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Abstract

Using the theory of the Satake diagrams associated with the non-compact simple Lie aigebras over the
real number field R, we shall construct a family of simple groups over a field X which are called the
simple groups associated with the Satake diagrams. The list of these simple groups includes all
Chevalley groups and twisted groups, and all simple algebraic groups of adjoint type defined over R if
K is the complex number field C (except two types given by Table II”). Furthermore, the simple
groups associated with the Satake diagrams of type AIII, BI, DI are identified with the simple groups
obtained from the unitary or orthogonal groups of non-zero indices. The quasi-Bruhat decomposition
of the “non-split” simple groups associated with the Satake diagrams which are not Chevalley groups
or twisted groups will be given in this paper.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 H 20.

1. Introduction

Every Satake diagram IT¢ = (II, #) associated with a non-compact simple Lie
algebra g over R determines an involutive automorphism p, of L where L is a
simple Lie algebra over C which is defined by L =g+ y-1g. Using this
involutive automorphism p, of L and an involutive automorphism f of a field X
we shall construct a simple group over K which will be called a simple group
associated with the Satake diagram IT? over K and will be denoted by L(I1, K)
(or L(I1,8; K, f)). The procedures of the construction of such simple groups
L(I1% K) are quite analogous to those in [3], [6], [2]. The list of these simple
groups L(I1% K) includes all Chevalley groups and twisted groups over K. In
general, the classical groups which are Chevalley groups or twisted groups are the
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linear and symplectic groups, and the orthogonal and unitary groups correspond-
ing to forms whose Witt index is sufficiently large. The remaining classical groups
are not Chevalley groups or twisted groups. Furthermore, the simple groups
associated with the Satake diagram of the type AIIL, BI, DI are identified with the
simple groups obtained from unitary or orthogonal groups of non-zero indices.
The Chevalley groups and twisted groups can be interpreted as “split” groups of
Lie type, the remaining simple groups L(I1%, K') can be interpreted as “ non-split”
groups of Lie type (cf. [1], page 216). The quasi-Bruhat decomposition of such
“non split” simple groups will be given in this paper (cf. Theorem 1)

The classification of semi-simple algebraic groups defined over R is considered
by J. Tits [7] and by I. Satake [5]. The problem of classifying the semi-simple
algebraic groups defined over R is reduced to the problem of finding the
admissible (R)-indices of semi-simple algebraic groups defined over R and all
possible semi-simple anisotropic kernels for a given admissible (R)-index. J. Tits
[7] enumerated all possible admissible (R)-indices which are all Satake diagrams.

For each admissible (R)-index of type 4,, B,, C,, D, J. Tits [7] gave a classical
group with identifies the simple algebraic group defined over R with such index.
For each admissible (R)-index of type G,, F,, E,, E; (except certain indices, for
example, the index EVI, ie., E?A in [7]), J. Tits [7] constructed the simple
algebraic group defined over R with such index by means of Cayley algebra,
Jordan algebra, associative division algebra, and division Cayley algebra.

For all Satake diagrams (II, #) the construction of the groups L(II, 8;C, f)
given by our paper is just a uniform construction of simple algebraic groups of
adjoint type defined over R. Thus for all possible admissible (R)-indices a
uniform proof of the existence of simple algebraic groups of adjoint type defined
over R is given in our paper.

In this paper, we shall use the notations and terminology defined in [1] and [4]
without explanation and we shall not consider two Satake diagrams given by
Table II".

We shall denote by IT the Satake diagram (B, ) defined by [4] which
corresponds to a noncompact simple Lie algebra g over R. Let g=1t+ p be a
Cartan decomposition of g and 8 be the Cartan involution of g [4]. Clearly, the
Cartan involution 8 can be extended to an automorphism of L which is denoted
by @ also in the following way:

0(X+V/-1Y)=6x+y-18Y, X, Yeg.

Let a be a maximal abelian subalgebra of p. Then there exists a Cartan
subalgebra h of g such that A = h, + a, h, C ¢ [4]. We denote by ® the root
system of L with respect to the Cartan subalgebra h° = h + y-1h of L with the
fundamental root system B (denoted by II in this paper). For each r € ® we
define 7 = —8(r), so r’ = 1(r + F) is the restriction of r to a. We can define an
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(31 The Satake diagrams 15

ordering on a which is compatible with the ordering on the space I' spanned by
® over R.

Let C,: {h,, r€T;é,, re @) be a Chevalley basis of L and 7 be the
non-trivial symmetry of the Dynkin diagram II which is given by 13.6.2 of [1].
For each r€ ® we define %,(t)=exp(tadé,), t€K, é,€C,, )=
£,()x_(-t™Hx,(t), t€ K* and 71,(t)= n ()i, (-1). We denote by I the
identical map of L and by & the empty set.

We define I1° = {a € [I|a = -&} and ®° = {a € ®|a = —a}. Clearly I1° is
a subset of II consisting of all simple roots which correspond to the black nodes
in the Satake diagram (II,8) and ®° is a root system with the fundamental
system I1° We denote by IT* the set II\ II° and by ®* the set @\ ®°.
Furthermore, we define ®, = {r € ®*|r =7}, @, =®*\®,, ®,;,,= {re
bplr+red}, &, =0, \®y, ®,={r+rired,} and 9, =
O\ 0,

PROPOSITION 1. For each Satake diagram (11,8) there exist a Chevalley basis
C,=1{h,, rell;e,,re ®} of L and an involutive automorphism py of L such
that pg(e,) = ke,, r € @, e,, e, € C,, k, = *1 satisfying the condition

(A) k,=1 ifred,ud,, k=-1 ifred,.

PrOOF. We define I1 = {r € I1*|(r,a) = 0 for all « € I1°}. For each r €
H*\ II} if there eixsts s € II*\ I1}¥ such that s’ =r’ and r # 5 then 7,5 is
called a simple root of type II, otherwise r is called a simple root of type I. It
follows from the properties of the Satake diagrams that 7 =r+ B8, B =18,
B, € I°if r is asimple root of type I, =5+ B, 5=r+ B, B ®%if r,sisa
simple root of type II (cf. Table 1,). There is an automorphism 6, of L such that
0y(h,) = ~h,, 8,(¢,)=~é_,re®,¢é,é_, € C,(cf[1], page 56). We define an
automorphism p of L by p = §,0. Let X denote pX for each X € h<. It is clear
that there exists X € h¢ such that the automorphism 5 of L defined by p =
pexp(ad X) satisfies p(&,)=n,8,, r€ ®, &, é, € C,, 0, € C satisfying 3, = 1
for all r € I1¥ and 7, = -1 for all a € I1°. Since 7 = r for all r € ® we have
p? = exp(ad X,), X, € h. It follows that n,m, = e/*>" and n,n, = ¢*>" for all
r € ¢, so we have (X,,r) = (X, F) (modZm/I), r € ¢. Thus we have (X, r)
= 0(mod2my-1), r € II° U I}, (X,, r) = (X,, 7) (mod 27y-1), r € TI*\ T1%.
Clearly, there exists X* € ¢ such that X* satisfies the relation (X*,r) = 0,
re U Iy, (X* r)= (X, r), r € I*\ I Since 7 € +(I1° U II1¥) for all
reTl° U II¥ we have (X*,r)=0, r€ I°UII¥ and (X* B) = (X*,B)=0,
B € ¢°. By the formula mentioned above we have (X*,r) = (X*7) = (X,r +
B)=(X*r),B=XB,BeNif risof type L, (X*,r)= (X, 7) = (Xy,5 —B)
= (X0, ) = (Xo,8) = (X*,5) = (X*,F = B) = (X*,F) = (X*,r) (mod2m/-1)
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if r, s is of type II. We define p; = p exp(ad(~ 1 X *)). We have
P = i)zexp(ad(—%(X* + Y*))) = exp(ad(XO - %(X* + )?*))),

so we have p3(é,) = é,, é, € C,, for all r € II. Thus p, is an involutive automor-
phism of L and py(é,)= é&;, r € I1}, since (X*,r)=0 and 75, =1 for all
r € I1§. Clearly, ®,, N II} is a fundamental root system ®,,, so py(é,) = é,,
r € ®,,. Another proof of the existence of p, will be given below. For each IT? we
define A, = (75, ¥y; py) wWhere 7, = I or 7, and ¥y = (B, 8,,...,8,} and ¢, =
{8,,9,,...,8,} are the subsets of ® determined in individual cases by inspecting
the Satake diagram II° For each Satake diagram II°, 4, is given in Table IL
Furthermore, for each 4, we define py = Tyhyn, where hy = hgy (-1)hg (-1) - -
hﬁ,,("l) if¥+ B, hy=1if ¥y= @ and ng=ns(Nns(1)--- ns (1) g+ I,
ny =1 if gy = @. It is easily verified that p, is an involutive automorphism of L
and pge, = c,e; for all r€ @, ¢, = +1, satisfying ¢, =1 for all r € d,,. We
shall show that we can choose an appropriate §,, §, = +1 such that py(e,) = k,e;,
re® e =¢¢,é €C,, k,= +1, satisfying the condition (A). Since p; = 1 we
have

(B) kk_,=1, kk,=1, kkN,;=N, k

rv—r r+s> r,s € o.

We put §, =1 for all r € ®,, U II. Without loss of generality, we assume
h(r) < h(F), r € ®,; where h(r) and h(F) are the height of r and F respectively,
and then we put §, = 1 for all such r of ®,,. It is clear that we can choose £; such
that k, =1,s0k,=1by(B).lf r,s € ®and r + s € ® then N, = -N, ,. Thus
we have k,= -1 for all r€ ®,;, by (B). Since £, =1 for all r €Il then
Cy{h,, rell;e,r e ®}isa Chevalley basis of L by page 56 of [1]. The proof is
complete.

