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ABSOLUTE TAUBERIAN CONSTANTS FOR 
HAUSDORFF TRANSFORMATIONS 

SORAYA SHERIF 

1. In t roduc t ion . Let {^n\n=o be a fixed sequence of real or complex numbers. 
The Hausdorff transform {tn\ of a sequence \sn) by means of the fixed sequence 
{v>n}n=o (or, in short, the (H, /xw) transform) is given by 

(1.1) tn = g (*) ( A * 4 ) 5 « , » = 0, 1, 2, . . . 

where, for r, q ^ 0, 

(1.2) A % = M«, A/*tf = % ~ M*+i> Ar+V(z = A (AX) . 

K. Knopp and G. G. Lorentz [6] have shown (a simpler proof was given by 
Jakimovski [5, Equation (3.1)]) that if (1.1) and (1.2) hold and if 

(1.3) b = bo + bx + + bn, sk = a0 + ax + . . . + ak, 

then the series-to-series Hausdorff transform bn of X) an (unless otherwise 
indicated, the symbol ]£ stands for X)oO *s s u c n that 

(1.4) bn = l t ' i ( a ) * ^ " * ^ * ' « = 1- 2, 3 , . . . 

If (1.1)-(1.4) hold, then we say that the sequence {sn} is absolutely summable 
(H, nn) or summable \Hy /xre|, if the sequence {/w} is of bounded variation or 
equivalently if 

S W <oo. 

(For the definition of absolute summability, see [2; 4; 8; 10].) 
In sections 2 and 3 of this paper, we shall prove the following two 

inequalities: 

(1.5) £ 16.-0*1 ^ i ^ E |A(?01, 

(1.6) E \bn -an\^AZ 

where K and A are absolute Tauberian constants, 
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20 SORAYA SHERIF 

Estimates of this form have been shown in Sherif [9] for the absolute Cesàro 
means. Since, as is well-known (cf. [3, p. 251]), when 

(1.8) * - » / ( " î ' ) . 

the (H, nn) method reduces to the Cesàro method (C, k) the results of this 
paper include those of [9]. This will be verified in Remarks 2.1 and 3.1. 

The estimates (1.5) and (1.6) are analogous to results obtained for other 
summability methods by various authors. For a discussion of these analogous 
estimates, see Sherif [9]. 

I have much pleasure in expressing my gratitude to Professor B. Kuttner 
for his criticisms and suggestions for improvements to present this paper. 

2. THEOREM 2.1. Let {fxn\ be a moment sequence generated by the real function 
of bounded variation x on 0 f^ t ^ 1 so that 

(2.1) Hn= f fdX(t), 
Jo 

where 

(2.2) x ( 0 + ) = x(0) = 0, x ( l ) = 1, 

and 

(2.3) C^^-dtK oo. 
Jo t 

Then (1.5) holds with 

(2.4) K = f ^f^dt. 
Jo t 

if 
(2.5) X(t) ^ 0, 

the constant given in (2.4) is the best possible in the sense that (1.5) becomes false 
if K is replaced by any smaller constant. 

Remark 2.1. In the case of summability (C, k) (k > 0), we have %(0 = 
1 — (1 — t)k (k > 0), and equation (2.4) becomes 

(2.6) K = Jo } dt = Jo Yzr^du = T{k + 1) + T, 

(7 is Euler's constant) by Bateman [1, p. 16]. 
Thus, Theorem 2.1 for x( / ) = 1 ~ (1 - t)k (k > 0), is Theorem 2.1 of 

Sherif [9]. 

For the proof of Theorem 2.1, we require the following lemma. 
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LEMMA [7, p. 167, Theorem 5]. Let 

(2.7) An = 2^ an,pJP' 

Suppose that 

(2.8) ^2 \an,v\ is bounded. 

Let 

(2.9) K = sup ^ ki.*!-
V 

Then 

(2.10) E \An\ * * E |/, 
and this constant is the best possible in the sense that (2.11) becomes false if K is 
replaced by any smaller constant. 

Proof of Theorem 2.1. Since 

1 1 n~1 

(2.11) an = - • nan = ]T) A(^„), 
n n V=Q 

it follows from (1.4) and (2.11) that for n ^ 1, 

*---sSu)< i""'§ i<"-> 

It thus follows from (2.11) and (2.12) that 

^ - * - g A<».)[£{l - t+ i(l)(A^}] 

= g *(*»,)[£ g ( y (A""*/.,)] iff. [3, FWm»fo (11.5.5)]) 

=g>(^s(i)r^-^^] 
(2.13) = £ A(m,)|̂  frfx(0 É (jW " *r*l 
Now, 

<2-"> s{s(:W-« r ,}-s*(i) /H< i-«" 
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where the first term on the right hand side of (2.14) is to be taken to be 0 if 
v = 0. Since 

(2.15) :»-*>(ï)-<* + 1>Ui) 
we see on replacing k by k + 1 in the first sum that the expression (2.14) 
reduces to 

(2.16) -(v + D^l^t'a-tr1-'. 
Integrating by parts in (2.13) and using (2.16) we obtain 

7 1 - 1 

(2.17) 6n -an= J2 A(va») (\1)X l r ( i- i r l _^ )4where(o)= ] 

Now, (2.17) is a transformation of the type considered in the Lemma, and 
for n è I* 

(0, (v è n) 
(2.18) an,v = | ^ - 1 ^ j 1

 9^ _ t)n^v^t)d^ ( 0 ^ „ g „ _ 1). 

