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ON GOING DOWN IN POLYNOMIAL RINGS 

J E F F R E Y DAWSON AND DAVID E. DOBBS 

1. Introduction. Our main purpose is to enlarge upon the studies of 
McAdam [9; 10] on the property of going down (GD) for prime ideals in 
extensions of (commutative integral) domains. Unlike the investigations of 
McAdam and the earlier work of Krull [8] and Cohen-Seidenberg [4] on GD 
and the related property of going up (GU), this paper is not primarily con­
cerned with integral extensions. Consideration of more general extensions of 
domains A C B is facilitated by the following basic definitions. A prime ideal 
P of A is unibranched in B if there exists exactly one prime ideal Q of B satisfy­
ing Q C\ A = P. The extension A C B is unibranched (respectively, mated) if 
every prime ideal of A (respectively, every prime ideal P of A such that 
PB 9^ B) is unibranched in B. 

Throughout the paper, R (Z T is an extension of domains, K is the quotient 
field of R, and x is an indeterminate commuting with the appropriate coefficient 
rings. Any unexplained terminology is standard, as in [6]. 

We begin by recalling the following result [10]. 

THEOREM (McAdam). Let T be contained in the integral closure of R (in K). 
Then R[x] C T[x] satisfies GD if and only if R[x] C T[x] is unibranched. 

In (2.1) we modify McAdam's argument and obtain the following generaliza­
tion. 

THEOREM. Let T C K. If R[x] C T[x] satisfies GD, then R C T satisfies GD 
and R[x] C T[x] is mated. 

In Propositions 3.1 and 3.2, we use the data in [9] on prime ideals of poly­
nomial rings to find necessary and sufficient conditions that R[x] C T[x] be 
mated (respectively, satisfy GD). Together with a recent result of Kaplansky 
characterizing integrality in terms of GU in polynomial rings (see (3.8)), 
these lead in (3.9) to an example where GD is not inherited by polynomial 
rings. 

Section 4 is a detailed study of the case R pseudo-Bézout (GCD) and 
T = R[u] for some u in K. Then GD or matedness of R C T or R[x] C T[x] 
amounts to T being a localization of R. Several characterizations of Bézout 
domains are thus obtained. 
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2. A n i m p l i c a t i o n of G D . In this brief section, we consider the effect of 
removing the integrali ty assumption in the result of McAdam quoted above. 
The result obtained below generalizes McAdam's , as the properties of GU and 
lying over show any integral mated extension is unibranched and satisfies G D . 
(2.1) also extends [9, Theorem A], itself a generalization of an a rgument of 
Kaplansky, and pa r t of [9, Theorem C]. 

T H E O R E M 2.1. Let T C K. If R[x] C T[x] satisfies G D , then R(ZT satisfies 
G D and R[x] C T[x] is mated. 

Proof. T h a t R C T inherits G D from R[x] C T[x] was shown in [9, Lemma 
2]. T o prove R[x] C T[x] is mated, we ape the proof in [10] as much as possible. 
Let N be a prime ideal of R[x] such t h a t NT[x] ^ T[x] ; set P = N C\ R. 
Since PT ^ T and we are assuming R[x] C T[x] satisfies G D , [9, Theorem A] 
provides a unique prime Q of T lying over P. By [6, 1-6, Exercise 38] or [9, 
Lemma 1], there also exists a prime of T[x] lying over N. 

If N is not unibranched, let Mi and Jkf2 be dist inct primes of T[x] lying over 
N. Since Mt H R = N Pi R = P, unibranchedness of P implies Mtr\T = Q, 
whence QT[x] C (Mi P\ M<L). If f(x) is chosen of minimal degree in 
( M i \ M 2 ) W (M2\Mi), it follows t h a t the leading coefficient a of f(x) is not 
in Q. Hence a is not in NT[x]. 

Next, localize a t 5 = {1, a, a2, . . .}. From the description of primes in local­
izations [6, Theorem 34], we see easily t ha t R[x] C Ts[x] = T[x] s inherits G D 
from R[x] C T[x]. Since a is not in NT[x], it follows t h a t NTs[x] ^ Ts[x]. 
Then MtTs[x] (i = 1, 2) are dist inct primes which lie over N and whose inter­
section does not contain f(x). Replacing T by Ts, we may assume a is a uni t 
in T and, hence, t h a t / ( x ) is monic. As Mtr\ T = Q, f(x) is non-constant . 
We may now apply the a rgument in [10] concerning split t ing fields and in­
tegrality to obtain a contradict ion and complete the proof. 