Since IT§ = {r € II*|(r,a) = 0 for all a € T1%}, we have the following state-
ments:

(0) pg(a) = —a for all @ € I1® means p, transforms every root a corresponding
to the black circle of II¢ to -a.

(D) py(r)=r, r € II}¥ means p, transforms the circle corresponding to r to
itself, this circle being white and being not joined by any arrow to any circle in
I°.

(II) pg(r) = 5, r, s € I1%, r # s means p, transforms the circle corresponding
to r to the circle corresponding to s, these two circles being white and being
joined by an arrow in IT°.

In this paper, we denote by K a field of characteristic p > 3 (if the dimension
of a is equal to 1, K is a field of characteristic p > 5). Let f be a non-trivial
involutive automorphism of K. For each t € K we write f(¢) = /. Clearly, the
Chevalley group G = L(K) of type L over K is generated by {x.(7)=
exp(tade,), r € ®, t € K }. Obviously, the involutive automorphism f of K can
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be extended to an involutive automorphism of G (denoted by f also) in this way:
f(x,(1)) = x,() for all r € ®, r € K. The involutive automorphism p, of L can
be extended to an involutive automorphism of G (denoted by p, also) in this way:
po(x, (1)) = x;(k,t) for all r € ®, t € K. We define an automorphism ¢ of G by
0 = ¢yf, s0 a(x,(t)) = x,(k, i), r € ®, t € K. Since p,f = fpy, and pj = I and
f? =1 we have 02 = 1.

2. The subgroups of L(I1%, K)

We define some notation and terminology which will be used later.

LIf re®, X(t)=x,(), teK,={teK|t=ki}, W'=w, N u)=
n(u),u€ K*= K\{0), kX (v)=h,(v),veK* ={veK|v= v}\{O}.

Ma. If red,,, XNt)=x,()x(f), t€K,=K, W)=ww, NNu)=
n,(u)n (@), u € K* = K\ {0}, h'(v) = h,(v)h (5), vEKM = K*= K\ (0}.

IIb. If r € ®,,,, X}(1) = x()x,(f)x,,,(- N, 1), te K, =K, W}
N2 ) = 1y st 4 € K,y B(0) = B (o) (B, 0 € K = K

For each r € ®* we define I(r)= {s € ®*|s' = kr’, k=1,2, or }} and
Liry={sel(r)|s<s5}. If I(r)={r,r,...,1,}, n<n< .- <r, r€
®* i=1,2,...,n, we define X(T)=TI_, X,(t,), t, € K,, T=(t1,t2,...,1,)
and D(T) = t,i, + tyi, + -+ +1,f,. We write N' = N} if red,, U,
N! = hY(u)n,, u being a fixed element of K* if r € &,

We denote by ®* (respectively ® ) the positive (negative) root system contain-
ing IT (-II). Furthermore, we define W! = (W, r € ®*), N! = (N)(u), r €
®* ue K*) and H' = N' N H. We define U' = {uc Ulou=u}, V' = {v
€ V|ov=v} and G'= (U, V'). Clearly, G' is determined by the Satake
diagram I1° = (I1, 8) and K, f, so we denote by L(II, 6; K, f) (or (I1%; K)) the
group GL.

Clearly, we have I'=T, + I'_ where I',= {y € I'|p,(Y) = v} so we have
T,=a and T.= y-1h, We define W, = (w,, a € ®°) and W} = W, n W
For each r € ®, r' = 4(r + F) is the restrictionof r to T,

Wriss

PROPOSITION 2.

(a) Let w € W! satisfy w(y) =y forall y € T,. Thenw € W,.

(b) Let r, s € ®*. Then there exists w € W' such that (s}, r]) # 0, s, = w(s).
(c) Let s € ®*. Then there exist w € W' and r € I1* such that w(s) € I(r).

PROOF. (a) Since w € W we have pjw = wp), where p} is the restriction of p,
to I', so we have w(I'_) = T'_. Thus the restriction of w to I'_ which is denoted by
w can be expressed in the form w = tow1 where ¢, is a symmetry of II° and
w, € Wy = W(®°). It is clear that wi'w(y) =7y for all y € T, since T_is
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spanned by ®° over R and (T',, T ) = 0. Obviously, we have w;'w(I1%) = II°.
Since the ordering of I', is compatible with the ordering of I' we have
Tiw(®*) = ®* sowehave wi'w = 1. It follows that w = w; € W, N W' = W}
(b) Let & = ®*\ @,,, and &’ be the restriction of ® to T',. Clearly, ®’ is a
root system and there is a fundamental root system I1’ of &’ such that [T’ c &+’
where @*’ is the restriction of ®*N ®* to I',. If r € ® then either r = 7 or
r # ¥ having (r, 7) = 0, so we have

©
w,s' =g’ — As,r )

, 2As,r+r
=g AT
d (r r) (r+7r+

;)(r+ F)= (w,l(s))’, sed.

It follows that W(®’) = W(®)’ where W(®) is the restriction of W(®)to T,.
There exists §', 7] € &’ such that 5’ = ks’, k =1or2and #/{ = k’r{, k' =l or 2.
It is clear that there is w € W(®’) such that (w’(5"), #) # 0. By (C), there is
w € W(®d) c W! such that kk’((w(s))’, r) # 0.

(c) Thereis 5’ € & such that § = ks’, k = 1 or 2. Clearly, there is 7' € 11’ and
w’ € W(®’) such that w(5") = 7. There is r € II* such that 7' = k'r’, k' = 1
or 2. By (C), there is w € W(®) ¢ W' such that k'r’ = ¥ = w'(§") = kw'(s’) =
k(w(s)Y, so we have w(s) € I(r), r € I1*. The proof is complete.

We define @ = {r € ®** |r < 7} where ®**= ®* N &*. Furthermore, we
define 2 = {r e ®}*|r < s for all s € I(r)}. Let ®F = ®F* U -®* and
S*=ZFTU-Ztt I reZtt, L()={r=r,rn,....1,), n<rp< - <
r, n€OFT, i=12,...,n, we write K, =K, XK, X -+ XK, . Assuming
nell*, neXt ifry &€ ®,,,, r, € 2" if r, € ®,,, and thereis r € I(r;) N
¥, #r

We shall omit the proof of the following Proposition 3 which is similar to those
of 13.6.1 and 13.6.4 of [1], and 2.8 and 2.10 of [2].

PROPOSITION 3.

(a) Let re ®}*, s€3¢*, t€ K, and T € K,,. Then X)(t), X(T) € U'
and X* (1), X_(T)e V.

(b) Each element u of U' (u # 1) and each element v of V' (v # 1) have a
unique expression in the forms:

1 . +
u= I_IXr,.(ti)_ l_[ij(T;')’ rieq)f ’sj€2{+7tieKrT’7}eK(sj)’
i=12,...,p,j=12,...,q, 1, <P < -+ <r,, s <s < o0 <s.

v=TIx" (1) =TIX,(T), v e@t*, 8e3t*, ek} T€Ky),
i=1,2,...,Lj=12,....my, <y, < - <y,8<§,< .- <§,.
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Let J;(u) and J,(v) denote r; and -y, respectively. We shall denote by J(u)
the set {r, ry,...,r,} and by J(v) the set {-y,, -v,,....-v,}.

PROPOSITION 4.

(a) Letn € N}, h€ H' andw € W'. Then on = n, oh = h and pyw = wp},
(b) H' ¢ N' c G.

(c) NI/H' = W,

(d) W = (W), r e II*, WQ).

PROOF. It is easy to see that » + 7 &€ & for each r € ®,,,, so for each u € K ¥,
N}(u) can be expressed in the form NYu) = X(u)X* (-u~')X!(u) and hence
N}(u) € G'. The other results of statement (a), and statement (b) are obvious. It
is clear that the image N'(u) under the natural homomorphism from N onto W is
just W! for r € ®* u € K*, so statement (c) follows.

It follows from the properties of the Satake diagrams that ', is the subspace
spanned by &’ over R. It is easily verified that W(®") = W(®)’ = w(I1*)’ where
W(II*) = (W}, r € II*) and W(I1*)’ is the restriction of W(II*) to T',. Thus
by Proposition 2(a) the statement (d) is established. The proof is complete.

COROLLARY 1.

(a) Let r€ 3}, T,T,T,€K,,, and h € H'. Then X(T))X,(T}) = X,(U),
Ue K, hX(T)h"' = X(T"), T’ € K,,,.

(b) Lare Zt* N I(r)), n€* and U,T € K,,. Let u' = N'u(N}H)™" and
w' =X (UuX_ (-U), and v/ = N(NH! and v” = X(T)vX(-T) where
u€ U'and v € V! satisfying r & J(u) and —r & J(v). Then w’, u”’ € U' and v',
v’ € Vsatisfyingr & J(u') U J(u”) and —r & j(v') U J(v"') respectively.

PROOF. Statement (a) is obvious.

(b) First we shall show that statements (1) and (2) below are true. Let s € £¥ ™,
r+sand T',U’ € K ;. Then

) N'X(U'XNHY 1= X, (U), U € K, 5, #1,5 €ZF7,

(2) the element u* defined by u* = X_(T")X,(U)X_,(-T) belongs to U!
and satisfies r & J(u*).

The proof of the statements (1) and (2) is given in the following,.

(1) Since r € I(r,), r; € I1*, we have W(s) € ®** and W(s) & I(r). Thus
we have N'X (U'YN})' = X, (U;) where s, € I(W}(s)) N Z¥*, s, # r and
U, € K, so statement (1) follows.

