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Abstract

Using the theory of the Satake diagrams associated with the non-compact simple Lie algebras over the
real number field R, we shall construct a family of simple groups over a field K which are called the
simple groups associated with the Satake diagrams. The list of these simple groups includes all
Chevalley groups and twisted groups, and all simple algebraic groups of adjoint type defined over R if
K is the complex number field C (except two types given by Table II'). Furthermore, the simple
groups associated with the Satake diagrams of type AIII, BI, DI are identified with the simple groups
obtained from the unitary or orthogonal groups of non-zero indices. The quasi-Bruhat decomposition
of the "non-split" simple groups associated with the Satake diagrams which are not Chevalley groups
or twisted groups will be given in this paper.

1980 Mathematics subject classification (Amer. Math. Soc): 20 H 20.

1. Introduction

Every Satake diagram II* = (11,0) associated with a non-compact simple Lie
algebra g over R determines an involutive automorphism pe of L where L is a
simple Lie algebra over C which is defined by L = g + v/-Tg. Using this
involutive automorphism pe of L and an involutive automorphism / of a field K
we shall construct a simple group over K which will be called a simple group
associated with the Satake diagram II* over K and will be denoted by £(11", K)
(or L(H,6; K,f)). The procedures of the construction of such simple groups
L(He, K) are quite analogous to those in [3], [6], [2]. The list of these simple
groups L(Yle,K) includes all Chevalley groups and twisted groups over K. In
general, the classical groups which are Chevalley groups or twisted groups are the
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14 Cheng ChonHu U1

linear and symplectic groups, and the orthogonal and unitary groups correspond-
ing to forms whose Witt index is sufficiently large. The remaining classical groups
are not Chevalley groups or twisted groups. Furthermore, the simple groups
associated with the Satake diagram of the type AIII, BI, DI are identified with the
simple groups obtained from unitary or orthogonal groups of non-zero indices.
The Chevalley groups and twisted groups can be interpreted as "split" groups of
Lie type, the remaining simple groups L(He, K) can be interpreted as "non-split"
groups of Lie type (cf. [1], page 216). The quasi-Bruhat decomposition of such
"non split" simple groups will be given in this paper (cf. Theorem 1)

The classification of semi-simple algebraic groups defined over R is considered
by J. Tits [7] and by I. Satake [5]. The problem of classifying the semi-simple
algebraic groups defined over R is reduced to the problem of finding the
admissible (R)-indices of semi-simple algebraic groups defined over R and all
possible semi-simple anisotropic kernels for a given admissible (R)-index. J. Tits
[7] enumerated all possible admissible (R)-indices which are all Satake diagrams.

For each admissible (R)-index of type Ah B,, C,, D, J. Tits [7] gave a classical
group with identifies the simple algebraic group defined over R with such index.
For each admissible (R)-index of type G2, F4, E7, E% (except certain indices, for
example, the index EVI, i.e., E\A in [7]), J. Tits [7] constructed the simple
algebraic group defined over R with such index by means of Cayley algebra,
Jordan algebra, associative division algebra, and division Cayley algebra.

For all Satake diagrams (II, 0) the construction of the groups -L(II,0;C,/)
given by our paper is just a uniform construction of simple algebraic groups of
adjoint type defined over R. Thus for all possible admissible (R)-indices a
uniform proof of the existence of simple algebraic groups of adjoint type defined
over R is given in our paper.

In this paper, we shall use the notations and terminology defined in [1] and [4]
without explanation and we shall not consider two Satake diagrams given by
Table II'.

We shall denote by IT* the Satake diagram (B, 0) defined by [4] which
corresponds to a noncompact simple Lie algebra g over R. Let g = / + p be a
Cartan decomposition of g and 8 be the Cartan involution of g [4]. Clearly, the
Cartan involution 0 can be extended to an automorphism of L which is denoted
by 0 also in the following way:

0(X+ fjY) = 0X+ f-\0Y, X,Y&g.