3. M a t e d n e s s a n d G D . Throughou t this section, we use the following da ta 
from [9]. If Q is a prime of T and Q C\ R = P , let FP (respectively, KQ) 
denote the quot ient field of R/P (respectively, T/Q). View FP (Z KQ m the 
usual way. T h e primes of R[x] lying over P are P* = PR[x] and uppers 
(P , a(x) ) arising from monic irreducible a(x) in FP[x]. By definition, (P , OL(X) ) 
is the set of all f(x) in R[x] whose canonical images in (R/P)[x\ C FP[x] are 
divisible by a(x). Define Q* and uppers (Q, @(x)) in T[x] similarly. T h e basic 
facts abou t uppers are summarized in [9, Theorems 1 and 2]. 

P R O P O S I T I O N 3.1. R[x] C T[x] is mated if and only if the following two condi­
tions hold: 

(a) R C T is mated, 
(b) If Q is a prime of T and P = Q C\ R, then FP C KQis purely inseparable. 

Proof. T h e proof of [9, Theorem 3] applies with minor changes. For example, 
in the "only if" half, use of [9, Proposition 1] to establish (a) is replaced by the 
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observation that PT ^ T implies P*T[x] 9e T[x]. For the "if" half, note 
P*T[x] 5* T[x] implies PT ^ P. 

PROPOSITION 3.2. R[x] C T[x] satisfies GD if and only if the following three 
conditions hold: 

(a) R C T satisfies GD. 
(b) / / (P, a(#) ) and (Q, ft(x) ) are uppers in R[x] and T[x] respectively, such 

that (Q, p(x) ) is minimal among primes of T[x] containing (P, a(x) )T[x], then 
P = QC\R. 

(c) There do not exist a prime Q of T and an upper (P,a(x)) in R[x] such that 
Q* is minimal among primes of T[x] containing (P, a(x) )T[x]. 

Proof. Assume (a), (b) and (c). To show R[x] C T[x] satisfies GD, we check 
equivalently (see [6, 1-6, Exercise 37]) the criterion that if g is a prime of R[x] 
and q minimal among primes of T[x] containing 0P[x], then 0 = q P R[x]. 

Case l . g = P*: Subcase (i) q = Q*. If suffices to show P = Q P R. By (a) 
and the cited GD criterion, we need only show Q is minimal among primes of T 
containing PT. If QDQiDPT for some prime Qx of P, then Q* D (&)* D 
PT[x\. Minimality of q implies Q* = (Qi)*, whence Q = Qu as required. 

Subcase (ii) q = (Q, P(x)). Then 

Q = q H P[x] D g H P[x] = P and Q* D PP[x], 

contradicting minimality of q. 
Case 2. g = (P,a(x) ): Subcase (i) q = Ç*. This is explicitly ruled out by (c). 
Subcase (ii) q = <<2, /3(x)). By (b), P = Q C\ R. According to [9, Theorem 

2(i)], we need only show ($(x)\a(x) in KQ[x], Clearing denominators yields r 
in R\P such that f = r + P in P / P satisfies: m(x) is in (P/P)[x]. Let rf(x) in 
R[x] reduce to fa(x) modulo P . By definition of uppers, d(x) is in (P, a(x) ) C 
(Ç, @(x)). Hence, P(x)\fa(x). Since f ^ 0, jS(x)|«(x). 

Conversely, assume R[x] C P M satisfies GD. Then (a) was proved in [9, 
Lemma 2]. As for (b), the above GD criterion implies (P,a(x) ) = (Q, fi(x) ) P\ 
R[x]; intersecting with R shows P = Q Pi R. Finally, for (c), GD implies 
Q* C\ R[x] = (P, a(x))\ intersect with R to get Q P R = P , whence Q* P 
P[x] = P*, contradicting [9, Theorem 1]. 

We note that Proposition 3.2 supplies an amusing proof that R[x] C T[x] 
satisfies GD whenever T is a field. 

COROLLARY 3.3. R[x] C T[x] is unibranched if and only if the following two 
conditions hold: 

(a) R[x] C T[x] is mated. 
(b) For every prime P of R, there exists a prime Q of T such that P = Q P R. 

Proof. Apply [9, Theorem 3] and Proposition 3.1. 

