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1. Introduction
The purpose of this article is the study actions of discrete amenable groups into the
normalizer of a full group of an ergodic transformation on the Lebesgue space. The study
of such objects has been motivated by the theory of operator algebras, in particular, the
classification of group actions on von Neumann algebras.

The study of automorphism groups of operator algebras is one of the central subjects in
the theory of operator algebras, and the classification of automorphisms and group actions
has been developed since Connes’ seminal works [5, 6]. In particular, classification of
actions of discrete amenable groups on injective factors has been completed by many hands
[13–16, 18, 20, 21]. These works heavily depend on the type of factor involved. However,
we present a unified approach in [17] based on the Evans–Kishimoto method [9], and gave
a proof that does not depend on the type of the factor in question.

There are corresponding results in ergodic theory. The first result is due to Connes and
Krieger [7]. They developed the technique of applying ultraproducts to measure spaces and
their transformations, and classified transformations (that is, actions of Z) in the normalizer
of a full group of type II. The result of Connes and Krieger has been generalized in [2] in
the case of type II transformation and general discrete amenable groups, in [1] in the case
of type IIIλ transformations (λ �= 0) and general discrete amenable groups, and finally in
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2 T. Masuda

[3] in the case of type III0 transformation and general discrete amenable groups. These
results mentioned above depend on the type of the transformation, and it is natural to
expect that our unified approach [17] is valid for the classification of actions of discrete
amenable groups into the normalizers of full groups on Lebesgue spaces. In fact, the
answer is affirmative and this is the main result of this article.

This classification result is very similar to that of the classification of actions of discrete
amenable groups on injective factors. We will explain it in detail. Let (X, B, μ) be a
Lebesgue space, T an ergodic transformation, and N[T ] the normalizer of a full group
[T ]. Let α : G → N[T ] be a homomorphism, which we call an action of G into N[T ].
The invariant for α is a pair (Nα , mod(α)), where Nα = {g ∈ G | αg ∈ N[T ]} is a normal
subgroup of G and mod(α) is the fundamental homomorphism [11]. (See Theorem 2.4
below for the precise statement of the classification theorem.) However, the invariant of a
discrete group action α on a factor M is the triplet (Nα , mod(α), χ(α)), where Nα = {g ∈
G | αg ∈ Cntr (M)} is a normal subgroup of G, mod(α) is the Connes–Takesaki module,
and χ(α) is the characteristic invariant. (See [15, 17] for details on this notation.) Thus,
one can observe the similarity of both classification theorem.

It is also interesting to observe the difference between both classification theorems.
Namely, the characteristic invariant χ(α) does not appear in the ergodic theoretical setting.
We consider the case of operator algebras first and explain how the characteristic invariant
appears. Let α be an action of a discrete group G on a factor M, and assume Nα = {g ∈
G | αg ∈ Int(M)} for simplicity. By the definition of Nα , we can choose un ∈ U(M) with
αn = Ad un, n ∈ Nα . However, there is no canonical choice of the unitary un. Hence, we
do not have umun = umn and αg(un) = ugng−1 in general. A characteristic invariant χ(α)

appears as a cohomological obstruction of these relations.
Next, we consider the ergodic theoretical case. Let RT be a Krieger factor associated

with T. Then there are canonical homomorphisms R ∈ N[T ] → θR ∈ Aut(RT ), and
S ∈ [T ] → US ∈ U(RT ) with Ad US = θS and θR(US) = URSR−1 , S ∈ [T ], R ∈ N[T ].
If we lift an action α : G → N[T ] to that on RT , then the invariant of the lifted action
is given by (Nα , mod(α), 1), due to the above relation between θR and US . Therefore, the
characteristic invariant is trivial in this case.

As we stated at the beginning of this section, our method for the proof of the classi-
fication theorem is the application of the Evans–Kishimoto type intertwining argument.
To apply it, we need the characterization of full groups and their closures given in [7,
10]. In the study of group actions on operator algebras, two classes of automorphisms
play important roles, that is, centrally trivial automorphisms and approximately inner
automorphisms. In our case, full groups and their closures correspond to centrally
trivial automorphism groups and approximately inner automorphism groups, respectively.
Another important tool is the Rohlin type theorem. Combining these results, we first
show the cohomology vanishing theorem by the Shapiro type argument in homology
theory. Then we obtain the classification theorem by applying the Evans–Kishimoto type
intertwining argument.

We expect that this work will shed new light on the relation between ergodic theory and
the theory of operator algebras. For example, our result is used in [4] to classify regular
subalgebras of type III injective factors.
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This paper is organized as follows. In §2, we collect basic facts which will be used in this
paper, and state the main results. In §3, we recall the ultraproduct construction of Connes
and Krieger, and Ocneanu’s Rohlin type theorem. In §4, we show the second cohomology
vanishing theorem. In §5, we apply the Evans–Kishimoto type intertwining argument [9]
and classify actions of discrete amenable groups into the normalizer of a full group.

2. Preliminaries
2.1. Full groups of ergodic transformations and their normalizers. In this subsection,
we collect known facts on full groups of ergodic transformations and their normalizers
which will be used in this article.

Let (X, B, μ) be a non-atomic Lebesgue space with μ(X) = 1. (Throughout this
article, we treat only non-atomic Lebesgue spaces.) We denote by Aut(X, μ) the set of
all non-singular transformations. Fix an ergodic transformation T ∈ Aut(X, μ). Let [T ]∗
be the set of all non-singular bijection R : A → B for some A, B ∈ B such that Rx ∈
{T nx}n∈Z, x ∈ A. Define the full group of T by [T ] := [T ]∗ ∩ Aut(X, μ), that is,

[T ] = {R ∈ [T ]∗ | the domain and the range of R are both X}.
We say E, F ∈ B are T-equivalent if there exists R ∈ [T ]∗ whose domain is E and range
is F. A set E ∈ B is said to be T-infinite if there exists F ⊂ E such that μ(E\F) > 0 and
F is T-equivalent to E. A set E ∈ B is said to be T-finite if it is not T-infinite.

When T is of type II, there exists a unique T-invariant measure m on X (m(X) < ∞
when T is of type II1 and m(X) = ∞ when T is of type II∞). In this case, the following
two statements hold: (1) E ∈ B is T-finite if and only if m(E) < ∞; (2) E, F ∈ B are
T-equivalent if and only if m(E) = m(F). When T is of type II1, we always assume μ is
the unique T-invariant probability measure.

When T is of type III, then any E ∈ B with μ(E) > 0 is T-infinite, and if E, F ∈ B
satisfy μ(E), μ(F) > 0, then E and F are T-equivalent. (For instance, see [12, Lemma 8].)

Let N[T ] ⊂ Aut(X, μ) be the normalizer of [T ]. In the following, we use the notation
α̂(t) = αtα−1 for t ∈ [T ] and α ∈ N[T ].

For α ∈ Aut(X, μ) and ξ ∈ L1(X, μ), define αμ(ξ) ∈ L1(X, μ) by

αμ(ξ)(x) := ξ(α−1x)
d(μ ◦ α−1)

dμ
(x), ξ ∈ L1(X, μ).

Then αμ is an isometry of L1(X, μ), and (αβ)μ = αμβμ holds for α, β ∈ Aut(X, μ).
Let M(X, μ) (respectively M1(X, μ)) be the set of complex-valued measures

(respectively probability measures) which are absolutely continuous with respect
to μ. For ν ∈ M(X, μ), let ‖ν‖ = |ν|(X), where |ν| is the total variation of ν. Then
M(X, μ) is a Banach space with respect to the norm ‖ν‖. For ξ ∈ L1(X, μ), let
νξ (f ) = ∫

X
ξ(x)f (x)dμ(x). Note that L1(X, μ) and M(X, μ) are isomorphic as Banach

spaces by ξ �→ νξ . Via this identification, αμ(ξ) corresponds to α(νξ ) = νξ ◦ α−1. In
what follows, we freely use this identification, and we simply denote αμ(ξ) by α(ξ) for
ξ ∈ L1(X, μ). Thus, ξ(A), A ∈ B, means νξ (A).

Recall the topology of N[T ] introduced in [12]. For α, β ∈ Aut(X, μ), {α �= β} denotes
the set {x ∈ X | αx �= βx}. We say a sequence {αn}n ⊂ N[T ] converges to β ∈ N[T ]
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weakly if limn→∞ ‖αn(ξ) − β(ξ)‖ = 0 for all ξ ∈ M(X, μ). Define a metric dμ by
dμ(α, β) := μ({α �= β}). We say {αn}n ⊂ N[T ] converges to β ∈ N[T ] uniformly if
limn→∞ dμ(αn, β) = 0. This definition does not depend on the choice of equivalence
classes of μ ∈ M1(X, μ). It is shown in [11] that [T ] is a Polish group under dμ.

Now we gift N[T ] with a topology as follows. We say a sequence {αn}n ⊂ N[T ]
converges to β in N[T ] if {αn}n converges to β weakly, and α̂n(t) converges to β̂(t)

uniformly for all t ∈ [T ]. (In fact, we only have to require convergence for t ∈ {T n}n∈Z.)
This is the right topology for N[T ]. In fact, this topology coincides with the u-topology
for a Krieger factor RT constructed from (X, μ, T ). So we also call this topology the
u-topology. It is shown that N[T ] is a Polish group in the u-topology [12]. Indeed, let
{ξk}∞k=1 ⊂ L1(X, μ) be a countable dense subset, and define a metric d on N[T ] by

d(α, β) :=
∞∑

k=1

1
2k

‖α(ξk) − β(ξk)‖
1 + ‖α(ξk) − β(ξk)‖ +

∑
k∈Z

1
2|k|

dμ(α̂(T k), β̂(T k))

1 + dμ(α̂(T k), β̂(T k))
.

Then this d makes N[T ] a Polish group, and the topology defined by d is nothing but the
u-topology on N[T ].

We collect elementary results which will be frequently used in what follows. Since proof
is easy, we leave it to the readers.

