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Weinberg and DMO sum rules

As mentioned earlier in Subsection 2.2.7 of Part I, Weinberg and DMO sum rules are
prototypes of QSSR, whilst their derivation is based on the asymptotic realization of chiral
and flavour symmetries, or alternatively, in the world with massless quarks and without
any interactions with external gluon fields. The convergence of these sum rules has been
tested in QCD when the quark masses and non-perturbative power corrections are switched
on [28,29,31,32]. The analysis has been reviewed in details in [30,3,34], where the QCD
corrections to the WSR have been given explicitly.

We shall follow the notations and conventions in Subsection 2.2.7 of Part I. We shall be
concerned here with the two-point correlator:

�
µν

L R(q) ≡ i
∫

d4x eiqx 〈0|T Jµ

L (x)
(
J ν

R(0)
)† |0〉

= −(gµνq2 − qµqν)�(1)
L R(q2) + qµqν�

(0)
L R(q2) , (50.1)

built from the left- and right-handed components of the local weak current:

Jµ

L = ūγ µ(1 − γ5)d, Jµ

R = ūγ µ(1 + γ5)d , (50.2)

and/or using isospin rotation relating the neutral and charged weak currents. The indices
(1) and (0) corresponds to the spins of the hadrons entering into the spectral function. In
the chiral limit, the longitudinal part �

(0)
L R(q2) of the two-point correlator vanishes, once the

pion pole has been subtracted. The spectral function is normalized as:

1

2π
Im�

(1)
L R ≡ 1

2π
Im�L R ≡ 1

4π2
(v − a) , (50.3)

where the last term is the notation in [193,199].

50.1 Sacrosanct Weinberg sum rules (WSR) in the chiral limit

Here, we shall follow closely the discussions in [34].
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528 X QCD spectral sum rules

50.1.1 The sum rules

The ‘sacrosanct’ Weinberg sum rules read in the chiral limit:

I0 ≡
∫ ∞

0
ds

1

2π
Im�L R = f 2

π ,

I1 ≡
∫ ∞

0
ds s

1

2π
Im�L R = 0 ,

I−1 ≡
∫ ∞

0

ds

s

1

2π
Im�L R = −4L10 ,

Iem ≡
∫ ∞

0
ds

(
s log

s

µ2

)
1

2π
Im�L R = −4π

3α
f 2
π

(
m2

π± − m2
π0

)
, (50.4)

where fπ |exp = (92.4 ± 0.26) MeV is the experimental pion decay constant that should be
used here as we shall use data from τ -decays involving physical pions; mπ± − mπ0 |exp �
4.5936(5) MeV; L10 ≡ f 2

π 〈r2
π 〉/3 − FA [where 〈r2

π 〉 = (0.439 ± 0.008) f m2 is the mean
pion radius and FA = 0.0058 ± 0.0008 is the axial-vector pion form factor for π → eνγ ]
is one of the low-energy constants of the effective chiral Lagrangian [498–502]. The last
sum rule Iem is often called DMO sum rule and it governs the electro-magnetic mass shift
of the pion.

It has been shown that in the case of massless quarks, the SU (n)L × SU (n)R chiral
symmetry is not spontaneously broken by perturbative QCD radiative corrections in QCD to
all orders of perturbation theory, in the framework where the Dirac matrix γ5 anti-commutes
with the remaining ones [118]. Therefore the WSR remains valid in this case.

Recent measurement of the difference between the vector and axial-vector spectral func-
tion has been performed by ALEPH/OPAL using hadronic τ -decay data [33] as shown in
Fig. 25.7. This has permitted us to have a detailed analysis of the spectral part of the WSR.
In order to exploit these sum rules using the ALEPH/OPAL data, we shall work with their
finite energy sum rule (FESR) versions (see e.g. [28,325] for such a derivation). In the chiral
limit (mq = 0 and 〈ūu〉 = 〈d̄d〉 = 〈s̄s〉), this is equivalent to truncate the LHS at tc until
which the data are available, while the RHS of the integral remains valid to leading order
in the 1/tc expansion in the chiral limit, because, in this limit the breaking of these sum
rules by higher dimension D = 6 condensates, which is of the order of 1/t3

c , is numerically
negligible [29]. The analysis of these different sum rules using the τ decay data is shown
in Fig. 50.1.