COROLLARY 3.4. Let R be Noetherian of (Krull) dimension 1. Assume either T 
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is integral over R or T C K. Then R[x] C T[x] satisfies G D if and only if the 
following condition holds: 

If (0, a(x)) and (Q, P(x)) are uppers in R[x] and T[x] respectively, such that 
(Q, P(x) ) is minimal among primes of T[x] containing (0, a(x) )T[x], then 

ç = o. 
Proof. If Q is a nonzero, not necessarily prime, ideal of T, then Q P\ R ^ 0-

(In the integral case, consider the constant coefficient of an integrali ty equa­
tion of minimal degree for a nonzero element of Q. In case T C K, consider 
the numera tor of a nonzero fraction in Q.) Hence, the last condition in the 
s ta tement of the corollary is precisely the case P = 0 of Proposition 3.2(b) . 
I t , therefore, suffices to verify conditions (a) and (c) and the case P ^ 0 of 
(b) in Proposition 3.2. 

Condition (a) is immediate since R has dimension 1. For (b) in case P ^ 0, 
note 

QC\R= (Q,(3(x))r\RZ) (P,a(x))T[x]r\RDP ^ 0, 

whence Q H R = P by one-dimensionality. Finally, for (c), assume Q* is 
minimal among primes of T[x] containing (P , a(x) )T[x]. Then Q ^ 0 and, as 
noted above, P x = Q H R ^ 0. As (P x )* = Q* C\ R[x] D (P, a(x) ), P * £ 
(P, a(x)), we have P $! P i , and P = 0 by one dimensionality. Since R is 
Noetherian, [6, Theorem 149] shows t h a t (P i )* and (0, a(x) ) each have height 
1 in R[x]. Thus , (P i )* = (0, a(x)) and P1 = (P i )* H R = (0, a(x)) H P = 0, 
a contradict ion, to complete the proof. 

Remark 3.5. The following result gives some information in the direction of 
the converse of Theorem 2.1. Assume R C T satisfies G D a t P (obvious défini 
t ion) and P * is unibranched in T[x], Then R[x] C T[x] satisfies G D a t P * . 
(The key is to observe t ha t the radical -\/P*T[x] is prime in T[x\.) A similar 
result for uppers, one prime a t a time, would be of interest . 

We shall see in Example 3.9 t ha t the condition in Corollary 3.4 does not 
always hold. T h e case of Dedekind R, included in the next result, is however 
much simpler. First , recall t h a t if R is Priifer then T is P-flat [3, VI I , Proposi­
tion 4.2] and hence P C P satisfies G D [11, (5 .D), p . 33]. 

P R O P O S I T I O N 3.6. / / P is Priifer, then R[x] C T[x] satisfies G D . 

Proof. As noted above, T is P-flat. Hence, T[x] ^ T ® RR[x] is P[x]-flat 
and an application of [11, (5 .D) , p . 33) completes the proof. 

We next give an example where G D and unibranchedness imply integrali ty. 

P R O P O S I T I O N 3.7. Let R be Priifer, R C T be unibranched and T C K. Then 
R = T. 

Proof. Let M be a maximal ideal of P and N the (necessarily maximal) 
prime of T lying over M. I t is clear from the behavior of primes in localizations 
t h a t RM C TN is unibranched. However, RM is a valuat ion ring [6, Theorem 
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64], hence maximal with respect to dominance inside K [1, Théorème 1, p. 89]. 
Thus, RM = TN and R = O RM = Pi TN = T. 

We pause to record the principal result of [7]. 

THEOREM 3.8 (Kaplansky). If R[x] C T[x] satisfies GU, then T is integral 
over R. 

Example 3.9. We now give an example where R is Noetherian quasi-local of 
(Krull) dimension 1, R C T \s unibranched, T C K, T is not integral over R, 
R[x] C T[x] does not satisfy GD. (Thus, GD is not necessarily inherited by 
polynomial rings even if, as the Krull-Akizuki Theorem [6, Theorem 93] shows 
is the case here, the coefficient rings are one-dimensional Noetherian.) 

For the example, let R be a Noetherian quasi-local one-dimensional domain 
whose integral closure D contains distinct maximal ideals Qi and Q2. (An 
example of such R may be fashioned from [13, Example 2, p. 102].) Let T be 
the discrete valuation ring DQl. By considering a numerator of a nonzero 
fraction in T, we see that the maximal ideal of T meets R nontrivially and, 
hence, that R C T is unibranched. Of course, T is not integral over R, since 
D £ T. 

