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COMPOSITION OPERATORS ON
WEIGHTED BERGMAN-ORLICZ SPACES

AJAY K. SHARMA AND S.D. SHARMA

In this paper, composition operators acting on Bergman-Orlicz spaces

At = {/ € H(B) : H/IU* = jf *(bg|/(z)|)*/o(*) < «>}

axe studied, where $ is a non-constant, non-decreasing convex function defined on
(-oo, oo) which satisfies the growth condition lim $(£)/< = oo. In fact, under a mild

t—^OO

condition on <£, we show that every holomorphic-self map tp of D induces a bounded

composition operator on .A* and Cv is compact on A* if and only if it is compact on

1. INTRODUCTION

Let D be the open unit disk in the complex plane C and (p be a holomorphic self-map
of D. Then the equation Cvf — fo<p, for / analytic in ID> defines a composition operator
Cv with inducing map ip. Amongst the nice composition operators on these spaces are
the compact composition operators. Much of the study of compact composition operators
on the spaces of analytic functions is motivated by the desire to relate the compactness
of Cv with the geometric properties of (p. Commendable work in this direction was done
by Schwartz [5], Shapiro and Taylor [7], MacCluer and Shapiro [4] and Shapiro [8]. The
study of compact composition operators on H2 was initiated by Schwartz [5] in his thesis
in 1969. Thereafter mathematicians developed elegent techniques to study composition
operators on different spaces of analytic functions. MacCluer and Shapiro [4] showed
that Cv is not compact whenever <p has an angular derivative at some point of the unit
circle. Non-existence of the angular derivative condition is not a sufficient condition
for compactness of Cv on Hardy spaces Hp in general. However, the angular derivative
condition does characterise the compactness of C^, on Hp if the inducing map is univalent.
MacCluer developed a relationship between compact composition operators on Hp spaces
of the unit ball of Cn for n > 1 and special class of measures on the unit disk known
as Carleson measures. A connection between Carleson measure conditions for the pull-
back measures and composition operators on Ap

a played an important role in the proof
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of MacCluer and Shapiro [4] in which they showed that the non-existence of the angular
derivative condition is a necessary as well as a sufficient condition for compactness of Cv

on Ap
a. In 1987, Shapiro [8] was able to discover the connection between the essential

norm of a composition operator on the Hardy space H2 and the Nevanlinna counting
function for ip, and obtained the general expression

where by the essential norm of C ,̂, we mean its distance, in the operator norm, from the
space of compact operators on H2. In particular, he proved that Cv is compact on H2

if and only if Nv(w) — o(logl/|u>|) as \m\ -» 1, thus providing a complete function
theoretic characterisation of compact composition operators in terms of the inducing
map's Nevanlinna counting function Nv. Another solution to the compactness problem
can be given by means of the positive measures AQ that are defined on the unit circle 9D
by the Poisson representation

= / P(z,OdXa(C)
Ja - tp{z)

for each a € 9B>. These measures are often called the Aleksandrov measures of <p. In [2],
Cima and Matheson showed that the essential norm of C^ on H2 can also be expressed
as

\\Cv\\l = sup |K| | ,
o€dD

where aa is the singular part of AQ. In particular, it follows that Cv is compact on the
Hardy space H2 if and only if all the measures Ao are absolutely continuous. We are
inspired by the following results.

1. If Cv is compact on one of the Hardy space Hp for some p(0 < p < oo), then it
is compact on all of the Hardy spaces Hp (0 < p < oo) ([7]).

2. A holomorphic composition operator is compact on L1 if and only if it is compact
on H2 ([6]).

3. For an arbitrary ip the compactness of Cv on Hardy spaces Hp is quite different
from the compactness of Cv on weighted Bergman spaces Ap

a. MacCluer and Shapiro [4]
gave a nice example of a holomorphic self-map of B which induces a compact composition
operator on weighted Bergman space but does not induce a compact composition operator
on the Hardy spaces. As a matter of fact they established the existence of an inner
function ip (holomorphic function on D with modulus < 1 everywhere on D and radial
limit of modulus 1 at almost every point of 9D) such that Cv is compact on Ap

a for all
0 < p < oo and a > — 1. However, it is well known that no inner function can induce
a compact composition operator on any of Hp spaces. In fact, they cited the following
example;
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Let

<p{z) = exp / - — -
JdB z - C

where \i is a Borel measure on dED that is singular with respect to linear Lebesgue measure
and

Ja
= oo

am IC. ~ w|"
at every w € 9D>. Then y is a singular inner function which induces a compact composi-
tion operator on Ap

a but not on the Hardy space Hp.

