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Rationality criteria for motivic zeta functions

Michael Larsen and Valery A. Lunts

Abstract

The zeta function of a complex variety is a power series whose nth coefficient is the nth
symmetric power of the variety, viewed as an element in the Grothendieck ring of complex
varieties. We prove that the zeta function of a surface is rational if and only if the Kodaira
dimension of the surface is negative.

1. Introduction

Let X be a variety over a finite field F and SymnX = Xn/Sn, the variety of effective 0-cycles on
X of degree n (where, by convention, Sym0X = SpecF). A celebrated theorem of B. Dwork asserts
that the zeta function

ZX(t) =
∞∑
i=0

|Symn(X)(F)|tn

is a rational function in t. Kapranov asked [Kap00] whether this rationality lifts to the Grothendieck
ring of varieties over F. Explicitly, let K0[VF] denote the ring of Z-combinations of isomorphism
classes of F-varieties modulo the cutting-and-pasting relation

[X] = [Y ] + [X \ Y ]

for closed F-subvarieties Y ⊂ X. Is the motivic zeta function

ζX(t) =
∞∑
i=0

[Symn(X)]tn

always rational as a power series in K0[VF]? More generally, is this true for varieties over a general
field K, for example, K = C? If so, this would give a fundamentally new proof of Dwork’s theorem,
one that does not depend on Frobenius at all. Kapranov observed that it is true when X is a curve.
(See Theorem 3.7 below for a statement and proof over C.)

In [LL03], we proved that ζX(t) is not rational when X is a complex projective non-singular
surface with geometric genus � 2. We should point out that Kapranov’s set-up is slightly different
from ours, in that he inverts [A1] whereas we do not. In principle, it is still possible that ζX(t) is
always rational as a power series over K0[VC][[A1]−1]. This paper does not address that interesting
possibility. Instead, we return to the problem of [LL03] and give a simple necessary and sufficient
condition on complex surfaces for ζX(t) to be rational over K0[VC], as follows.

Theorem 1.1. A non-singular projective complex surface has rational motivic zeta function if and
only if it has Kodaira dimension −∞.
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The notion of rationality needs some explanation (see § 2 below). Theorem 3.9 asserts rationality
in the strong sense when the Kodaira dimension is −∞, and Theorem 7.6 denies rationality in the
weak sense when the Kodaira dimension is � 0. The methods for proving rationality and irrationality
are entirely different. The fact that they meet in the middle to give a necessary and sufficient
condition appears as a minor miracle, made possible by the classification of surfaces [Rei97, E.1].
By contrast, in dimensions � 3, the rationality problem seems wide open.

There are two main ideas in this paper. The first is to probe rationality by means of new motivic
measures, i.e. field-valued points of SpecK0[VC]. In [LL03], we showed that any multiplicative func-
tion on the set of stable birational equivalence classes of non-singular complex projective varieties
defines a motivic measure. In particular, we constructed a measure µ1, with values in the fraction
field of the group ring of the multiplicative group of integer power series 1 + sZ[[s]], characterized
by the formula

µ1([Z]) =
[ dim Z∑

i=0

dim Γ(Z,Ωi
Z)si

]

for Z a (connected) non-singular projective variety. In the current paper, we introduce a set of
measures µn indexed by positive integers n, characterized by

µn([Z]) =
[ dimZ∑

i=0

dimH0(Z,ΨnΩi
Z)si

]
, (1)

where Ψn denotes the nth Adams operation. The point of this generalization is that it allows us to
work with higher plurigenera in much the way that we worked with geometric genus in [LL03]. If for
some n, µn(ζX(t)) is irrational, then of course ζX(t) itself is irrational. For singular Z, the right-hand
side of (1) does not make sense, and indeed the left-hand side is generally not of the form [P ] for
any power series P ∈ 1+ sZ[[s]]. However, in the special case Z = SymmX, dim X = 2, it turns out
that µn([Z]) = µn([HilbmX]), where HilbmX is the Hilbert scheme of length m subschemes of X.
(The fact that HilbmX is non-singular is another way in which dimension 2 is special.) Our task,
therefore, is to prove that if the nth plurigenus of X is positive, then

∞∑
i=0

µn([HilbiX])ti

is irrational.
The other main idea in this paper is to make systematic use of λ-ring ideas and techniques (see

§ 4 for a brief review of this theory). We have already noted the appearance of Adams operations.
This is somewhat delicate: we cannot work in the usual K(X) since the global section functor is
not well defined there. Instead, we need to prove that the ring of virtual vector bundles modulo
split exact sequences is a special λ-ring (see § 5). Also significant is the idea that the motivic zeta
function (or better, its inverse) should be regarded as the universal λ-homomorphism. This is true
only formally since K0[VC] is not a special λ-ring. It is nonetheless suggestive, since the universal
λ-homomorphism sends every virtually finite element to a rational power series. For a special λ-ring
the virtually finite elements form a λ-subring, which in many interesting cases is the whole ring. This
interpretation of the zeta function suggests on the one hand that we should seek motivic measures
which are λ-homomorphisms and on the other that it may be natural to replace the Grothendieck
ring of varieties by its specialization, i.e. its maximal quotient, which is a special λ-ring (see § 8).

E. Looijenga has called our attention to certain formal analogies between the problem of
rationality of zeta functions of complex surfaces X, and Severi’s conjecture, disproved by
Mumford [Mum68], which predicted that the group of 0-cycles modulo rational equivalence on
X would be finite-dimensional. Each statement can be understood as bounding the complexity of
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symmetric powers of X. In each case, global holomorphic 2-forms provide the obstruction to this
boundedness. However, there is an essential difference. A conjecture of Bloch [Blo75] asserts that,
when H0(X,Ω2

X) = 0, the group of degree-zero 0-cycles should be isomorphic to the Albanese
variety of X. This has been settled by Bloch et al. [BKL76] for Kodaira dimension < 2, so there
are examples of surfaces in which the two notions of boundedness diverge. In particular, the use of
plurigenera in this paper does not seem to have a counterpart in the world of CH2.

Throughout this paper, a variety will be a reduced separated scheme of finite type over C. The
class [X] ∈ K0[VC] of a variety X will sometimes be written without brackets when it seems unlikely
to lead to any confusion.

2. Rationality criteria for power series

In this paper we will be concerned with the rationality of power series with coefficients in a com-
mutative ring A. It is not entirely clear how such rationality should be defined when A is not an
integral domain (and we know [Poo02] that the Grothendieck ring of varieties has zero-divisors).
We consider several possible definitions.

Definition 2.1. A power series f(t) ∈ A[[t]] is globally rational if and only if there exist polynomials
g(t), h(t) ∈ A[t] such that f(t) is the unique solution of g(t)x = h(t).

Definition 2.2. A power series f(t) =
∑

i ait
i ∈ A[[t]] is determinantally rational if and only if

there exist non-negative integers m and n such that

Di m = det




ai ai+1 · · · ai+m

ai+1 ai+2 · · · ai+m+1
...

...
. . .

...
ai+m ai+m+1 · · · ai+2m


 = 0

for all i > n.

It is classical [Bor94] that Definition 2.1 is equivalent to Definition 2.2 when A is a field; in fact,
we can take n = max(0,deg h−deg g) and m = deg g. The easy direction, which works for any ring A,
is proved as part of Proposition 2.4 below. The difficult direction is proving that Di m = 0 for fixed
m and all i� 0 implies rationality. The idea of the proof is that, if m is chosen to be minimal, then
by induction Di m−1 �= 0 for i� 0. This implies that, for i� 0, the row (ai+m, ai+m+1, . . . , ai+2m) is
a linear combination of the rows (ai+j , ai+j+1, . . . , ai+j+m) for 0 � j < m, and, therefore, any linear
relation satisfied by the coefficients of all rows but the last will also be satisfied for the coefficients
of the last row. In particular, this enables us to prove that the coefficients of ai satisfy a fixed linear
recurrence, and that implies global rationality of the power series

∑∞
i=0 ait

i.
This equivalence suggests a third possible definition.

Definition 2.3. A power series f ∈ A[[t]] is pointwise rational if and only if for all homomorphisms
Φ from A to a field, Φ(f) is rational by either of the two previous definitions.

These definitions are related by the following proposition.

Proposition 2.4. Any globally rational power series is determinantally rational, and any determi-
nantally rational power series is pointwise rational. Neither converse holds for a general coefficient
ring A. All three conditions are equivalent when A is an integral domain.