(2) Let s* € I(s) and r* € I(-r). Then the roots is * + jr*, i, j being a pair
of positive integers, must belong to ®** since r € I(ry), r; € II*. Thus by
Chevalley’s commutator formula we have u* € U, so we have u* € U! since
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ou* = u* It is clear that (is* + jr*) # kr’, k =1,2,%. Hence we have r &
J(u*), so statement (2) follows.
By statements (1) and (2) we have u’, u” € U, satisfying r & J(u) U J(u”).
Similarly, we have v/, v”” € V?, satisfying —r & J(v') U J(v”).
We define G, = (x,(t),a € ®°, t € K; H), Y! = G' N G, and B! = Y'UL

PROPOSITION 5.

(a) Lety € Y, h€ H andn € N'. Then 6y = y and hyh™!, nyn™' € Y.
(b) Hl c Y' c G

(c) For eachr € ®*, hl(v)e H', v € K*

(d) Letr € 3, T € K,,, andy € Y". Then yX,(T)y™ = X(T"), T’ € K,,,.
(e) Leeuc U,ve Viandy € Y . Thenyuy™ € Ul andyvy™! € V1.

PROOF. If w € W! and B € ®° then we have pjw = wpj and B’ = 0, so we
have (w(B))’ = 0. It follows that nyn~! € Y. The other parts of statement (a),
and statement (b) are clear. Statement (c) is obvious for all r € &*\ &,;,. By
13.7.2 of [1] (cf. the case in which J has type 4,) we have hl(v) € H! for all
re ®,,, ve K* sinceJ = {r,r,r+ r} has type 4, for all r € ®,,, also. We
shall prove statement (d). Let r* € I(r) and 8 € ®°. Then the roots ir* + jB,
i, j being a pair of positive integers must belong to I(r) since 8’ =0, so
statement (d) follows. By (d), statement (e) is established immediately.

COROLLARY 2. B! is a subgroup of G'.

3. The quasi-Bruhat decomposition of L(I1%, K)

For each r € I1*, there exists a maximal sub-diagram (II,,8) of the Satake
diagram (I1, §) such that the restriction I of II, N II* to I, is a basis of the
root system I(r)’ U -I(r)’ (cf. pp. 456-458 of [4]). A Satake diagram (II, @) is
said to have R-rank 1 if the dimension of I, spanned by {r + 7|r € I1} over R
is equivalent to 1. Clearly, for each r € IT*, the Satake diagram (II,,8) is a
Satake diagram of R-rank 1. All Satake diagrams of R-rank 1 are given in Table
1. We shall consider separately the Satake diagrams of R-rank 1.

MW II, = II(A,) (cf. Table 1,): I, (r)=I(r)={r}, r="r

) II, =II(A; X Ay) (cf. Table I,): I,(r)= {r}, I(r) = {r,F}, r # F.

B I, =II(A;)(cf. Table L,): [)(r)={r=e,—e;=r,r*=e, —e,=n)},
I(ry={r,nrn,Ffi=e ~e€, =, —e;}. Let ¢y = e, — e, and a, = e; — ¢,.
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Wehave -7, + ry + ay =0and r, — r, + a, = 0, so by 4.1.2 of [1] we have

Nal,-rz = N—rz n = er o g‘l’ er,—rz = N—rz a, = Naz,rl = 52’
N—al,-rz = N—rz,i'l = Nh,—a, = g3’ ]Vi'l,—r2 = N—rl ~ oy = N—az,il = g4'
By (B), we have N, ,k k_, =N, _, k;. It follows that -§,§, =1 since

k, =k, = land k_, = -1. Similarly, we have ~£,£, = 1.

We shall denote by I, the set {1,2,...,k — 1} and by m an integer satisfying
1 < m < n, n being the rank of II,, r € T1*.

@I, =IIA,) (cf. Table I,): r=e, —e,, s=e€, —€,, 1, Fo =€, — €41 =
ra=r+ i L(ry={r,r=e, —eq,i €L}, (r)y={r,rrn=e +e..i
el,}). LetB,=e;,,—€,,,i €I, ThenwehaveB, —r,+ r,=0and -8, - 7,
+7,=0,i€1,,s0by41.2 of [1] we have

Nﬂu—’. = N"n’m = N”mBi = g’,’ N‘ﬁn'ﬁ = N—fi, = N -8 = g1’ i€ Im'

By (B) we have {,£] = 1. Since ~ry + r, + 7, = 0 we have N_,_ =N
=q, i€l .Itisclearthat r,+ 7. —r, — 7, =0,i€1,. Thusby412of[1]we
have N, ;N_, ; =-N_, N, ; i€, It follows from (B) that -N_, , =
N_; ,,IEI sowehave N, ; =N, ;. =q,i€],.

(5)-(6). II, = II(B,) or H(D) (cf Table I, I.): r =e, — e,. We write
r=e —e,andr=e +e, ., i€l anda,=¢;. ,+e,, and B = -e,

+e,,1, J €1, Wehaver,, , = e,. Let r,denote e; and a, denote —e,,_,
II,=0@,): Ii(ry={ry,r,ic€ I}, I(r)={ry, 1,7, i € 1,}.
=IID,): I;(r)={r,ie I}, I(r)={r,r,1€1,}). We have a; + r,, —
F,=0and B, +r,—r,=0,i€ 1, By4.1.2of [1] and (B) we have
Na,»,—r", = N—i‘,’ rm = Nr,,,,a, = i/’ N—a,,—r, = N—r,,i,,, = Ni,,,,—a = _gi’

Ny, =N, =N _pg=m, Ng .=N;; =N z=-.

Moreover, we have {4/ =1 and 9,9, = 1for i € I, Itis clear that r,, — r, — «a,

=0and7,—7r+ay=0sobydl2of[l)wehave N, , =N, =3iN,
=0 N; _,, =Ny 7 = ‘N_,O a = Mo» and ngnp = £1.

Clearly, all ¢, &/, n;, m}, m and 7’ mentioned in 1-6 are equal to +1.

We obtain statements (2A) and (2B) immediately.

(2A) For each r € II*, s € I(r), we have (s,5) = 0 if IT, # II(A,), and we
have A, = A;, = -1and s # 5 if II, = II(A,) (cf. Table I,).

(2B)Foreach r e I1*, I(r) = {s € &** |Wi(s) € ¢7}.

LemMA 1. Let re ZF* N I(r¥), rr € IT*, L(r)={r,r,...,1,} and T =

(tytyy.oont,) € Ky If D(T)+ 0 then X_(T)= X(T*)N'X(T*)y =
y’X,(T’)N,lX,.(T”), T*, T*/, T', T” € K(r)’ y;’ y c Yl.
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PrOOF. We shall consider the cases 1-6 separately.
1. Table I;: X_(T)= X! (¢)=x:,(1), T=(t)€ K_,,. Since D(T) # 0 we
have ¢ # 0, so we have

X_(T)=x,(¢t)h (=t n,x,(¢71) (by 6.4 of [1])
= Xr(T*)NrIXr(T*/)y’
where y = h(~t)=hi(-t)e H* c Y'and n,=N' € N, and T* = (+7}), T*

= ()€K,

2.Table1,: X (T)=X'()=x_(t)x_,(f), T=(t) € K, Since D(T)# 0
we have t # 0, so we have

X_(T) = x,(t7)x,(i )b (=t h (=17 ) mmpx, (17 2, (£71)
(by 6.4.4 of [1])
= X(T*)N'X(T*)y

where y = h (-t)h(i)€ Y! and n,n,=N' € N, and T*=(t7)), T* = (1)
€K

3. Table I;: X_(T) = X—lrl(tl)X}rz(IZ) = x_ (t)x_;(6)x_, (8)x_;(5,), T =
(1), 1) € K,,. Since D(T) # 0 we have T # (0,0). If either ¢, or ¢, is equal to
zero the lemma is true as in the case of Table I,. We assume that ¢, # 0 and
t, # 0. Then by 6.4.4 and 5.2.2 of [1] we have

X (T) = i, (17 by (27 g, (0 ) 2, () 2 (0) %, (1) % (53)

= x;l(t'l‘l)h;l(—t'l‘l)nilx_,‘(tl)x_,z(tz)xal(—&t-{ltz)x_;z(fz)xaz(§4t'1‘1t'2)x;1(f1‘1)
(by 5.2.2 of [1])

= x () Ry (<7 ) mx o (d)x g (55)x,, (77) »y

where d =1, — £,&,17'1,1, and y, = x,(-&;17')x, (£,07'1,). Since D(T) # 0
and —5 &, = 1 wehave d = {7(1,f; + t,t,) = i;'D(T) # 0. Thus we have

(T)“xr( ) R(dDh, (- d—1)nflnrlx—rz(tZ)x—az(gzd_112)’
_,z(tz)x (=£1d71)x, (d 7N x, (57 ) ny
( ) (d YA, ( ’-1_1)hrl(—d_1)xrz(t2)xrz(fz)xil(_d—ltziz)’

n.n,x,(d” Hx; ( )xrl(gd 2t'1'1t2t_2)x;2(—d'lt-l‘ltz)xrz(—d'1il‘1f2)y2y1
where y, = x_, (£3d7'1,)x_, (-§4d 't,). Finally we have
X_(T)=x, (t*)x;l(t'{")x (ti")x-(t_;)n-n x,‘(t{"’)xil(t_{"’)x,z(t;')xiz(ff')y