Our goal in this paper is to characterise those holomorphic self-maps ip of D that
induce bounded and compact composition operators on the weighted Bergman-Orlicz
spaces A*. We shall show that like Hardy spaces and weighted Bergman spaces, every
holomorphic self-map ip of H> induces a bounded composition operator on the weighted
Bergman-Orlicz spaces A* and that Cv is compact on the Bergman-Orlicz spaces A* if
and only if it is compact on any of the weighted Bergman spaces A£(0 < p < oo).

2. PRELIMINARIES

In this section we review the basic concepts and collect some essential facts that
will be needed throughout the paper. Let H(3) denote the space of all holomorphic
functions in the unit disk D of the complex plane C and dA(z) = (1/TT) dxdy,z = X + iy,
the normalised Lebesgue measure on D. Let a £ (—1, oo) be a real number and va be the
probabilistic measure on D given by dva(z) = (a + l ) ( l — |z|2)QdA(z). For 0 < p < oo
the weighted Bergman space Ap

a is defined as

f / f \1/p 1
Ap

a = { f £ H(D) : H/lUg = / \f{z)\pdua{z) < oo [.

Note that H/H^g is a true norm only if 1 ^ p < oo. When 0 < p < 1, Av
a is a an F-space

with respect to the translation invariant metric defined by d°(f,g) = \\f - (/IUJ. The
growth of functions in the Bergman space is essential in our study. The following sharp
estimate tells us how fast an arbitrary function from Ap

a grow near the boundary.
Let / € Ap

a. Then for every z in D, we have

| y V " ^ (1 - |2r|2)(2+«)/p

with equality if and only if / is a constant multiple of the function

It can be easily shown that ||fco|Ug * 1 with constant depending only on a and p ([8,
p. 400]). Let * be a non-constant, non-decreasing convex function defined on (-00,00)
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which satisfy the growth condition lim ^(t)/t = oo. The weighted Bergman-Orlicz space
t—»oo

A* is denned by

A* = {/ € H(B) : H/IU* = jf *(log|/(z)|)di/n(z) < oo}.

The Hardy-Orlicz space if* is as usual defined by

H* = {f€ H(D) : ||/||ff. = supj^(log\f(reie)\)da(0)},

where a is the normalised Lebesgue measure on the unit circle d&. It is clear that
H* C A* for every * and for every a > —1. In particular, if ^(i) = exp(pt), 0 < p < oo
then A* is the usual weighted Bergman space Ap

a, 0 < p < oo with parameter a whereas
if* is the usual Hardy space ifp, 0 < p < oo. Throughout this paper we also assume
that * also satisfies the following property:

*(2t) < Ctf (*) for all t > 0.

We next define generalised Bergman spaces.

Let w be a real-valued function, defined on [0, oo). If UJ satisfies the following condi-

tions.

(i) u(x + y) ^ w(x) + w{y), for all x, y € [0, oo);

(ii) u is continuous at zero, from the right;

(iii) UJ(X) = 0 if and only if x = 0;

we say that a; is a modulus function. Some examples of modulus function are xp, 0
< p ^ 1 and log(l + x). In fact, if ui is a modulus function, then so is w/(l + w). Let UJ
be a modulus function. The generalised weighted Bergman space A% is defined to be the
collection of all analytic functions / o n D for which

The spaces A% is not necessarily complete. However, if w(|/ |) is subharmonic in D for
every / € H(B), then A™ becomes an F-space. In view of Hasumi and Kataoka [3,
Lemma 5.1], the above condition on u> is equivalent the following, 'w(e') is a convex
function'. Throughout this paper we shall assume that our modulus function also satisfy
the following properties.

(i) a; (|/|) is a subharmonic function for every / €

(ii) u is strictly increasing;

(iii) u(xy) < w(x) + w(y) for all x, y € [0, oo);
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2.1 a-CARLESON MEASURE. For £ € 3 0 and 0 < 6 < 2, let

S(<5,C) = { z e B : | z - C | < < 5 } .

A positive Borel measure p on ID is called a-Carleson measure if

sup sup \K
a+t" < oo,

and it will be called a vanishing Carleson measure if

Sa+2

We use the sets S(5, £) as the Carleson sets along with a more convenient choice of
pseudohyperbolic disks. We now incorporate a few lines from Axler's paper [1]. For any
fixed a € D, let ra be the function defined by

a- z
ra{z) =

1 - a z

for 2 e ID. The function ro is an automorphism of D. For a and z in ID, the pseudo-
hyperbolic distance d between a and z is defined by

d(a,z) = |ro(z)|.