Let a be a maximal abelian subalgebra of p. Then there exists a Cartan
subalgebra h of g such that h = h,+ a, h,<z t [4]. We denote by $ the root
system of L with respect to the Cartan subalgebra hc = h + \f-\h of L with the
fundamental root system B (denoted by IT in this paper). For each r e 0 we
define r = -8(r), so r' = \(r + r) is the restriction of r to a. We can define an
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[3] The Satake diagrams 15

ordering on a which is compatible with the ordering on the space T spanned by
$ over R.

Let Cb: {hr, r G II; er,, r £ $ ) be a Chevalley basis of L and T be the
non-trivial symmetry of the Dynkin diagram II which is given by 13.6.2 of [1].
For each r e $ we define x r (0 = exp(iader), t e K, er e Ch, nr(t) =
xr(t)x_r(-t~

l)xr(t), ( e J f * and hr(t) = «r(O«r(-l)- W e denote by / the
identical map of L and by 0 the empty set.

We define II0 = (a e II |a = -a} and $° = (a e $ | a = - a} . Clearly n ° is
a subset of II consisting of all simple roots which correspond to the black nodes
in the Satake diagram (11,0) and $° is a root system with the fundamental
system II0. We denote by II* the set n \ n ° and by $* the set $ \ $ ° .
Furthermore, we define <b1 = {r e O*|r = r}, $11 = $ * \ $ 1 , 0lifr = {r e
* u | r + r e * } , * l l a = * u \ *1 1 4 , * l t = {r + f \ r G *116} and * l a =

PROPOSITION 1. For each Satake diagram (11,0) there exist a Chevalley basis
Cb = {hr, r e n ; e , , r £ $ ) of L and an involutive automorphism pe of L such
that pe(er) = krer, r G $ , er, ef G Cb, kr= ± 1 satisfying the condition

(A) kr=\ i y r e * u u * l f l > ^ = -1 i / r e *16-

PROOF. We define II* = {r e. II* |(r,a) = 0 for all a e II0}. For each r e
II* \ II^" if there eixsts j e II* \ II^1 such that s' = r ' and r ^ j then /•, J is
called a simple root of type II, otherwise r is called a simple root of type I. It
follows from the properties of the Satake diagrams that r = r + fi, /? = £/?,.,
/?, G II0 if r is a simple root of type I, f = 5 + /}, i = r + /}, /? e 0° if r, j is a
simple root of type II (cf. Table I4). There is an automorphism 0O of L such that
*o(*r) = -*r. ^o(^) = -«-, . ' e * . ^_f-r e Q (cf. [1], page 56). We define an
automorphism p of L by p = 0O0. Let A' denote pX for each X e /ic. It is clear
that there exists X e Ac such that the automorphism p of L defined by p =
pexp(ad ^ ) satisfies p(er) = ijre^, r £ $ , er, er e CA, ?)r e C satisfying rjr = 1
for all r e l l * and TJO = -1 for all a e II0. Since r = r for all r e 0 we have
p2 = exp(ad AQ), XQ e /ic. It follows that TJ.TĴ  = e<Jf°r) and TJ^,, = eix<"f) for all
r G <J>, so we have (Xo, r) = (̂ f0, r) (mod2wV^T), r G </>. Thus we have (Jf0, r)
= 0(mod2wV^T), rG n ° U n*,(Ar

0,r) = (*„,/=) (mod 2 W-F), r e n * \ n * .
Clearly, there exists Jif*E/ic such that A'* satisfies the relation (X*,r) = 0,
r G n ° U IIo, (Ar*,r) = (Ar

0,r), r e n * \ n * . Since r G + ( n ° U II*) for all
r G n ° U n * wehave(A^*,r) = O, r G n ° U n * and (**,/?) = (A^*,j8) = 0,
)8 e 4>°. By the formula mentioned above we have (X*,r) = (X*,r) = (X, r +
fi) = (X*, r), p = Eft, /8 G n ° if r is of type I, (A-*, r) = (Xo, r) = (Jf0, j -p)
= (A-o, J) ^ ( Jf0, j ) = (A-*, 5) = (A-*, f -P) = (X*, f) = (A"*, r) W=T
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16 Cheng ChonHu HI