50.1.2 Matching between the low- and high-energy regions

In order to fix the tc values which separate the low and high energy parts of the spectral
functions, we require that the second Weinberg sum rule (WSR) I1 should be satisfied by
the present data. As shown in Fig. 50.1, this is obtained for two values of tc:

tc � (1.4 ∼ 1.5) GeV2 and (2.4 ∼ 2.6) GeV2 . (50.5)
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Fig. 50.1. Measurements of the different WSR until an energy cut tc from τ -decay data by OPAL [33].
A similar result has been obtained by ALEPH. The RHS of the sum rules is given by the straight line
(±1σ ) when two lines are present.

Although the second value is interesting from the point of view of the QCD perturbative
calculations (better convergence of the QCD series), its exact value is strongly affected by
the inaccuracy of the data near the τ -mass (with the low values of the ALEPH/OPAL data
points, the second Weinberg sum rule is only satisfied at the former value of tc).

After having these tc solutions, we can improve the constraints by requiring that the first
Weinberg sum rule I0 reproduces the experimental value of fπ 1 within an accuracy that is
twice the experimental error. This condition allows us to fix tc in a very narrow margin due

1 Although we are working here in the chiral limit, the data are obtained for physical pions, such that the corresponding value of
fπ should also correspond to the experimental one.
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530 X QCD spectral sum rules

to the sensitivity of the result on the changes of tc values:2

tc = (1.475 ± 0.015) GeV2 . (50.6)

50.2 L10, mπ± − mπ0 and fπ in the chiral limit

Using the previous value of tc into the I−1 sum rule, we deduce:

L10 � −(6.26 ± 0.04) × 10−3 , (50.7)

which agrees quite well with more involved analysis including chiral symmetry breakings
[651,33], and with the one using a lowest meson dominance (LMD) of the spectral integral
[500].

Analogously, one obtains from the Iem(tc) FESR:

�mπ ≡ mπ± − mπ0 � (4.84 ± 0.21) MeV . (50.8)

This result is 1σ higher than the data 4.5936(5) MeV, but agrees within the errors with
the more detailed analysis from τ -decays [30,33] and with the LMD result of about 5
MeV [500]. We have checked that moving the subtraction point µ from 2 to 4 GeV slightly
decreases the value of �mπ by 3.7%, which is relatively weak as expected. Indeed, in the
chiral limit, the µ dependence does not appear in the RHS of the Iem sum rule, and so it
looks natural to choose:

µ2 = tc , (50.9)

because tc is the only external scale in the analysis. At this scale the result increases slightly
by 2.5%. One can also notice that the prediction for �m is more stable when one changes
the value of tc = µ2. Therefore, the final predictions from the value of tc in Eq. (50.6) fixed
from the first and second Weinberg sum rules are:

�m � (4.96 ± 0.22) MeV ,

L10 � −(6.42 ± 0.04) × 10−3 , (50.10)

which we consider as our ‘best’ predictions.
For some more conservative results, we also give the predictions obtained from the second

tc–value given in Eq. (50.5). In this way, one obtains:

fπ = (87 ± 4) MeV ,

�m � (3.4 ± 0.3) MeV ,

L10 � −(5.91 ± 0.08) × 10−3 , (50.11)

where one can notice that the results are systematically lower than those obtained in Eq.
(50.10) from the first tc value given previously, which may disfavour a posteriori the second
choice of tc values, although, in principle, we do not have a strong argument favouring one

2 For the second set of tc-values in Eq. (50.5), one obtains a slightly lower value: fπ = (84.1 ± 4.4) MeV.
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with respect to the other. However, approach based on 1/Nc expansion and a saturation of
the spectral function by the lowest state within a narrow width approximation (NWA) as
discussed in Section 43.2 favours the former value of tc given in Eq. (50.6) [500]. A similar
value of tc is also obtained from the FESR constraint using the naı̈ve duality ansatz of the
vector spectral function. Taking as a conservative value the largest range spanned by the
two sets of results, one obtains:

fπ = (86.8 ± 7.1) MeV ,

�m � (4.1 ± 0.9) MeV ,

L10 � −(5.8 ± 0.2) × 10−3 , (50.12)

which we found to be quite satisfactory in the chiral limit. The previous tests are very
useful, as they will allow us to gauge the confidence level of the sum rule predictions in the
following chapters.