For 0 < r < 1 and a € ID, denote by D(a,r), the disk whose pseudohyperbolic centre is
a and whose pseudohyperbolic radius is r:

D(a,r) = iz G © : d(a,z) < r\.

Since ra is a linear fractional tansformation, the pseudohyperbolic disk D(a, r) is also a
Euclidean disk. The Euclidean centre and Euclidean radius of D(a, r) are

1 - r2 1 - \a\2

a and r-r2\a\2 \-r2\a\2

respectively. The notation \D(a, r)\A will denote the area of D{a, r). For fixed 0 < r < 1
the area of D(a, r) has the estimation:

(t.L) \L)\a,r)\A ~ ^i - \a\ ) ~ ^i — \z\ ) ~ \JJ(z,r)\A,

for z G D(a, r), where ss means that the two quantities are bounded above and below by
the constants independent of a. For fixed 0 < r < 1, it is also known that for z G D{a, r),

(2 o) | l az\ w (l lal2l
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Also for each D(a,r), there is a £ € dO so that D(a,r) C 5(<J,C) for <J « 1 — |a| and for

fixed r, 0 < r < 1

(a + 1 ) / (1 - W2)°dA(z) » (1 - |a | 2 ) o + 2 -

The following Lemma was proved by Axler in [l].

LEMMA 2 . 2 . Let 0 < r < 1. Tien tiere is a sequence {an} in D and a posi-
tive integer M such that U^LlD(an,r) = 0 and each 2 6 P is in at most M of the

pseudohyperbolic disks

_ / l + r\ / l+ r \ / 1+7-N
D[au~2~)ijD(a2'~ri' la3'~2~)'• • •

2.3. ANGULAR DERIVATIVE. ([9, p. 56]) We say that <p has a finite angular derivative
at a point £ € 9D if there is a point u € 9B> such that the difference quotient

- U!

has a finite limit, as z tends non-tangentially to C-

The connection between composition operators and angular derivative is made by
the following classical theorem.

2.4. JULIA-CARATHEODORY T H E O R E M . ([9, p. 57].) For £ e dB, the following are

equivalent:

(1) ip has an angular derivative at (.

(2) tp has a non-tangential limit of modulus 1 at £, and the complex derivative
<p' has a finite limit at £. In this case, the limit of (p' is p'{()-

(3) l immf(l - M * ) | ) / ( l - |z|) =d < oo.

(For more information on the Julia-Caratheodory Theorem and its connection with

composition operators see [4, Section 3], or [9, Chapter 4].)

The next criteria of compactness of Cv, is due to MacCluer and Shapiro [4] and is

useful in the main result of this paper.

THEOREM 2 . 5 . Let if be a holomorphic self-map of 3. Then the following condi-

tions are equivalent:

(1) Cv is compact on A2
a.

(2) tp has an angular derivative at no point on the boundary 3D ofH).

(3) Tie pull back measure ua o (p'1 is a vanishing Carleson measure on B.

LEMMA 2 . 6 . For a Sxed r , 0 < r < 1, there exists a positive constant C depending

upon T such that
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for / analytic in D, and z € D>.

PROOF: Since D(0, r ) is a Euclidean disk with centre 0 and radius r and ^ ( log | / (z ) | )

is subharmonic for all analytic / , we have

/
r JD(0,r)

Replacing / by / o TW and changing variable, we obtain

Since 0 < r < 1, (2.1) and (2.2) imply that there is a constant C > 0, depending upon r,
such that

The following lemma asserts that sequences that are norm bounded in 4̂* are uniformly
bounded on compact subsets of P. In other words, for 0 < r < 1 there has to be a
uniform bound for all point-evaluations corresponding to points in rD. D

LEMMA 2 . 7 . For z eB,

foraii/e A*.

Proof is an easy consequence of Lemma 2.6.

3 . BOUNDEDNESS OF Cv ON A*

In this section we show that every holomorphic self-map <p of D induces a bounded
composition operator on Bergman-Orlicz spaces A*.

We need the following lemma.

LEMMA 3 . 1 . If n is an a-Carleson measure on U, then there is a constant C such
that

jf *(log(|/(t»)|))dMH ^ C jT *(log(|/H|))di/a(u;)

for any f e A*.

PROOF: Fix 0 < r < 1. Pick a sequence {on} in D satisfying the conditions of the
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Lemma 2.2. For / G A*, we have

* (Ml/Ml) W(«0
B , r ) V '

p(D{an, r)) 8up{*(log(|/H|)) : w e D(an, r)}

'CC'f; / *
n = 1 JD(a,,(l+r)/2)

( ( | | ) ) , where C = C'C"C".