LEMMA 2.1. The following statements hold.
(1) dμ(θα, θβ) = dμ(α, β), dμ(αθ , βθ) = dθ(μ)(α, β), α, β, θ ∈ N[T ]. In partic-

ular, we have dμ(α, id) = dμ(id, α−1) = dμ(α−1, id), and dμ(α̂(t), α̂(t ′)) =
dα−1(μ)(t , t ′), α ∈ N[T ], t , t ′ ∈ [T ].

(2) dν1(α, β) ≤ ‖ν1 − ν2‖ + dν2(α, β), ν1, ν2 ∈ M1(X, μ), α, β ∈ N[T ].
(3) Let ν ∈ M1(X, μ), A, B, C, D ∈ B. Then we have

ν((A ∪ B)�(C ∪ D)) ≤ ν(A�C) + ν(B�D),

ν((A ∩ B)�(C ∩ D)) ≤ ν(A�C) + ν(B�D).

Recall the definition of the fundamental homomorphism [11]. Let X̃ := X × R and
μL be the Lebesgue measure on R. For R ∈ Aut(X, μ) and t ∈ R, define R̃, Ft ∈
Aut(X̃, μ × μL) by

R̃(x, u) =
(

Rx, u − log
d(μ ◦ R)

dμ
(x)

)
, Ft(x, u) = (x, u + t).

Let (Y , νY ) be the quotient space by T̃ . Namely, let ζ(T̃ ) be a measurable partition of
X̃ which generates the σ -algebra consisting of all T̃ -invariant set. Then Y = X̃/ζ(T̃ )

and νY is a probability measure which is equivalent to μ ⊗ μL ◦ π−1, where π : X̃ → Y

is a quotient map. The Lebesgue space (Y , νY ) can be also obtained by L∞(Y , νY ) =
L∞(X̃, μ × μL)T̃ .

Since T̃ and Ft commute, we get the ergodic flow (Y , νY , Ft), which is called the
associated flow of (X, T ). Let

AutF (Y , νY ) := {P ∈ Aut(Y , νY ) | PFt = FtP , t ∈ R}.
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When R is in N[T ], R̃ induces mod(R) ∈ AutF (Y , ν), which is called the fundamental
homomorphism. If we lift R to an automorphism of a Krieger factor RT , mod(R) is
nothing but a Connes–Takesaki module for R [8].

In this article, we do not use the above definition of mod(R) explicitly, and what we
need is the fact Ker(mod) = [T ] (closure is taken in the u-topology) and the surjectivity
of mod [10, 11].

2.2. Main results

Definition 2.2. Let G be a countable discrete group.
(1) A map (or 1-cochain) v : G → [T ] is said to be normalized if v(e) = id. We denote

the set of all normalized maps from G into [T ] by C1(G, [T ]).
(2) A cocycle crossed action of G into N[T ] is a pair of maps α : G → N[T ] and

c : G × G → [T ] such that αgαh = c(g, h)αgh, αe = id, c(e, h) = c(g, e) = id.
When c(g, h) = id for all g, h ∈ G, we say α is an action of G into N[T ].

(3) Let (α, c) be a cocycle crossed action of G into N[T ], and v ∈ C1(G, [T ]).
A perturbed crossed action (vα, vc) of (α, c) by v is defined by

vαg := v(g)αg , vc(g, h) = v(g)α̂g(v(h))c(g, h)v(gh)−1.

(4) Let α be an action of G into N[T ]. We say a map v ∈ C1(G, [T ]) is a 1-cocycle for
α if v satisfies the 1-cocycle identity v(g)α̂g(v(h)) = v(gh). It is equivalent to that
vα is an action.

(5) Let α and β be actions of G into N[T ]. We say they are cocycle conjugate if there
exist θ ∈ N[T ] and 1-cocycle v(·) such that vαg = θβgθ

−1 for all g ∈ G. If θ is
chosen in [T ], then we say they are strongly cocycle conjugate.

Remark
(1) Let (α, c) be a cocycle crossed action of G. (Notion of a p-action is used in [3].)

By (αgαh)αk = αg(αhαk), we can deduce the 2-cocycle identity c(g, h)c(gh, k) =
α̂g(c(h, k))c(g, hk).

(2) In many works, cocycle conjugacy is said to be outer conjugacy. In fact, we must
distinguish these two notions for group actions on operator algebras, However, in
ergodic theory, we do not have to distinguish them. (We have the canonical homo-
morphism u ∈ [T ] into the normalizer of a Krieger factor arising from (X, μ, T ).)

At first, we show the following theorem.

THEOREM 2.3. Let (α, c) be a cocycle crossed action of a discrete amenable group
into N[T ] with αg �∈ [T ], g �= e. Then c(g, h) is a coboundary, that is, there exists
v ∈ C1(G, [T ]) such that vc(g, h) = id, equivalently vα is a genuine action of G. If c(g, h)

is close to id, then we can choose v so that it is also close to id.

See below for a more precise statement.
Let Nα := {g ∈ G | αg ∈ [T ]}, which is a normal subgroup of G. Our main result in

this article is the following.
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THEOREM 2.4. Let (X, μ) be a Lebesgue space with μ(X) = 1, T an ergodic transfor-
mation on (X, μ). Let G be a countable discrete amenable group, and α, β actions of
G into N[T ]. Then α and β are strongly cocycle conjugate if and only if Nα = Nβ and
mod(α) = mod(β).

If α and β are strongly cocycle conjugate, then it is obvious that Nα = Nβ and
mod(αg) = mod(βg). (Amenability of G is unnecessary for this implication.) Thus, the
problem is to prove the converse implication, and a proof will be presented in subsequent
sections. Here we only state the following corollary, which can be easily verified by
Theorem 2.4.

COROLLARY 2.5. Let α and β be actions of G into N[T ]. Then α and β are cocycle con-
jugate if and only if Nα=Nβ and mod(αg) = θ mod(βg)θ

−1 for some θ ∈ AutF (Y , νY ).

Proof. Since the ‘only if’ part is clear, we only have to prove the ‘if’ part. Suppose Nα=Nβ

and mod(αg) = θ mod(βg)θ
−1 for some θ ∈ AutF (Y , νY ). By the surjectivity of mod

[10], we can take σ ∈ N[T ] with mod(σ ) = θ . Then mod(αg) = mod(σβgσ
−1) holds,

and hence αg and σβgσ
−1 are strongly cocycle conjugate by Theorem 2.4.

3. Ultraproduct of a Lebesgue space and Rohlin type theorem
We recall the ultraproduct spaces in [7].

Let ω ∈ βN be a free ultrafilter on N. For sequences (An)n, (Bn)n ⊂ B, define an
equivalence relation (An)n ∼ (Bn)n by limn→ω μ(An�Bn) = 0. Let Bω := {(An)n ⊂
B}/∼. This definition depends only on the equivalence class of μ, and Bω is a boolean
algebra.

Any α ∈ N[T ] induces a transformation αω on Bω by αω((An)n) := (α(An))n. Let

Bω := {Â ∈ Bω : tωÂ = Â, t ∈ [T ]}.

We denote by αω the restriction of αω on Bω.
Let Â = (An) ∈ Bω. Then limn→ω χAn exists in weak-∗ topology on L∞(X, ν). By the

ergodicity of T, this limit is in C, and does not depend on the choice of representative
Â = (An). Thus, we can define τ : Bω → C by τ(A) := limn→ω χAn . We can see τ ◦
αω = τ for α ∈ N[T ]. By [7, Lemma 2.4], for α ∈ N[T ], αω = id if and only if α ∈ [T ].
In fact, we have a stronger result. For R ∈ N[T ], if there exists Â ∈ Bω such that RωB̂ = B̂

for any B̂ ⊂ Â, B̂ ∈ Bω, then Rω = id, and hence R ∈ [T ] [7, Lemma 2.3]. This means
that Rω is a free transformation if Rω �= id.

The main tool of this article is the following Rohlin type theorem, essentially due to
Ocneanu [18]. (The following formulation is presented in [17].)

THEOREM 3.1. Let (α, c) be a cocycle crossed action of a discrete amenable group G into
N[T ] such that αg,ω �= id for all g �= e. Let K � G, ε > 0, and S be a (K , ε)-invariant
set. (The notation K � G means that K is a finite subset of G.) Then there exists a partition
of unity {Ês}s∈S ⊂ Bω such that:
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(1)
∑

s∈Sg
τ (αg,ωÊs�Êgs) < 5ε

1
2 , g ∈ K;

(2)
∑

s∈S\S
g−1

τ(Ês) < 3ε
1
2 ,

where Sg := S ∩ g−1S.

Note that we have gs ∈ Sg−1 = S ∩ gS for s ∈ Sg .
The proof of [18] is based on the following two facts, that is, the freeness of actions on

central sequence algebras, and the ultraproduct technique. In our case, freeness holds as
we remarked before Theorem 3.1. Hence, the proof of [17, 18] can be applied in our case
by a suitable modification.

Remark. The formulation of our Rohlin type theorem is different from that of the Rohlin
theorem by Ornstein and Weiss [19]. The main reason is the use of the ultraproduct
technique. Using the ultraproduct technique, Ocneanu showed a very strong result in [18,
Lemma 6.3]. Namely, under the same assumption in Theorem 3.1, for any e �∈ A � G and
δ > 0, he showed the existence of the partition of unity {Ei}Ni=0 ⊂ Bω such that τ(E0) < δ

and Ei ∩ αg,ωEi = ∅ for any g ∈ A, and i = 1, 2, . . . , N . (Thus, {αg,ωEi}g∈A are disjoint
for any i = 1, . . . , N .) This lemma is an important step in constructing a Rohlin tower.
(Note that τ ◦ αω = τ for α ∈ N[T ].) Combining with Zorn’s lemma, we can construct a
single Rohlin tower as in Theorem 3.1.

In what follows, we say α is an ultrafree action of G if αg,ω �= id for any g ∈ G, g �= e,
to distinguish from the usual freeness of actions on Lebesgue spaces.