50.3 Masses and power corrections to the Weinberg sum rules

It has been shown [28,29,31,32] that:

� The SU (n)L × SU (n)R chiral symmetry is broken by massive quarks. The first WSR is broken to
order αs mumd but is still convergent, whereas the second WSR is not convergent in its mathematical
sense. However, this non-convergence does not affect the success of the A1 mass prediction from
the second WSR, as phenomenologically the light running quark mass effects are small.

� The SU (n)L × SU (n)R chiral symmetry is broken spontaneously by the dimension-six four-quark
condensate, which affects the WSR. However, the effect is relatively small and vanishes as 1/q4,
where q2 is the typical scale of the sum rule.

Using the QCD expressions of the vector and axial-vector two-point correlators given in
Part VIII from [325], it is easy to derive the different power corrections to the Weinberg
sum rules. Introducing the running coupling ᾱs and masses m̄i evaluated at Q2, one can
deduce for the spin 1 + 0 combination:

Q2
[
�

(1+0)
i j,L R

](D=4) = − 1

π2

(
ᾱs

π

)
m̄i m̄ j

Q4
[
�

(1+0)
i j,L R

](D=4) = 4

3

(
ᾱs

π

)
〈m j ψ̄ iψi + mi ψ̄ jψ j 〉 − 8

7π2
m̄i m̄ j

[
m̄2

i + m̄2
j

]

Q6
[
�

(1+0)
i j,L R

](D=6) = 8π

(
ᾱs

π

)
[〈(ψ̄ iγµTaψ j )(ψ̄ jγµTaψi )〉

−〈(ψ̄ iγµγ5Taψ j )(ψ̄ jγµγ5Taψi )〉]
� −64π

9
ραs〈ūu〉2

Q8
[
�

(1+0)
i j,L R

](D=8) ≈ 8παs M2
0 〈ūu〉2 , (50.13)
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532 X QCD spectral sum rules

where ρ = 1 in the large Nc-limit; Ta ≡ λa/2 is the SU (3)c matrix defined in Appendix B;
M2

0 � 0.8 GeV2 is the scale introduced in Chapter 27 in order to parametrize the mixed
condensate. The D = 8 contribution comes from [652]. For the spin 0 component of the
two-point function, one can also deduce from [325]:

Q2
[
�

(0)
i j,L R

](D=2) = 3

2π2
mi m j

[
ln

Q2

ν2
+ O(1)

]

Q4
[
�

(0)
i j,L R

](D=4) = 〈(mi − m j )(ψ̄ iψi − ψ̄ jψ j )〉 − 〈(mi + m j )(ψ̄ iψi + ψ̄ jψ j )〉

+ 1

4π2

[
− 12

7

(
ᾱs

π

)−1

+ 11

14

]{
[m̄i − m̄ j ]

[
m̄3

i − m̄3
j

]

− [m̄i + m̄ j ]
[
m̄3

i + m̄3
j

]}
− 3

4π2
m̄i m̄ j [m̄i − m̄ j ]

2 + 3

4π2
m̄i m̄ j [m̄i + m̄ j ]

2 . (50.14)

With these expressions, it is easy to derive the QCD expressions of the different WSR.
The phenomenology of these FESR sum rules and especially their Laplace transform have
been explictly discussed in [3], which the readers may also consult.

50.4 DMO sum rules in QCD

The DMO sum rule which controls the SU (n) flavour symmetry has been analyzed in QCD
in [31], [32] and in [354]. Phenomenologically, it has been used to extract the value of the
quark masses and to predict the splittings due to SU (3) breakings among the mesons. In
particular, its τ -like version has been used to extract the value of the running strange quark
mass, which has the advantage to be model-independent. We shall come back to this point
in the chapter on light quark masses.
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