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Abstract. We discuss some benefits and pitfalls when combining conceptually different types
of closure approximations into complete Reynolds stress models of stellar convection.
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1. Introduction and motivation
Combining different concepts for closure approximations in non-local Reynolds stress

models of convection may appear attractive for improving their overall performance.
Here, we provide an outline of some closure relations and their origin and discuss the
consequences for solutions of Reynolds stress models when putting them together.

2. Closed Reynolds stress models and region of applicability
Several useful closure relations have been identified during numerical simulation studies

presented in this volume. Relevant quantities include: 1) the dissipation rate of tempera-
ture fluctuations εθ (Canuto 1992, Canuto & Dubovikov 1998 (CD98); not shown here);
2) the flux of the rate of kinetic energy dissipation 〈εw〉 (Canuto 1992; see Kupka & Muth-
sam 2007c); 3) the third order moments (TOMs) 〈w2θ〉 and 〈wθ2〉 (Gryanik & Hartmann
2002 (GH 2002) and Mironov et al. 1999, with 〈w2θ〉 also suggested by CD98; see Kupka
& Robinson 2007 and Kupka & Muthsam 2007b); 4) the fourth order moments of verti-
cal velocity and temperature (GH 2002 and Gryanik et al. 2005; see Kupka & Robinson
2007); 5) the pressure flux 〈p′w〉 (Canuto 1997, see Kupka & Muthsam 2007c). They all
have their own region of applicability. The relation for εθ has been derived from a model
developed primarily for isotropic turbulence. The relation for 〈εw〉 has been obtained
from dimensional scaling and eddy damping arguments. The relations for 〈w2θ〉, 〈wθ2〉,
and for fourth order moments have been obtained from scaling arguments applied to
mass-flux averages. The relation for 〈p′w〉 is based on a polytrope model for relations
between fluctuations of pressure, density, and temperature.

The models for 〈εw〉 and 〈wθ2〉 work well for a large physical parameter space in both
stable and unstable stratification. This essentially holds for εθ and 〈w2θ〉, too, while
the models for fourth order moments are mainly useful for the interior part of convec-
tion zones (Kupka & Robinson 2007). The model for 〈p′w〉 requires a more complex
prescription for the polytropic index (n = 1 + 1/m) to avoid case dependent parameter
adjustments. Putting these ingredients together does not imply an improved performance
of the complete model. For example, Kupka & Robinson (2007) and Kupka & Muthsam
(2007b) show that the relation 〈wθ2〉 = 〈θ3〉/〈θ2〉 〈wθ〉 (GH2002) is an excellent approx-
imation for very different types of convection zones. Nevertheless, its application to the
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convective core of a massive star results in a convectively neutral centre (Roxburgh &
Kupka 2007), which does not appear very plausible (similar can happen with less promis-
ing closure relations, see Roxburgh & Kupka 2007). The Reynolds stress model applied in
Kupka & Montgomery (2002) and Montgomery & Kupka (2004) to envelope convection
zones used the relations for εθ and 〈εw〉 mentioned above. Both are compatible with the
overall strategy of Canuto (1992, 1993, 1997) and CD98 of using damping time scales to
describe pressure correlations and dissipation processes. However, this model has prob-
lems for efficient convection zones (Kupka & Muthsam 2007a,b). Could a ‘hybrid model’
provide better prospects?

3. An intermediate model for third order moments
Such a model has been proposed by CD98. Considering the traditional mass-flux ap-

proach they suggested to use the mass-flux relations 〈w2θ〉= 〈w3〉/〈w2〉 〈wθ〉 (cf. GH2002)
and 〈wθ2〉 = 〈w3〉/〈w2〉〈wθ〉(〈θ2〉/〈w2〉)1/2 as approximations for the Reynolds averages.
The other TOMs were supposed to be computed with the eddy damped model of Canuto
(1992, 1993). Being computationally less expensive than the complete eddy damped
model, but more costly than the down-gradient approximation, it was called ‘intermedi-
ate model’. Solutions of the closed Reynolds stress model using this intermediate model
have been calculated with a modified version of the code of Kupka (1999). In Fig. 1
its results are compared with other Reynolds stress models and ensemble averages ob-
tained from 3D numerical simulations with the ASCIC code (Muthsam et al. 1995, 1999)
for the case of inefficient, shallow convection (cf. Kupka & Muthsam 2007a,b). Several
properties of this ‘CD98 intermediate TOM model’ are remarkable. First of all, even
with 〈p′w〉 = 0 the super-adiabatic temperature gradient remains clearly positive within
the interior of the convection zone. The convective flux is comparable to the full model
(Kupka & Montgomery 2002), but convection is found to be less efficient in the interior.
The remaining discrepancy clearly calls for including a model of 〈p′w〉. But despite the
scaling relation used for 〈w2θ〉 works very well on its own, the coupled Reynolds stress
model is much less successful in recovering this quantity. The cross-correlations do not
improve much compared to the full TOM model, but their functional form appears more
smooth, as in the simulations. The relation used for 〈wθ2〉 violates a symmetry with
respect to sign-change of θ, which explains the wrong sign of the closed model within the
overshooting region (this is not the case for the GH2002 model shown in a consistency
test for comparison).

4. Discussion of results and conclusions
Would results improve, if the GH 2002 expression for 〈wθ2〉 were used in this inter-

mediate model? With some modifications the approach of CD98 has been repeated. The
answer is negative: this variant is plagued by instabilities. Evidently, the TOM models
need further improvements before offering progress beyond the model used in Kupka &
Montgomery (2002) and Montgomery & Kupka (2004). The stellar parameter range of
the latter may be extended to envelope convection in RR Lyrae stars, perhaps Cepheids,
and convection zones driven by Fe peak opacities. Deep, quasi-adiabatic convection zones
appear off limits. Further improvements are required to replace down-gradient type non-
local convection models. In the form suggested by Xiong (1978, 1986) and variants thereof
this class of models has already been applied to a large variety of stellar convection zones
by Prof. Xiong and his co-workers. However, the limitations found in Kupka & Muthsam
(2007a,b,c) corroborate the claim already known in the atmospheric sciences community
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Figure 1. Super-adiabatic temperature gradient, relative convective flux (upper left and right
panels) as well as 〈w2θ〉 and 〈wθ2〉 (lower left and right panels) for case ‘3J’. Simulation data
are compared to complete Reynolds stress models. In addition, the GH2002 TOM models are
shown with input data taken from the 3D simulations.

(Canuto et al. 1994) that this class of models for the TOMs is incomplete. Improved
hybrid models would be appreciated by a large community of users.
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