LEMMA 3.2. Let A, B be finite sets, {Ea}a∈A ⊂ Bω a partition of X, and {Pa,b}a∈A,b∈B ⊂
[T ]. Choose representatives Ea = (En

a )n such that En
a ∩ En

a′ = ∅ for a �= a′,
⊔

a∈A En
a =

X. Then for any ε > 0, � � M1(X, μ), there exists N ∈ ω, {Zn
a }a∈A ⊂ B, Rn

b ∈ [T ], n ∈
N , b ∈ B, such that:
(1) ν(P −1

a,b En
a�En

a ) < ε, n ∈ N , ν ∈ �;
(2) Zn

a ⊂ En
a , Pa,bZ

n
a ⊂ En

a , n ∈ N;
(3) ν(En

a\Zn
a) < ε, ν(En

a\Pa,bZ
n
a ) < ε, n ∈ N , ν ∈ �;

(4) Rn
bx = Pa,bx, n ∈ N , x ∈ Zn

a .

Proof. Since Pa,bEa = Ea by [7, Lemma 2.4], there exists N ∈ ω such that

Pa,b(ν)

((
En

a ∪
⋃
b∈B

P −1
a,b En

a

)∖(
En

a ∩
⋂
b∈B

P −1
a,b En

a

))
<

ε

2

for n ∈ N , a ∈ A, b ∈ B, ν ∈ �.
Let Yn

a := Ea ∩ ⋂
b∈B P −1

a,b En
a . Clearly we have Yn

a , Pa,bY
n
a ⊂ En

a . Moreover,

ν(P −1
a,b En

a�En
a ) <

ε

2
, ν(En

a\Yn
a ) <

ε

2
, ν(En

a\Pa,bY
n
a ) = Pa,b(ν)(P −1

a,b En
a\Yn

a ) <
ε

2

hold for n ∈ N , ν ∈ �. Let Yn := ⊔
a∈A Yn

a . Thus, we can define Rn
0,b ∈ [T ]∗ with

Dom(Rn
0,b) = Yn by Rn

0,bx = Pa,bx, x ∈ Yn
a . If X\Yn and X\Rn

0,bY
n are T-equivalent,

then we can extend Rn
0,b to an element Rn

b ∈ [T ].
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At first, let us assume that Yn is T-finite. (Thus, so is R0,bY
n.) Such a case can happen

if T is of type II. Then X\Yn and X\Rn
0,bY

n are T-equivalent. Hence, we can extend R0,b

to Rb ∈ [T ]. Set Zn
a := Yn

a . Then all the statements in the lemma are satisfied.
Next, let us assume that Yn is T-infinite. (Hence, so is Rn

0,bY
n.) Take Wk ⊂ Yn,

k ∈ N, such that Wk ⊂ Wk+1,
⋃

k Wk = Yn, and Yn\Wk are T-infinite for all k. Set Zn
a,k :=

Yn
a ∩ Wk . Of course, we have Zn

a,k ⊂ Zn
a,k+1,

⋃
k Zn

a,k = Yn
a ,

⊔
a∈A Zn

a,k = Yn ∩ Wk =
Wk , and Zn

a,k , Pa,bZ
n
a,k ⊂ En

a . Thus, {Zn
a,k}a∈A satisfies condition (2).

Take sufficiently large k such that

ν(Y n
a \Zn

a,k) <
ε

2
, ν(Pa,bY

n
a \Pa,bZ

n
a,k) <

ε

2

for a ∈ A, b ∈ B, ν ∈ �. Then it is clear that {Zn
a,k} satisfies condition (3). By the choice of

{Wk}, X\ ⊔
a∈A Zn

a,k ⊃ Yn\Wk and X\Rn
0,b

⊔
a∈A Zn

a,k ⊃ Rn
0,b(Y

n\Wk). It follows that
X\ ⊔

a∈A Zn
a,k and X\Rn

0,b
⊔

a∈A Zn
a,k are both T-infinite and hence are equivalent. Thus,

Zn
a := Zn

a,k satisfies all statements in the lemma.

Now we can combine Theorem 3.1 and Lemma 3.2 as follows.

PROPOSITION 3.3. Let G be a discrete amenable group, and (α, c) an ultrafree cocycle
crossed action of G into N[T ]. Let K � G and ε > 0 be given, and S a (K , ε)-invariant
set. Let B, C be finite sets, {Ps,b}s∈S,b∈B ⊂ [T ], {νc

s }s∈S,c∈C � M1(X, μ). Then for any
δ > 0, there exists a partition {Es}s∈S ⊂ B of X, Es ⊃ Zs , and Rb ∈ [T ], b ∈ B, such
that:
(1)

∑
s∈Sg

νc
s (αgEs�Egs) < 5ε1/2, g ∈ K , c ∈ C;

(2)
∑

s∈S\S
g−1

νc
s (Es) < 3ε1/2, g ∈ K , c ∈ C;

(3) νc
s (P

−1
s,b Es�Es) < δ, s ∈ S, b ∈ B, c ∈ C;

(4) Ps,bZs ⊂ Es , s ∈ S, b ∈ B;
(5) νc

s (Es\Zs) < δ, νc
s (Es\Ps,bZs) < δ, s ∈ S, b ∈ B, c ∈ C;

(6) Rbx = Ps,bx, s ∈ S, b ∈ B, x ∈ Zs ,
where Sg := S ∩ g−1S.

Proof. Let {Ês}s∈S ⊂ Bω be a Rohlin partition as in Theorem 3.1. Since τ(Â) =
limn→ω χAn for Â = (An)n ∈ Bω, τ(Â) = limn→ω ν(An) for any ν ∈ M1(X, μ). Choose
a representative Ês = (En

s )n such that En
s ∩ En

s′ = ∅,
⊔

s∈S En
s = X. By Theorem 3.1:

(1) limn→ω

∑
s∈Sg

νc
s (αgE

n
s �En

gs) < 5ε1/2, g ∈ K;
(2) limn→ω

∑
s∈S\S

g−1
νc
s (E

n
s ) < 3ε1/2, g ∈ K

hold for any {νc
s }s∈S,c∈C ⊂ M1(X, μ). Thus, there exists N1 ∈ ω such that

∑
s∈Sg

νc
s (αgE

n
s �En

gs) < 5ε1/2, g ∈ K , c ∈ C,

∑
s∈S\S

g−1

νc
s (E

n
s ) < 3ε1/2, g ∈ K , c ∈ C
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for all n ∈ N1. By Lemma 3.2, there exists N2 ∈ ω, Zn
s ⊂ En

s , and Rn
b ∈ [T ], (n ∈ N2),

such that

νc
s (P

−1
s,b En

s �En
s ) < δ, s ∈ S, b ∈ B,

Ps,bZ
n
s ⊂ En

s , s ∈ S, b ∈ B,

νc
s (E

n
s \Zn

s ) < δ, νc
s (E

n
s \Ps,bZ

n
s ) < δ, s ∈ S, b ∈ B, c ∈ C,

Rn
bx = Ps,bx, s ∈ S, b ∈ B, x ∈ Zn

s

for any n ∈ N2. Fix n ∈ N1 ∩ N2, and set Es := En
s , Zs := Zn

s , Rb := Rn
b . Then these

Es , Zs , Rb are desired objects.

4. Cohomology vanishing
At first, we show the following second cohomology vanishing result, which is shown in
[3, Theorem 1.3]. We present the proof for readers’ convenience.

THEOREM 4.1. Let T be a transformation of type II∞ or type III, and (γ , c) a cocycle
crossed action of a discrete group G into N[T ]. Then c(g, h) is a coboundary, that is,
there exists u ∈ C1(G, [T ]) such that uc(g, h) = id.

Proof. Since T is of type II∞ or type III, there exists a partition {Eh}h∈G of X such that
each Eh is T-infinite. Let {fg,h}g,h∈G ⊂ [T ] be an array for {Eg}g∈G, that is, {Eg}g∈G

is a partition of X and fg,h ∈ [T ]∗ is a bijection from Eh onto Eg such that fg,hfh,k =
fg,k . Take v0

g ∈ [T ]∗ with Dom(v0
g) = γgEe and Ran(v0

g) = Ee. Define v(g) ∈ [T ] by
fh,ev

0
gγg(fe,h) on γgEh. Then we have vγg : Eh → Eh and v̂γg(fh,k) = fh,k for any

g, h, k ∈ G. Replacing (γ , c) with (vγ , vc), we may assume γgEk = Ek and γ̂g(fh,k) =
fh,k . Since γgγh = c(g, h)γgh, we also have c(g, h)Ek = Ek and ĉ(g, h)(fk,l) = fk,l .

Next define u(g) ∈ [T ] by u(g) = c(g, l)−1fgl,l on El . Note u(g) sends El to Egl , and
hence so does uγg . Hence, for x ∈ El ,

uγguγhx = u(g)γgc(h, l)−1fhl,lγhx = u(g)γgc(h, l)−1γhfhl,lx

= u(g)γ̂g(c(h, l))−1γgγhfhl,lx = u(g)γ̂g(c(h, l))−1c(g, h)γghfhl,lx

= c(g, hl)−1fghl,hl γ̂g(c(h, l))−1c(g, h)γghfhl,lx

= c(g, hl)−1γ̂g(c(h, l))−1c(g, h)γghfghl,hlfhl,lx

= c(gh, l)−1fghl,lγghx = u(gh)γghx.

This implies that uγ is an action, and uc(g, h) = u(g)γ̂g(u(h))c(g, h)u(gh)−1 = id
holds.

In Theorem 4.1, we have no estimation on the choice of u(g), even if c(g, h) is close
to id. The rest of this section is devoted to solving this problem. From now on, we always
assume that G is a discrete amenable group.

For all g ∈ G and S � G, fix a bijection l(g) : S → S such that l(g)s = gs if gs ∈ S.
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LEMMA 4.2. Let (γ , c) be an ultrafree cocycle crossed action of G. For any ε > 0,
K � G, μ ∈ � � M1(X, μ), there exists w ∈ C1(G, [T ]) such that

dν(wc(g, h), id) < ε, g, h ∈ K , ν ∈ �.