Proof. Suppose g(t) =
∑k

i=0 bit
i, h(t) =

∑�
i=0 cit

i ∈ A[[t]] and f(t) =
∑∞

i=0 ait
i is the unique

solution to g(t)x = h(t). Since f(t) + a is not a solution when a �= 0 is a constant, the annihilator
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of the ideal (b0, b1, . . . , bk) of coefficients of g is (0). Setting m = k, and n = max(0, � − k) in
Definition 2.2, 


ai ai+1 · · · ai+m

ai+1 ai+2 · · · ai+m+1
...

...
. . .

...
ai+m ai+m+1 · · · ai+2m







bk

bk−1
...
b0


 =




0
0
...
0




for i > �−k. Left-multiplying both sides by the matrix of cofactors, we conclude that the determinant
of the above matrix annihilates the b-column vector, which means that it is zero.

To see that the converse does not hold, consider A = Z[ε]/(ε2). As A is countable, the set of
globally rational power series over A is countable. However, any power series of the form f(t) = εg(t)
is determinantally rational in the sense of Definition 2.2 when m = 1.

Suppose f(t) =
∑∞

i=0 ait
i is determinantally rational. The same is then true for Φ(f), which is

a power series over a field. For fields, however, the determinantal condition implies rationality.
To see that the converse does not hold, consider

A = Z[ε1, ε2, . . . ]/(ε2
1, ε

2
2, . . . )

in infinitely many variables εi. Every homomorphism from A to a field factors through the augmen-
tation. Therefore, f(t) =

∑∞
i=1 εit

i is pointwise rational. However, the determinant

det




εi εi+1 · · · εi+m

εi+1 εi+2 · · · εi+m+1
...

...
. . .

...
εi+m εi+m+1 · · · εi+2m




is never zero since it has a non-trivial εiεi+2εi+4 · · · εi+2m coefficient.
Finally, when A is an integral domain, we let Φ denote the inclusion map from A to its fraction

field F . If f(t) is pointwise rational, it must be rational as a power series in F [[t]]. Therefore,
g(t)f(t) = h(t) for polynomials g(t), h(t) ∈ F [t], g(t) �= 0. Clearing denominators, we may assume
g(t), h(t) ∈ A[t]. As A[t] is an integral domain, f(t) is globally rational.

The following lemma will be useful in § 3.

Lemma 2.5. If f(t) ∈ 1 + tA[[t]] is globally (respectively pointwise) rational, the same is true of
f(t)−1.

Proof. If f(t) is the unique solution of g(t)x = h(t), then g(t) is not a zero-divisor in A[[t]], and
f(t) is invertible, so again not a zero-divisor. Therefore h(t) = f(t)g(t) is not a zero-divisor,
and f(t)−1 is the unique solution of h(t)x = g(t). The pointwise case is trivial.

In [Kap00], the rationality of motivic zeta functions is discussed in pointwise terms. To give the
strongest possible results, we generally prove rationality globally and irrationality pointwise. To do
the latter, we make free use of the determinantal formulation of rationality for power series over
fields.

The remainder of this section is devoted to a necessary and sufficient condition for rationality
for power series of a very special type.

Consider a free abelian group G and its group ring Z[G]. This ring is isomorphic to a ring of
Laurent polynomials and is therefore a domain. Let F be its field of fractions. We are interested in
power series in F all of whose coefficients are of the form [g], g ∈ G. By a slight abuse of notation,
we will denote such coefficients g.
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Definition 2.6. Let K ⊂ G be a finite subset. We say that h lies in the K-neighborhood of g if
and only if h ∈ gK.

Definition 2.7. Let N be a non-negative integer. We say that a set S of non-negative integers lies
in an N -interval if there exists a ∈ N such that S ⊂ [a, a + N ].

Definition 2.8. Let r be a positive integer. We say a sequence g0, g1, g2, . . . in G has dispersion
� r if there exists an integer N such that for every finite set K ⊂ G there exists a set S of r integers
contained in an N -interval such that, whenever s and t are distinct elements of S, gs does not lie
in the K-neighborhood of gt. Otherwise, it has dispersion � r− 1. If a sequence has dispersion � r
and � r, we say it has dispersion r. We say a power series in F [[t]] has given dispersion (� r, � r,
or = r) if all of its coefficients are elements of G and the sequence of its coefficients has the specified
dispersion.

We note that, if a sequence has dispersion � r, we can take all the elements of S to be arbitrarily
large. Likewise, we can choose N as large as we wish. If a sequence has dispersion � r − 1, for all
integers N there exists a finite set K such that every r-element set contained in an N -interval
contains distinct elements s, t, with gs in the K-neighborhood of gt. The sets K can be enlarged
freely.

Theorem 2.9. Let f(t) =
∑

git
i be a power series in F [[t]] with gi ∈ G for all i. Then f(t) is

rational if and only if there exists p � 1, i0 ∈ N and a sequence h1, h2, h3, . . . ∈ G periodic with
period p such that for i > i0 we have gi+p = higi.

Proof. If there exist p, i0, and hi as above, then

f(t) =
i0∑

i=0

git
i +

p∑
i=1

gi0+it
i0+i

1− hi+i0t
p

is a rational function with denominator of degree m � p2.
For the converse, by assumption there exists a polynomial

q(t) = bmtm + bm−1t
m−1 + · · · + b0 ∈ F [t]

such that q(t)f(t) is a polynomial, whose degree we will denote d. Without loss of generality, we
may assume b0 �= 0 and bm �= 0, and clearing denominators, we may assume bi ∈ Z[G] for all i.
Let C ⊂ G denote the collection of elements of the form xy−1 where x, y are group elements that
have non-zero coefficient in some bj , 0 � j � m. Thus, C contains the identity and is closed under
inverse. For i > max(0, d −m),

b0gi+m + b1gi+m−1 + · · ·+ bmgi = 0. (2)

Expanding the left-hand side, every non-zero monomial appearing in a term bjgi+m−j , for some
j between 0 and m inclusive, must also appear for at least one other value of j in the interval.
Applying this when j = 0, we deduce

gi+m ∈ giC ∪ · · · ∪ gi+m−1C. (3)

In other words, gi+m belongs to the C-neighborhood of some element of the set {gi, . . . , gi+m−1}.
Applying the same argument when j = m,

gi ∈ gi+1C ∪ · · · ∪ gi+mC, (4)

so every gi belongs to the C-neighborhood of some element of {gi+1, . . . , gi+m}.
For u and v positive integers u < v, let I[u, v] denote the set of integers u � x � v. Consider

the transitive closure of the relation ∼C on I[u, v] given by gi ∈ gjC. Thus, gig
−1
j ∈ Cv−u whenever
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i and j belong to the same equivalence class. By (3) and (4), every m-interval in I[u, v] contains
a representative of each ∼C equivalence class, so there are at most m such classes. If f(t) had
dispersion � m + 1, we could choose N as in Definition 2.8, set K = CN , and choose an (m + 1)-
element set S ⊂ I[u, u+N ] in contradiction to our upper bound for equivalence classes in I[u, u+N ].
It follows that f(t) has dispersion r � m.

In particular, f(t) has dispersion � r, and we fix N � m as in Definition 2.8. As the dispersion of
f is � r, there exists a finite set K (which we may assume contains C and is closed under inverses)
such that for every (r + 1)-element subset S of an N -interval

∃s, t ∈ S, s �= t, gs ∈ gtK. (5)

On the other hand, for every integer M � N , there exist integers u and i1, . . . , ir such that

u = i1 < i2 < · · · < ir � u + N

and no gij lies within the KM -neighborhood of another gik . We consider the equivalence rela-
tion ∼K on I[u, u + M ]. The integers i1, . . . , ir belong to distinct equivalence classes in the interval
I[u, u+M ]. As each m-interval in I[u, u+M ] contains a representative of each ∼C equivalence class,
every N -interval in I[u, u + M ] contains at least one representative of each ∼K equivalence
class. By (5), every gj with j ∈ [u, u + N ] lies within the K-neighborhood of some gik ; it follows
that every gj with j ∈ [u, u + M ] lies in the ∼K equivalence class of some gik . The ∼K equivalence
classes of the gik therefore partition I[u, u + M ].

For j ∈ I[u, u + M ] and 1 � k � r, define

gj,k =

{
gj if j is ∼K equivalent to ik,
0 otherwise.

Thus gj =
∑r

k=1 gj,k. For j ∈ I[u, u + M −m], therefore,
r∑

k=1

(b0gj+m,k + b1gj+m−1,k + · · · + bmgj,k) = 0.

There can be no common monomial appearing in the sums b0gj+m,k + · · ·+ bmgj,k for two different
values of k. It follows that

b0gj+m,k + b1gj+m−1,k + · · ·+ bmgj,k = 0, (6)

and this implies that, for fixed k and variable j ∈ I[u, u+M−m], the gj,k satisfy the same mth-order
linear recurrence relation as the original sequence of coefficients gj .

