.1(a) and thus i//NnH

 = (P as desired.
Now assume <p extends to N and choose a re-special extension \j/ by Proposition

2.1(b). Then (tl/G)H = (i//N n H)H = (pH and hence some irreducible constituent % °f IAC u e s

over 6. However, x is re-special by Proposition 2.1(e) and therefore XH = 6 by
Proposition 2.1(a). •

Proof of Theorem A. Work by induction on \G\. Let HzMsG with M maximal
such that 6 extends to M. Let NoG be a maximal normal subgroup of G. We shall
complete the proof by showing how to determine M from a knowledge of 6 and N. This
will be sufficient since the choice of N did not depend on M.

First suppose G/N is a re-group so that NH = G. For each irreducible constituent cp of
6NnH, let V((p)^N r\H denote the (unique) subgroup of N maximal such that <p extends
to V(cp). (We are, of course, using the inductive hypothesis in N.) Since cp uniquely
determines V(<p) and the various q> are conjugate under H, it follows that

D = f]V(<p)

is normalized by H, where q> runs over all irreducible constituents of 0NnH.
By Lemma 2.2, since M={Nr\M)H and & extends to M, it follows that all of the q>

extend to NnM and thus NnMsD. We conclude that DH is a group containing M.
Applying Lemma 2.2 in this group, since D<iDH and DnH = NnH and <p extends to
D, we see that 6 extends to DH. By the maximality of M, we have M = DH and so M is
determined, as required.

Now assume G/N is a re'-group so that H^N. Let F 2 H be the unique subgroup of
N maximal with the property that 9 extends to it. By Proposition 2.1(b), there is a
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unique 7t-special extension 0eIrr(K) of 6. Let T be the stabilizer of 9 in Nc(F) and
observe that 9 (and therefore also 9) extends to T by Proposition 2.1(d). If we can show
that M^T, then by the maximality of M, we have M = T and M is determined as
desired.

Now let K = NM(H). Since 6 extends to M, it certainly extends to K and thus K
stabilizes 9. Since 9 uniquely determines V (by the inductive hypothesis) and 9
determines 9, we conclude that K stabilizes S and thus K^T.

By the Frattini argument, M = (MnN)K. Now 9 certainly extends to Mn N and thus
e F c I Since also K c ^ w e have M^T and the proof is complete. •

3. An example

Let H s G be a Hall 7i-subgroup where G is ^-separable, and let 6 be a class function
of H. If H c K s G , we shall say that 9 is invariant in K if 6{x) = 9(y) whenever x, yeH
are conjugate in K. We aim to show that in general there is no unique largest subgroup
K 2 f l in which 9 is invariant even if 0eChar(G). We shall do this by constructing an
example where H^K^G, HzL^G, (,K,L} = G, 9 is invariant in each of K and L and
is not invariant in G. By Theorem A and either Theorem 8.1 of [5] or Theorem B, no
such example could exist if 9elrr(H).

Construction 3.1. Let E be extra-special of order 33 and exponent 3 and let
aeAut(E) invert E/Z{E) and centralize Z(£) with o2 = \. Let R = £»<CT>. NOW R has a
faithful absolutely irreducible representation of degree 3 over GF(52) in which the
eigenvalues of a are — 1 , - 1 and 1. Let V be the corresponding module so that V is
elementary abelian of order 56. Let G = KxiR. Let 7i = {2,5} and H=F<a>. Choose
subgroups A,B^E, of order 3, inverted by a, with (A,B} = E. Let K = VA<o> and

Proposition 3.2. Assume ffie notation of 3.1. Then there exists 9eCh&r(H) such that 9
is invariant in each of K and L but is not invariant in G.

Proof. Note that H contains elements of order 10. Let C be a cyclic subgroup of H
with aeC and |C| = 10. Let a,beZ and define the class function 9 = Ga>b of H as follows:

0(x) = .

a if x = 1

b if <x> is H-conjugate to C

0 otherwise.

