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AUTOMORPHISM GROUPS OF COVERING POSETS AND OF
DENSE POSETS

by GERHARD BEHRENDT
(Received 2nd March 1990)

Given a poset (X, <), the covering poset (C(X), <) consists of the set C(X) of covering pairs, that is, pairs
(a,b)e X2 with a<b such that there is no ce X with a<c<b, partially ordered by (a,b)<(d, ) if and only if
(a,b)=(a’,b’) or b<da'. There is a natural homomorphism v from the automorphism group of (X, <) into the
automorphism group of (C(X), £). It is shown that given groups G, H and a homomorphism « from G into H
there exists a poset (X, <) and isomorphisms ¢,y from G onto Aut(X, <), respectively from H onto
Aut(C(X), £) such that ¢v=ayf. It is also shown that every group is isomorphic to the automorphism group
of a poset all of whose maximal chains are isomorphic to the rationals.

1980 Mathematics subject classification (1985 Revision): Primary 06A10, Secondary 20B25, 20B27.

1. Introduction

Let (X, £) be a partially ordered set (in short, a poset). A pair (a,b) of elements of X
is called a covering pair of (X, £) if a<b and whenever ce X with a<c<bh then c=a or
c¢=b. On the set C(X) of covering pairs of (X, <) a partial order can be defined by
(a,b)<(a’,b) if and only if (a,b)=(a’,b’) or b<da, the poset (C(X), <) is called the
covering poset of (X, £). A characterization of covering posets of finite posets was given
in [4]. A poset (X, <) is called dense if C(X) is empty.

For a class of mathematical structures, it is a well-known problem to ask whether
every group is isomorphic to the automorphism group of a member of this class (see, for
example, [2]). For posets, this was shown to be true by Garrett Birkhoff {5]. The
maximal chains in the posets constructed there are (inversely) well-ordered, that is, they
have no non-trivial automorphisms. It is thus interesting to see whether the same result
holds in posets where the maximal chains have a high degree of homogeneity, for
example, where they are all isomorphic to the rationals. In a similar spirit, we can
consider a poset and its covering poset. Here we have two automorphism groups, and it
is natural to ask the question in what way they are related.

2. Automorphism groups of dense posets

It is well known that there are just four isomorphism classes of countably infinite
dense linearly ordered posets, namely the rationals with possibly a minimal and/or
maximal element adjoined. Their automorphism group is very large. In order to
represent every group as the automorphism group of a poset all of whose maximal
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chains are isomorphic to the rationals, we first represent the trivial group in this way. A
poset (X, <) is called lower semilinear (see, for example, [1]) if

(i) whenever x, ye X then there exists ze X such that z<x and z<y, and

(ii) whenever x, ye X are incomparable then there does not exist ze X with x<z and
y=z

Let S be the set of all sequences (x,ky,X2,k5,...,x,_,k,_1,X,) where n=1 is an
integer, x; is a rational number for 1<i<n and k; is a natural number for 1<i<n.
Clearly the set S is countable. Let f:S—N be an injective mapping. Let X, =
{(xy,kyy...,x,)€S|ki=f(x1,ky,...,x;) for all i with 1<i<n—1}. We define a partial
order <, on X, as follows. Let (x,k,,...,x,)< (1, hy,...,y,) if and only if n<m,
x;=y; and k,=h, for all i with 1 <i<n, and x,<y,.

Lemma 2.1. (X, £,) is a countable, dense, lower semilinear poset with no maximal or
minimal elements and such that Aut(X ;, < ;)={1}.

Proof. It is obvious that (X, <,) is countable and dense, and that it has no
maximal or minimal elements. Let (x;,ky,...,X,), (y1,hy1,...,Vm)€ X, and suppose that
n=m. Let x=min(x,y,). Then (x) < (x;,ky,...,x,) and (x) < (yy, hy,...,Yn). Suppose
there exists (z,,8y,...,2,) With (X, ky,...,x,) < ((21,815..-,2p) and (yg, hy,..., )=,
(21,815---12,). Then m<p, x;=z; and k;=g; for 1<i<n, x,<z,, y;=z; and h;=g; for
1<i<m, y,<z,. Then either n<m or n=m and x,<y,, in which case (x,,k;,...,x,) <,
(y1,h15-- 2 Ym), or n=m and y,<x,, in which case (y;,h,,...,y,) S ;(x;, ky,...,x,). Thus
(X,, £) is semilinear. For ae X, let N(a) be the number of connected components of
the subposet induced on {be X |a<b}. The connected components of the subposet
induced on {beX  |(xy,ky,...,x,)<b} are just Co={(yy,hy,...,ym)€X |nSm, y;=x;
and h;=k; for 1<j<n, x,<y,} and Ci={(y1,h1>-..., ym)€X |n<m, y;=x; for 1<j<n,
hj=k; for 1£jsn—1, h,=i}. Thus N((x;,ky,...,x,))=1+f(x},ky,...,x,). As this
number is invariant under automorphisms, and as it is distinct for all elements of X, (as
f is injective), it follows that (X ;, < ;) can have no non-trivial automorphisms. O