The following theorem provides a necessary and sufficient condition for boundedness of
Cv : A* ->• A* in terms of Carleson measure condition for the pull-back measure vao<p~l

on D. D

THEOREM 3 . 2 . For a holomorphic self-map <p of 3, Cv : A% ->• A* is bounded if
and oniy if the pull-back measure ^iv<a = i/a o tp~l is an a-Caileson measure on 3.

PROOF: Suppose C9 is bounded. We need to verify that the pull-back measure
AV,a = vo ° V~x is a a-Carleson measure on D. Assume 0 < 6 < 1 and C € e?B. Let
a = (1 — (5)C and consider the function

Then 0O is non-negative and go e i 1 ^ ) - Let /f(eifl) = (*)~1(5«(ei*)). Then if is well
denned, for * is strictly increasing in the range of ga. Since \I> is convex, ^ - 1 is concave
and so there is a constant C > 0 such that $~1(i) ^ Cx for sufficiently large x. Thus

). We set

(3.1) h(z) = exp | jf * J5r(z|e«)/f(ea)da(t) J,

where ff(z, e") denotes the Herglotz kernel for D; namely, /f(z, e") = (ei{ + z)/(e" - 2),
2 € D. Then

tf (log|/»(e*)|) = *(log(exp(*-^o((et f))))) = ga(e
w) e ^
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This means that h € H* and so also in A*.

\\h\\At =

- |a|2)<a+2>

1.

f(l-\o
' Jo I 1 - aaz\2<-a+2)

dva{z)

Since Cv is bounded, there is a constant C such that

lic^iu* ^ c\\h\\A* ^ a

That is

- |q | 2 ) ( a + 2 )

On the other hand

( i - H2) ( a + 2 )
 >

|1 | 2 ( + 2 ) "

)

>

(1 - |a|2)(°+2> 1
(1 — |ah2(a + 2) 2Q + 2

1
^ (2<5)°+2

if (|1 - z £ | ) / ( l - |o|) < 7o for some fixed -y0 > 0; that is, if z G 5(70<5, C)- Hence for all
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C e 3D and 0 < 6 < 1, we have

that is, Vaf~1{S('yo^,0) ^ C(5a+2 and hence uaip~l is an a-Carleson measure on D.
Conversely, suppose vao<p~x is an a-Carleson measure. Then by Lemma 3.1, we have for

/ 6 At,

= J^(log(\(foip)(w)\))dva(w)

In
= c\\f\\A*.

This completes the proof. D

R E M A R K . In [4, Theorem 4.3] MacCluer and Shapiro assert that Cv is bounded on Av
a

if and only if fj,v<a — i/a o y r 1 is an a-Carleson measure on D. Thus by Theorem 3.1
above Cp is bounded on A* if and only if it is bounded on Ap

a. But by [4, Theorem
3.4] of MacCluer and Shapiro, every holomorphic self-map <p of D induces a bounded
composition operator on Ap

a for all 0 < p < oo and a > — 1. Hence every holomorphic
self-map ip of P induces a bounded composition operator on J4* also.

4. COMPACTNESS OF CV ON ,4*

The following lemma characterises the compactness of Cv on A% in terms of sequen-
tial convergence. It can be proved on similar lines as in [6, Proposition 3.11]. So we omit
the details.

LEMMA 4 . 1 . Let ip be holomorphic self-map of D. Tien Cv is compact on v4*
if and only if for every sequence {/„} which is norm bounded and converges to zero

uniformly on compact subsets of 3, we have \\fn o y>||,i* —> 0.

We now characterise compact composition operators on A*.

THEOREM 4 . 2 . Let tp be a holomorphic self-map of D. Then the following are

equivalent:

(1) Cp is compact on A*.

(2) The pull-back measure fi^,^ = vao<p~lis a vanishing Carleson measure on D.
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(3) Cv is compact on A2.

(4) <p has an angular derivative at no point on the boundary dB> of D.

PROOF: In view of Theorem 2.5, we need only to show that (1) =*> (2) and (4) => (1)
To prove (1) => (2), let us suppose that Cv is compact. Assume 0 < 6 < 1/2 and C S 9B>.
Let a = (1 - <5)(. Consider the family of functions

where h is the same function as in Theorem 3.2. Then

\\fa\\A* =

Clearly fa -> 0 uniformly on compact subsets of D as |o| -¥ 1. Again, as in the proof

of Theorem 3.2, there exist 70 > 0 such that if z € S(7o<S, C)i t n e n

(1 - |a|2)(°+2> 1
|l_oz|«(«+a) " (25)a+2'

Hence for z € S(70<S, C)i

Therefore, we have for any C € 9 0 and 0 < 5 < 1/2

)) ^ / *(log|/o(;

<y*(iog|(/aoV)(z)i)di/0(z)
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But compactness of Cv forces HC^/OIIA* to tend to zero as 5 —¥ 0, which implies that

uniformly in £ 6 3D. Hence fi^^ = va o yrx is a vanishing Carleson measure on D.