For each k, every non-zero gj,k, j ∈ I[u, u + M ], lies within the KM -neighborhood of gik .
Suppose j1, j2 ∈ I[u, u + M ] are equivalent to one another and lie in the same N -interval J ⊂
I[u, u + M ]. Suppose they are both equivalent to ik. For each l �= k, we choose i′l ∈ J equivalent
to il. Thus gi′l is within the KM -neighborhood of gil . Applying (5) to {j1, j2, i

′
1, . . . , i

′
k−1, i

′
k+1, . . . , i

′
r},

we conclude that j1 ∈ j2K. Since the gj,k satisfy an mth-order linear recurrence relation (6), any
two consecutive non-zero terms in the sequence must lie in a common m-interval and therefore in a
common N -interval. Thus, any two consecutive non-zero terms in the sequence

gu,k, gu+1,k, . . . , gu+M,k (7)

lie in one another’s K-neighborhoods. It follows that, up to scalar multiplication by an element
of G, there are only a bounded number of possibilities for an m-tuple consisting of m consecutive
terms of (7), where the bound does not depend on M . If M is taken sufficiently large, we can find
integers a and p and elements ck ∈ G such that u � a < a + p � u + M − m, and for each k,
1 � k � r,

ck(ga,k, ga+1,k, . . . , ga+m−1,k) = (ga+p,k, ga+p+1,k, . . . , ga+p+m−1,k).
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The linear recurrence (6) and induction imply

gi+p,k = ckgi,k

for all i ∈ I[a, u + M − p]. Thus, for i in this interval, the unique value of k for which gi,k �= 0
depends only on i (mod p). In particular, for each residue class (mod p) there is exactly one value
of k for which gj,k �= 0 for j ∈ I[a, u + M ] belonging to this residue class. For a � j < a + p and s
non-negative, we define

g′j+sp,k = cs
kgj,k.

Thus g′j,k coincides with gj,k for j ∈ I[a, u + M ]. Since g′j,k satisfies the same mth-order recurrence
as gj,k for all j ∈ I[a, a + p− 1], it does so for all j. Defining

g′j =
r∑

k=1

g′j,k,

the sequence g′j again satisfies the same mth-order recurrence as gj . Since gj = g′j for all j ∈
I[a, a + m − 1], we have gj = g′j for all j � a, and setting i0 = a and hi = ck for the equivalence
class k corresponding to the residue class of i (mod p), the theorem follows.

3. Rationality theorems

In this section we describe several classes of varieties that have rational zeta functions, notably
rational and ruled surfaces. These are rather special cases, and indeed we suspect, that except
in dimension 1, rationality of motivic zeta functions is the exception rather than the rule. Some
evidence for this belief is given in the discussion of irrationality theorems in § 7.

Lemma 3.1. If X is a variety and Y a closed subvariety with complement U , then if any two of
ζX(t), ζY (t), and ζU(t) are globally (respectively pointwise) rational, then the third is so as well.

Proof. Stratifying SymnX according to how many points land in Y , we obtain

[SymnX] =
∑

i+j=n

[SymiY × SymjU ] =
∑

i+j=n

[SymiY ][SymjU ]. (8)

It follows that ζX(t) = ζY (t)ζU (t).
By Lemma 2.5, not only are the two specified zeta functions globally (respectively pointwise)

rational, the same is true of their reciprocals. The product of rational zeta functions is again rational,
and the lemma follows.

In particular, the disjoint union of varieties with globally rational zeta functions again has a
globally rational zeta function. This shows in particular that zero-dimensional varieties have globally
rational zeta functions; explicitly, the zeta function of a variety with n points is (1 − t)−n. Also, a
stratified variety has such a zeta function as long as all of its strata do.

Lemma 3.2. If X is any variety, and E → X is a fiber bundle, locally trivial in the Zariski topology,
with fiber F , then [E] = [X][F ]. In particular, if E → X is a vector bundle of rank r, then

[E] = [X][Ar].

Proof. Note first of all that vector bundles are Zariski locally trivial, so the second claim is indeed
a special case of the first. As E → X is locally trivial, there exists a dense open subset U ⊂ E over
which E restricts to a trivial bundle. If Y denotes the complement of U and EU (respectively EY )
the pull-back of E to U (respectively Y ) respectively, it suffices to prove the lemma for EY → Y
and EU → U . As EU = U × F , the lemma follows by Noetherian induction.

1543

https://doi.org/10.1112/S0010437X04000764 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X04000764


M. Larsen and V. A. Lunts

The following proposition is due to B. Totaro (see [Göt01]).

Proposition 3.3. If X is any variety, E → X is a vector bundle of rank r, and n is any positive
integer, then [SymnE] = [SymnX][A1]rn. Equivalently, ζE(t) = ζX([Ar]t).

Corollary 3.4. If X is a variety such that ζX(t) is globally (respectively pointwise) rational, and
E → X is a vector bundle, then ζE(t) is globally (respectively pointwise) rational.

Corollary 3.5. For all non-negative integers n, ζAn(t) is rational.

Corollary 3.6. If X is a variety and P → X is a projective space bundle of rank r that is locally
trivial in the Zariski topology, then

ζP (t) = ζX(t)ζX([A1]t) · · · ζX([Ar]t).

In particular, ζPr(t) is rational for all r.

Proof. By Noetherian induction, it suffices to consider the case P = X × Pr. The corollary then
follows immediately from the stratification of Pr with strata Ai, 0 � i � r.

We come now to the main positive result in the subject.

Theorem 3.7 (Kapranov). If X is any one-dimensional variety, then there exist positive integers m
and n such that (1− t)m(1− [A1]t)nζX(t) is a polynomial. In particular, ζX(t) is globally rational.

Proof. Let X be a one-dimensional variety. The singular locus Y is either empty or zero-dimensional.
In the latter case, the question reduces to the case of X \ Y , so without loss of generality we may
assume X is non-singular. If X has more than one component, it suffices to prove the theorem for
each one. Without loss of generality, we may assume X is connected and therefore irreducible. Let
X̄ denote the unique projective non-singular curve containing X as an open subvariety. As X̄ \X
is empty or zero-dimensional, without loss of generality we may assume that X is projective and
non-singular.

Let g be the genus of X. Let x0 denote a base point of X and J denote the Jacobian variety
JacX. For non-negative n � 2g − 1, the morphism Xn → J mapping

(x1, . . . , xn) 
→ −nx0 +
n∑

i=1

xi

factors through SymnX, realizing it as a projective space bundle of rank n− g over J . This bundle
is the projectivization of a natural rank-(n + 1− g) vector bundle on J , so by Lemma 3.2,

[SymnX] = [J ](1 + [A1] + · · ·+ [An−g]).

This implies that
ζX(t)(1 − t)(1− [A1]t)

is a polynomial of degree � 2g.

Corollary 3.8. If X is an algebraic surface, the global (respectively pointwise) rationality of ζX(t)
depends only on the birational equivalence class of X.

Proof. If X1 and X2 are two such surfaces and U is a surface that is isomorphic to dense open
subvarieties of each, then setting Yi = Xi \ U ,

ζXi(t) = ζU(t)ζYi(t).

By Theorem 3.7, ζYi(t) is globally (therefore also pointwise) rational, so by Lemma 3.1, each ζXi(t)
is rational if and only if ζU(t) is so.
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Theorem 3.9. If X is a surface with Kodaira dimension −∞, then ζX(t) is globally rational.

Proof. There are two cases: rational surfaces and birationally ruled surfaces. In each case, we may
choose any variety in the given birational equivalence class. For rational surfaces, we use A2, which
has a globally rational zeta function by Corollary 3.5. A ruled surface is a projective line bundle over
a curve. By the Tsen–Lang theorem, such a P1-bundle is Zariski locally trivial, and by Theorem 3.7
and Corollary 3.6, the motivic zeta function of a ruled surface is globally rational.

4. Lambda rings

In this section, we develop some basic definitions and facts connected with the notion of λ-ring.
A good reference for this material is the first section of [AT69].

Definition 4.1. A λ-structure on a commutative ring A is an infinite sequence λ0, λ1, λ2, . . . , of
maps A→ A such that

λ0(x) = 1,

λ1(x) = x,

λn(x + y) =
∑

i+j=n

λi(x)λj(y).

A λ-ring is a commutative ring endowed with a λ-structure. We call a ring homomorphism between
λ-rings that commutes with λ-operations a λ-homomorphism.

The prototype of a λ-ring is the Grothendieck ring of (virtual) finite-dimensional vector spaces
over a field, where λi gives the ith exterior power. Of course, explicitly the ring here is Z, and
λi(n) =

(n
i

)
. More generally, one can look at Grothendieck rings of finite-dimensional representations

of a group, finitely generated projective modules of a ring or finite-rank vector bundles over a variety
or a topological space.