Proposition 2.2. The number of isomorphism classes of countable, dense lower semi-
linear posets with no minimal or maximal elements and trivial automorphism group is 2.

Proof. It is at most 2%, as there are only 2™ binary relations on a countable set.
Every permutation n of {neN|n even} can be extended to an injective mapping
n':S—N (if the number n is identified with the one-element sequence (n)). As for =, 7,
with =, #n, there exist even natural numbers n,m such that nn, <mn, and mn, <nn,, it
follows that (X, <) is not isomorphic to (X, <.,). As there are 2% permutations of
{neN|n even}, the result follows. O

A subset S of a poset (X, <) is called order-autonomous if whenever x,x' €S, ye X\S
then x <y if and only if x'<y, and y<x if and only if y<x'.
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Lemma 2.3. Let (Y, £) be a poset, and let X =Y x X, ordered lexicographically (that
is, if (y,2), (y,2)€X then (y,2)S(y,2) if and only if y<y', or y=y and z<,2). Let

S<X be maximal with respect to being order-autonomous and the induced order on S
being lower semilinear. Then there exists ye y such that S={y} x X .

Proof. Let S be such a subset, and suppose there exist (y,2), (¥',z")e S with y#y'.
First suppose that y<y'. There exists Ze X, such that z,z are incomparable. Then
(»,2)<(y,z) and (y,z)<(y,Z), and (y,Z), (y,z) are incomparable. As S is lower
semilinear, it follows that (y,Z)¢S. But this a contradiction to S being order-
autonomous. Thus we cannot have y<y’, and neither y'<y by symmetry, hence y,y’
must be incomparable. Then also (y,z), ()',z) are incomparable. As (S, <) is lower
semilinear, there exists (y”,z")e S with (y”,z")<(y,z) and (y",2")£(y, Z'). Hence we must
have y"<y and y”"<}y’, but we have already shown that this leads to a contradiction.
Therefore there exists yeY such that Sc{y} x X ,. By maximality of §, we then get
S={y}xX,. O

We now can give the main result of this section.

Theorem 2.4. Let G be a group. Then there exists a partially ordered set (X, <) with
the following properties.

(i) Every maximal chain in (X, <) is isomorphic to the rationals.
(ii) G is isomorphic to Aut(X, £).
(i) |X|=max (|G|, R).

Proof. By [6] or [3], there exists a poset (Y, <) whose maximal chains have exactly
two elements such that G is isomorphic to Aut(Y, £). Moreover, Y can be taken to be
finite if G is finite and such that | Y|=|G| if G is infinite. Let (X, < ;) be as before, and
let X=Yx X, ordered lexicographically. If C is a maximal chain in (X, =) then there
exist y,)’eY with y<y and maximal chains D,D" in (X, <£,) such that C=
{(y, z)lzeD} v {( y’,z’)|z’eD’}. As each of D,D’ is isomorphic to the rationals, it follows
that C is also isomorphic to the rationals. Also clearly |X|=max (|G|,N,). Let
Y:G-Aut(Y,£) be an isomorphism. Then it is easy to see that ¢ defined by
(¥, 2)(gd) = (¥(g¥), z) for (y,z) e X, ge G, is a monomorphism from G into Aut (X, <).