= X)X (3)NIXE () X2 (137) y = X(T*)N'X(T*) y

where y = h, (-1;)h, (- d)yzyl and n,n, =N'€N' (r,=r), and £} =
tD(T)1 ;—t'D(T) Lo =1, t¥ —tZEK and T* = (1), t¥), T* =

(1, 13") € K,). Clearly, we have y € G,. Since X_[(T), X(T*), X(T*),
Nle GLsoye Yl
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4. Table 1 X_(T)= _,O(ZO)X_I,I(tl) - X1, (1,) where 1, = - inD(T) — «.
D(T)y=utf, + tt,+ - +t, i, 1, e €K, ={t€ K|t=-i},(r,=r,). Since
D(T)+ 0 we have T# (0,0,...,0), so there exists an integer m satisfying
l<msgnsuchthats,_,=¢, ,= --- =t, ,=0and ¢, # 0 (wewrite?,, =
t). By 6.4.4 and 5.2.2 of [1] we have

X (T)=x_(f)x_, (t)x—ro(tO)x—?l( )x—rl(tl) ~Fm,1(t—mfl)x—rm,l(tmfl)
=x, (i)h, (<170, x_, (Ox_, (15)x_, (ni- to)x_;l(t_ )xﬂl(glt_'lt_l),
x-rl(tl)"' X_5 l( m— l)xB,,, 1('Em 0, 1) (tm )x; (’_1)
= x, (i~ l)h;m(—’ l)n;mx_,m( _lto) -—ro(to)x—rl([ )x_ A1) -

X (t_m—l)x—rm,l(tmfl)xim t_-l)yl

T

where
= xﬂl(glt_'lt_l) e me,l(gm—lt__lt_m—l)
and
1 =i Y1D(T) + ne) = i 'ni,.

We write u = —qf~', and v = —qu~'t,. Since D(T) +# 0 we have t, # 0 and
¥ # 0, so we have ¥ # 0 and v # 0. Thus we have

X (T)=x; (), () x, (w )k, (<u™)npn, x, (20)x_, (0)x_, (1))
x_p(n)x g (~§u ) - ()X

><X-sm,l(—£;_1u‘ltm71)x,m(u‘1)xfm(t‘ )

=x; (17)h, (=) x, (u™)h, (-u™)x, (o) h, (<o )n,n, n, x o, (7%)
Xox_, (to)x_, (t)x_, (1) -+ x_,  (t,_1)x, (1,-1)
Xx, (V1) yyx, (u™)y,x, (i) y,

=x; (i), (~f‘1)x,0(u‘l)h,o(—u“)x,m(v‘l)hrm(—v“)
X (1*)x, ()%, (1) %, (1) -+ x, ({1)x, (1,_;)

><n;",n,mn;mx;m(u*)ygx,m(u*)yzxfm(rl)yl.

1 mfl)

Fm—

where 7* = oM q(D(T) — tl) + 13), and y, = x_p(-¢ju™"t
x_pg (&, ju',_;) and y3—x3(£1v'f) ) KEIY lt-m - Flnally we
have X_(T)= X(T*)N'X(T*)y where y —h lh (=Dh, (u)h; (~0) y3y, ¥,
€ Y'and N} =hn, n, n, hn = hn, ENlhEHlandT* T+ e K

Pyt P (r-
5. Table Ii: X_(T)= (tl)X_I,Z(t,_) - X!, (¢,). Since D(T)# 0 there
exists an integer m satisfymg l<m<nsuchthatt,=¢,_,=---=¢,.,=0
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and ¢,, # 0. We shall write 7, = ¢. By 6.4.4 and 5.2.2 of [1] we have

X (T)=x_, (Dx_, ()x_;(i)x_, () - x_; (F)x, (1,1)
= x;m(f"l)h;m(—t_"l)n;mx_,m(t)x_,l(tl)xul(£1t"1t1)x_;1(t'1)xﬂl('nlt"lt'l) v
x—rm,l(tm—l)xum_l(£m~1t-_ltm—1)
Xx_;mfl(t_m_l)xﬁmq(nm_li‘lt‘m,l)x,m(f‘l)
= x; ({7 h, (<1 )n, ()x_, ()x_, (0)x_; (0)x_, (§&1707) -
)c_,m_l(t,,,'l)x_;m‘l(t_mwl)x_,m(‘im_lg,’n_11‘_"11,,,_11',,,_l)x;m(t—'l)y1
= x;, ()R, (i), x_, (d)x_, (1) x_;(7) -
X, (tmet)x_;, (D)2 (7)1
where y; = x, (&7 xg (mi™'E) - - - Xop (Emrf )X (M rf 7' y)

and d = i7'D(T). Since D(T) # 0 we have d # 0. By 6.4.4 and 5.2.2 of [1] we
have

X (T) = x, (i (i), (d ", (~d ™ Vm,m, x ()% g (-id 7 ,)
Xx_(B)x_o(~$1d70) - x_,  (tw_)X_p (M d",_,)
XX g (Fne1) X, (€0 0d )%, (d 7%, (7)) 3y
= x, (F7)h; (<) x, (d")h, (-d)x, (d7*)x; (0)x,(0) -
X ()%, (Lpi)npn, x, (A7) yyx, (7) 3
where
= x-ﬂl(_n/ld_ltl)x—vq(_gid_lt_l)
X gy (Mmrd My )x g (Eroid M)
and
t*=D(T) — u.

Clearly, we have N!'=n.n,=n, n, ngn, or N! = n, n, according as r,, # r
or r, =r. We define y* = h, (-t)h, (-d)y,y,. Furthermore, we write y =
n/;lln;l’y* or y = y* according as r,, # r or r, = r. Finally, we have X_(T)=
XAT*)N!X(T*)y where y € Y'and N;' = n,n, € N, and T*, T* € K,,.

Table I: by a similar argument to that in the cases 4 and 5, the following result
can be proved to be true for this case: X (T)= X (T*)N'X(T*)y where
ye Y, N =nn €Nand T* T* € K,,.
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We may summarize the results of the cases 1-6 in the form X _(7)=
X(T*)N!X(T*)y where y € Y'and T*, T* € K,,,.
Thus it follows from Proposition 5 that

X (T)=yX(TONX(T"), ' €Y T T" €K,

The proof is complete.
Similarly, we have the following lemma.

LeMMA 1. With the notation of Lemma 1, if D(T)+# 0 then X(T)=
X_(THNX_(T*)y =y'X_ (T)N)X_(T") y,y' €Y', T*T* T T"
K,
COROLLARY 3. With the notation of Lemma 1, if I =T, N TI°+ &, T+
0,0,...,0) and D(T)= 0, then X_,(T) & B'N'BY; if T1°= & then X_(T) €
B'N'B' U B,

LEMMA 2. Let r€ ZF* N I(r¥), rF € II*, Ii(r)= {r,ry...,1,} and T =
(o tys oo ty), U= (upuy,...,u,) € K, satisfy D(T)=0. Then x =
X.(T)X_,(U) can be expressed in the form x = X(T))X_(U)X(Ty)y, y € Y!,
Ty, Ty, Uy € K,), satisfying D(T,) # 0.

PROOF. We define K= {t € K|f =1t} and K} = K\ {0}. We write T, =
(t; — x,t5,...,t,) and U = (u; ~ zx7Yu,,...,u,), z=2 or 1 according to
re®,,orrc® If weput xe K¢ then T, U € K, since ry & ®,,. If
x € K¢ we have D(T,) = x*(1+ x" ¢t + f)) and D(U,+) = z2x"* + zx Nu +
#) + D(U). It is clear that D(T,) = 0 and D(U, 1) = 0 are the equations in the
unknown x~! with coefficients in the field K. Let |K | be the cardinality of K.
Clearly, we have |K | > 4, so there exists at least an element ¢ of K such that
D(T.) # 0 and D(U,.1) #+ 0.

We write r = r,. By Corollary 1 and Lemma 1’ we have
x=X(T)X_,(U) = X(T,) X;(c) X_(U)
= X(T) X, (ze™ )R (-2 Y NXL (27 X_(U)
= X(T)X!(zc )R (~zc Y)NIX_,(U.-).
Since D(U,-1) # 0 by Lemma 1 we have
x = X (T) X (ze )L (2e )N XAT*)NIX(T*') y’
= X(T) X2 (ze ™)L (=2¢7) X_,(Ug*) X,(T*) y’
= X,(T)) X_(U,) X,(Ty) y
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where y’, y = h (-zc)y € Y'and T, = T,, T* T*, U* € K, satisfying D(T,)
# 0.

LEMMA 3. Let r€ 3¢ N I(rf¥), r € I1* and T,U,U’ € K,,,. Then x =
X (UYX(T)X_,(U’) can be expressed in the form x = yX(T)X_(U)X(T"),
yeYLUT,T €K,

PrOOF. We shall consider separately the various possibilities.
I°. Suppose D(T) # 0. By Lemma 1’ we have
x=X_(U)yX (TINX_(T")X_(U’") = y'N'X,(U)) X_,(U?*)

where y' € YL, T, T", U* U, € K,

(a) Suppose D(U;) # 0. By Lemma 1’ we have
x = y'NYy"x_ (UNX_ (U)X (U*) = yX (T)X_(0),

,V” € Yl’ Ul,’ UIU € K(r)'

(b) Suppose D(U,) = 0. By Lemma 2 we have

x = y'NX(T,) X_,(Up) X(T7), o e YL T, T3, Uy € K,
satisfying D(T,) # 0. By the results of case (a) and Proposition 5 we have
X = yIXr(Tl)X—r(UI)Xr(TO’)yIN = er(T)X—r(O)Xr(T/)’

n€YLT, U €k,

2°. Suppose D(T) = 0. By Lemma 2 we have
X = X—r(U)Xr(TO)X—r(UO)Xr(TO/)y”

for y' € Y}, Up, Ty, Ty € K, satisfying D(T;) # 0.~Thus it follows from 1° that
x = n X (T X_(O) X,(TY + )y’ = yX(T)X_(0)X,(I"), by Corollary 1(a)
and Proposition 5, where y; € Y'and U, T), T/ € K.