(4) => (1) Suppose that vay~x is a vanishing Carleson measure on B>. Then

y ) -> 0 uniformly in C as 5 -+ 0

that is
^ • ° ( ? ( u ' l l ~> ° uniformly in w as |u;| -> 1.(1 - \w\)a+2

Fix any r > 0 and a sequence {wn} as in Lemma 2.2. Since \wn\ —t 1 as n —> oo,

n^S, (1 - K | ) ° + 2

Thus, for every e > 0, we can find a positive integer iVo such that

Fix a sequence {/m} that is bounded by a finite constant M in ^4* and converges to

zere uniformly on compact subsets of D. By Lemma 4.1, it is enough to show that

ll/m o vlU* -> 0. Now

= jf*(log(|(/rao,

n=1JD(wn,r)
oo

+• V / * (

Again as in the proof of the Lemma 3.1, there is a constant C > 0 such that

" X,..,,*1

i
f *(log{\fm(z)\))d^,a(z)

J D{wn,(l+T)/2) V 7

= eCM

= sCMNp
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for all m ^ 1. Since {/m} converges to zero on each compact subset of ID, we have

No

Since e > 0 was arbitrary, we see that HC^/mlU* -> 0. Hence Cv is compact.

We are now going to see that our result also holds for generalised Bergman spaces
Aw

a. Recently, Stevic in [10] have studied composition operators on generalised Bergman
spaces. He proved that like other spaces of analytic functions of the open unit disk, every
analytic self-map of 3 induces a bounded composition operator. He also provided several
necessary and sufficient conditions for Cv to be compact. D

The following lemma characterises the compactness of C^, on A^ in terms of sequen-
tial convergence (see [10]).

THEOREM 4 . 3 . Let ip be holomorphic self-map of 3. Then Cv is compact on

A% if and only if for every sequence {/„} which is norm bounded and converges to zero

uniformly on compact subsets of 3, we have \\fn o <P\\A% —> 0.

We now characterise compact composition operators on A%.

THEOREM 4 . 4 . Let <p be a holomorphic self-map of 3. Then the following are

equivalent:

(1) Cv is compact on A%.

(2) The pull back measure va o <p~lis a vanishing Carleson measure on CD.

(3) Cv is compact on A\.

(4) tp has angular derivative at no point on the boundary 33 of 3.

P R O O F : In view of Theorem 2.5, we need only to show that (1) => (2) and (4) =• (1)
To prove (1) =>• (2), suppose that Cv is compact. Assume 0 < 5 < 1/2 and C € 3D. Let
a — (I — (5)£, and consider the function

M _ u^a+2

Then ga is non-negative and ga e L1(da). Let K(x) = w(ez). By Hasumi and Kataoka in
[3, Lemma 5.1], K is convex. Let fi(eifi) = {K)~l{ga{eie)). Then Q is well defined, for K
is strictly increasing in the range of ga. Since K is convex, K~l is concave and so there
is a constant C > 0 such that K~l(x) ^ Cx for sufficiently large x. Thus Q e Ll(da).

We set

h{z) - exp | j *

where H(z, eil) denotes the Herglotz kernel for ©; namely, H(z, e") = (e" + z) / (e" - z),

z € ED. Then

u[\h{eiB)\) =W(exp(n(e"))) =ga{eiB) G L\da).
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This means that h G Hu and so also in A%. Consider the family of functions

Then

Z = J">(\h(z)\)dvo{z)

= J u(2exp{il(z)))dva(z)

^ w(2) + J cj(exp(Q(z)))dua(z)

^ w(2) + 1.

Clearly /„ —¥ 0 uniformly on compact subsets of D as \a\ —• 1. Again, as in the proof

of Theorem 3.2, there exist 70 > 0 such that if z € 5(7o<5, C)) then

( l - | q | 2 ) ( ° + 2 > ^ 1

Hence for 2 € S(7o<5, C)>

Therefore, we have for any C, & 3D and 0 < <5 < 1

But compactness of Cv forces IIC^/QII/IU to tend to zero as 6 -> 0, which implies that

uniformly in C G 3D. Hence va<p~l is a vanishing Carleson measure on D. The proof of
(4) => (1) is similar to the proof of (4) =*• (1) of Theorem 4.2. So we omit the details. D
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