Definition 4.2. Given a λ-structure on a ring A, we will call the additive-to-multiplicative group
homomorphism λt : A→ 1 + tA[[t]] given by

λt(a) =
∞∑

n=0

λn(a)tn.

the universal λ-homomorphism.

Every λ-structure defines a homomorphism λt; conversely, every homomorphism A→ 1+ tA[[t]]
that is congruent to a 
→ 1 + at (mod t2) defines a λ-structure.

Definition 4.3. If λt is the universal λ-homomorphism associated to a λ-structure, then the
λ-structure σ0, σ1, . . . associated to the homomorphism σt(a) := λ−t(−a) = λ−t(a)−1 is called
the opposite structure to λ0, λ1, . . . .

For example, if A is the Grothendieck ring of vector spaces (or representations, projective mod-
ules, vector bundles, etc.) and the original λ-structure gives exterior powers, then the opposite
λ-structure gives symmetric powers. Passage to the opposite is involutive; this is obvious on the
level of universal λ-homomorphisms. The identities

λn(x− y) =
∑

i+j=n

(−1)jλi(x)σj(y), σn(x− y) =
∑

i+j=n

(−1)jσi(x)λj(y)

are immediate from the definitions and indicate what is meant explicitly by an exterior or symmetric
power of a virtual vector space (or representation, projective module, vector bundle, etc.).

1545

https://doi.org/10.1112/S0010437X04000764 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X04000764


M. Larsen and V. A. Lunts

Lemma 4.4. Let A and B denote λ-rings and φ : A → B a ring homomorphism. Then the set of
elements of A for which φ commutes with all λ-operations is an additive subgroup.

Proof. As φ is a ring homomorphism, it defines a multiplicative group homomorphism

f : 1 + tA[[t]]→ 1 + tB[[t]].

The subset of A on which the diagram of commutative groups and group homomorphisms

A

φ

��

�� 1 + tA[[t]]

f
��

B �� 1 + tB[[t]]

commutes is therefore a subgroup of A.

Definition 4.5. An element a ∈ A is finite-dimensional if λt(a) is a polynomial, and the dimension
of a is the degree of this polynomial. A difference of finite-dimensional elements is virtually finite.
A λ-ring is finite-dimensional if all of its elements are virtually finite.

Note that λt of a virtually finite element is a rational function in t.
The Grothendieck ring of finite-dimensional vector spaces (or representations, projective mod-

ules, vector bundles, etc.) is finite-dimensional. An element x is finite with respect to a λ-structure
on A if and only if −x is finite with respect to the opposite λ-structure, so the group of virtually
finite elements is invariant under passage to opposites. Note also that, in any λ-ring A, λt of a vir-
tually finite element must be a ratio of polynomials with constant term 1 and therefore a globally
rational element of A[[t]].

Next, we will consider some slightly more involved examples of λ-rings.

Example 4.6. Consider the polynomial ring Z[s]. If we identify Z with the ring of virtual finite-
dimensional vector spaces, then Z[s] is identified with the ring of isomorphism classes of N-graded
virtual finite-dimensional vector spaces. Using this identification, define the λ-structure on Z[s] as
follows:

λi(V sp) =

{
SymiV sip, if p is even,
ΛiV sip, if p is odd.

Note that λi corresponds to the usual ith symmetric power of a virtual super vector space.

Example 4.7. Let A be a λ-ring and M ⊂ A a multiplicative submonoid closed under the
λ-operations. Consider the corresponding monoid ring Z[M ]. (Note that it is not a subring of A.)
Then Z[M ] has a natural λ-structure given by

λi([m]) = [λim].

Example 4.8. Let us combine the two previous examples. Let M ⊂ Z[s] be the multiplicative monoid,
which consists of polynomials with constant term 1. Then Z[M ] is a λ-ring. This example will be
important to us since our motivic measures will take their values in Z[M ] or, more precisely, its
fraction field. The fraction field is well defined because of the following lemma.

Lemma 4.9. The monoid M is a free commutative monoid. The ring Z[M ] is a polynomial ring,
hence an integral domain.

Proof. The ring Z[s] is factorial and any element of M is a unique product of elements of M , which
are prime in Z[s] (the only unit in M is 1). Thus M is isomorphic to the monoid ⊕N, where the
summation is over all prime elements of Z[s] which are in M . Hence, Z[M ] is a polynomial ring, so
it is an integral domain.
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Example 4.10. By Equation (8), the Grothendieck ring of varieties K0[VK ] has a natural λ-ring
structure for any field K:

λt([X]) = ζX(t).
Thus λi[X] := [SymiX].

For any commutative ring A there is a natural λ-ring structure on the set 1 + tA[[t]]. The
operation of addition in this ring is given by the multiplication of power series. Multiplication (·)
and the λ-operations (Λi) are given by universal polynomials which are uniquely characterized by
the identities { m∏

i=1

(1 + ait)
}
·
{ n∏

j=1

(1 + bjt)
}

=
m∏

i=1

n∏
j=1

(1 + aibjt) (9)

and

Λk
n∏

i=1

(1 + ait) =
∏

S⊂{1,...,n},
|S|=k

(
1 + t

∏
j∈S

aj

)
.

Equation (9) implies that the polynomial expressing the tp coefficient of
∑

i xit
i ·∑j yjt

j in terms
of xi and yj lies in the ideal

(xm+1, xm+2, . . . , yn+1, yn+2, . . . )
whenever p > mn. This implies that the product of two polynomials in 1 + tA[[t]] is again a
polynomial, regardless of whether the polynomials split into linear factors. As · distributes over the
usual multiplication of power series, f(t) · g(t) is a ratio of polynomials in 1+ tA[[t]] if f(t) and g(t)
are.

Definition 4.11. We say that A is a special λ-ring if λt is a homomorphism not merely of groups
but of λ-rings.

For example, the Grothendieck group of vector spaces (or representations, projective modules,
or vector bundles) is a special λ-ring. Moreover, 1 + tA[[t]] is always special, regardless of whether
or not A is so. On the other hand, Examples 4.6, 4.8, and 4.10 are not special, and neither is
Example 4.7 in general, even if A happens to be so. Special λ-rings are characterized by identities
of the form

λn(xy) = Pn(x, λ2x, . . . , λnx, y, . . . , λny) (10)
and

λmλnx = Pm,n(x, λ2x, . . . , λmnx) (11)
for certain universal polynomials Pn, Pm,n. Equation (10) guarantees that λt is a ring homomorphism
and (11) guarantees that it respects λ-structures.

Note that the set of virtually finite elements in a special λ-ring forms a λ-subring.

Lemma 4.12. For any λ-ring A there exists a universal pair consisting of a special λ-ring B and a
λ-homomorphism A → B such that every λ-homomorphism from A to a special λ-ring C factors
through B.

Proof. If C is a special λ-ring and Φ: A→ C is a λ-homomorphism, then for all x, y ∈ A,

Φ(λn(xy)) = λnΦ(xy) = λn(Φ(x)Φ(y))
= Pn(Φ(x), . . . , λnΦ(x),Φ(y), . . . , λnΦ(y))
= Pn(Φ(x), . . . ,Φ(λnx),Φ(y), . . . ,Φ(λny))
= Φ(Pn(x, . . . , λnx, y, . . . , λny)),
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so
λn(xy)− Pn(x, . . . , λnx, y, . . . , λny) ∈ ker Φ. (12)

Similarly,
λmλnx− Pm,n(x, . . . , λmnx) ∈ ker Φ. (13)

Let I denote the λ-ideal in A generated by elements of type (12) and (13). Thus I ⊂ ker Φ.
Conversely, if B = A/I, then (12) and (13) imply (10) and (11), respectively. Thus, the quotient
map A→ B is universal.

We call the ring B the specialization of A.
The opposite of a special λ-ring need not be special. For example, in Z, which is special with

respect to {λn},
σn(r) =

(
r + n− 1

n

)
,

so the {σn} counterpart of the identity (10) for n = 2, namely

σ2(xy) = y2σ2x + x2σ2y − 2(σ2x)(σ2y)

(see [BGI77, V 2.3]) does not hold.
Finally, we mention the Adams operations Ψn : A → A defined on a special λ-ring. They are

given in terms of λ-operations by the identity
∞∑

n=1

Ψn(a)(−t)n = tλt(a)−1 d

dt
λt(a) (14)

(see [AT69, ch. I, § 5], but note the sign error therein). The Adams operations commute with both
products and λ-operations and therefore define λ-ring endomorphisms [AT69, I, Proposition 5.1].