The proof is complete.

COROLLARY 4. Let r€ Zf* N I(r¥), rrell*, UTeK, and n€ N',
b € B'. Then x = bnX(T)X_,(U) can be expressed in the form x =
b*n*X_(U*)X(T*), b* € B, n* e N, T* U* € K,

PROOF. We denote by w the image of n under the natural homomorphism from
N onto W and by s the root w(r).

1. Suppose s € ®*. Then s € ®** and x can be expressed in the form
x =bX (T)HnX_(U), sy = I(s)NnZ}", T, € K,,. Clearly we have bX, (T)) =
b* € B!, so the lemma follows for this case.
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2. Suppose s € ¢,

(a) Suppose D(T)+# 0. By Lemma 1’ and Proposition 5 we have x =
bny’X_(TYN!X_(T'")X_[(U) = besl(Tl)nN,lX_,(f]*) where s; = I(-s) N
2, y,y’€Y'and T, T” € K,,, so the lemma follows for this case.

(b) Suppose D(T) = 0. By Lemma 2 we have x = bnX (Ty) X_ (Up)) X(T) y’,
y € YL T, Ty, Uy € K,,, satisfying D(T;) # 0. Thus by case 2(a) and Proposi-
tion 5 the lemma is established.

This completes the proof.

We denote by Nj the subgroup of N! consisting of the elements whose image
under the natural homomorphism from N onto W belong to W,

LEMMA 4. Let x = bnoun’ where b € B, n,n’ € N}, v € Viandu € U'. Then
x can be expressed in the form x = bibis, be BL, he N\, s e V!, e U

PrOOF. By Proposition 4 we have n’ = nn, -+ n, where n, € Nj or n, = N/,
rell* i=12,...,q. Let n”” =nyn,y --- n, and let w, be the image of n;
under the natural homomorphism from N onto W.

1. Suppose n, € Nj. Then we have w, € W, so we have w,(s) € I(s) for each
s € ®** Thus we have x = b, #,,i,n"", b, € B}, i, € N, 5, € V', 4, € UL,

2. Suppose n, = N, r, € IT*. Clearly there is r € 2}* N I(r,). We have
N}! = N, since r € I(r,). By Proposition 2 and Corollary 1, x can be expressed
in the form x = bnX_ (U,)v}X,(T)u;N}'n" where U,, T, € K,, and v} € V!
and u, € U satisfying —r & J(v?) and r & J(u,). By Corollary 1 we have
x = bnX_(U) X(T))v,u;Nln” = bnN}) X (UY) X_(T{)viuin” where U/, T, €
K, and v}, v, € V' and u; € U, satisfying —r & J(v;) U J(v}) and r & J(uy)
U J(u;). By Corollaries 4 and 1 we have x = b*n*X_ (U*) X, (T *)viun”’ =
b,i,b,i,n", where b*, b, € B', n*, iy e N', 5, € V', &5, € U, U*, T* € K,,.
By repeating a finite number of times the process used above we obtain the
required expression for the element x.

LEMMA 4’ Let x = bnvuwv’ whereb € B!, n € N, v,v’ € Vlandu € U'. Then
x can be expressed in the form x = byhyi,it, where b, € B!, i, € N, i, € V!
andi, € U

PROOF. By Proposition 3, ¢ can be expressed in the form v =
X 5 (U)X 5 (Uy) -+ X 5 (Up), 8,€2F7, U €Ky, j=12,...,m, 8§ <8,
< --. <§,. It follows from Proposition 2(c) that there exist w, € W' and
r, € I1* such that w(8,) € I(r;). Clearly, by Proposition 4 there exists n, € N!
whose image under the natural homomorphism from N onto W is w;!, so we
have X_; (U)) = n, X_(T})n;* where r € 2" 0 I(r)), r; € I1*. It follows from
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Lemma 4 that x = baviX_,(T,)n;v"” where b € B!, ne N!, s € V!, n € U!
and v’ = X_;(U,)---X_5 (U,) € V. By Corollary 1 we have x =
biX_ (U)X (T)viuiX_(T))ni'v” where U,T € K, and v € V! and u] € U!
satisfy —r & J(v]) and r & J(up). Thus it follows from Corollary 1 that x =
baX_(U)X,(T)X_,(T,)v,u;n;'v"” where v, € V' and u, € U, satisfy -r & J(vy)
and r & J(u,). Thus we have

x = bayX(T)X_ (U)X AT")v,uyni%v" (by Lemma 3)
= b*n*X_(U*)X(T*)X(T")v,u;nj” (by Corollary 4)
= b*n*v}uiniv"” (by Corollary 1)
= b, b,i1,0" (by Lemma 4)

where y € Y!, b*, b, € B!, n*, i, €N, v/, 5, €V, uf, i, € Ul and T, U,
T’, U*, T* € K_,,. By repeating a finite number of times the process used above
we obtain the required expression for the element x.

By Proposition 4 for each w € W' we can choose an element n,, of N! such
that n,, corresponds to w under the natural homomorphism from N onto W. The
elements n,, for all w € W, form a set N_.

We define G, =U,, .yt B'n, V'B', n, € N1

THEOREM 1. G, is a subgroup of G and G' = G,.

PROOF. If x € G, then x can be expressed in the form x = bn b, b’, b € B,
n,€NL,we W' ve V. Itisclear that x! = b '~'n;'5"). By Lemma 4 we
have x~! = bavib~! = bavh’ where s € U', b, b’ € B', i € N' and & € V. Let
w,; denote the image of 7 under the natural homomoprhism from N onto W.
Since s € N' we have w; € W', so we have i = hn,, h € H', n, € N} by
Proposition 4. It follows that x~! € G,.

Let x,, x, € G,. Then x, and x, can be expressed in the form x, = b;n,,v,b]
and x, = byn,v,bj where by, by, b,, b€ B', n,,, n, €N, w, w, € W' and
vy, v, € V1. Clearly, we have bib, = yu, y € Y!, u € U'. Thus x,x, can be
expressed in the form

W,

_ ’ ’ ’ ’
X)X = byn, v yun, v,by = byy'n,viun, v,b

(by Proposition 5)
= bhbit, b} (by Lemma 4)
= byt obyltohs = byt by (by Lemma 4')

where y’ € Y., @, ity € U, b, by, by = tyb}, € B* and v}, 5,5, € V1. It is clear
that i, = hn,, where h € H' and n, € N}, w being the iamge of 7, under the
natural homomorphism from N onto W, so we have x,x, € G,. It follows that G,
is a subgroup of G.
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For eachw € W! we have B'n VB! c G' since B,, V! c G'and n, € N} c
G'. Thus we have G, C G'. On the other hand, we have U, V'! C G;. Since G, is
a subgroup of G and G' = (U, V') we have G C G,, so we have G! = G,.

By Theorem 1 and Proposition 4(c) we have

G‘'= U Bn V'B'=BNW'B!, n,6eN.
we Wl
The decomposition (3.A) of G! is called the “quasi-Bruhat” decomposition of G*
(of L(IT% K)). In general, if T1° # &, G! cannot be expressed in the form
G! = B'N'B! by Corollary 3.

4. The simplicity of L(II% K)

The steps of the proof of the simplicity of L(II%, K) are quite analogous to
those in the proof for the twisted groups given in [6].

We shall show that there exists A € K* such that A% # A if K* # K.
Assuming the contrary, then x? = X2 for all x € K*, so we have (a + x)? =
(a + x)? where a is an arbitrary element of K, and hence we have x = X for all
x € K*. We have a contradiction. Thus there is A € K * as required. Similarly,
we shall show that there exists p € K * such that p* # g% if K* # K. Assuming
the contrary, we have x* = x* for all x € K *, so we have (a + x)* = (a + X)*
where a is an arbitrary element of K, and hence we have x? = x? for all
x € K*. We have a contradiction. Thus there exists p € K * as required.

LEMMA 5. Let ry, r, € ®** such that r, # r, and r, # 7,. Then there exists
h(x) € H' such that x(r)) = 1, x(r;) # x(r)) or x(ry) = 1, x(r)) # x(r)-

PrROOF. We have 4, = 2(r’, s")/(r', r') = z(A,, + A;,), r,s € ®* where z =
1 or 2 according to r € ® or r € ®,,,, since (r,7) =0 if r € ®,,, and (r,7) =
- 3(r, r)if r € ®;,. Thus the following statement (4.A) holds.

(4.A) Let h(x) = hl(c), r€ ®**, c € K,. Then for s € *, x(s)= c?""
where o(r’,s")=2z"4,.,.

Let F denote the set {r,,r,}. We shall consider separately different possibili-
ties.

1. Suppose I(ry) # I(r,).

(a) Suppose (ry, r;) = 0. Then we put h(x) = h} (2). By (4.A) we have x(r,) = 1
and x(r,) = 4 or 2 accordingtor, € d or r, € ®,,,.