If R[x] C T[x] satisfies GD, then R[x] C T[x] is mated by Theorem 2.1. 
As R C T is unibranched, Corollary 3.3 shows R[x] C T[x] is unibranched. 
Hence R[x] C T[x] satisfies GU. Theorem 3.8 implies T is integral over R, 
a contradiction, showing that R[x] C T[x] does not satisfy GD. 

As an immediate corollary of the preceding proof, we have 

COROLLARY 3.10. Assume T C K and R[x] C T[x] satisfies GD. Then the 
following conditions are equivalent. 

(a) T is integral over R. 
(b) For every prime P of R, there exists a prime Q of T such that P = Q C\ R. 
(c) R[x] is unibranched in T[x]. 

Remark 3.11. Because of (3.7) and (3.9), it would be interesting to know 
under what additional conditions one can infer R = T, given T C K, R 
integrally closed, R C T unibranched and GD. In this regard, recall that the 
(u, u~l) lemma implies the following result [6, 1-6, Exercise 19]. If R is integral­
ly closed quasi-local of dimension 1, T = R[u] for some u in K and R C T is 
unibranched, then R = T. 

4. GCD domains. In this final section we consider simple extensions of 
GCD (or pseudo-Bézout) domains, i.e. domains in which every pair of nonzero 
elements has a greatest common divisor. The localization example Z C Z[|] = 
Z2 will be seen to be typical of such extensions which are mated or satisfy GD. 

PROPOSITION 4.1. Let Rbe a GCD domain, a and b nonzero relatively prime 
elements of R such that u = ab~x is not in R, and T = R[u]. 
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(i) There exists a prime of R containing b but not containing a. For any such 
prime P , there exists no ideal Q of T such that P = Q P\ R. 

(ii) Let P be a prime of R not containing b. Then PRb P\ T is minimum among 
primes of T lying over P. 

(iii) Let P be a prime of R containing b. If there exists a prime of T lying over 
P , then P contains a. Conversely, if P contains a, then PT is prime. 

Proof, (i) Assume t h a t a lies in every prime of R containing b. Then a is in 
the radical \/Rb, whence an = rb for some r in R and n ^ 1. Since a and b 
are relatively prime, [6, 1-6, Exercise 7] may be applied repeatedly to show b 
is a unit . Hence, u is in P , contradict ing our s tanding hypotheses. 

Now, let P be any prime of R containing b bu t not containing a. HP = 
Q r\ R for an ideal Q of P , then a is not in Q. However, bu = a is in Q, t hus 
proving t ha t no such Q exists. 

(ii) As b is not in P , PRh is a prime of Rb; since T C Rb, i t follows t ha t 
/ = PRb H P is a prime of P . Moreover, / H R = PRb /°\ (R H T) = 
PRb C\ R = P; i.e., I lies over P. Note Rb = Tb. Hence, if Q is any prime of 
P lying over P , then I = PTb H T C QTb C\ T = Q. 

(iii) Assume some prime Q of P lies over P . If a is not in P then a is not in Q 
and QTa ^ P a , whence P P a ^ P a . Since a -1z/ = b~x is in P a and b is in P , we 
have a contradiction. T h u s a is in P . 

Conversely, assume tha t a is in P . Let f \R\oc\ —> 1 be the surjective P -
algebra homomorphism sending x to u. As a and & are relatively prime, a(gcd-) 
content a rgument [2, Exercice 23 (a), p . 87] implies k e r ( / ) = (bx — a)R[x], 
In part icular , k e r ( / ) C PR[x], and so f(PR[x]) = PT is a prime of T. 

T H E O R E M 4.2. Let R be a G C D domain, a and b nonzero relatively prime ele­
ments of R such that u = ab~l is not in R, and T = R[u]. Then the following 
conditions are equivalent. 

(1) R[x] C T[x\ satisfies G D . 
(2) R[x\ C T[x] is mated. 
(3) R C T is mated. 
(4) Ra + Rb = P . 
(5) P = P 6 . 
(6) P w P-yZa/. 

(7) R C P safc'5/îes G D . 

