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1. Introduction

The main result of this paper is the following:

Theorem A. Let G be a n-separable finite group with Hall n-subgroup H. Suppose
Oelrr(H). Then there exists a unique subgroup M, maximal with the property that it
contains H and 6 can be extended to a character of M.

If H<a G, this result is a trivial consequence of Gallagher’s theorem (see Corollary 8.16
of [3]). In this case, 8 extends to its stabilizer T=1;(0) and any subgroup to which 6
extends must stabilize 6 and so is contained in T.

In fact, Gallagher’s extendibility theorem generalizes (for n-separable groups) to the
situation where the Hall n-subgroup H is not necessarily normal. If HCU <G and 6 is
“invariant” in U in the sense that 8(x)=6(y) whenever x,ye H are conjugate in U, then
0 extends to U. (See Theorem 8.1 of [5].)

This generalization does not prove Theorem A, however, because the concept of the
“stabilizer” of @ is not available when H is not normal. In fact, Theorem A can be
viewed as asserting that an irreducible character of H does have a well-defined
stabilizer. This is all the more surprising when it is realized that if 8 is reducible , then
there need not be a unique largest subgroup containing H in which 8 is “invariant”. We
provide an example to illustrate this.

The irreducibility of @ turns out not be be crucial for the generalized Gallagher’s
theorem, although the proof in [5] certainly uses it. By means of the deeper theory in
[4], it is very easy to prove a stronger result and we do so here.

Theorem B. Let G be n-separable with Hall n-subgroup H and let 0 e Char(H) satisfy
0(x)=0(y) whenever x,ye H are conjugate in G. Then 6 extends to a character of G.

2. Theorem A

Let G be n-separable. The set Z,(G) of “n-special” irreducible characters of G was
defined by D. Gajendragadkar [1] and has some quite remarkable properties. We will
not give the definition here, but we list a few facts which we shall need.
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Proposition 2.1 Let G be n-separable and let H<= G be a Hall n-subgroup.
a) Restriction defines an injection
Z (G)-Irr (H).
b) The image of the map in (a) is exactly the set of Oelrr (H) which extend to G.
¢) If N<a G and ye Z.(G), then every irreducible constituent of yy lies in Z ,(N).

d) If N<G with G/N a n'-group and 0% ,(N) is invariant in G, then 0 extends to G.

e) If N<aG with G/N a n-group and 6% (N), then every irreducible constituent of 0¢
lies in Z (G).

Proof. All but (b) are in [1] and (b) follows from Theorem 8.1 of [§]. O

Lemma 2.2. Let G be m-separable with Hall n-subgroup H and suppose N<1G with
NH=G. Let 6elrr(H) and let ¢ be an irreducible constituent of 6y, y. Then 0 extends to
G iff ¢ extends to N.

Proof. First, suppose 8 extends to G. By Proposition 2.1(b), we have 8=y, for some
n-special y €Irr(G). Now yx, has some irreducible constituent ¥ which lies over ¢. By
Proposition 2.1(c), ¥ is n-special and since NnH is a Hall n-subgroup of N, we
conclude that ¢ . g is irreducible by Proposition 2.1(a) and thus ¥,z =¢ as desired.

Now assume ¢ extends to N and choose a m-special extension { by Proposition
2.1(b). Then (Y)y=Wy )" =0 and hence some irreducible constituent y of Y€ lies
over 6. However, x is m-special by Proposition 2.1{(e) and therefore x4z=6 by
Proposition 2.1(a). O

Proof of Theorem A. Work by induction on |G| Let HEM <G with M maximal
such that 6 extends to M. Let N<G be a maximal normal subgroup of G. We shall
complete the proof by showing how to determine M from a knowledge of # and N. This
will be sufficient since the choice of N did not depend on M.

First suppose G/N is a n-group so that NH=G. For each irreducible constituent ¢ of
On ~ 1> let V(@)= N H denote the (unique) subgroup of N maximal such that ¢ extends
to V(p). (We are, of course, using the inductive hypothesis in N.) Since ¢ uniquely
determines V() and the various ¢ are conjugate under H, it follows that

D=\V(¢)

[

is normalized by H, where ¢ runs over all irreducible constituents of 0y . .

By Lemma 2.2, since M =(NnM)H and 8 extends to M, it follows that all of the ¢
extend to NN M and thus NnM < D. We conclude that DH is a group containing M.
Applying Lemma 2.2 in this group, since D<iDH and DNnH=NnH and ¢ extends to
D, we see that 0 extends to DH. By the maximality of M, we have M=DH and so M is
determined, as required.

Now assume G/N is a n'-group so that HESN. Let V2 H be the unique subgroup of
N maximal with the property that § extends to it. By Proposition 2.1(b), there is a
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unique 7-special extension @elrr(V) of 6. Let T be the stabilizer of § in Ng(V) and
observe that § (and therefore also ) extends to T by Proposition 2.1(d). If we can show
that M < T, then by the maximality of M, we have M=T and M is determined as
desired.

Now let K=N,/(H). Since # extends to M, it certainly extends to K and thus K
stabilizes 0. Since 6 uniquely determines V (by the inductive hypothesis) and 6
determines 8, we conclude that K stabilizes 8 and thus K< T,

By the Frattini argument, M =(M n N)K. Now 6 certainly extends to M N and thus
MnNcVcT. Since also K< T, we have M < T and the proof is complete. [

3. An example

Let HSG be a Hall n-subgroup where G is n-separable, and let 6 be a class function
of H. If H= K <G, we shall say that 0 is invariant in K if (x)=0(y) whenever x, ye H
are conjugate in K. We aim to show that in general there is no unique largest subgroup
K= H in which 8 is invariant even if # e Char(G). We shall do this by constructing an
example where HEK <G, HESL<=G, {K,L)>=G, 6 is invariant in each of K and L and
is not invariant in G. By Theorem A and either Theorem 8.1 of [5] or Theorem B, no
such example could exist if 8 € Irr(H).