(b) Suppose (r{,r;) # 0. (1) FN ®,,, = &. Then we put h(x) = h:(-1) where
r € F satisfies (r’,r’) = (s',5"), s € F\ {r}. It follows from the properties of
Satake diagrams that 4,, =68, 6§ = +1 if (+',r") = (s',5"). By (4.A) we have
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x(r)=(-1)? =1 and x(s) = (-1)® = —1. (2) If there is a root r of F such that
r¢ &, and s = F\ {r} € ®,,, then we put h(x) = hi(-1). It follows from the
properties of the Satake diagram AIIl that (r’,r") > (s’,s’). By (4.A) we have
x(r)=1and x(s) = -1. (3) If F C ®,;, then we put h(x) = hl,z(—l). It follows
from the properties of the Satake diagram Alll that 4, , = -4;, = -4,, =1
and 4, , = A4;; = 2. Thus by (4.A) we have x(r;) = 1 and x(r,) = -1.

H. Suppose I(r)) = I(r,).

(a) Suppose r, & ®,,,. Then we put h(x) = h(8) where r € ®, N F, and
8 =b"IN%, A € K* satisfying A2 # A* and b = AX. (In this case, there is r € F
such that r € @,)) It follows from the properties of the Satake diagrams that
A,,=A,,=1and 4,,=0, s € F\ {r)}. Thus we have x(s) = b"2A?A? = 1 and
x(r)y=b"2N=NX2#1.

(b) Suppose r, € ®,,,. (1) If there is r € F such that r € ®,, then we put
h(x) = h*(-1). It follows from the properties of the Satake diagram AIII that
A,, = 1,and hence we have x(s) = -1 and x(r)=1,s € F\ {r} (s € ®;;,). 2)
If FN®,,= & then we put h(x)=h.(m)h (YK, (173), for y=r +F,
p € K * satisfying u* # g, b = pji. It follows from the properties of the Satake
diagram AlIl that 4,; =A4,; =-1and 4,; =0, and 4, =4, =4,, =
A, =A, =1 Thus we have x(r,) = p’i 'bp™> = p’5 ppp > =1 and x(r,)
= pbp 5 = pWlpp o = p gt £ 1

The proof is complete.

Obviously, such A(x) in case (1) in the proof of Lemma 5, satisfy x(8) = 1 for
all B € ®°. Thus we have

ra7;

ra7;

COROLLARY 4. Let r,s € ®** and r’ + s’. Then there exists h(x) € H' such
that x(r)=1, x(s) # 1 or x(s) =1, x(r) # 1, and moreover, x(8) =1 for all
B e ®°.

COROLLARY 5. Let n€ N'\ N{}. Then there exists h(x)€ H' such that
nh(x)nt = h'(x’) #* h(x), and moreover, x(B) = x'(B) = 1 for all B € ®°,

PROOF. Let w denote the image of n under the natural homomorphism from N
onto W. Since n € N'\ N} we have w € W'\ W. Thus by Proposition 2(a)
there is r € ®** such that s’ = w(r’) # r’. By Proposition 4 we have pjw = wpj.
Thus if 5 = w(r) then we have § = w(F), so we have s' = w(r)" # r’. We shall
consider separate cases.

1. Suppose w(r) = —r’.

(a) Suppose r € ®,;,. Then we put h(x) = h1,1(2) wherer, =r+7e ®,,. Itis
clear that A’(x') = h.,(2), so we have x(r) =2 and x'(r) = 3. Thus we have
h(x) # h'(X')-
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(b) Suppose r € ®. (1) Suppose the R-rank of (II, 8) is not 1. Then it follows
from the properties of the Satake diagrams that there is r, € ®*, I(ry) # I(r),
such that (r/, r{) # 0. We put h(x) = hL(2) or h(x) = h}(2) according to (r’, ")
> (r],r{)or (r’,r’) < (r{, r{). Thus we have x(r;) =8, x'(r)) = 81 8=2o0r1,
or x(r)=vy-x'(r)=v"% y=2or }, according to (r’, ') > (r{,r)) or (r’,r') <
(r{,r!). (2) Suppose the R-rank of (II,8) is equal to 1. We put h(x) = h}(2).
Clearly, we have h'(x’) = h' (2), so we have x(r) # x'(r) since p > 5.

II. Suppose w(r) # —r’. Then it follows from Corollary 4 that there is
h(x) € H! such that x(r) # x({s) where § =1 or -1 as s € ®** or s € ®*".
Thus we have h(x) # h'(x").

It is clear that such h(x) above satisfy x(8) = 1 for all B € ®°.

The proof is complete.

We shall prove the following statement.

(4.B) Let h(x) € H! be such that h(x) # 1; then there exists r € ®** such
that x(r) # 1.

PROOF. Assume the contrary. Then there exists « € I1° such that x(a) # 1. It
is easy to see that there exists s € ®** such that (a, s) # O sowe have 5 + ja € P,
j = +1. Clearly, we have r = s + ja € ®**. Thus it follows that x(r)+# 1,
r € ®**. We have a contradiction, so the statement is established.

LEMMA 6. Supposey € Y'andy +# 1. Then

(1) y & Z* where Z* is the centre of G,

(2) there exists u € U! such that yuy *u=' = u* # 1 or there exists v € V! such
that yoy o™} = v* # 1.

PROOF. It is clear that statement (1) and statement (2) are equivalent. We shall
prove statement (1).

Since y € Y' C G,, by 8.4.4 of [1], y can be expressed uniquely in the form:

X (1) X0y (12) -+ %, (1,)1(x0)m %8 (1]) %5,(13) -+ x, (1))

where a;,, B,€ ®°*=0°Nd* o, tteK* i=12,...,p, j=12,...,q,
h(xo) € H and w € W, satisfy w(B)€ @, j=1,2,...,9. We write Q=
{a,05,...,0,) and @) = { B, B,,...,B,}. Suppose @, + . Then there exist
a € @, and w; € W, such that w;(a) = 8, B € II° It follows from the proper-
ties of the Satake diagrams that there exists r € ®,; such that (r, 8) # 0. Thus we
have (s,a) # 0, s = w!(r) € ®,,. Let 4, = c. Clearly, we have ¢ = 1, -1, 2,
-2. Since there exists A € K * such that X 2 X2 then there exists § € K* such
that (8871)¢ # 1. We put h,(x,) = h:(8); hence h,(x,) € H' satisfies xl(a) =
(8871)¢ # 1. Thus we have y & Z! if ®, + @. Similarly, we have y & Zl i
®) + &. Thus the lemma is true if ®, # Q or ® # . Assume @ = @ =

Then we have y = h(x)n,,. Suppose w# 1. Then there exists r € <I>11 such that
w(r)y=s#r. Weput t=11if xo(s)# 1, and r€ Ky ={reK*[t#1} if
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Xo(s) = 1. For such ¢, we have X}(¢)yX -t)#y if y = h(xo)n, and w # 1.
Suppose ®, = ® = @ and w = 1. Then we have y = h(x,) # 1. Thus there
exists r € ®* such that x,(r) # 1 by (4.B). Hence we have y & Z' if y # 1. This
completes the proof.

We shall denote by R! an arbitrary normal subgroup of G' satisfying |R!| > 1.
(For a set S, we denote by |S| the cardinality of the set S.)

LEMMA 7. |[R' N UY > 1.

PROOF. Since |R'| > 1 there is x” € R! such that x’ # 1. By Theorem 1, x’ can
be expressed in the form x’ = b'nv’b”, b’,b” € B!, n’ € N, v" € V. Since R!
is a normal subgroup of G! there exists x € R! such that x # 1 and x can be
expressed in the form x = vbn,, v € V!, b€ B', w € W', n, € N}. We have
b=uy,uc U, y € Y, sowehave x =vuyn, whereu, v, y and n, = n are given
as above. We shall consider separate cases.

(1) Suppose u =land v = 1.

(a) Suppose w € W1\ W;. Then by Corollary 5 there exists h(x) € H' such
that nh(x)n! = h'(x’) # h(x) and x(B8) = x’(B) = 1for all B € ®°. Let x, =
h(x)xh(x)'x71. Then x, = h(x)h'(x’)™' = hy(x;) # 1. Since R! is a normal
subgroup of G! we have x; = h,(x;) € R'. It follows from (4.B) that there exists
r € ®** such that x,(r) # 1. We define # = X}(¢t)h,(x)) X} (-)h,(x)7), t €
K *. Then we have &t = X!(t*), t* € K* and & € R', so the lemma is true for
this case.

(b) Suppose w € W}, Then x =y € Y!, y +#1. By Lemma 6 there exists
u* € U' N R such that u* # 1 or there exists v* € V! N R! such that v* # 1.
Obviously, the lemma is valid if there exists u* € U! N R, u* # 1. In the
following (cf. case 2), we shall show that the lemma is true if there exists
v* € VN RY v* # 1.

(2) Suppose v =1, u+# lorv # 1.

We write s = J;(u) or s = J;(v) according as v =1 or v # 1. Then hA(x) =
h'(2) satisfies x(s) = 2 or 4 according as s € ®,,, or s € ®. Moreover, we have
x(B) = 1for all B € ®° We define x| = h(x)xh(x) x.

(@) Suppose v =1, u#1 Then we have x{ = uth()W(x)'u? =
uth (x,)u~" where uj = h(x)uh(x)™ € U?, and h'(x’) = nh(x)n™! and h(x,)
= h(x)h'(x’)! € H'. We write x; = u'ujh,(x,). Clearly, we have x;, x, € R*
since R' is a normal subgroup of G'. Since x(s)# 1 we have u; = u™'u] # I,
Ji(uy) =5, 50 x; = uhy(x1), 4, € UL, u, # 1. Let &t = h(x)x;h(x) *x. Then
we have # € U' N RY, & # 1, since x(s)# 1 and Ji(u;) =s, so the lemma
follows for this case.