5. Special λ-ring K(X)

Let X be a variety. It is well known that the usual K-theory (of algebraic vector bundles) associates
to X a special λ-ring K(X). We will need to consider a different Grothendieck group K(X) of vector
bundles, so that the functor of global sections descends to a group homomorphism

H0
X : K(X)→ K[Vect]. (15)

So let us take K(X) to be the abelian group generated by isomorphism classes of algebraic vector
bundles on X with relations

[P ] = [M ] + [N ],
whenever the vector bundles M ⊕N and P are isomorphic. Note that we do not impose relations
coming from general short exact sequences as in the usual K-theory. The ⊗ operation makes K(X)
a ring and the λ-operations are defined in the usual way using the exterior powers:

λi[P ] = [ΛiP ].

The traditional proof that K(X) is a special λ-ring uses the splitting principle. The usual method
of splitting an algebraic vector bundle produces only a short exact sequence and is not therefore
applicable to our group K(X). Nevertheless, we have the following theorem.

Theorem 5.1. The λ-ring K(X) is special.

Proof. We will prove the identities (10) and (11) in K(X) by showing that for any x, y ∈ K(X)
there exists a λ-homomorphism from a special λ-ring to K(X) such that x, y are contained in the
image. For this we need a free special λ-ring on two generators.
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First recall the free special λ-ring on one generator. It has at least three well-known descriptions.
First, it can be described as the ring of symmetric functions in an infinite number of variables [AT69,
ch. I, § 2], where λix corresponds to the ith elementary symmetric function. By the fundamental
theorem on symmetric polynomials, this is isomorphic to Z[λ1x, λ2x, λ3x, . . . ]. Secondly, it can be
described as the direct sum of the representation rings of all symmetric groups Sn. Thirdly, it can
be described as the ring of polynomial functors on the category of vector spaces over an arbitrary field
in characteristic 0 (or more precisely, the ring associated to the semiring of polynomial functors).
The equivalence of the first and second definitions is classical (see, e.g., [Knu73, p. 135]). The equiv-
alence of the second and third definitions is given in [Mac95, ch. I, Appendix A, § 5]. Explicitly a
rational representation V of Sn gives rise to the functor M 
→M⊗n ⊗Q[Sn] V , which we abbreviate
to M 
→ M⊗n ⊗Sn V . On the level of functors, the meaning of product and λi is obvious, and this
dictates the definition on the level of representations of symmetric groups. These definitions are
given explicitly in [Mac95, ch. I, Appendix A, § 6], and we now recall them.

Let Rn be the representation ring of the symmetric group Sn, with the convention that S0 = {e}.
That is, Rn is a free Z-module with basis consisting of isomorphism classes of rational irreducible
representations of Sn (or equivalently, isomorphism classes of complex irreducible representations).
Put

R :=
⊕
n�0

Rn.

Thus R has a Z-basis consisting of pairs (n, ω), where n is a natural number and ω is a rational
irreducible representation of Sn. The ring structure is given explicitly by the formula (see [Knu73,
p. 127] or [Mac95, ch. I, Appendix A, (6.1)])

(n1, ω1)(n2, ω2) = (n1 + n2, IndSn1+n2
Sn1×Sn2

ω1 ⊗ ω2).

The trivial S0 = {e}-module is the unit in the ring R. The λ-operations are defined as follows
[Mac95, ch. I, Appendix A, (6.2)]. Fix a basis element (n, ω) and a positive integer r. Consider the
obvious action of the wreath product Sr

n � Sr on ω⊗r and let Sign(Sr) be the sign representation
of Sr. Then ω⊗r ⊗ Sign(Sr) is a left Sr

n � Sr-module, and

λr(n, ω) = (rn, IndSrn
Sr

n�Sr
ω⊗r ⊗ Sign(Sr)). (16)

As a special λ-ring, R is generated by the element (1, Q). The ring R is free in the obvious sense:
given a special λ-ring Q and an element x ∈ Q, there exists a unique λ-homomorphism f : R → Q
such that f((1, Q)) = x.

Consider the special λ-ring R2 := R ⊗Z R. It is the free special λ-ring on two generators in the
obvious sense. Naturally R2 has a Z-basis consisting of elements ((n1, n2), ω1 ⊗ ω2), where ωi is an
irreducible representation of Sni , i = 1, 2; we regard ω1 ⊗ ω2 as an Sn1 × Sn2-representation in the
usual way. The λ-operations are similar to those in R:

λr((n1, n2), ω1 ⊗ ω2) = ((rn1, rn2), IndSrn1×Srn2

(Sr
n1

×Sr
n2

)�Sr
ω⊗r

1 ⊗ ω⊗r
2 ⊗ Sign(Sr)).

For any vector bundle M on X, we define

λt([M ]) =
∞∑
i=0

[ΛiM ]ti.

It is easy to check that this extends uniquely to a well-defined λ-structure on K(X).
For fixed vector bundles M and N we define Θ : R2 −→ K(X) as follows:

Θ((n1, n2), ω1 ⊗ ω2) = [(M⊗n1 ⊗N⊗n2)⊗Sn1×Sn2
(ω1 ⊗ ω2)].
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It is clear that Θ defines a ring homomorphism. We claim that Θ respects λ-structures. If true, this
means that the λ-ring identities (10) and (11) hold for all classes x and y of effective vector bundles
on x. In other words, λt : K(X)→ K(X)[[t]] satisfies the identities

λt(xy) = λt(x) · λt(y), λt(λrx) = Λrλt(x)

when x and y are effective classes. As λt(xy)−λt(x) ·λt(y) is bi-additive and zero on a set spanning
K(X), it is identically 0, and λt is a ring homomorphism. Applying Lemma 4.4 to λt itself, we
conclude that the set of elements on which λt commutes with λ-operations is all of K(X). To prove
the theorem, therefore, it suffices to prove our claim that Θ respects λ-structures; that is, we need
to compare

Θ(λr((n1, n2), ω1 ⊗ ω2))
= (M⊗rn1 ⊗N⊗rn2)⊗Srn1×Srn2

(Q[Srn1 × Srn2]⊗(Sr
n1

×Sr
n2

)�Sr
(ω⊗r

1 ⊗ ω⊗r
2 ⊗ Sign(Sr)))

= (M⊗rn1 ⊗N⊗rn2)⊗(Sr
n1

×Sr
n2

)�Sr
(ω⊗r

1 ⊗ ω⊗r
2 ⊗ Sign(Sr))

and

Λr(Θ((n1, n2), ω1 ⊗ ω2)) = Λr((M⊗n1 ⊗N⊗n2)⊗Sn1×Sn2
(ω1 ⊗ ω2)).

The following lemma implies that the two are isomorphic.

Lemma 5.2. Let G be a group, and let P and Q be right and left G-modules respectively. Consider
the space (P ⊗G Q)⊗r = P⊗r ⊗Gr Q⊗r as a right Sr-module. There is a canonical isomorphism of
right Sr-modules

α : P⊗r ⊗Gr Q⊗r ∼−→ P⊗r ⊗Gr�Sr (Q⊗r ⊗Q[Sr]). (17)

In particular there is a canonical isomorphism of vector spaces

Λr((P ⊗G Q)⊗r) ∼−→ P⊗r ⊗Gr�Sr (Q⊗r ⊗ Sign(Sr)). (18)

Proof. Indeed,

α : x⊗ y 
→ x⊗ y ⊗ 1,

and

p1 ⊗ · · · ⊗ pr ⊗ q1 ⊗ · · · ⊗ qr ⊗ τ 
→ pτ(1) ⊗ · · · ⊗ pτ(r) ⊗ qτ(1) ⊗ · · · ⊗ qτ(r)

define mutually inverse Sr-linear maps. This proves (17). Tensoring both sides over Sr with Sign(Sr),
we get (18) and therefore the proposition.

This concludes the proof of Theorem 5.1.

So we have constructed a contravariant functor

K : {Varieties} → {Special λ-rings}.
The Adams operations Ψn, n � 1, are defined on K(X) as certain universal polynomials in the λi

with integer coefficients given by (14). In particular, Ψ1 = λ1 = id. We have

Ψn[L] = [L⊗n],

if L is a line bundle. Since the λ-ring K(X) is special, the Ψn are λ-homomorphisms (see [AT69,
§ 5]).

Finally it may be worth noting that the ordinary K-theory of X is a quotient of K(X) in
the sense of λ-rings. There is an obvious surjective homomorphism which respects λ-operations for
classes of effective vector bundles and therefore for all classes by Lemma 4.4.
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6. Motivic measures µn

Consider the (λ-)ring Z[M ] as in Example 4.8. We will freely consider elements of the monoid M
either as polynomials with integer coefficients or as (isomorphism classes of) graded vector spaces.