Moreover, for given ε > 0, e ∈ K � G, there exist δ > 0 and S � G, which depend only
on K and ε > 0, such that if

‖c(g, h)(ξ) − ξ‖ < δ, dν(ĉ(g, h)(t), t) < δ, g, h ∈ S, t ∈ �, ξ , ν ∈ �

for some cocycle crossed action (γ , c), � � [T ] and � � M1(X, μ), then we can choose
w ∈ C1(G, [T ]) so that it further satisfies

‖w(g)(ξ) − ξ‖ < ε, dν(ŵ(g)(t), t) < ε, g ∈ K , ξ , ν ∈ �, t ∈ �.

Proof. Choose ε′ > 0 with 11
√

ε′ < ε, and let S′ ⊂ G be a (K ∪ K2, ε′)-invariant set and
S = S′ ∪ K . Choose δ such that 5δ|S| + 11

√
ε′ < ε.

By applying Proposition 3.3, we can take a Rohlin partition {Es}s∈S′ ⊂ B, Zs ⊂ Es ,
w(g) ∈ [T ], g ∈ K , such that:
(1) El(g)s ⊃ c(g, s)−1Zl(g)s , g ∈ K ∪ K2, s ∈ S′;
(2) ν(Es\Zs) < δ, ν(El(g)s\c(g, s)−1Zl(g)s) < δ, g ∈ K ∪ K2, s ∈ S′, ν ∈ �;
(3) ν(c(gh, k)−1c(g, h)−1γ̂g(c(h, k))(Eghk\Zghk)) < δ, g, h ∈ K , k ∈ S′gh ∩ S′h,

ν ∈ �;
(4) ν(c(gh, k)−1c(g, h)−1γg(Ehk\Zhk)) < δ, g, h ∈ K , k ∈ S′h, ν ∈ �;
(5) ν(Eghk�c(gh, k)−1c(g, h)−1γ̂g(c(h, k))Eghk) < δ, g, h ∈ K , k ∈ S′h, ν ∈ �;
(6) ν(Eghk�c(gh, k)−1c(g, h)−1Eghk) < δ, g, h ∈ K , k ∈ S′gh ∩ S′h, ν ∈ �;
(7)

∑
k∈S′gh∩S′h ν(c(gh, k)−1c(g, h)−1(Eghk�γgEhk)) < 5

√
ε′, g, h ∈ K , ν ∈ �;

(8)
∑

k∈S′\S′(gh)−1 ν(Es) < 3
√

ε′g ∈ K ∪ K2, ν ∈ �;
(9) w(g)x = c(g, s)−1x, x ∈ Zl(g)s , g ∈ K , s ∈ S′.
Here we applied Proposition 3.3 for

B = {c(g, s)−1 | g ∈ K , s ∈ S′} ∪ {c(gh, k)−1c(g, h)−1 | g, h ∈ K , k ∈ S′}
∪ {c(gh, k)−1c(g, h)−1γ̂g(c(h, k)) | g, h ∈ K , k ∈ S′}

and

C = � ∪ {ν(c(gh, k)−1c(g, h)−1γ̂g(c(h, k))·) | ν ∈ �, g, h ∈ K , k ∈ S′}
∪ {ν(c(gh, k)−1c(g, h)−1γg·) | ν ∈ �, g, h ∈ K , k ∈ S′}
∪ {ν(c(gh, k)−1c(g, h)−1·) | ν ∈ �, g, h ∈ K , k ∈ S′}.

We define w(g) = id if g �∈ G.
Let

W 0
g,h,k = c(gh, k)−1Zghk ∩ c(gh, k)−1c(g, h)−1γgZhk

∩ c(gh, k)−1c(g, h)−1γ̂g(c(h, k))Zghk
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for k ∈ S′
g,h ∩ S′

h and
Wg,h =

⋃
k∈S′

gh∩S′
h

W 0
g,h,k .

We can verify w(g)γ̂g(w(h))c(g, h)w(gh)−1 = id on Wg,h as follows. Take x ∈ W 0
g,h,k .

Since x ∈ c(gh, k)−1Zghk , we have w(gh)−1x = c(gh, k)x. Thus, we have

γ −1
g c(g, h)w(gh)−1x = γ −1

g c(g, h)c(gh, k)x.

Since x ∈ c(gh, k)−1c(g, h)−1γgZhk , γ −1
g c(g, h)c(gh, k)x ∈ Zhk holds. Hence, we have

w(h)γ −1
g c(g, h)c(gh, k)x = c(h, k)−1γ −1

g c(g, h)c(gh, k)x.

Since x ∈ c(gh, k)−1c(g, h)−1γ̂g(c(h, k))Zghk ,

γ̂g(w(h))c(g, h)w(gh)−1x = γ̂g(c(h, k))−1c(g, h)c(gh, k)x ∈ Zghk

holds, and hence we have

w(g)γgc(h, k)−1γ −1
g c(g, h)c(gh, k)x = c(g, hk)−1γgc(h, k)−1γ −1

g c(g, h)c(gh, k)x = x

by the 2-cocycle identity. These computations show

wc(g, h) = w(g)γ̂g(w(h))c(g, h)w(gh)−1 = id

on Wg,h. Thus, we have {wc(g, h) �= id} ⊂ X\Wg,h.
We will show ν(X\Wg,h) < ε for ν ∈ �. By condition (2), we have

ν(Eghk\c(gh, k)−1Zghk) < δ, ν ∈ �, g, h ∈ Kk ∈ S′
gh.

For g, h ∈ K , k ∈ S′
gh ∩ S′

h, ν ∈ �, we have

ν(Eghk�c(gh, k)−1c(g, h)−1γgZhk)

≤ ν(Eghk�c(gh, k)−1c(g, h)−1Eghk) + ν(c(gh, k)−1c(g, h)−1(Eghk�γgZhk))

≤ δ + ν(c(gh, k)−1c(g, h)−1(Eghk�γgZhk)) (by condition (6))

≤ δ + ν(c(gh, k)−1c(g, h)−1(Eghk�γgEhk))

+ ν(c(gh, k)−1c(g, h)−1γg(Ehk�Zhk))

≤ 2δ + ν(c(gh, k)−1c(g, h)−1(Eghk�γgEhk)) (by condition (4))

and
ν(Eghk�c(gh, k)−1c(g, h)−1γ̂g(c(h, k))Zghk)

≤ ν(Eghk�c(gh, k)−1c(g, h)−1γ̂g(c(h, k))Eghk)

+ ν(c(gh, k)−1c(g, h)−1γ̂g(c(h, k))(Eghk�Zghk))

< 2δ (by conditions (5) and (3)).
Thus,

ν(Eghk�W 0
g,h,k) ≤ ν(Eghk\c(gh, k)−1Zghk) + ν(Eghk�c(gh, k)−1c(g, h)−1γgZhk)

+ ν(Eghk�c(gh, k)−1c(g, h)−1γgc(h, k)γ −1
g Zghk)

< 5δ + ν(c(gh, k)−1c(g, h)−1(Eghk�γgEhk))
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follows. Then

ν

(( ⋃
k∈S′

gh∩S′
h

Eghk

)
�Wg,h

)
≤

∑
k∈S′

gh∩S′
h

ν(Eghk�W 0
g,h,k)

< 5δ|S| +
∑

k∈S′
gh∩S′

h

ν(c(gh, k)−1c(g, h)−1(Eghk�γgEhk))

< 5δ|S| + 5
√

ε′ (by condition (7))

holds.
Finally, we have

ν(X\Wg,h) ≤ ν

(
X\

⋃
k∈S′

gh∩S′
h

Eghk

)
+ ν

(( ⋃
k∈S′

gh∩S′
h

Eghk

)
�Wg,h

)

= ν

( ⋃
k∈S\(S′

g−1∩S′
(gh)−1 )

Ek

)
+ ν

(( ⋃
k∈S′

gh∩S′
h

Eghk

)
�Wg,h

)

<
∑

k∈S′\S′
g−1

ν(Ek) +
∑

k∈S′\S′
(gh)−1

ν(Es) + 5δ|S| + 5
√

ε′

< 5δ|S| + 11
√

ε′ (by condition (8))

< ε.

(Note ghk ∈ S′
g−1 ∩ S′

(gh)−1 for k ∈ S′
h ∩ S′

gh.) This inequality implies

dν(wc(g, h), id) < ε for g, h ∈ K , ν ∈ �.

Assume

‖c(g, h)(ξ) − ξ‖ < δ, dν(ĉ(g, h)(t), (t)) < δ, g, h ∈ S, t ∈ �, ξ , ν ∈ �.

We show

‖w(g)(ξ) − ξ‖ < ε, dν(ŵ(g)(t), t) < ε, g ∈ K , ξ , ν ∈ �, t ∈ �.

Let Z := ⊔
s∈S′ Zs . By the definition of w(g), w(g)Z = ⊔

s∈S′ c(g, s)−1Zs holds.
Then we have

‖w(g)(ξ) − ξ‖
=

∫
X

|w(g)(ξ)(x) − ξ(x)| dμ(x)

=
∫

w(g)Z

|w(g)(ξ)(x) − ξ(x)| dμ(x) +
∫

X\w(g)Z

|w(g)(ξ)(x) − ξ(x)| dμ(x)

=
∑
s∈S′

∫
c(g,s)−1Zl(g)s

|w(g)−1(ξ)(x) − ξ(x)| dμ(x)

+
∫

X\w(g)Z

|w(g)(ξ)(x) − ξ(x)| dμ(x).
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Note

w(g)(ξ)(x) = ξ(w(g)−1x)
d(μ ◦ w(g)−1)

dμ
(x)

= ξ(c(g, s)x)
d(μ ◦ c(g, s))

dμ
(x) = c(g, s)−1(ξ)(x)

for x ∈ c(g, s)−1Zl(g)s , when we regard ξ as an element of L1(X, μ). Thus, the first term
is estimated as follows:∑

s∈S′

∫
c(g,s)−1Zl(g)s

|w(g)−1(ξ)(x) − ξ(x)| dμ(x)

=
∑
s∈S′

∫
c(g,s)−1Zl(g)s

|c(g, s)−1(ξ)(x) − ξ(x)| dμ(x)

≤
∑
s∈S′

‖c(g, s)−1(ξ) − ξ‖ < δ|S|.