(b) Suppose v # 1. Similarly, then we have x; = h;(x;)v,u; € R! where v, €
Vi J(v))=s, v, #1, u, € U and h,(x,) € H'. Since v, # 1 then J(v,) can
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be expressed in the form J(v;) = {~s1,-5;,...,-5,}, 5, € oxt i=1,2,...,q,
q > 1. Suppose ¢ > 1. By Lemma 5 there exists h(x) € H! such that x(s,) = 1,
x(s2) # 1 or x(s5,) =1, x(s,) # 1. We write x} = x7h(x)xh(x)™'. Then we
have x} = uj'v,u¥ where v, = v7'h(x)v,h(x)™ € V! and u} = h(x)uh(x) "
We write x, = v,ufu;! = v,u,, u, = utu;' € UL By the properties of h(x)
mentioned above we have J(v,) = {—sf,-s¥,...,—sF},s* € @}*,i=12,...,p
satisfying —s* < -5, or —s = -s,, —s§ < —s, according as x(s,) = 1, x(s;) # 1
or x(s;) = 1, x(s,) # 1. Clearly we have x5, x, € R'. By repeating a finite times
the process used above, finally there is x* € R! such that x* can be expressed in
the form x* = v*u* where u* € U' and v* € V! satisfying J(v*) = {-r},
r € ®** so we have x* = X! (t)u*, t € K*. This means g = 1. It follows from
Lemma 5 that x* = X}(¢' DA (-" HNX(t" DHu*, t' = z7't. We write * =
R (=" HNIXI(" Y yuX (¢'"). Since R! is a normal subgroup of G' we have
%£* € R Tt is clear that %* = hl(—+ )N'a*, @* € UL If @* =1 then the
lemma is true for this case by (1a) above. If #* # 1 then the lemma is true for
this case by (2a) above. Thus the lemma is valid for the case (2b). Clearly, the
cases (1a), (1b), (2a) and (2b), considered above, exhaust all possibilities. The
proof is complete.
For each r € ®* we define X! = { X}(¢), ¢ runs through K, ).

LEMMA 8. There exists r € ®* such that |R* N X}| > I.

ProOF. By Lemma 7 there exists u € R'! N U}, u+# 1. We write J(u) =
{rir,....,r}, 1, € ®r*,i=1,2,..., p, p = 1. Clearly, the lemma is valid for
the case of p = 1. Assume p > 1. By Lemma 5, there exists A(x) € H! such that
x(r)=1, x(np)# 1 or x(r)=1, x(r))# 1. Let u; = uth(x)uh(x) . It is
clear that u, € R* N U' and J(u)) = {r¥,rf,...,r}}, r* € ®r*, i=
1,2,...,q, satisfying r, < r¥ or r = r¥, r, < rf, according as x(r;) = 1, x(r)
# 1 or x(r,) =1, x(r;) # 1. Finally, by repeating a finite number of times the
process used above we have u* = X!(¢) € R' N X}, t € K *. This completes the
proof.

LEMMA 9. For everys € ®**, X! c R..

PROOF. We shall prove the following statements.
(a) Let h(x) € R! such that x(r) # 1, r € ®*. Then X} C R,

For every c € K, we put t = —(1 — x(r)) %, and hence we have
RGO XM OR(x) X (-1) = X} (-1 — x(r)t) = X}(c) € R.. The statement fol-
lows.

(b) Let X}(t)e R, re ®y; = ®,,, N ®F*, t € K*. Then there exists u €
K* .such that X!, (u) € R.

r+r
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It is clear that At € K, = K*, A€ K* A=+ A. We have
X)X A) X (~t) X (-At) = X!, .(u) € R* where u = n(:hr + Ati) = qti(A —
A)# 0, u € K*,, n= +1. The statement follows.

(c)Let X}(¢1)E R, re ®}*\®%},t € K* Then X! c RL

We have AL(r D) XN )R (+7) ! = X}(¢7Y) and NIXI(e D(NYH = X2 (=7,
so we have X! (-t7!) € R. It follows that N)(¢) = X} ) X! (-t ) X}(t) € R
since r € ®F* \ ®%;. It is clear that X'(2¢) € R'. Similarly, we have N!(2¢) €
R!. We write A(x) = N}Q2t)NX(t). Clearly we have h(x) € R' and h(x)=
RONIBUON} = BQONR(OFD) (VY2 = BQoR-1"YRY-1) = AAQ)
where N! = n (1)if re &, N} = N!if r € ®,,. Since r € ®}* \ ®}} we have
x(r) = 4 # 1. Thus by statement (a) above we have X! c R

By Lemma 8 and statements (b) and (c) we obtain the following statement.

(d) There exists r € ®F* \ &%} such that X! c R%.

By a process which is similar to that in the proof of statement (c) we have the
following statement immediately.

(e)Let X! c R, r € ®¥* \ ®%}. Then hl(u) € R forallu € K**.

Now, we shall prove the lemma.

Clearly, this lemma is true for the case of II° = &. In the following we assume
I1° # @. By statements (d) and (e) there exists r € ®** \ ®*} such that
hl(u) € R for all u € K *'. It is clear that there exist elements A;, A,, A; and A,
of K* satisfying condition

@4.0): (A A2 =1, A5 # A%, A3A, # 1and A4 # A,

All such elements A}, A,, A; and A, of K* satisfying (4.C) form a subset S of
K*. If r =7 we put h(x) = h'(2), so we have x(s*) # 1 for each s* € ®**,
satisfying (r, s*) # O since 4,.. = 1, -1, 2 or -2. If r # 7 and s* € ®*", satisfy
(r,s*)+# 0 or (¥,5s*)+# 0 then we have 4,.= +1, +2 if (r,s*)# 0 and
A= x1, £2if (F,5*) # 0, so we can choose an appropriate A* of S such that
h(x) = hL(A*) satisfies x(s*) # 1. It is clear that such #(x) as above belongs to
R!. By Proposition 2(c), for each s € ®** there exists w € W! such that
(r’,s7) # 0, s, = w(s), and hence we have

(r+ 7,5, +5)="(r,s)) +(r,5) +(7,s,) +(7,5,) = 2(r,s,) + 2(F,s;) # 0.
Hence (r,s,) and (7, s;) cannot be equal to zero simultaneously, so we have
(r,s,) # 0 or (7,s,) # 0. By the results mentioned above and statement (a) we
have X; c R'. It follows that nX)n™' = X! C R' where n € N' whose image
under the natural homomorphism from N onto W is w1, This completes the
proof.

By Lemma 9 we obtain the following corollary immediately.

COROLLARY 6. UL, V! C R.

THEOREM 2. G is a simple group.
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PrOOF. By Corollary 6 we have U, V! c R}, so we have G' = (U, V') ¢ R%.
On the other hand, we have R' C G'. It follows that R! = G, so G! is a simple
group. This completes the proof.

5. The identifications of L(I1%, K )

See Table II.

(1) If all the circles of the Satake diagram I1° are white, IT° is called a normal
diagram or a quasi-normal diagram according as the Satake diagram IT¢ does not
have double-ended arrows or does have double-ended arrows.

If the Satake diagram IT° is a normal diagram then the simple group L(I1%, K)
is identified with the Chevalley group L(K,); if the Satake diagram II’ is a
quasi-normal diagram then the simple group L(II% K) is identified with the
twisted group 2L(K).

(2) Let T1° be a Satake diagram and let k be the number of black circles of the
Satake diagram IT°.

(I) Let TI® be the Satake diagram of the type AIIL. Then A (TII° K) =
PSU,, (K, [), f= (X1Xx,01 + 9X,1%) — (X%, + nx,Xx;)
+ - +(—1)m(xmxn—m+2 X 2 X)) F X 1 X + 0 X s k1 X m ket 1
m = %(n — k), n = (-1)", m must be a positive integer.

(II) Let IT° be the Satake diagram of the type BI. Then B, (II°, K)=

PQ,, (Ko, f),
f=Xoxg+ x X |+ Xox_ 5+ - +X,_ X s

+(xn—k+l - ax-(n—k+1))('xn—k+1 - ax-(n—k+1))
+(xn—k+2 - ax—(n‘k+2))(xn-k+2 - a"-(n—k+2)) + -
+(xn - ax—n)(xn - &x—’l)’
a being a generator of K over K.
(IIT) Let I1° be the Satake diagram of the type DI. Then D (II% K)=
PQZn(kO’ f)’
f=xx g+ XX g+ o X, X0
+(Xn-k+1 - ax—(n—k+l,))(xn—k+1 - ax-(n—k+1))
+(xn—k+2 - ax-(n—k+2))(xn—k+2 - &x—(n~k+2)) + -
+(xn - ax—n)(xn - a'x—n)’
a being a generator of K over K.
The proof of this statement will be given in (A.1).
(3) If we put K = C, then all simple groups L(II% C) exhaust all simple
algebraic groups defined over R which have been considered by J. Tits [7] (except
the two types given by Table II’). The construction of the simple groups
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L(I1%C) for all Satake (except the types given by Table II’) is a uniform
construction of the simple algebraic groups defined over R which are individually
given (or constructed) for different Satake diagrams (R-indices) by J. Tits {7). The
detailed consideration about L(I1%,C)= L(II,9;C, f) will given in another
paper.

(4) Suppose K = GF(q?), q being some prime-power. Then L(I1% K) = L(K,)
or 2L(K) according as py € Ad L or p, € Aut L\ Ad L.

We shall prove this statement for the Satake diagram I1¢ of the type AIl in
(A.2). For the Satake diagram of other types the proof of this statement is similar
to that for the Satake diagram of type AIlL

In the following we shall denote by I, the s X s unit matrix.