For a smooth connected projective variety X of dimension d define

µn(X) := [1 + h1
n(X)s + · · · + hd

n(X)sd] ∈ Z[M ],

where

hi
n(X) = dimH0(X,ΨnΩi

X) ∈ Z.

We constructed the measure µ = µ1 in our previous paper [LL03]. Explicitly

µ1(X) = [1 + h1,0(X)s + · · ·+ hd,0(X)sd]

for a smooth projective irreducible X of dimension d.

Proposition 6.1. For each n � 1 we have

i) µn(X) = µn(X̃) if X and X̃ are birational,

ii) µn(X × Y ) = µn(X)µn(Y ),

iii) µn(Pk) = 1 for all k � 0.

Corollary 6.2. The mapping µn extends (uniquely) to a ring homomorphism

µn : K0[VC]/(A1)→ Z[M ].

Indeed, this follows from [LL03, Theorem 2.3].
To prove Proposition 6.1, we need the following lemma.

Lemma 6.3. Let X and Y be varieties and E and F be vector bundles on X and Y respectively.
Then

H0(X × Y, p∗E ⊗ q∗F ) = H0(X,E) ⊗H0(Y, F ).

Proof. By the projection formula p∗(p∗E ⊗ q∗F ) = E ⊗ p∗q∗F , where p∗q∗F is the trivial bundle
on X with fiber H0(Y, F ). Hence

H0(X × Y, p∗E ⊗ q∗F ) = H0(X, p∗(p∗E ⊗ q∗F ))

= H0(X, E ⊗ p∗q∗F ) = H0(X,E) ⊗H0(Y, F ).

We can express Lemma 6.3 in terms of the group homomorphisms (15) by writing

dim H0
X×Y ([p∗E ⊗ q∗F ]) = dim H0

X([E]) dim H0
Y ([F ])

for vector bundles E and F of X and Y respectively. The same identity extends to general classes
in K(X) and K(Y ) by additivity.

Proof of Proposition 6.1. i) Since Ψn is a polynomial in operations λj, it suffices to prove that

H0

(
X,

⊗
i

(Ωi
X)⊗ni

)
= H0

(
X̃,

⊗
i

(Ωi
X̃

)⊗ni

)
.

This follows from the well-known argument for birational invariance of geometric genus [Har77,
ch. II, 8.19].

ii) Consider the projections X
p← X × Y

q→ Y . We have

Ω1
X×Y = p∗Ω1

X ⊕ q∗Ω1
Y .
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Hence

Ωm
X×Y =

⊕
i+j=m

p∗Ωi
X ⊗ q∗Ωj

Y .

As K(X) is a special λ-ring,

Ψn[Ωm
X×Y ] =

∑
i+j=m

Ψn[p∗Ωi
X ]Ψn[q∗Ωj

Y ]

=
∑

i+j=m

p∗Ψn[Ωi
X ]q∗Ψn[Ωj

Y ].

It follows that

dim H0
X×Y ([ΨnΩm

X×Y ]) =
∑

i+j=m

dimH0
X([ΨnΩi

X ]) dim H0
Y ([ΨnΩj

Y ]),

i.e. µn(X × Y ) = µn(X)µn(Y ).
iii) Since Pk is birational to (P1)k, by parts i and ii above it suffices to prove that µn(P1) = 1.
We have

[ΨnΩ1
P1] = [OP1(−2n)],

and therefore µn(P1) = [1]. This proves the proposition.

Proposition 6.4. Let X be a variety of dimension � 2. Then

µ1(SymmX) = λm(µ1(X)).

Proof. The class of X in K0[VC] is a linear combination of classes of smooth projective varieties of
dimension 0, 1 and 2. By Lemma 4.4, it suffices to prove the proposition for these smooth projective
varieties. Thus we may assume that X is smooth projective. If dimX = 0 the assertion is trivial.
We will prove the assertion in the case dimX = 2 (the case of curves is similar and simpler since
SymnX is smooth if dimX = 1). So let X be a smooth projective surface.

We will use the smooth variety HilbmX, that is the Hilbert scheme of zero-dimensional sub-
schemes of X. It follows immediately from the main theorem of Göttsche [Göt01] that the classes
of HilbmX and SymmX are equal in K0[VC]/[A1]. In particular,

µn(HilbmX) = µn(SymmX).

By Proposition 7.4 below, H0(HilbmX,Ωi
HilbmX) = H0(Xm,Ωi

Xm)Sm . Thus we need to prove the
following equality in M :

1 + H0(Xm,Ω1)Sms + · · ·+ H0(Xm,Ω2m)Sms2m = λm(1 + H0(X,Ω1)s + H0(X,Ω2)s2).

Recall from Example 4.6 that

λj(V si) =

{
Symj(V )sij, if i is even,

Λj(V )sij, if i is odd.

Let
∑

i Vis
i ∈M be a graded vector space. Then

λm

(∑
i

Vis
i

)
=

∑
i

∑
j1n1+···+jknk=i

λn1(Vj1)⊗ · · · ⊗ λnk(Vjk
)si.

Let us prove the following general lemma. Let Y be a smooth projective variety and F a vector
bundle on Y of rank r. Fix m � 1 and denote by pi : Y m → Y the projection to the ith factor.
Put Fi := p∗i F , F := F1 ⊕ · · · ⊕ Fm.
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Lemma 6.5. There is a natural isomorphism of graded vector spaces∑
j

H0(Y m,Λj(F))Smsj = λm

(∑
j

H0(Y,ΛjF )sj

)
.

Proof. We have

Λ•(F) =
⊕

(j1,...,jm)

Λj1F1 ⊗ · · · ⊗ ΛjmFm.

By Lemma 6.3,

H0(Y m, Λj1F1 ⊗ · · · ⊗ ΛjmFm) �
m⊗

i=1

H0(Y,ΛjiF ).

Put Fj1···jm = Λj1F1 ⊗ · · · ⊗ ΛjmFm. Consider the Sm-action on the sheaf Λ•(F). The sheaves
Fj1···jm and Fj′1···j′m are in the same Sm-orbit if and only if the multisets {j1, . . . , jm} and {j′1, . . . , j′m}
are equal. For each multiset {j1, . . . , jm} choose a representative (j1, . . . , jm) of the corresponding
Sm-orbit. Put Gj1···jm = StabSm(j1, . . . , jm). Then

W = H0(Y m,Λ•F)Sm =
∑

{j1,...,jm}
H0(Y m,Fj1···jm)Gj1···jm .

Consider the space

H0(Y m,Fj1···jm)Gj1···jm =
(⊗

s

H0(Y m,ΛjsFs)
)Gj1···jm

.

Assume for simplicity of notation that the multiset {j1, . . . , jm} contains k different elements:

j1 = · · · = jt1 �= jt1+1 = · · · = jt1+t2 �= · · · = jt1+···+tk .

Then Gj1···jm = St1 × · · ·×Stk . For example, the subgroup St1 acts by permuting factors in Λj1F1⊗
· · · ⊗ Λj1Ft1 . A transposition of two factors in this tensor product corresponds to a product of j1
transpositions on the level of F⊗j1t1 . Therefore,

H0(Y m, Λj1F1 ⊗ · · · ⊗ Λjt1Ft1)
St1 �

{
Symt1H0(Y,Λj1F ), if j1 is even,
Λt1H0(Y,Λj1F ), if j1 is odd.

The space H0(Y m,Fj1···jm)Gj1···jm is the tensor product of k factors of the form SymtpH0(Y,ΛlpF )
(if lp is even) or ΛtpH0(Y,ΛlpF ) (if lp is odd). Also the degree of this space is equal to

∑
s js.

This proves the lemma.

Now apply the lemma with Y = X and F = Ω1
X to get the proposition.

Remark 6.6. Unfortunately, the assertion of Proposition 6.4 is no longer true if we replace the
measure µ1 by µn for n � 2. A counter-example is provided by a smooth projective curve of genus
g � 2. Indeed, SymmX is stably birational to the Jacobian of X for m � g, and Ω1

Jac X is trivial.
It follows that

µn(SymmX) = µn(Jac X) = µ1(Jac X) = µ1(SymmX).

On the other hand it is clear that µn(X) and hence λm(µn(X)) depends on n.

Question 6.7. Is µ1 : K0[VC] → Z[M ] a λ-homomorphism? It seems likely to us that the answer is
affirmative. We could prove it if we knew that for any smooth projective variety Z and any m � 1
the class of SymmZ is equal in K0[VC]/[A1] to the class of a resolution of SymmZ. So one might
generalize and ask the following question. Let X be a non-singular complex projective variety with
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an action by a finite group G, and Y a non-singular projective variety birationally equivalent to
X/G. Is it always true that

[X/G] ≡ [Y ] (mod [A1])?