To estimate the second term, one should note

ξ(X\Z) =
∑
s∈S′

ξ(Es\Zs) < δ|S′|, ξ(X\w(g)Z) =
∑
s∈S′

ξ(Es\c(g, s)−1Zs) < δ|S′|

by condition (2). Hence,∫
X\w(g)Z

|w(g)(ξ)(x) − ξ(x)| dμ(x)

≤
∫

X\w(g)Z

w(g)(ξ)(x) dμ(x) +
∫

X\w(g)Z

ξ(x) dμ(x)

=
∫

X\w(g)Z

ξ(w(g)−1x)
d(μ ◦ w(g)−1)

dμ
dμ(x) + ξ(X\w(g)Z)

=
∫

X\Z
ξ(x) dμ(x) + ξ(X\w(g)Z) = ξ(X\Z) + ξ(X\w(g)Z) < 2|S ′|δ,

and we obtain ‖w(g)(ξ) − ξ‖ < 3δ|S′| < ε.
We next show

dν(ŵ(g)(t), t) < ε, g ∈ G, ν ∈ �, t ∈ �.

By the assumption

‖c(g, s)(ν) − ν‖ < δ, dν(ĉ(g, s)(t), t) < δ, t ∈ �, g, s ∈ S, ν ∈ �,

dν(
̂c(g, s)−1(t), t) = dc(g,s)(ν)(t , ĉ(g, s)(t))

≤ ‖c(g, s)(ν) − ν‖ + dν(ĉ(g, s)(t), t) < 2δ

holds. We can further assume

ν(El(g)s�c(g, s)−1t−1El(g)s) < δ, ν(c(g, s)−1t−1(El(g)s�Zl(g)s)) < δ

for t ∈ �, s ∈ S′, g ∈ K in the choice of Zs and Es .
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Let Bg,s,t := { ̂c(g, s)−1(t) = t}. Then we have ν(X\Bg,s,t ) < 2δ, ν ∈ �. We can see

ŵ(g)(t) = ̂c(g, s)−1(t) on c(g, s)−1Zl(g)s ∩ c(g, s)t−1Zl(g)s as above. Thus, ŵ(g)(t) = t

holds on ⋃
s∈S′

c(g, s)−1Zl(g)s ∩ c(g, s)t−1Zl(g)s ∩ Bg,s,t .

We will show

ν

(
X\

⋃
s∈S′

c(g, s)−1Zl(g)s ∩ c(g, s)t−1Zl(g)s ∩ Bg,s,t

)
< ε.

At first, we have

ν(El(g)s�(c(g, s)−1Zl(g)s ∩ c(g, s)−1t−1Zl(g)s))

≤ ν(El(g)s�c(g, s)−1Zl(g)s) + ν(El(g)s�c(g, s)−1t−1Zl(g)s)

< δ + ν(El(g)s� ∩ c(g, s)−1t−1El(g)s) + ν(c(g, s)−1t−1(El(g)s�Zl(g)s)) (by (2))

< 3δ.

Thus,

ν

(
X\

⋃
s∈S′

c(g, s)−1Zl(g)s ∩ c(g, s)−1t−1Zl(g)s ∩ Bg,s,t

)

≤ ν

(
X\

⋃
s∈S′

c(g, s)−1Zl(g)s ∩ c(g, s)−1t−1Zl(g)s

)
+ ν

(
X\

⋃
s∈S′

Bg,s,t

)

≤
∑
s∈S′

ν(El(g)s�(c(g, s)−1Zl(g)s ∩ c(g, s)−1t−1Zl(g)s)) +
∑
s∈S′

ν(X\Bg,s,t )

< 5|S′|δ < ε

holds, and we obtain dν(ŵ(g)(t), t) < ε for g ∈ K , ν ∈ �, t ∈ �.

LEMMA 4.3. For any e ∈ K � G and ε > 0, there exist S � G and δ > 0 satisfying the
following property: for any μ ∈ � � M1(X, μ), an ultrafree cocycle crossed action (γ , c)

of G, and u ∈ C1(G, [T ]) with

dν(γ̂g(u(s))−1u(g)−1u(gs), id) < δ, g, s ∈ S, ν ∈ �,

there exists w ∈ [T ] such that

dν(w
−1u(g)γ̂g(w), id) < ε, ν ∈ �, g ∈ K .

Proof. Let K � G, ε > 0 be given. Take ε′ > 0 such that 8
√

ε′ < ε. Let S′ be a
(K , ε′)-invariant set and set S = S′ ∪ K . Choose δ > 0 such that 4|S′|δ + 8

√
ε′ < ε.

Let a cocycle crossed action (γ , c), � � M1(X, μ), and u ∈ C1(G, [T ]) satisfying the
condition

dν(γ̂g(u(s))−1u(g)−1u(gs), id) < δ, g, s ∈ S, ν ∈ �
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be given. By Proposition 3.3, choose a partition {Es}s∈S′ of X, Es ⊃ Zs , and w ∈ [T ] such
that:
(1) u(s)Zs ⊂ Es ;
(2) ν(γg(Es\Zs)) < δ, ν(Es\u(s)Zs) < δ, g ∈ K , ν ∈ �;
(3) ν(γ̂g(u(s))−1u(g)−1(Egs\Zgs)) < δ, g ∈ K , s ∈ S′g, ν ∈ �,
(4) ν(Egs�γ̂g(u(s))−1g−1Egs) < δ, g ∈ K , s ∈ S′g, ν ∈ �;
(5)

∑
s∈S′g ν(Egs�γgEs) < 5

√
ε′, g ∈ K , ν ∈ �;

(6)
∑

s∈S′\S′
g−1

ν(Es) < 3
√

ε′, g ∈ K , ν ∈ �;

(7) wx = u(s)x, x ∈ Zs .
Let

Wg :=
⋃
s∈S′

g

{γ̂g(u(s))−1u(g)−1u(gs) = id} ∩ γgZs ∩ γ̂g(u(s))−1u(g)−1Zgs .

We can verify that w−1u(g)γ̂g(w) = id on Wg , g ∈ K , as in the proof of Lemma 4.2.
Next we show ν(X\Wg) < ε. We have

ν(Egs�γgZs) ≤ ν(Egs�γgEs) + ν(γgEs\γgZs) < ν(Egs�γgEs) + δ

by condition (2), and

ν(Egs�γ̂g(u(s))−1u(g)−1Zgs)

≤ ν(Egs�γ̂g(u(s))−1u(g)−1Egs) + ν(γ̂g(u(s))−1u(g)−1(Egs\Zgs)) < 2δ

by conditions (3) and (4). Hence, we have

ν(Egs�(γgZs ∩ γ̂g(u(s))−1u(g)−1Egs)) < 3δ + ν(Egs�γgEs).

Then we have

ν

( ⋃
s∈S′

g

Egs�
⋃
s∈S′

g

(γgZs ∩ γ̂g(u(s))−1u(g)−1Egs)

)

≤
∑
s∈S′

g

ν(Egs�(γgZs ∩ γ̂g(u(s))−1u(g)−1Egs))

<
∑
s∈S′

g

(3δ + ν(Egs�γgEs)) < 3|S′|δ + 5
√

ε′

by condition (5). Hence, we get

ν

(
X\

⋃
s∈S′

g

(γgZs ∩ γ̂g(u(s))−1u(g)−1Egs)

)

≤
∑

s∈S′\S′
g−1

ν(Es) + ν

( ⋃
s∈S′

g

Egs�
⋃
s∈S′

g

(γgZs ∩ γ̂g(u(s))−1u(g)−1Egs)

)

< 3|S′|δ + 8
√

ε′
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16 T. Masuda

by condition (6). By the assumption

dν(γ̂g(u(s))−1u(g)−1u(gs), id) < δ, g, s ∈ S, ν ∈ �,

we have ν(X\ ⋃
s∈S′g{γ̂g(u(s))−1u(g)−1u(gs) = id}) < |S′|δ. Hence,

ν(X\Wg) < 4|S′|δ + 8
√

ε′ < ε

holds.

THEOREM 4.4. Let (γ , c) be an ultrafree cocycle crossed action of G. Then there exists
u ∈ C1(G, [T ]) such that uc(g, h) = id, and hence uγ is an action.

Moreover, for any e ∈ K � G, ε > 0, there exists S � G, δ > 0, which depends only
on K and ε, or on cocycle crossed action (γ , c), such that if

dν(c(g, h), id) < δ, g, h ∈ S, ν ∈ �

for some � � M1(X, μ) with μ ∈ �, then we can choose u ∈ C1(G, [T ]) so that

dν(u(g), id) < ε, g ∈ K , ν ∈ �.

Proof. At first, we treat a type II∞ or type III case.
Let e ∈ K �G and ε > 0 be given, and take S � G and δ > 0 as in Lemma 4.3. Assume

dν(c(g, h), id) < δ for g, h ∈ S, ν ∈ � � M1(X, μ). There exists v ∈ C1(G, [T ]) such
that vc(g, h) = id by Theorem 4.1. Hence, c(g, h) = γ̂g(v(h))−1v(g)−1v(gh) holds and

dν(γ̂g(v(h))−1v(g)−1v(gh), id) < δ, g, h ∈ S, ν ∈ �.

By Lemma 4.3, there exists w ∈ [T ] such that

dν(w
−1v(g)γ̂g(w), id) < ε, ν ∈ �, g ∈ K .

Define u(g) := w−1v(g)γ̂g(w). Then we obtain dν(u(g), id) < ε for g ∈ K , ν ∈ �, and

uc(g, h) = u(g)γ̂g(u(h))c(g, h)u(gh)−1 = w−1v(g)γ̂g(v(h))c(g, h)v(gh)−1w = id.