Thus, the conditions of the Lemma are satisfied with 

(2.19) 

where 

(2.20) 

(2.21) 

K = sup Sv 

n=v+l \ V I | </o 

^ £ (w-1) Cum'a-ty-'-dt 
n=v+l \ V J Jo 

- f'MrtJ*. 
Jo t 

Hence (1.5) holds with K given by (2.4), as claimed. Further if (2.5) holds, 
then there is equality in (2.20) and the final conclusion follows from the 
Lemma. 

3. THEOREM 3.1. Let xM be a real valued function defined for 0 ^ t ^ 1, 
satisfying (2.2), and with x (0A °f bounded variation there. Let {juw} be the 
moment sequence generated by x so that (2.1) holds. Then (1.6) holds with 

(3.1) A = sup {( , + 1) j V ' l x t o l d * + / V - o | d ( " * P ) | } -
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/ / (2.5) holds, and if x(f)/t is monotonie (in the case in which xif)/l is non-
increasing, this hypothesis implies that (2.5) holds (since x( l ) = 1) and the 
assumption (2.5) may therefore be omitted), then (3.1) is the best possible 
result in the sense that (1.6) becomes false if A is replaced by any smaller constant. 

Further (3.1) can be simplified; if x{t)/t is non-increasing, we have 

(3.2) A = | ±f-dt; 
Jo t 

if (2.5) holds and x(t)/t is increasing, we have 

(3.3) A = 2(1 - / ) - f ^p-dt, 
Jo t 

where 

(3.4) / = l imt t ,= x d ) - x ( l - ) . 
w-»co 

Remark 3.1. When x(0 = 1 — (1 — t)k, then condition (2.5) is satisfied in 
any case. If k > 1, x(0A is non-increasing, while if 0 < k < 1, x(0A is non-
decreasing. Hence, it is easily seen using (2.6) that Theorem 3.1 for xif) = 
1 - (1 - 0* is Theorem 3.1 of Sherif [9]. 

Proof of Theorem 3.1. Let 

(0,n 
1 w 

+i S 
Write 

Then 

<t>n = —Aun-! = un — un-i for n ^ 1. 

wan = (» + l)un — nun-i, 

= un + n<$>n, 
n 

= S 0" + w0w 

Thus 

(3.5) an = - É ^ + *.. » ^ 1-

Substituting with (3.5) in (1.4), we find that for n ^ 1, 

(3.6) *--^S(ï)*(A^>{ï§*'+4 
= B+D (say). 
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But 

Vk 

Using an argument similar to that used in deducing (2.16), and integration 
by parts, we obtain 

(3.7) B = \ ± 4>{i - v(
n) £ X(ty-\i - ty-dt] 

Also 

(3.8) D = -t, (*W fdxW (1 - tf-\ 
n v=i \v/ Jo 

Integrating the integral in (3.8) by parts, and using (2.15), it follows that 

(3.9) D = i ± ,*.£xW{<, + D(VI^m -tr— 

-V ("^-'U - tr'}dt + 4>n. 

(The extra term <f>n occurs in (3.9) since in the integration by parts of the 
integral in (3.8), the term (1 — t)n~v does not vanish at t = 1 in the case 
v = n.) It thus follows from (3.5), (3.6), (3.7) and (3.9) that 

*.-«- = £§ 4 T x<4<, + i>U J' <* - v-1-' 

Thus 

(3.10) bn - an = g (* ~ j ) *, f ^ {(» - ,)r+1(l - f ) " ^ ' 

- („ + 1)*'(1 - 0"-'} d/. 
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Now (3.10) is a transformation of the type considered in the Lemma, and for 

0, (y > n) 

(n-l) Çlxià 
\v - l) Jo t 
X{(n- v)r1{l-t)n-l-v-{v + l)tv{l-t)n-v}dt, (v ^ n-l), 

(y + 1) f rWdt, (v = n). 
Jo 

It follows by integration by parts that for 1 ^ v S n — 1, 

(3.i2) „,., - ( - :{) £ » - «rr».(jf ). 
Thus, the conditions of the Lemma are satisfied with 

(3.13) A = sup fv. 
V 

where 

oo 

(3.14) ^ = Z k , , | . 

Now, we can deduce at once from (3.11), (3.12) and (3.14) that 

4,û(p + l) f O x ( 0 l ^ 
Jo 

<315» +X'Ll.(::!)''+,<i-'>-}K^)l 
- <-+i)jv,ix«>i'»+ X',(i'"'*)Kiia)l 

with equality in the case in which (2.5) holds and x(0A monotonie. 
This completes the proof except for the simplification when (2.5) holds and 

x(0A is monotonie. 
If x (0A is non-increasing, we may omit the modulus signs in (3.15) provided 

we alter the sign of the second integral. On integrating the second integral by 
parts we get 

(3.16) ^ = f ^rdt. 
Jo t 

Thus, equation (3.2) follows from (3.13) and (3.16). 
If x (0A is non-decreasing, we omit the modulus signs in (3.15). Again 

integrating the second integral by parts we get 

(3.16) *, = 2(v + 1) f ?-\(t)dt - { ZÏp-dt. 
Jo J o t 
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Now, since x(0A is non-decreasing, it follows from (3.4) that for 0 rg / < 1, 

x ( 0 / ' ^ x ( l - ) = l - / • 
Hence, the first integral in (3.16) does not exceed 

(3.17) 2(? + 1)(1 - /) f fdt = 2(1 - /) . 
Jo 

On the other hand, it tends to 2(1 — I) as v—>oo, so that its supremum 
equals 2(1 — /). This can be seen most easily by integrating it by parts, when 
we find that it is equal to 

(3.18) ^±J1 (i _ MF). 

Combining (3.4), (3.13) and (3.16)-(3.18), equation (3.3) clearly follows. 
This completes the proof of Theorem 3.1. 
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