7. Irrationality theorems

Let X be a smooth projective surface. Let m � 1 be an integer and HilbmX be the Hilbert scheme
of zero-dimensional subschemes of X of length m. It is well known that the natural (Hilbert–Chow)
morphism g : HilbmX → SymmX is a resolution of singularities that is a semismall map [Nak99,
1.15, 6.10]. Over the locus Um ⊂ SymmX of m-element subsets of X, g is an isomorphism, and
g−1(Um) is the open subscheme of HilbmX parametrizing reduced zero-dimensional subschemes of
X of length m. Note that the complement of Um in SymmX has codimension 2, but the complement
of g−1(Um) in HilbmX has codimension 1. It follows immediately from the main theorem of Göttsche
[Göt01] that the classes of HilbmX and SymmX are equal in K0[VC]/[A1]. Thus for all n � 1

µn(HilbmX) = µn(SymmX).

Lemma 7.1. For any m,n � 1 we have

H0(HilbmX, (Ω1
HilbmX)⊗n) ⊂ H0(Xm, (Ω1

Xm)⊗n)Sm .

Proof. Over Um, π : Xm → SymmX is étale, so

H0(HilbmX, (Ω1
HilbmX)⊗n) ⊂ H0(g−1(Um), (Ω1

g−1(Um))
⊗n)

= H0(Um, (Ω1
Um

)⊗n) = H0(π−1(Um), (Ω1
π−1(Um))

⊗n)Sm .

Moreover,
H0(π−1(Um), (Ω1

π−1(Um))
⊗n) = H0(Xm, (Ω1

Xm)⊗n),

since π−1(Um) has complement of codimension 2 in Xm.

Proposition 7.2. For any m,n � 1 we have

H0(HilbmX,ω⊗n
HilbmX) = H0(Xm, ω⊗n

Xm)Sm .

Proof. Consider the pull-back diagram,

Y

π

��

f �� Xm

π
��

HilbmX
g �� SymmX

where the vertical arrows are quotient morphisms by the Sm-action. Let Symm
◦ X denote the open

subspace of SymmX consisting of all multisets {x1, . . . , xm} in which at least m − 1 points are
distinct; it is the complement of a closed subvariety of codimension 4. Pulling back the previous
diagram to Symm

◦ X, we have the following diagram.

Y◦

π

��

f �� Xm◦
π

��
Hilbm

◦ X
g �� Symm

◦ X

Denote by ∆◦ the ramification locus of Xm◦ over Symm
◦ X, that is, the closed subvariety of

Xm◦ in which some pair of coordinates coincide. Then Y◦ is the blowup of Xm◦ along the smooth
subvariety ∆◦ (which is of codimension 2). So Y◦ is smooth. Let E◦ ⊂ Y◦ be the exceptional divisor.
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The map π : Y◦ → Hilbm
◦ X is unramified away from E◦ and has ramification of degree 2 along E◦.

Since the map g is semismall, the complement of the open subset Hilbm
◦ X ⊂ HilbmX has codimen-

sion � 2. Hence also Y \ Y◦ has codimension � 2 in Y .
It suffices to prove that

H0(Hilbm
◦ X,ω⊗n

Hilbm◦ X) = H0(Xm
◦ , ω⊗n

Xm◦ )Sm .

We have the natural injective morphisms of coherent sheaves

α : π∗ω⊗n
Hilbm◦ X → ω⊗n

Y◦ , β : f∗ω⊗n
Xm◦ → ω⊗n

Y◦ .

It suffices to prove that Im(α) = Im(β). Indeed,

H0(Y◦, π∗ω⊗n
Hilbm◦ X)Sm = H0(Hilbm

◦ X,ω⊗n
Hilbm◦ X).

Both α and β are surjective away from E. So it remains to analyze the maps f and π near E.
Choose a point p ∈ ∆◦ and q ∈ f−1(p). There exist local (analytic) coordinates x1, x2, . . . , x2m

near p and local coordinates y1, . . . , y2m near q such that

f∗(x1) = y1, f∗(x2) = y1y2, f∗(x3) = y3, . . . , f∗(x2m) = y2m.

Then y1 = 0 is the local equation of E◦. Thus

f∗(dx1 ∧ · · · ∧ dx2m) = y1 dy1 ∧ · · · ∧ y2m

and

β((dx1 ∧ · · · ∧ dx2m)⊗n) = yn
1 (dy1 ∧ · · · ∧ y2m)⊗n,

so that Im(β) = ω⊗n
Y∗ (−nE◦). Similarly, we can define local coordinates z1, . . . , z2m near π(q) ∈

Hilbm
◦ X, so that

π∗(z1) = y2
1, π∗(z2) = y2, . . . , π∗(z2m) = y2m.

Therefore

f∗(dz1 ∧ · · · ∧ dz2m) = 2y1 dy1 ∧ · · · ∧ dy2m

and

α((dz1 ∧ · · · ∧ dz2m)⊗n) = 2nyn
1 (dy1 ∧ · · · ∧ y2m)⊗n.

That means also Im(α) = ωY∗(−nE◦).

Lemma 7.3. For any m,n � 1 we have

H0(Xm, ω⊗n
Xm)Sm = SymmH0(X,ω⊗n

X ).

Proof. Let pi : Xm → X denote the projection on the ith factor. Then

ω⊗n
Xm = (p∗1ωX ⊗ · · · ⊗ p∗mωX)⊗n � p∗1ω

⊗n
X ⊗ · · · ⊗ p∗mω⊗n

X ,

and hence

H0(Xm, ω⊗n
Xm) = H0(X,ω⊗n

X )⊗m.

The Sm-action permutes the factors and

H0(Xm, ω⊗n
Xm)Sm = SymmH0(X,ω⊗n

X ),

since dimX is even.

Proposition 7.4. For any m, i � 1 we have

H0(HilbmX,Ωi
HilbmX) = H0(Xm,Ωi

Xm)Sm .
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Proof. By that GAGA principle, we may work in the analytic category. Since Y◦ is a blowup of Xm◦
along a smooth subvariety, we have

H0(Y◦,Ωi
Y◦) = H0(Xm

◦ ,Ωi
Xm◦ ).

Also

H0(Xm
◦ ,Ωi

Xm◦ ) = H0(Xm,Ωi
Xm),

H0(Hilbm
◦ X,Ωi

Hilbm◦ X) = H0(HilbmX,Ωi
HilbmX),

since Xm◦ has complement of codimension � 2 in Xm and Hilbm
◦ X has complement of codimension

� 2 in HilbmX. Thus we must show that

H0(Hilbm
◦ X,Ωi

Hilbm◦ X) = H0(Y◦,Ωi
Y◦)

Sm .

Since Hilbm
◦ X = Y◦/Sm the adjunction morphism

Ωi
Hilbm◦ X → π∗π−1Ωi

Hilbm◦ X

induces the map

Ωi
Hilbm◦ X

∼→ (π∗π−1Ωi
Hilbm◦ X)Sm ,

which is an isomorphism by [Gro57, (5.1.1)]. Hence

H0(Hilbm
◦ X,Ωi

Hilbm◦ X) = H0(Y◦, π−1Ωi
Hilbm◦ X)Sm .

Every i-form on Hilbm
◦ X lifts by π to an Sm-invariant i-form on Y◦. Let F denote the cokernel of

the Sm-equivariant injective morphism

π−1Ωi
Hilbm◦ X → Ωi

Y◦ .

To prove the proposition, it suffices to prove

H0(Y◦, π−1Ωi
Hilbm◦ X)Sm = H0(Y◦,Ωi

Y◦)
Sm ,

and this follows if H0(Y◦,F)Sm = 0.

Let q ∈ Y◦, Gq = Stab(q) ⊂ Sm. It suffices to show that FGq
q = 0 or, equivalently,

(π−1Ωi
Hilbm◦ X)Gq

q = (Ωi
Y◦,q)

Gq ,

where (since Gq respects π) the action of Gq on the left-hand side is trivial. If f(q) has distinct
coordinates, then Gq is trivial, so the map π is étale near q and (π−1Ωi

Hilbm◦ X)q = (Ωi
Y◦,q). Suppose

q ∈ E◦ and hence Gq = Z/2Z. Consider local coordinates y1, . . . , y2m at q and local coordinates
z1, . . . , z2m at π(q) as in the proof of Proposition 7.2 above, so that

π∗(z1) = y2
1, π∗(z2) = y2, . . . π∗(z2m) = y2m.