By Lemma 2.3 it follows that Y={{y} xX,|yeY} is the set of maximal order-
autonomous lower semilinear subsets of X. It is clear that every automorphism of
(X, £) induces a permutation on Y. Furthermore Y is a partition of X, thus if
a€Aut(X, <) then there exist feAut(Y, £) and f,eAut(X,, <) for y€Y such that
(y,2)a=(yB,zB,). By Lemma 2.1, we have f,=1 for all yeY. As ¢ is an isomorphism,
there exists ge G such that B=gy, hence (y,z)a=(yB,2)=(¥(g¥),2)=(y,2)(g¢), thus
a=g¢ and ¢ is surjective. O
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3. Automorphism groups of covering posets

Let (X, £) be a poset and g an automorphism of (X, £). For (x,y)e C(X) define
(x, ) (gv)=(xg, yg). It is easy to see that gv is an automorphism of (C(X), <), and that
the mapping v:Aut(X, £)—Aut(C(X), £) is a homomorphism. It is not hard to see
that, in general, v needs to be neither injective nor surjective. Thus in generalization of
the problem of representing groups as automorphism groups of structures, here it is
natural to ask whether every triple consisting of two groups and a homomorphism
between them can be represented.

Theorem 3.1. Let G,H be groups and o: G—H a homomorphism. Then there exist a
poset (X, £) and isomorphisms ¢:G—oAut(X, £) and y: H-Aut(C(X), £) such that
dv=ays, where v: Aut(X, £)—->Aut(C(X), £) is the natural homomorphism defined above.

Proof. Let U be the image of « in H. Let X be the disjoint union of H x (H u {a, b}),
H,GxX,and GxGxX,. Let <5, =y be inverse well-orderings on G, H respectively,
such that in both cases the neutral element is the maximal element with respect to this
order. We define a partial order on X as follows. Let y<y for all ye X. Let (g,a)<(g, h)
for all g,he H. For g,h,hi e H let (g, h)<(g,h’) whenever h< 4h'. Let (g,a)<(g’,b) for all
g,g€H, and let (g,h)<(g,b) if and only if h< meg'~' for g,g,heH. For yeHx
(Hu{a,b}) and heH let y<h if and only if y=<(h,b). For (g,x), (g,x)eGx X, let
(g, x)<(g,x") if and only if x=,x". For g,g,hh e€G, x,x’eX, let (g,h,x)<(g N, x)
whenever h<gh' or h=h and x< X/, and let (g, h, x) <(g’,x') if and only if h<;gg' ™"
Finally, for ye(GxX,;)u(GxGxX,) and ueU let y<u if and only if there exists
(8, x)eGx X, such that y<(g,x) and ga=u. It is not hard to see that this defines a
partial order on X.

Define ¢:G-Sym(X) as follows. Let (H,x)(g¢)=(hg,x), (hH,x)(gd)=(hg I, x),
k(gp)=k(ga), (k,s)(gp)=(k(ga),s) for g,h,h'eG, xeX,, keH, seHu{a,b}. It is not
hard to see that ¢ is a monomorphism from G into Aut(X, <). Note that X, =
Uu(GxX;)u(GxGxX,) is the set of all elements of X which are contained in a
dense maximal chain of (X, <), thus X, is setwise invariant under Aut(X, <). As
U=Max(X,, £) it follows that both U and X,=X,\U are setwise invariant under
Aut(X, ).

By Lemma 2.3, it follows that every maximal order-autonomous lower semilinear
subset of (X,, <) is of the form {g} x X  for some g €G, or {(g,h)} x X, for (g,h)e G x G.
As in Theorem 2.4, it follows that every automorphism of (X,, <) is induced by an
automorphism of G U (G x G) (with the natural order induced on a partition by order-
autonomous subsets) and vice versa. As the image of G under ¢ operates regularly on
G, in order to show that ¢ is surjective, it is sufficient to show that if t is an
automorphism of (X, <) which fixes 1 then 7 is the identity. Let te Aut(X, £) such that
7 fixes 1. As the order on G U (G x G) is just the order constructed by Birkhoff in [5] for
the group G, it follows that t fixes G U (G x G), and thus also X, pointwise. It is then
clear that t fixes U pointwise. As (u,qa) is the unique element covered by u for ue U, it
follows that (u,a)t=(u,a) for all ueU. It is also clear that t has to fix H x(H u {a})
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setwise. However, the order induced on H x (H U {a}) is also just the order constructed
by Birkhoff [S§] for the group H, and as (l,a)r=(l,a), it follows that t fixes
H x(H v {a}) pointwise. It is then obvious that 7 is the identity on X. Hence ¢ is
surjective,

For ge H define r(g)=((g,a),g). If g, he H and h is not the smallest element of (H, <)
let s(g, h)=((g, '), (g, h)) where K is the unique element of H such that (h',h)e C(H, <p).
If (H,<y,) has a smallest element g,, let s(g,g,)=((g,a).(g,80)). For g,heH let
t(g, h)=((g,gh ), (hb)). Note that C(X)={r(g)|geH} U {s(g,h),t(g,h)|g, he H}. Define
Y:H-Sym(C(X)) as follows. For g,h,heH let r(h)(gy)=r(hg), sth, h')(gy)=s(hg, k),
and t(h, K} (gy)=t(hg, h'g). It is not hard to see that { is a homomorphism from G into
Aut(C(X), £), and it is clear that ¢v=ay). It thus remains to prove that y is surjective.