Hence, we have proved the theorem for the type II∞ and type III cases.
Next, we assume T is of type II1. In this case, we can assume that μ is the unique

T-invariant probability measure and choose � as � = {μ}. Let us take an increasing
sequence {Kn}n � G and decreasing sequence {εn}n such that e ∈ Kn,

⋃∞
n=1 Kn = G,

and
∑

n εn < ∞. Take Sn and δn for Kn and εn > 0 as in Lemma 4.3. We can choose Sn

and δn so that Sn ⊂ Sn+1, δn > δn+1.
For given K � G and ε > 0, choose N ∈ N such that K ⊂ KN , ε >

∑∞
k=N εk . By

Lemma 4.2, take SN � G and δN > 0 for KN and εN > 0. Again by Lemma 4.2, we can
perturb (γ , c) by some w ∈ C1(G, [T ]) so that

dμ(wc(g, h), id) < εN , g, h ∈ KN , dμ(wc(g, h), id) <
δN

2
, g, h ∈ SN .

Set

(γ (N), cN) := (wγ , wc), uN(g) = 1.
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Actions of discrete amenable groups into the normalizers 17

We will inductively construct a family of cocycle crossed actions (γ (n), cn) and
normalized maps {un} ⊂ C1(G, [T ]), n ≥ N , such that:
(1.n) (γ (n), cn) = (unγ

(n−1), uncn−1);
(2.n) dμ(cn(g, h), id) < εn, g, h ∈ Kn;
(3.n) dμ(cn(g, h), id) < δn/2, g, h ∈ Sn;
(4.n) dμ(un(g), id) < εn−1, g ∈ Kn−1.
Here we regard γ (N−1) = γ (N), cN−1(c, h) = cN(g, h). Clearly we have (1.N), (2.N),
(3.N), and (4.N).

Assume we have done up to the nth step.
By Lemma 4.2, we choose ūn+1 ∈ C1(G, [T ]) such that:

(a.n + 1) dμ(ūn+1(g)γ̂
(n)
g (ūn+1(h))cn(g, h)ūn+1(gh)−1, id) < εn+1, g, h ∈ Kn+1;

(b.n + 1) dμ(ūn+1(g)γ̂
(n)
g (ūn+1(h))cn(g, h)ūn+1(gh)−1, id) < δn+1/2, g, h ∈ Sn+1.

By condition (b.n + 1), we have

dμ

(
γ̂

(n)
g (ūn+1(h))−1ūn+1(g)−1ūn+1(gh), cn(g, h)

)
<

δn+1

2
, g, h ∈ Sn+1.

Combining with condition (3.n), we get

dμ

(
γ̂

(n)
g (ūn+1(h))−1ūn+1(g)−1ūn+1(gh), id

)
< δn, g, h ∈ Sn.

By Lemma 4.3, there exists w ∈ [T ] such that dμ(w−1ūn+1(g)γ̂
(n)
g (w), id) < εn for

g ∈ Kn. Here set un+1(g) := w−1ūn+1(g)γ̂
(n)
g (w). Then we get condition (4.n + 1).

Define a cocycle crossed action (γ (n+1), cn+1) as condition (1.n + 1). Then we get
conditions (2.n + 1) and (3.n + 1) from conditions (a.n + 1) and (b.n + 1), respectively,
and the induction is complete.

Let vn(g) := un(g)un−1(g) · · · uN(g). We have (γ n, cn) = (vnγ
(N), vncN) by the

construction. Fix L ∈ N and take any g ∈ KL. By condition (4.n),

dμ(vn(g), vn−1(g)) = dμ(un(g), id) < εn−1, n ≥ L + 1

holds. So {vn(g)}n is a Cauchy sequence and hence vn(g) converges to some v(g) ∈ [T ]
uniformly. Note that vn(g)−1 converges to v(g)−1 automatically, since μ is the invariant
measure for [T ]. Combining with condition (2.n), we obtain vc(g, h) = id for all
g, h ∈ G.

If g ∈ KN , then

dμ(vn(g), id) = dμ(vn(g), vN(g)) ≤
n−1∑
k=N

dμ(vk+1(g), vk(g)) <

n−1∑
k=N

εk .

Hence, we have dμ(v(g), id) ≤ ∑∞
k=N εk < ε. Set S := SN ∪ KN , δ := min{δN/2, εN }.

If dμ(g, h) < δ for g, h ∈ S, then we have dμ(v(g), id) < ε for g ∈ KN . Note that S and δ

depend only on K and ε.
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5. Classification
LEMMA 5.1. Let α and β be actions of G into N[T ] with mod(αg) = mod(βg). Then for
any ε > 0, K � G, μ ∈ � � M1(X, μ), � � [T ], there exists w ∈ C1(G, [T ]) such that:
(1) ‖wαg(ξ) − βg(ξ)‖ < ε, g ∈ K , ξ ∈ �;
(2) dν(ŵαg(t), β̂g(t)) < ε, g ∈ K , t ∈ �, ν ∈ �;
(3) let c(g, h) := w(g)α̂g(w(h))w(gh)−1. Then

‖c(g, h)(ξ) − ξ‖ < ε, dν(ĉ(g, h)(t), t) < ε, g, h ∈ K , ξ , ν ∈ �, t ∈ �.

Proof. By enlarging K, we may assume e ∈ K = K−1 � G. Let

�̃ := {βgh(ξ) | g, h ∈ K , ξ ∈ �}, �̃ := {β̂gh(t) | g, h ∈ K , t ∈ �}.
By the assumption, βgα

−1
g ∈ Ker(mod) = [T ]. Hence, we can take w ∈ C1(G, [T ]) so

that

‖wαgh(ξ) − βgh(ξ)‖ <
ε

7
, dν(ŵαgh(t), β̂gh(t)) <

ε

7

for g, h ∈ K , ν, ξ ∈ ⋃
g∈K βg(�̃), t ∈ ⋃

g∈K βg(�̃). Obviously, we have conditions (1)
and (2).

Then for g, h ∈ K , η ∈ �̃, we have

‖wαgwαh(η) − βgh(η)‖ ≤ ‖wαgwαh(η) − wαgβh(η)‖ + ‖wαgβh(η) − βgβh(η)‖
≤ ‖wαh(η) − βh(η)‖ + ‖wαgβh(η) − βgβh(η)‖ <

2ε

7
.

Thus,

‖c(g, h)βgh(η) − βgh(η)‖ ≤ ‖c(g, h)βgh(η) − c(g, h)αgh(η)‖
+ ‖c(g, h)αgh(η) − βgh(η)‖

<
3ε

7

holds for g, h ∈ K , η ∈ �̃. Hence, we get ‖c(g, h)(ξ) − ξ‖ < 3ε/7 for g, h ∈ K , ξ ∈ �.
For g ∈ K , t ∈ �̃, ν ∈ �̃, we have

dν(ĉ(g, h)ŵαgh(t), β̂gh(t)) = dν(ŵαgŵαh(t), β̂gh(t))

≤ dν(ŵαgŵαh(t), ŵαgβ̂h(t)) + dν(ŵαgβ̂h(t), β̂gh(t))

≤ d
wα−1

g (ν)
(ŵαh(t), β̂h(t)) + ε

7

≤ d
β−1

g (ν)
(ŵαh(t), β̂h(t)) + ‖wα−1

g (ν) − β−1
g (ν)‖ + ε

7

≤ d
β−1

g (ν)
(ŵαh(t), β̂h(t)) + 2ε

7
<

3ε

7
.

By noting ‖c(g, h)(ν) − ν‖ ≤ 3ε/7 for g, h ∈ K , ν ∈ �, we have

dν(ĉ(g, h)β̂gh(t), β̂gh(t)) ≤ dν(ĉ(g, h)β̂gh(t), ĉ(g, h)ŵαgh(t))

+ dν(ĉ(g, h)ŵαgh(t), β̂gh(t))

https://doi.org/10.1017/etds.2023.122 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.122


Actions of discrete amenable groups into the normalizers 19

≤ dc(g,h)−1(ν)(β̂gh(t), ŵαgh(t)) + 3ε

7

≤ dν(β̂gh(t), ŵαgh(t)) + 6ε

7
< ε

for ν ∈ �, g, h ∈ K , t ∈ �̃. Thus, dν(ĉ(g, h)(t), t) < ε holds for g, h ∈ K , t ∈ �,
ν ∈ �.

LEMMA 5.2. Let α and β be actions of G into N[T ] with mod(αg) = mod(βg). For any
ε > 0, K � G, � � [T ], � � M1(X, μ), there exists v ∈ C1(G, [T ]) such that

‖vαg(ξ) − βg(ξ)‖ < ε, g ∈ K , ν ∈ �,

dν(v̂αg(t), β̂g(t)) < ε, g ∈ K , t ∈ �, ν ∈ �,

dν(v(g)α̂g(v(h))v(gh)−1, id) < ε, g, h ∈ K , ν ∈ �.

Proof. Let �̃ := {βg(ξ) | g ∈ K , ξ ∈ �}, �̃ := {β̂g(t) | g ∈ K , t ∈ �}. Choose δ > 0
and S for ε/3 > 0 and K as in Lemma 4.2. By Lemma 5.1, there exists u ∈ C1(G, [T ])
such that

c(g, h) := u(g)α̂g(u(h))u(gh)−1,

‖uαg(ξ) − βg(ξ)‖ <
ε

3
, g ∈ K , ξ ∈ �,

‖c(g, h)(ξ) − ξ‖ < δ, g, h ∈ S, ξ ∈ �̃,

dν(ĉ(g, h)(t), t) < δ, g, h ∈ S, t ∈ �̃, ν ∈ �̃.

By Lemma 4.2, there exists w ∈ C1(G, [T ]) such that

dν(w(g)ûαg(w(h))c(g, h)w(gh)−1, id) <
ε

3
, g, h ∈ K , ν ∈ �

and

‖w(g)(ξ) − ξ‖ <
ε

3
, dν(ŵ(g)(t), t) <

ε

3
, g ∈ K , ξ , ν ∈ �̃, t ∈ �̃.

Let v(g) := w(g)u(g). Then we have

dν(v(g)α̂g(v(h))v(gh)−1, id) < ε, g, h ∈ K , ν ∈ �.