The non-trivial element of Gq sends y1 
→ −y1 and yi 
→ yi for i � 2. A monomial

ya1
1 · · · ya2m

2m (dy1)∧b1 ∧ · · · ∧ (dy2m)∧b2m

(where each bi ∈ {0, 1}) is Gq-invariant if and only if a1 + b1 is even, and in this case

ya1
1 · · · ya2m

2m (dy1)∧b1 ∧ · · · ∧ (dy2m)∧b2m

=

{
π∗(za1/2

1 · · · za2m
2m (dz2)∧b2 ∧ · · · ∧ (dz2m)∧b2m) if b1 = 0,

π∗((1/2)z(a1−1)/2
1 · · · za2m

2m dz1 ∧ (dz2)∧b2 ∧ · · · ∧ (dz2m)∧b2m) if b1 = 1.

The proposition follows.

Proposition 7.5. The expression |hi
n(HilbmX)| has an upper bound independent of m.
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Proof. Recall that hi
n(Z) is the dimension of the virtual vector space dimH0(Z,ΨnΩi

Z). The Adams
operation Ψn is a polynomial in the operations λi. As Ωi

Z is a direct summand of (Ω1
Z)⊗i, every

tensor product of sheaves of differentials on Z is a summand of (Ω1
Z)⊗n for some n. It therefore

suffices to prove that, for all n � 0, the dimension of the space H0(HilbmX, (Ω1
HilbmX)⊗n) is bounded

independently of m. By Lemma 7.1 above

H0(HilbmX, (Ω1
HilbmX)⊗n) ⊂ H0(Xm, (Ω1

Xm)⊗n)Sm .

We will prove that dimH0(Xm, (Ω1
Xm)⊗n)Sm is bounded independently of m.

Let pi : Xm → X be the projection to the ith factor. Denote Fi = p∗i Ω
1
X . Then Ω1

Xm =
⊕m

i=1 Fi

and
(Ω1

Xm)⊗n =
⊕

i1,...,in∈{1,...,m}
Fi1 ⊗ · · · ⊗ Fin .

The Sm-action permutes the summands Fi1 ⊗ · · · ⊗ Fin and the orbits correspond to partitions P
of the set {1, . . . , n}. Thus

H0(Xm, (Ω1
Xm)⊗n)Sm =

⊕
P

H0(Xm, FP )Stab(P ),

where FP is one of the summands in the orbit, corresponding to P . Fix a partition P . Assume for
simplicity of notation that P divides {1, . . . , n} into k segments P1, . . . , Pk, where a < b for each
a ∈ Ps, b ∈ Pt if s < t. Let αi = |Pi|. Then

H0(Xm, FP ) = H0(X, (Ω1
X )⊗α1)⊗ · · · ⊗H0(X, (Ω1

X )⊗αk).

Therefore dim H0(Xm, FP ) is bounded independently of m.

Theorem 7.6. Let X be a smooth projective surface of Kodaira dimension � 0. Then the zeta
function ζX(t) is not pointwise rational.

Proof. Let F denote the field of fractions of Z[M ]. We will show that there exists n � 1 such that
the power series

1 +
∞∑

m=1

µn(SymmX)tm ∈ F [[t]]

is not rational.
First we claim that there exists n � 1 such that

h2m
n (HilbmX) = dimH0(HilbmX,ω⊗n

HilbmX) > 0

for all m � 1. Indeed, by our assumption on X there exists n � 1 such that H0(X,ω⊗n) �= 0 and
by Proposition 7.2 and Lemma 7.3,

H0(HilbmX,ω⊗n
HilbmX) = SymmH0(X,ω⊗n

X )

for all m � 1. Fix one such n and consider the motivic measure µn : K0[VC]→ Z[M ] ⊂ F . We have
µn(SymmX) = µn(HilbmX). It follows that µn(SymmX) ∈M is a polynomial with constant term 1
and leading term h2d

n (HilbmX)s2d.
Consider the group completion G of the monoid M . By Lemma 4.9, G is a free abelian group.

Hence we may apply Theorem 2.9 to the power series 1 +
∑∞

m=1 µn(SymmX)tm. Denote gm =
µn(SymmX) ∈ M . Assume that this power series is rational. Then there exist k, i � 1 and an
element g ∈ G such that

gi+(α+1)k = g gi+αk

for all α � 0. The element g is a rational function in s. Since all coefficients gm are non-zero
polynomials in s, it follows that g is also a non-zero polynomial. Note that g is not a monomial
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since the degrees of the polynomials gm grow and their constant term is 1. But then the coefficients
of fixed powers of s in the gm cannot stay bounded, which contradicts Proposition 7.5.

8. The special Grothendieck λ-ring of varieties

As pointed out in Example 4.10, the symmetric power operations Symn define a λ-ring structure on
the Grothendieck ring K0[VC]. The zeta function ζX(t) is the universal λ-homomorphism, but it is
not a ring homomorphism. To see this, it suffices to note that ζX(t) is a ratio of polynomials with
constant term 1 for every curve X; thus (9) implies that ζX(t) · ζY (t) is rational, while Theorem 7.6
implies that ζX×Y (t) is irrational whenever X and Y both have positive genus.

Let {λn} denote the λ-structure opposite to {Symn}. This seems to be the natural choice of
λ-structure on K0[VC] insofar as X 
→ SymnX behaves like a symmetric power map, for instance
on cohomology. The choice does not affect which classes are virtually finite, but it will make a
difference when we specialize, since, as we have seen, specialization does not commute with taking
opposites.

Lemma 8.1. If X is a variety over C whose image in K0[VC] is virtually finite with respect to {λn},
then ζX(t) is globally rational.

Proof. Let [X] = y − z, where y and z are finite. As λt is a ring homomorphism,

ζX(t) = λ−t([X])−1 = λ−t(y)−1λ−t(z)

is globally rational in K0[VC].
We have the following variant of Theorem 3.7.

Proposition 8.2. The class of any one-dimensional variety in K0[VC] is virtually finite with respect
to {λn}.
Proof. By Corollary 3.6, ζP1(t) = (1− t)−1(1− [A1]t)−1, so

λt([P1]) = (1 + t)(1 + [A1]t),

and [P1] is two-dimensional. By Theorem 3.7, for some positive integer n, ζX(t)ζP1(t)−n is a poly-
nomial, so n[P1] − [X] is finite-dimensional. Thus [X] = n[P1] − (n[P1] − [X]) is a difference of
finite-dimensional classes.

Corollary 8.3. The virtual finiteness of a complex surface X depends only on the birational class
of X.

Definition 8.4. We call the specialization of the Grothendieck ring K0[VK ] with respect to λn the
Grothendieck λ-ring of K and denote it K0[VK ]σ. The image of ζX(t) in K0[VK ]σ will be denoted
ζXσ(t).

In any special λ-ring, the set of virtually finite elements is clearly a λ-subring. In particular, we
have the following proposition.

Proposition 8.5. For every X/C that is virtually finite in K0[VC]σ and every positive integer n,
SymnX is again virtually finite in K0[VC]σ.

Proof. The identities relating symmetric and exterior powers show that SymnX lies in the λ-subring
of K0[VC]σ generated by X.

Proposition 8.6. Every principally polarized abelian surface X/C is virtually finite in K0[VC]σ.
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Proof. It is well known that every principally polarized abelian variety of dimension � 2 is a product
of Jacobian varieties. (In fact, this is true also in dimension 3, but we do not need it. We do not
know who first made this observation, but it is an immediate consequence of Torelli’s theorem and
Baily’s theorem [Bai60].) It suffices, therefore, to prove that the Jacobian J of a genus 2 curve X is
virtually finite. The map Sym2X → J is a birational equivalence, so the proposition follows from
Corollary 8.3 and Proposition 8.5.

We remark that the fact that sufficiently high symmetric powers of a non-singular projective
curve are projective space bundles over its Jacobian variety does not immediately imply virtual
finiteness of Jacobians, since it is not obvious that the virtual finiteness of a projective space bundle
or even a vector bundle over a given variety implies the virtual finiteness of that variety. However,
it is easy to prove the pointwise rationality of ζJσ(t) for Jacobians J .

Question 8.7. Is ζAσ(t) rational (globally or pointwise) for all abelian varieties A?

More optimistically, we might ask the following.

Question 8.8. Is ζXσ(t) rational for all varieties X? Is the Grothendieck λ-ring of C finite-dimensional
in the sense of Definition 4.5?
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Roch, Lecture Notes in Mathematics, vol. 225 (Springer, Berlin, 1977).
BKL76 S. Bloch, A. Kas and D. Lieberman, Zero cycles on surfaces with pg = 0, Compositio Math. 33

(1976), 135–145.
Blo75 S. Bloch, K2 of Artinian Q-algebras, with application to algebraic cycles, Comm. Algebra 3 (1975),

405–428.
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