Proof. Some of the implications are immediate : (1) => (2) by Theorem 2 .1 ; 
(2) => (3) by Proposition 3 .1 ; since P6[x] = P[x]& , (5) => (1) by the usual 
description of primes in localizations. If ra + sb = 1 for some r and 5 in R, 
then fr-1 = ru + 5 is in R[u] = P , whence P& C P . Since P C P&, this proves 
(4) =» (5). 

T o show (3) => (4), assume P C P is mated . If (4) fails, choose a prime P 
containing a and 6. Choose an upper (P , a ( x ) ) and l e t / :R[x] —» P be the 
map considered in the proof of Proposition 4.1 (iii). Then q = / ( ( P , a(jc) )) is 
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a prime of T such tha t P i = q C\ R contains a and b. Since matedness implies 
P i is unibranched in T, Proposition 4.1 (iii) shows q = P\T. Considering 
inverse images under / yields (P , a(x)) = PiR[x]. Intersect with R to get 
P = P i and (P,a(x) ) = PR[x], contradicting [9, Theorem 1]. Hence (3) => (4). 

As we saw in the proof of Proposition 4.1 (iii), k e r ( / ) = (bx — a)R[x]. 
Hence, T = R[x\/ (bx — a)R[x], Note t ha t the P-submodule of R generated 
by the coefficients of elements of (bx — a)R[x] is Ra + Kb. Since (bx — a)R[x] 
is an invertible ideal of R[x], we may apply a result of Ohm-Rush [12, Corollary 
1.3] to infer (4) <=> (6). 

Hence, (1) *» (2) «=> (3) <=» (4) «=> (5) «=» (6). Since (1) => (7) by [9, Lemma 
2], it suffices to prove (7) => (6). Assume R <Z T satisfies G D . We need only 
prove T is locally flat, i.e., t h a t T (x) #P M is P^-flat for every maximal ideal M 
of P . However, P M is G C D [2, Exercice 21, p . 86], 

T (SRRM^T^M = RM[u]y 

and RM C Pjew inherits G D from R C P- Thus , we may assume P is quasi-
local with maximal ideal M. Since (4) => (6), it suffices to prove P a + Rb = R. 
By Proposition 4.1 (i), choose a prime P of P containing 6 bu t not a. Since no 
prime of T lies over P and R d T satisfies G D , we see tha t no prime of T lies 
over M. T h u s Proposition 4.1 (iii) implies t ha t a is not in M\ i.e., a is a uni t 
and Ra + Rb = P . 

COROLLARY 4.3. The following conditions are equivalent. 
(1) P is Bézout. 
(2) P is G C D awo7 S is R-flat for all R-submodules S of K. 
(3) P is G C D and R (Z S satisfies G D for all rings R C S C K. 
(4) P is G C D awa7 P C R[u] satisfies G D /or a// u in K. 

Proof. Since Bézout domains are G C D and Prufer, the remarks preceding 
Proposition 3.6 give (1) => (2) => (3). Note (3) => (4) is trivial. 

Next , assume (4). By Theorem 4.2, R[u] is P-flat for all u in K. Moreover, 
[14, Proposition 2] or [6, Theorem 50] shows P is integrally closed. Then [14, 
Proposition 3] and [5, Theorem 13, (10) =» (9)] imply P is Prûfer. As P is 
also G C D , [6, 1-6, Exercise 15] then shows tha t every finitely generated ideal 
of P is principal, i.e., P is Bézout. Hence, (4) => (1). 

Finally, we give an al ternate, possibly simpler, proof t ha t (4) => (1). As­
sume (4). As noted in [6, p . 32], we need only show tha t , if a and b are nonzero 
elements of P with greatest common divisor d, then Ra + Rb = Rd. Wi thou t 
loss of generality, suppose ab~l is not in P . Since ad~l and bd~l are relatively 
prime [6, Theorem 49(b)] and P C R[ab~l] = R[(ad~l)(bd~l)~l] satisfies G D , 
Theorem 4.2 shows Rad~l + Rbd~l = P . Thus , Ra + Rb = Rd, to complete 
the proof. 

Applying Theorem 4.2 to Corollary 4.3(4) produces six more characteriza­
tions of Bézout domains, giving nine in all. Since valuation domains are 
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characterized as quasi-local Bézout [6, Theorem 63], these remarks also yield 
nine characterizations of valuation domains. 

Our final result follows immediately from the preceding corollary. 

COROLLARY 4.4. Let R have {Krull) dimension 1. Then R is Bézout if and only 
if R is GCD. 
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