We can verify the first inequality as follows. For g ∈ K , ξ ∈ �,

‖vαg(ξ) − βg(ξ)‖ ≤ ‖w(g)u(g)αg(ξ) − w(g)βg(ξ)‖ + ‖w(g)βg(ξ) − βg(ξ)‖
<

2ε

3
< ε

since βg(ξ) ∈ �̃. Similarly, we have

dν(v̂αg(t), β̂g(t)) ≤ dν( ̂w(g)uαg(t), ŵ(g)βg(t)) + dν(ŵ(g)βg(t), β̂g(t))

≤ dw(g)(ν)(ûαg(t), β̂g(t)) + ε

3

≤ ‖w(g)(ν) − ν‖ + dν(ûαg(t), β̂g(t)) + ε

3
< ε

for g ∈ K , t ∈ �, ν ∈ �.

https://doi.org/10.1017/etds.2023.122 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.122


20 T. Masuda

THEOREM 5.3. Let α and β be ultrafree actions of G into N[T ] with mod(αg) = mod(βg).
Then there exists a sequence {un(·)} of 1-cocycles for αg such that limn→∞ unαg = βg in
the u-topology.

Proof. By Lemma 5.2, there exists a sequence {vn} ⊂ C1(G, [T ]) of normalized maps
such that limn→∞ vnαg = βg in the u-topology, and limn→∞ dμ(vn(g)α̂g(vn(h))vn(gh)−1,
id) = 0. Let α(n) = vnα and cn(g, h) = vn(g)α̂g(vn(h))vn(gh)−1. By Theorem 4.4, there
exists a sequence {wn} ⊂ C1(G, [T ]) such that

wn(g)α̂
(n)
g (wn(h))cn(g, h)wn(gh)−1 = 1, lim

n→∞ dμ(wn(g), id) = 0.

Then it turns out that un(g) := wn(g)vn(g) is a 1-cocycle for αg , and limn→∞ unαg = βg

holds in the u-topology.

LEMMA 5.4. Let K � G and ε > 0 be given. Then there exist S � G and δ > 0 satisfying
the following: for any action γ of G, a 1-cocycle u(·) for γ , � � M1(X, μ) with μ ∈ �

and � � [T ] satisfying

‖u(s)(ξ) − ξ‖ < δ, dν(û(s)(t), t) < δ, s ∈ S, ξ , ν ∈ �, t ∈ �,

there exists w ∈ [T ] such that

dν(u(g)γ̂g(w)w−1, 1) < ε, ‖w(ξ) − ξ‖ < ε, dν(w(t), t) < ε, g ∈ K , ξ , ν ∈ �, t ∈ �.

Proof. Take ε1 > 0 with 8ε
1/2
1 < ε, and let S be a (K , ε1)-invariant set. Choose δ > 0

with 8ε
1/2
1 + 3|S|δ < ε, 4|S|δ < ε.

By Proposition 3.3, take a partition {Es}s∈S of X, Zs ⊂ Es , and w ∈ [T ] such that:
(1) u(s)Zs ⊂ Es , s ∈ S;
(2) ν(Es\Zs) < δ, ν(Es\u(s)Zs) < δ, s ∈ S, ν ∈ �;
(3) ν(u(gs)γg(Es\Zs)) < δ, g ∈ K , s ∈ Sg , ν ∈ �;
(4) ν(u(s)t−1(Es\Zs)) < δ, s ∈ S, t ∈ �, ν ∈ �;
(5) ν(u(s)Es�Es) < δ, s ∈ S, ν ∈ �;
(6) ν(Egs�γ̂g(u(s))Egs) < δ, s ∈ Sg , ν ∈ �;
(7) ν(Es�u(s)t−1Es) < δ, s ∈ S, t ∈ �, ν ∈ �;
(8)

∑
s∈Sg

u(gs)−1(ν)(γgEs�Egs) < 5ε
1/2
1 , g ∈ K , ν ∈ �;

(9)
∑

s∈S\S
g−1

ν(Es) < 3ε
1/2
1 , g ∈ K;

(10) wx = u(s)x, x ∈ Zs .
In the following proof, the letters g, s, and ν denote an elements in K, S, and �,

respectively. As in the proof of Lemma 4.2, we can see that

u(g)γ̂g(w)w−1x = u(g)γgu(s)γ −1
g u(gs)−1x = x

for x ∈ u(gs)Zgs ∩ u(gs)γgZs .
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We have

ν(Egs�(u(gs)Zgs ∩ u(gs)γgZs))

≤ ν(Egs\u(gs)Zgs) + ν(Egs�u(gs)γgZs)

< δ + ν(Egs�u(gs)γgEs) + ν(u(gs)γg(Es)\u(gs)γgZs) (by (2))

< 2δ + ν(Egs�u(gs)Egs) + ν(u(gs)(Egs�γgEs)) (by (3))

< 3δ + u(gs)−1(ν)(Egs�γgEs) (by (5)).

Thus,

ν

(
X\

⋃
s∈Sg

u(gs)Zgs ∩ u(gs)γgZs

)

≤ ν(X\
⊔
s∈Sg

Egs) +
∑
s∈Sg

ν(Egs�(u(gs)Zgs ∩ u(gs)γgZs))

≤
∑

s∈S\S
g−1

ν(Es) +
∑
s∈Sg

(3δ + u(gs)−1(ν)(Egs�γgEs))

< 3ε
1/2
1 + 3|S|δ + 5ε

1/2
1 = 8ε

1/2
1 + 3|S|δ < ε

holds. Hence, ν({u(g)γ̂g(w)w−1 �= id}) < ε for g ∈ K and ν ∈ �, which implies

dν(u(g)γ̂g(w)w−1, id) < ε, g ∈ K , ν ∈ �.

We next show ‖w(ξ) − ξ‖ < ε and dν(ŵ(t), t) < ε. Let Z = ⊔
s∈S Zs . As in the proof

of Lemma 4.2, we can see w(ξ)(x) = u(s)(ξ)(x) on u(s)Zs , and∫
X\wZ

|w(ξ)(x) − ξ(x)| dμ(x) < 2|S|δ

by using conditions (2) and (10). If u(s) satisfies ‖u(s)(ξ) − ξ‖ < δ for s ∈ S, then

‖w(ξ) − ξ‖ =
∑
s∈S

∫
u(s)Zs

|w(ξ)(x) − ξ(x)| dμ(x) +
∫

X\wZ

|w(ξ)(x) − ξ(x)| dμ(x)

<
∑
s∈S

∫
u(s)Zs

|u(s)(ξ)(x) − ξ(x)| dμ(x) + 2|S|δ < 3|S|δ < ε

holds for ξ ∈ �.
For t ∈ � ⊂ [T ] and x ∈ u(s)Zs ∩ u(s)t−1Zs , w−1x = u(s)−1x ∈ Zs ∩ t−1Zs .

Hence, tw−1x = u(s)−1x ∈ tZs ∩ Zs , and wtw−1x = u(s)tu(s)−1x holds.
Then,

ν(Es�(u(s)Zs ∩ u(s)t−1Zs)) ≤ ν(Es\u(s)Zs) + ν(Es�u(s)t−1Zs)

< δ + ν(Es�u(s)t−1Es) + ν(u(s)t−1(Es\Zs)) (by condition (2))

< 3δ (by conditions (4) and (7)).
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Let us assume dν(û(s)(t), t) < δ. Hence, As,t := {û(s)(t) = t} satisfies ν(X\As,t ) < δ.
Thus,

ν

(
X\

⋃
s∈S

(u(s)Zs ∩ u(s)t−1Zs ∩ As,t )

)

≤
∑
s∈S

ν(Es�(u(s)Zs ∩ u(s)t−1Zs)) +
∑
s∈S

ν(X\As,t )

≤ 4δ|S| < ε

and we have ν({ŵ(t) �= t}) < ε, equivalently dν(ŵ(t), t) < ε.

Remark. In Lemma 5.4, we can choose δ and S so that δ < δ′ and S′ ⊂ S for any given
δ′ > 0 and S′ � G.

Now we can classify ultrafree actions.

THEOREM 5.5. Let α and β be ultrafree actions of G into N[T ] with mod(αg) = mod(βg).
Then they are strongly cocycle conjugate.

Proof. Let {ξi}∞i=0 be a countable dense subset of M1(X, μ) with ξ0 = μ. Take εn > 0
and Kn � G such that

∑∞
n=0 εn < ∞, εn > εn+1, e ∈ Kn, Kn ⊂ Kn+1,

⋃∞
n=0 Kn = G.

Then choose Sn � G, δn > 0 for Kn, εn as in Lemma 5.4. We can assume Sn ⊂ Sn+1 and
δn+1 < δn. (See the remark after Lemma 5.4.)

Set γ
(0)
g := αg , γ

(−1)
g := βg , and construct actions γ

(n)
g of G, vn(g), v̄n(g), wn, θn ∈

[T ], �n � M1(X, μ), and �n � [T ] as follows:
(1.n) γ

(n)
g = v̄n(g)wnγ

(n−2)
g w−1

n ;
(2.n) θn = wnθn−2;
(3.n) vn(g) = v̄n(g)ŵn(vn−2(g));
(4.n) ‖γ (n)

g (ξ) − γ
(n−1)
g (ξ)‖ < εn, g ∈ Kn, ξ ∈ �n−1;

(5.n) dμ(γ̂
(n)
g (t), ̂γ (n−1)

g (t)) < εn, g ∈ Kn, t ∈ �n−1;
(6.n) ‖γ (n)

g (ξ) − γ
(n−1)
g (ξ)‖ < δn−1/2, g ∈ Sn−1, ξ ∈ ⋃

g∈Sn−1
γ

(n−1)

g−1 (�n−1);

(7.n) dν(γ̂
(n)
g (t), ̂γ (n−1)

g (t))< δn−1/2, g ∈Sn−1, t ∈ ⋃
s∈Sn−1

γ
(n−1)

g−1 (�n−1), ν ∈�n−1;
(8.n) dν(v̄n(g), id) < εn−2, g ∈ Kn−2, ν ∈ �n−2, (n ≥ 2);
(9.n) ‖wn(ξ) − ξ‖ < εn−2, ξ ∈ �n−2, (n ≥ 2);

(10.n) dν(ŵn(t), t) < εn−2, ν ∈ �n−2, t ∈ �n−2, (n ≥ 2);
(11.n) �n = {ξi}ni=0 ∪ {θn(ξi)}ni=0 ∪ {vn(g)(μ)}g∈Kn ;
(12.n) �n = {T i}ni=−n ∪ {θn(T

i)}ni=−n ∪ {vn(g), vn(g)−1}g∈Kn .

