A REMARK ON THE GIBBS PHENOMENON AND
 LEBESGUE CONSTANTS FOR A SUMMABILITY METHOD OF MELIKOV

Fred Ustina

Let $u=\Sigma u_{k}$ be a given series and let $s_{n}=\Sigma_{0}^{n} u_{k}$. Melikov [4] has defined the $n-t h \sigma$-transform of u by

$$
\begin{equation*}
\sigma_{\mathrm{n}}^{(\varepsilon, \theta)}(\mathrm{u})=\sum_{0}^{\mathrm{n}}\left\{1-\frac{\mathrm{k}-\varepsilon}{\mathrm{n}+\theta}\right\} \mathrm{u}_{\mathrm{k}}, \tag{1}
\end{equation*}
$$

where ε and θ are assumed to be non-negative. This is easily shown to be equivalent to

$$
\begin{equation*}
\sigma \frac{(\varepsilon, \theta)}{n}\left(s_{n}\right)=\frac{1}{n+\theta} \quad \sum_{0}^{n-1} s_{k}+\frac{\theta+\varepsilon}{n+\theta} s_{n} . \tag{2}
\end{equation*}
$$

The method is a generalization of a method used by Kaufman [1], and of another one used by Melikov [5]. It reduces to the ($n-1$)th ($C ; 1$) mean when $\theta=0$ and $\varepsilon=0$, and to the n-th $(C ; 1)$ mean when $\theta=1$ and $\varepsilon=0$.

The purpose of this note is to show that for every choice of ε and θ, this method fails to display the Gibbs phenomenon and that the Lebesgue constants are bounded and tend to 1 as $n \rightarrow \infty$. We first consider the Gibbs phenomenon. Let

$$
\phi(x)=\Sigma \frac{\sin k x}{k}
$$

Then

$$
s_{n}(x)=\int_{0}^{x} \frac{\sin (n+1 / 2) t}{2 \sin 1 / 2 t} d t+o(1), x \rightarrow 0
$$

The σ-transform of the sequence $s_{n}(x)$ is given by (2), which we may put in the form

$$
\begin{equation*}
\sigma_{n}^{(\varepsilon, \theta)}\left(s_{n}(x)\right)=\frac{n}{n+\theta}\left\{\frac{1}{n} \sum_{0}^{n-1} s_{k}(x)\right\}+\frac{\varepsilon+\varepsilon}{n+\theta} s_{n}(x) . \tag{3}
\end{equation*}
$$

Now $s_{n}(x)$ is bounded uniformly in x and $n ; 6$ and ε being constant, it follows that the last term is $\mathrm{o}(1), \mathrm{n} \rightarrow \infty$, uniformly in x . The term inside the braces is the ($n-1$)th ($C ; 1$) mean of the sequence $\left\{\mathrm{s}_{\mathrm{n}}(\mathrm{x})\right\}$, and it is known that this does not display the Gibbs phenomenon.

Noting that the coefficient $n(n+e)^{-1}$ tends to unity as $n \rightarrow \infty$, it follows that the sequence $\left\{\sigma_{\mathrm{n}}^{(\varepsilon, \theta)}\left(\mathrm{s}_{\mathrm{n}}(\mathrm{x})\right\}\right.$ tends to the (C;1) means of $\left\{s_{n}(x)\right\}$ uniformly in $x, n \rightarrow \infty$. Hence it cannot display the Gibbs phenomenon.

We consider the Lebesgue constants in a similar manner. The $\sigma-\operatorname{tr}$ ansform of the Dirichlet kernel is given by

$$
\begin{equation*}
\sigma_{n}^{(\varepsilon, \theta)}\left(D_{n}(s)\right)=\frac{1}{n+\theta} \sum_{0}^{n-1} D_{k}(s)+\frac{\theta+\varepsilon}{n+\theta} D_{n}(s) \tag{4}
\end{equation*}
$$

where

$$
D_{n}(s)=\frac{\sin (n+1 / 2) s}{2 \sin 1 / 2 s}
$$

The Lebesgue constants $L_{n}(\sigma)$ for this method are then given by
(5) $L_{n}(\sigma)=\frac{2}{\pi} \int_{0}^{\pi}\left|\sigma_{n}^{(\varepsilon, \theta)}\left(D_{n}(s)\right)\right| d s$

$$
\begin{aligned}
& =\frac{2}{\pi} \int_{0}^{\pi}\left|\frac{1}{n+\theta} \sum_{0}^{n-1} D_{k}(s)+\frac{\theta+\varepsilon}{n+\theta} D_{n}(s)\right| d s \\
& =\frac{2}{\pi} \frac{n}{n+\theta} \int_{0}^{\pi}\left|\frac{1}{n} \sum_{0}^{n-1} D_{k}(s)\right| d s+0\left\{\frac{1}{n} \cdot \frac{2}{\pi} \int_{0}^{\pi}\left|D_{n}(s)\right| d s\right\}
\end{aligned}
$$

Now Fejer [2] (see also Lorch [3]) has shown that

$$
\frac{2}{\pi} \int_{0}^{\pi}\left|D_{n}(s)\right| d s=\frac{4}{\pi} 2 \log n+0(1) \quad n \rightarrow \infty
$$

so that the last term in (5) is o(1), $n \rightarrow \infty$. The first term, on the other hand, is $\frac{n}{n+\theta} \cdot L_{n-1}(C ; 1)$, that is, it is a multiple of the $(n-1)$ th Lebesgue constant for the ($C ; 1$) means, the factor $\frac{n}{n+\theta}$. tending to unity as $n \rightarrow \infty$. In [2], Fejér has also shown that $L_{n}(C ; 1)$ tends to unity as $n \rightarrow \infty$. Thus
(6)

$$
\begin{aligned}
L_{n}(\sigma) & =\frac{n}{n+\theta} L_{n-1}(C ; 1)+o(1), n \rightarrow \infty \\
& \rightarrow 1, \quad n \rightarrow \infty
\end{aligned}
$$

REFERENCES

1. B.L. Kaufman, Proceedings, Chkalovsky Pedagogical Institute, 11(1957) 243-248.
2. L. Fejér, Lebesgueschen Konstanten und divergente Fourierreihen. J. Reine Angew. Math., 138 (1910) 22-53.
3. L. Lorch, The principal term in the asymptotic expansion of the Lebesgue constants. Amer. Math. Monthly, 61 (1954) 245-249.
4. H. H. Melikov, A class of summation methods for divergent series. (Russian). Proceedings of the Annual Scientific Conference, Kabardino-Balkarsk State University, 24 (1965) 183-188.
5. H.H. Melikov, Proceedings, Siberian-Ossetic State University, Math. and Natural Science Series, 26 (1964).

University of Alberta
Edmonton