Note that every maximal chain of (C(X), £) is of the form M(g, h)={r(h),t(g,h)} v
{s(g.W)|WeH,W<ygh~'} for some g,heH. We say that a maximal chain M of
(C(X), £) is of type 1 if there is no maximal chain M’'# M with |M\M’|§2. Let ke H.
Suppose we have defined all types h of maximal chains for all he H with k< zh. We say
that a maximal chain M is of type k if M is not of type h for any he H with k< 4h, and
whenever M'#M is a maximal chain with |M\M’|§2 then M’ is of type h for some
he H with k< 4zh. We note that M is of type k for ke H if and only if there exists ge H
such that M =M(g, k™ 'g). Also it is clear that the type of a maximal chain is invariant
under automorphisms.

The image of H under ¢ operates regularly on {r(g)|geH }. Hence, in order to show
that ¥ is surjective, it is sufficient to prove that every automorphism of (C(X), £) which
fixes (1) is the identity. Let g eAut(C(X), £) with r(1)o=r(1). As M(1,1) is the unique
maximal chain of type 1 which contains r(1), it follows that ¢ leaves M(1,1) setwise
invariant. Clearly M(1,1) is inversely well-ordered, thus o leaves M(1,1) pointwise
invariant. As M(1,k~') is the unique maximal chain of type k which intersects
M(1, )\{r(1)} non-trivially, and as r(k) is the unique maximal element of this chain, it
follows that o fixes r(k). But M(k,k) is the unique maximal chain of type 1 which
contains r(k), hence, as before, o fixes every element of M(k,k), that is, o fixes
{Hg)|geH} U {s(g,h)|g,he H} L {t(g,g)|ge H} pointwise. Finally, «(g, h) is covered by r(h)
and covers s(g,gh~ '), and it is the only element of C(X) with this property, thus (g, h) is
also fixed by o, hence ¢ is the identity. Therefore ¥ is surjective. O

We finally note that if G and H are finite, and we also want X to be finite, the
situation is somewhat different. Let (X, £) be a finite poset and let S be the set of
isolated points of (X, £) (that is, the set of all those elements which are incomparable
with all other elements). It is easy to see that in this case the kernel of v is isomorphic
to the symmetric group on S, and Aut(X, <) is just the direct product of Aut(X\S, <)
and this kernel. In particular, if (X, <) has no isolated points then v is injective.

Theorem 3.2. Let G be a finite group and H a subgroup of G. Then there exist a finite
poset (X, <) with no isolated points and isomorphisms ¢:G-Aut(C(X), £) and
Y:HoAut(X, £) such that Yyv=1d, where v:Aut(X, £)—Aut(C(X), £) is the natural
homomorphism and 1: H— G is the inclusion mapping.

https://doi.org/10.1017/5001309150000537X Published online by Cambridge University Press


https://doi.org/10.1017/S001309150000537X

120 GERHARD BEHRENDT

Proof. First assume that G is cyclic of order 2 and that H={1}. Let
X={1,2,3,4,5,6} with 1<3<35, 2<4<6 and 2<5. It is easy to see that (X, <) has the
desired properties. We now can assume that G=H or |[G\H|>1. Let X be the disjoint
union of G x(Gu {a,b}), H and, if G#H, also {o0}. Let <, be a linear ordering on G
such that 1 is the maximal element with respect to this order. We define a partial order
on X as follows. Let x<x for all xe X. Let (g,a)<(g, h) for all heG. For g,h,h' G let
(g, h) <(g, ') whenever h<  h'. Let (g,a)<(g’,b) for all g, g’e G, and let (g,h) <(g’, b) if and
only if h<,gg ~'. For xe Gx(Gu {a,b}) and he H let x< h if and only if x <(h,b), and
let x < oo if and only if there exists ge G\ H such that x Z(g,b). It is not hard to see that
this defines a partial order on X. The rest of the proof follows in a similar way as the
proof of Theorem 3.1, and shall therefore be left to the reader. O
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