(A.1) We shall prove statement (2).

(I) If we change the matrix 4 in 14.5.1 of [1] to the matrix A4, then we obtain
an argument along the lines of the proof of 14.5.1 of [1] by which the statement
(2XT), can be proved, where 4, is defined by

i
|
|
]
L
i
{
+
|
]
]
1

(III) If we change the matrices B, 4 and § in 14.5.2 of [1] to the form B,,,
Ay, and S, respectively then we obtain an argument along the lines of the proof
of 14.5.2 of [1] by which statement 2.1II can be proved, where

IZn—Zk I"—k
By = ( B | Ay = | Tn-xk ol
0
IZn—Zk
Stk = ( Sék))’
BO AO
B{R = By . AR = 4o ,
BO AO
SO
S§0 = %
So
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The matrices B,, A, and S, are given in 14.5.2 of {1] and the number of the
matrices B, A, and S, within the matrices B{*), 4{¥ and S{* are all equal to
k. (We write the rows and columns in the order 1,2,...,n — k,-1,-2,...,
-(n—kyn—k+1,-(n—k+1),...,n,-n)

(II) By a procedure which is similar to those of the proof of 2.III mentioned
above the statement 2.1I is established.

(A.2) We shall prove the statement mentioned in 5.

Since L = A, the fundamental root system II of L can be expressed in the
form IT = {a;,a,,...,a,}, n being odd, a;=¢,—¢,.;, i = 1,2,..., n. For the
Satake diagram I1¢ of type AIIl we have pj = w,w, -~ W, and Pp = No Ny,

. Since K = GF(q?) there exists b € K * such that bb = —1 where b = b*.
Let £ denote the generator of the multiplicative group K*. We define pf =
x,(a)x_o(b), a;=13b, b=b% & =(-1)0"Y2 i=1,3..,n and p*=
h*(x*)p*p% --- p*, h(x*) € H satisfying x*(a;) = —€%, i=1,3,...,n, and
x*(a))=1,j=2,4,...,n— 1. Since pf € G we have

It follows that
a(*) = peh(%)p*,
iI(X) = Pa"(h*(x*))Poh*(X*)_lhal(l_’l)ha3(53) Tt ha,.(_n) €H.

It is clear that h(}) satisfies the relations %(a;,) = (¢¢”'6%)%, i = 1,3,..., n,and
X(a)=bb'=1, j=24,. on+ L Since bb = 1 we have b = ¢4 1/2 50 we
have e%1h? = £97 %4 D49 = ¢~ = 1. Thus we have X(a,) =1, i = 1,3,...,n
It follows that o(p*) = pyp*.

Clearly, L(K,)= (x,(t), r runs through ®, ¢ runs through K,). For each
re ®&* ¢ € K, we have

o(p*x,(1)p*) = o(0*) o(x,(1))o(p*)
= p* "o x;(k,1) pgp*
= p*"'x,(1)p*.

Thus for r € ®*7, 1 € K, we have p*~'x,(1)p* € U' and p*x_,(1)p* € V.

https://doi.org/10.1017/51446788700028032 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700028032

38 Cheng ChonHu {261

For each a € IT° there exist r;, r, € ®* such that a = r, + r,. Moreover, for
each 1 € K, there exist ¢, t, € K such that

xa(t) = xrl(tl)xrz(tZ)xrl(—tl)xrz(—tZ)‘
Thus we have p* 'x (1)p* € G, a € ®°, r € K,,. It follows that p*“(L(K,))p*
c G.
Clearly, an element x of G = L(K) belongs to L(K,) if and only if f(x) = x.

It is clear that f(x) = pyo(x)p;! for all x € G. Thus it follows from p; = 1 and
a(p*) = pgp* that foreach r € ¢* r € K|,

F(p*X}(1)p*7) = pyo(p*X}(1)0* ) 0" = pgo(p*) o ( X}(1))a(p* ) ps
= popgp* X, (1) p* gy = p*X}(2)p*!,

so we have p*X(#)p*! € L(K,). Thus we have p*(L(I1% K))p*! = L(K,).
This means for all x € G = L(K) that the mapping ¢: x — p* lxp* is an
automorphism of G and Y(L(K,))= L(I1%, K). Thus we have L(K,)=

L(IT% K).
TaBLE
r
I, II(A)): o
r F
I, A, XA} o o
\_/
I, IT(A,): o————O0—@
e, —e,e,—€ey;¢e;— €,
r Y
I, II(A,): oO—o— @ - —-~--~- o—e—0
€, — €e,€e, — € €,_1—€,€,— €,
I I1(B,): oO—— o ——e--—--=--~-~ *r——a— e
€~ €€, & €n-17 6,8,
en——l - en
I II(D,): & —--------
6 (n) 91_3292*93
e,_1+e,
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I(A,):

®(A,):

II(B,):

o(B,):

II(C,):

®(C,):

II(D,):

®D,):

TI(E,):

®E,):

II(E,):

®E,):

ey — €46, — €565 — €5 e+ e,

€y —€y€e,— e €, €s5€5— e e+ e, A

The Satake diagrams 39

O— O —-——= -~~~ -———0

€] e2e2—e3 €h-1 "€, €,

{eiiej’i¢j’ i’j=l,2’ , 1, iei’l_l’z"‘ ’n}

O——O~ === ===~ = -of—>

€~ €€, — e e, ,—e,2e,

{ete,i#j,i,j=12,....n, +2¢,i=12,...,n}
en—l_en

O———— O = m - -

€~ €€, — €& <
e,_,te,

{eiiej,i¢j’ i9j=1925""n}

€ — €4

{ie,.i e i), i, j=34,567,

1 &
t (-2- Z_:le,-ei

i=

8
,ei=i1,el=ez=£8=1,nei=1}
i=1

€ — €4

-~
]
—

>

Il

!
M| —
M=
o

{iei-f-e l’#}, i,j=2,3,4,596’7ai(e1+e8)’

4 j’

8 8
i(% Zsiei)a g=*l 6 =¢g=1 1:[18i= 1}

i=1
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H(Eg): o o o L o o A=-

1
2 —7 \ 9y - 2

e, —e,€e,— €16, —e,e,—eses—egeg+e; A

Q(ES): {ie,‘ i ej, i ¢J, i, _] = 1a2’ 3’47596’7, 87

1 8 8
t _Zsiei »8.-=i'1,n8.~=1
2i=1 i=1

In this table, for each simple Lie algebra L over C (except G, and F,), the simple
root system II(L) and the root system ®(L) which will be used in Table II are
given.

TaBLE I1
In this table, for each Satake diagram I1® = (II, 8) (except the types given in
Table II'), A, = (74; ¥y; @y) defined in the proof of Proposition 1 are given.

Let k be the number of the black nodes of the Satake diagram I1? and n be the
rank of L. We write m = $(n — k) if II? is of type AIIl, n = n — k if TI% is of
the other types. Let @ denote the empty set.

SATAKE DIAGRAM

Al O— O mmm e m = —— o—o0 Chevalley group

AIll O— O~ —=—=—=—=-~— «)—I

Ag= (78501 = Cmiks1r€m— €mekr-- 1€y — €pis)

p=1inand 8§ =2if niseven, p = 3(n+ 1) and 8 = 1if n is odd
O—O == —— - '

>o twisted group
O—O-—=== ===
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{291 The Satake diagrams o a

BI O— Q- mmmm—— = ——— ~a—>o0 Chevalley group
Ay = (I, 2; )
O—O0--—-—-~=- o——o-—-~--- «——>e
Ag=(L ey —eney— €, .08, — €,5€,.,1,€,4,...,€,) if k is odd

Ag= (I, B;epi1,€mizs--->€,)if k is even

Cl OO ——mmmmmm—— = o<—D Chevalley group
Ay(1; 2; @)
c1 —o—e-------- o—o0—e<—D

Ag=(I;2e,2e;,...,2e, 1561 — €y,85 — €4,...,€, 1 — €,),

n is even
DI O0—O0 === ~= o-——o-—-——-¢<:

A0 = (1’ Q’ Cm+1 — €m+20€m+1 + [ P ) .
€,_1 — €nen_1 + €,)if k is even

Ag = (T; Dlmi1 = €2 €mir F €pins
€, — €,_1,€,_,+ e, ) if k is odd

O— O === = — _o<z twisted group
Ay = (7, 0; @)
OO e m = e = = .<<: Chevalley group
Ao = (I ] )

DIII > ——o0—0—--—-

Ag=(7,8;€e, —€3,63— €4,...,€, 5 — e,_1)
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EI

EII

EllI

EIV

EV

EVI

EVII

EVIII

EIX

Cheng ChonHu {30]

Ag= (7, D;e,+ e,,e5— €g)

(e, —@ I @- O

Ag=(I;B;e,— e5,e4 + €5, —

o—o I -0

a % O

Ay = (I, 2, 2)

[ ¢ —O- -@ I Oo—C

Ag=(I;D;e,— e5,e, — €5, —

o, Oo—0 I —O

Ag=(I;B;e,— es,e, + 5,5 —

Chevalley group
twisted group
e, e+ €;)
Chevalley group
e;)
er e+ e7)

o o O——O I——o—o Chevalley group

Ag=(I;2; 2)

O O O @ I—-—.——(J

Ag=(I; B;e,— es,e, + 5,65 — €,64 + €7)
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(31] The Satake diagrams 43

Fi o T—)o—0 Chevalley group
Ay = (I, 2; 2)
G o — Chevalley group
Ag=(1,2;92)
TABLE I
i * —O0—@----0—e----o—"—>»

FII o—e—Jo—0
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