1st step. Let θ−1 = θ0 = id, v−1(g) = v0(g) = id. By Theorem 5.3, take a 1-cocycle u1(·)
for γ (−1) such that:
(a.1) ‖u1γ

(−1)
g (ξ) − γ

(0)
g (ξ)‖ < ε1, g ∈ K1, ξ ∈ �0;

(b.2) dμ(
̂

u1γ
(−1)
g (t), γ̂

(0)
g (t)) < ε1, g ∈ K1, t ∈ �0;

(c.2) ‖u1γ
(−1)
g (ξ) − γ

(0)
g (ξ)‖ < δ0/2, g ∈ S0, ξ ∈ ⋃

g∈S0
γ

(0)

g−1(�0);

(d.1) dν(
̂

u1γ
(−1)
g (t), γ̂

(0)
g (t)) < δ0/2, g ∈ S0, t ∈ ⋃

g∈S0
γ

(0)

g−1(�0), ν ∈ �0.
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Set w1 = id, v̄1(g) = u1(g), and define

γ (1)
g := v̄1(g)w1γ

(−1)
g w−1

1 = u1γ
(−1)
g ,

θ1 := w1θ−1 = id,

v1(g) := v̄1(g)ŵ1(v−1(g)) = u1(g)

as in conditions (1.1), (1.2), and (1.3), respectively. By conditions (a.1), (b.1), (c.1), and
(d.1), we get conditions (4.1), (5.1), (6.1), and (7.1), respectively. Define �1 and �1

as in conditions (11.1) and (12.1), respectively. Then we have finished the 1st step of
the induction.

Assume that we have done up to the nth step. By Theorem 5.3, let us take a
γ (n−1)-cocycle un+1(·) such that:
(a.n + 1) ‖un+1γ

(n−1)
g (ξ) − γ

(n)
g (ξ)‖ < εn+1, g ∈ Kn+1, ξ ∈ �n;

(a.n + 2) dμ(
̂

un+1γ
(n−1)
g (t), γ̂

(n)
g (t)) < εn+1, g ∈ Kn+1, t ∈ �n;

(c.n + 1) ‖un+1γ
(n−1)
g (ξ) − γ

(n)
g (ξ)‖ < δn/2, g ∈ Sn, ξ ∈ ⋃

g∈Sn
γ

(n)

g−1(�n);

(d.n + 1) dν(
̂

un+1γ
(n−1)
g (t), γ̂

(n)
g (t)) < δn/2, g ∈ Sn, t ∈ ⋃

g∈Sn
γ

(n)

g−1(�n), ν ∈ �n;

(e.n + 1) ‖un+1γ
(n−1)
g (ξ) − γ

(n)
g (ξ)‖ < δn−1/2, g ∈ Sn−1, ξ ∈ ⋃

g∈Sn−1
γ

(n−1)

g−1 (�n−1);

(f.n + 1) dν(
̂

un+1γ
(n−1)
g (t), γ̂

(n)
g (t)) < δn−1/2, g ∈ Sn−1, t ∈ ⋃

g∈Sn−1

̂
γ

(n−1)

g−1 (�n−1),
ν ∈ �n−1.

By conditions (6.n) and (e.n + 1), we have

‖un+1(g)γ (n−1)
g (ξ) − γ (n−1)

g (ξ)‖ < δn−1, g ∈ Sn−1, ξ ∈
⋃

g∈Sn−1

γ
(n−1)

g−1 (�n−1)

and hence

‖un+1(g)(ξ) − ξ‖ < δn−1, g ∈ Sn−1, ξ ∈ �n−1.

By conditions (7.n) and (f .n + 1),

dν( ̂un+1(g)
̂
γ

(n−1)
g (t), ̂γ (n−1)

g (t)) < δn−1, g ∈ Sn−1, t ∈
⋃

g∈Sn−1

̂
γ

(n−1)

g−1 (�n−1), ν ∈ �n−1,

and hence

dν( ̂un+1(g)(t), t) < δn−1, g ∈ Sn−1, t ∈ �n−1, ν ∈ �n−1.

By Lemma 5.4, there exists wn+1 ∈ [T ] such that

dν(un+1(g)
̂
γ

(n−1)
g (wn+1)w

−1
n+1, id) < εn−1, g ∈ Kn−1, ν ∈ �n−1,

‖wn+1(ξ) − ξ‖ < εn−1, dν(ŵn+1(t), t) < εn−1, ξ , ν ∈ �n−1, t ∈ Kn−1.

Set

v̄n+1(g) := un+1(g)
̂
γ

(n−1)
g (wn+1)w

−1
n+1,

γ (n+1)
g := un+1γ

(n−1)
g = v̄n+1(g)wn+1γ

(n−1)
g w−1

n+1,

θn+1 := wn+1θn−1.
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We clearly have conditions (1.n + 1), (2.n + 1), (3.n + 1), (8.n + 1), (9.n + 1), and
(10.n + 1). From conditions (a.n + 1), (b.n + 1), (c.n + 1), and (d.n + 1), we obtain
conditions (4.n + 1), (5.n + 1), (6.n + 1), and (7.n + 1), respectively. We define �n+1

and �n+1 as in conditions (11.n + 1) and (12.n + 1), respectively. Then we have finished
the (n + 1)st step, and the induction is complete.

By the construction, we have

γ (2n)
g = v2n(g)θ2nαgθ

−1
2n , γ (2n+1)

g = v2n+1(g)θ2n+1βgθ
−1
2n+1.

We will show that sequences {θ2n}n, {θ2n+1}n, {v2n(g)}n, and {v2n+1(g)}n will converge.
Fix k ∈ N and take ξ ∈ {ξi}ki=1, t ∈ {T l}|l|≤k . For n > k + 2, we have ξ , θn−2(ξ) ∈ �n−2,
θ̂n−2(t) ∈ �n−2. Then

‖θn(ξ) − θn−2(ξ)‖ = ‖wn(θn−2(ξ)) − θn−2(ξ)‖ < εn−2,

‖θ−1
n (ξ) − θ−1

n−2(ξ)‖ = ‖w−1
n (ξ) − ξ‖ < εn−2,

and

dμ(θ̂n(t), θ̂n−2(t)) = dμ(ŵn(θ̂n−2(t)), θ̂n−2(t)) < εn−2

hold by conditions (9.n) and (10.n). It follows that {θ2n}n and {θ2n+1}n are both Cauchy
sequences with respect to the metric d on N[T ]. (See §2.1 for the definition of d.) Hence,
both {θ2n}n and {θ2n+1}n converge to some σ0, σ1 ∈ [T ], respectively, in the u-topology.

Fix l ∈ N and take any g ∈ Kl . Then for n > l + 2, we have vn−2(g), vn−2(g)−1 ∈
�n−2, vn−2(g)(μ) ∈ �n−2. Thus,

dμ(vn(g), vn−2(g))

≤ dμ(v̄n(g)ŵn(vn−2(g)), v̄n(g)vn−2(g)) + dμ(v̄n(g)vn−2(g), vn−2(g))

= dμ(ŵn(vn−2(g)), vn−2(g)) + dvn−2(g)(μ)(v̄n(g), id)

< 2εn−2

and

dμ(vn(g)−1, vn−2(g)−1)

≤ dμ(ŵn(vn−2(g)−1)v̄n(g)−1, ŵn(vn−2(g)−1)) + dμ(ŵn(vn−2(g)−1), vn−2(g)−1)

= dμ(v̄n(g)−1, id) + dμ(ŵn(vn−2(g)−1), vn−2(g)−1)

< 2εn−2

by conditions (8.n) and (10.n). Thus, both {v2n(g)}n and {v2n+1(g)}n are Cauchy
sequences with respect to dμ, and hence converge to some z0(g), z1(g) ∈ [T ] uniformly,
respectively.

Summarizing these results, we have

lim
n→∞ γ (2n)

g = lim
n→∞ v2n(g)θ2nαgθ

−1
2n = z0(g)σ0αgσ

−1
0 ,

lim
n→∞ γ (2n+1)

g = lim
n→∞ v2n+1(g)θ2n+1βgθ

−1
2n+1 = z1(g)σ1βgσ

−1
1 .

By conditions (4.n) and (5.n), we have z0(g)σ0αgσ
−1
0 = z1(g)σ1βgσ

−1
1 . Hence, α and

β are cocycle conjugate.
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Proof of Theorem 2.4. Let N := Nα = Nβ , Q := G/N , and π : G → Q be the quotient
map. Fix a section s : Q → G such that s(e) = e. Then αs(p) is an ultrafree cocycle
crossed action of Q. By Theorem 4.4, there exists v ∈ C1(Q, [T ]) such that ᾱp :=
v(p)αs(p) is a genuine action of Q. Here define v(g) := v(p)α−1

n ∈ [T ], where g = ns(p)

with p = π(g) and n ∈ N . Then v(g)αg = v(p)αs(p) = ᾱπ(g), and ᾱπ(g) is an action of
G. Thus, αg is strongly cocycle conjugate to ᾱπ(g) for some ultrafree action ᾱ of Q. In
the same way, βg is strongly cocycle conjugate to β̄π(g) for some ultrafree action β̄ of Q.
Since mod(ᾱp) = mod(β̄p), ᾱ and β̄ are strongly cocycle conjugate as actions of Q by
Theorem 5.5, and hence also are as actions of G. Therefore, the two actions α and β of G
are strongly cocycle conjugate.
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