We claim that 9 is invariant in K and L and if £>#0, then 0 is not invariant in G.
Afterwards, we shall show that 9 is a character for suitable choices of a and b.

Suppose x,yeH are conjugate in K. We wish to show that 9(x) = 9(y). The only
nontrivial item to check is that if <x> is H-conjugate to C then <y> is also. Without
loss, we can replace x and y by H-conjugates and assume that a is the 2-part of each of
x and y. Since y = xk for some keK, we conclude that keCK(a). Since K = JM<cr> and a
inverts A, it is easy to see that CK(<r)£ K(er) = H and so keH and hence 0(x) = 0(j>). A
similar argument, of course, works for L.
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Now let xeH with <x> = C and let zeZ(E) of order 3. Then z centralizes a and so
HZ = H and y = xzeH. We claim that 0(y) = O and so 9(x)^6(y) and 0 is not invariant in
G. We need to show that <y> is not //-conjugate to <x>. If (y} = (x}h for heH, then
cr^cr and heCH{a) and this is an abelian group. Thus <>'> = <x> and z normalizes C.
It follows that z centralizes C since 3/f|Aut(C)|. This is a contradiction since, in fact,
z acts on V by a nontrivial scalar multiplication (over GF(52)).

Finally, we need to show how to choose a,beZ with b^Q so that O = 0aJ> will be a
character. Let <p = 60,i and note that since <p is a class function of H, it is some complex
linear combination of Irr (H). We assert that, in fact, the coefficients are rational. To see
this, let aeAut(C) and let e be a primitive \H\ root of unity in C. Then e* = sr for some
integer r with (r,|H|) = 1 and l^ r^ | i f | . It suffices (by Lemma 3.2 of [2]) to show that
cp{x)a = q>{xr) for xeH. However, cp has values 0 and 1 and so q>{x)a = (p(x). Also,
<x> = <xr) and so q>(x) = <p(xr) by the definition of q>. Our assertion now follows.

We can now clear denominators and we have b<p is a Z-linear combination of Irr (H).
If p is the regular character of H, then b(p-t-mpe Char (H) for sufficiently large m e Z. We
have 0m|H|,i = fc<j» + wp and we are done. •

4. Theorem B

In [4], we defined for re-separable groups G a certain set Bn(G) of irreducible
characters. We list some facts.

Proposition 4.1. Let G be n-separable and let x* denote the restriction of the class
function x of G to the set of n-elements of G. Then the functions x* for X^^Jfi) are

distinct and form a basis for the complex vector space of class functions on the n-elements
ofG.

Proof. This is Theorem 9.3 of [4]. •

Proposition 4.2. Let G be n-separable with Hall n-subgroup H. For each xeBn(G),
there is an irreducible constituent a. of XH su^h that [/H, a] = 1 and [£H, a] = 0 for

Proof. This is part of Theorem 8.1 of [4]. •

Note that the linear independence of {x*\x^Bn(G)} in Proposition 4.1 is immediate
from Proposition 4.2.

The next result includes Theorem B.

Theorem 4.3. Let G be n-separable with Hall n-subgroup H. Suppose 9e Char (H)
satisfies 6(x) = 0(y) whenever x,yeH are G-conjugate. Then 6 has a unique extension
i/feChar(G) with the property that each irreducible constituent of\\i lies in Bn(G).

Proof. Define the function cp on the 7r-elements of G by setting (p(g) = G(x) where
x e H is conjugate to G. Note that q> is well defined since every 7i-element g e G is conjugate
to some xeH by property Dn and if g is also conjugate to yeH, then 6(x) = 6(y)
by hypothesis.
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An extension ip of 6 is just a character such that i]/* = q>. By Proposition 4.1, we can
write

<P= E axX*
xeBJG)

for some uniquely defined complex coefficients ax. Write

Then \j/* = q> and i// is the unique linear combination of Bn(G) with this property.
What remains in showing that \ji is a character is that each ax is a non-negative

integer. For xeBJ^G), choose an irreducible constituent a of XH a s m Proposition 4.2.
Then by Proposition 4.2,

and the result follows. •
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