_Construction 3.1. Let E be extra-special of order 3® and exponent 3 and let
o eAut(E) invert E/Z(E) and centralize Z(E) with 6>=1. Let R=E x{c¢). Now R has a
faithful absolutely irreducible representation of degree 3 over GF(5%) in which the
eigenvalues of ¢ are —1, —1 and 1. Let V be the corresponding module so that V is
elementary abelian of order 5. Let G=V xR. Let n={2,5} and H=V{o). Choose
subgroups A, BCE, of order 3, inverted by o, with {(4,B)=E. Let K=VA{6) and
L=VB{o).

Proposition 3.2. Assume the notation of 3.1. Then there exists 8 e Char(H) such that 6
is invariant in each of K and L but is not invariant in G.

Proof. Note that H contains elements of order 10. Let C be a cyclic subgroup of H
with 6eC and |C|=10. Let a,be Z and define the class function §=8, , of H as follows:

a ifx=1
8(x)=<{ b if (x) is H-conjugate to C

[ 0 otherwise.

We claim that 6 is invariant in K and L and if b#0, then 8 is not invariant in G.
Afterwards, we shall show that @ is a character for suitable choices of a and b.

Suppose x,ye H are conjugate in K. We wish to show that 8(x)=6(y). The only
nontrivial item to check is that if (x) is H-conjugate to C then {y) is also. Without
loss, we can replace x and y by H-conjugates and assume that ¢ is the 2-part of each of
x and y. Since y=x* for some ke K, we conclude that ke Cy(o). Since K=VA(s) and ¢
inverts A, it is easy to see that Cg(c)<V(s)=H and so ke H and hence 8(x)=0(y). A
similar argument, of course, works for L.
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Now let xe H with {x)>=C and let ze Z(E) of order 3. Then z centralizes ¢ and so
H?=H and y=x"e H. We claim that 6(y) =0 and so 0(x)#6(y) and 6 is not invariant in
G. We need to show that {y) is not H-conjugate to {x). If {y>={x)" for he H, then
6"=0 and he Cy(o) and this is an abelian group. Thus (y>=<x) and z normalizes C.
It follows that z centralizes C since 3} |Aut(C)|. This is a contradiction since, in fact,
z acts on V by a nontrivial scalar multiplication (over GF(52)).

Finally, we need to show how to choose a,beZ with b#0 so that 8=0, , will be a
character. Let ¢ =6, , and note that since ¢ is a class function of H, it is some complex
linear combination of Irr (H). We assert that, in fact, the coefficients are rational. To see
this, let «ae Aut(C) and let ¢ be a primitive |H | root of unity in C. Then ¢*=¢" for some
integer r with (r,|H|)=1 and 1<r<|H|. It suffices (by Lemma 3.2 of [2]) to show that
o(x)*=¢@(x") for xe H However, ¢ has values 0 and 1 and so ¢(x)*=¢(x). Also,
{x>={x"> and so ¢(x)=¢(x") by the definition of ¢. Our assertion now follows.

We can now clear denominators and we have bg is a Z-linear combination of Irr(H).
If p is the regular character of H, then by + mp € Char (H) for sufficiently large me Z. We
have 6,,,,=bg+mp and we are done. [

4. Theorem B

In [4], we defined for m-separable groups G a certain set B,(G) of irreducible
characters. We list some facts.

Proposition 4.1. Let G be n-separable and let y* denote the restriction of the class/
function y of G to the set of m-elements of G. Then the functions x* for yeB,(G) are
distinct and form a basis for the complex vector space of class functions on the n-elements

of G.
Proof. This is Theorem 9.3 of [4]. [

Proposition 4.2. Let G be n-separable with Hall n-subgroup H. For each ye B, (G),
there is an irreducible constituent o« of xy such that [yy,a]=1 and [Eg,0]=0 for

1#¢eB(G).

Proof. This is part of Theorem 8.1 of [4]. O

Note that the linear independence of {x*|xeB,(G)} in Proposition 4.1 is immediate
from Proposition 4.2.
The next result includes Theorem B.

Theorem 4.3. Let G be m-separable with Hall n-subgroup H. Suppose 6eChar(H)
satisfies 0(x)=0(y) whenever x,ycH are G-conjugate. Then 6 has a unique extension
Y € Char (G) with the property that each irreducible constituent of y lies in B (G).

Proof. Define the function ¢ on the m-elements of G by setting ¢(g)=06(x) where
x € H is conjugate to G. Note that ¢ is well defined since every n-element ge G is conjugate
to some xeH by property D, and if g is also conjugate to yeH, then 6(x)=0(y)
by hypothesis.
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An extension i of 6 is just a character such that y* =¢. By Proposition 4.1, we can
write

o= Y ax*
1B (G)

for some uniquely defined complex coefficients a,. Write
Y= Z ax

Then y*=¢ and ¥ is the unique linear combination of B,(G) with this property.

What remains in showing that § is a character is that each a, is a non-negative
integer. For ye B(G), choose an irreducible constituent o of y; as in Proposition 4.2.
Then by Proposition 4.2,

az = [lpfh (X] = [9’ a]

and the result follows. [
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