if r, s is of type II. We define p9 = pexp(ad(- \X*)). We have

pi = p 2 exp(ad( - | (X* + **)) ) = exp(ad(^0 - \{X* + * * ) ) ) ,

so we have pj(er) = er, er e Cb, for all r £ l l . Thus p9 is an involutive automor-
phism of L and ptf(er) = e-r, r e II*, since (A'*,r) = 0 and i)r = 1 for all
r e II*. Clearly, $ l a n II* is a fundamental root system $ l a , so p9(er) = £,.,
r e $1(l. Another proof of the existence of pg will be given below. For each I I ' we
define A9 = (T9; %; <p9) where r9 = I or r, and % = { & , P 2 , . . . , P p ) and <j>9 =

{8j, S2, . . . , 8q) are the subsets of 0 determined in individual cases by inspecting
the Satake diagram II*. For each Satake diagram II ' , A9 is given in Table II.
Furthermore, for each Ae we define p9 = r9han9 where h9 = hp(-l)hp(-l) • • •
hfiji-l) if%*0,hs = lif%=0andn9 = nti(l)ntl(l) • • • Ji,f(l) if <p9 * 0,
n9 = / if q>9 = 0 . It is easily verified that pe is an involutive automorphism of L
and pger = cref for all r e $, cr = +1, satisfying cr = 1 for all r e $ l a . We
shall show that we can choose an appropriate £r, £r = ± 1 such that p#(er) = k,e-r,
r e O, er = | r e r , er e C6, A:r = +1, satisfying the condition (A). Since p9 - 1 we
have

(B) krk_r = \, k,k,= l, krk,Nrj = Nr,,kr+,, r , ^ e $ .

We put £r = 1 for all r e $ l a u II. Without loss of generality, we assume
h(r) < h(r), r e $ u where A(r) and h{f) are the height of r and r respectively,
and then we put | r = 1 for all such r of 4>u. It is clear that we can choose Zf such
that kr =\,sokf = \ by (B). If r, s e $ and r + j e $ then iVr, = -#,>r. Thus
we have kr = -1 for all r e $lfc by (B). Since £r = 1 for all r e II then
C6{ hr, r e II; er, r e 0} is a Chevalley basis of L by page 56 of [1]. The proof is
complete.

Since IIJ = (r e II* |(r ,a) = 0 for all a e IT0}, we have the following state-
ments:

(0) p9(oi) = - a for all a e II0 means p9 transforms every root a corresponding
to the black circle of I I ' to -a.

(1) p9(r) = r, r e IIjJ means p9 transforms the circle corresponding to r to
itself, this circle being white and being not joined by any arrow to any circle in

w.
(II) p9(r) = s, r, s e II*, r =£ s means p9 transforms the circle corresponding

to r to the circle corresponding to s, these two circles being white and being
joined by an arrow in II*.

In this paper, we denote by K a field of characteristic p > 3 (if the dimension
of a is equal to 1, K is a field of characteristic p > 5). Let / be a non-trivial
involutive automorphism of K. For each / e K we write f(t) = i. Clearly, the
Chevalley group G = L(K) of type L over K is generated by {xr(t) =
exp(/ader), r e $, t e K}. Obviously, the involutive automorphism /o f K can
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be extended to an involutive automorphism of G (denoted by / also) in this way:
f(xr(O) = xr(i) for all r e $, t e K. The involutive automorphism pe of L can
be extended to an involutive automorphism of G (denoted by pe also) in this way:
pe(xr(t))

 = x-r(krt) f°r all r G $, / e AT. We define an automorphism a of G by
a = <f>ef, so a(xr(t)) = x-r(kri), r e $ , ( e X . Since pef = fpe, and p2. = / and
/ 2 = / we have a2 = /.

2. The subgroups of L(n*, K)

We define some notation and terminology which will be used later.
I. If r e * l f * , x ( 0 = * , ( / ) , t<EKr={t^K\t = kri), W} = wr, N,\u) =

Ha. If r e * l l o , X}(t) = xr(t)xf(i), teKr = K, W} = wrw-r, Nr\u) =
nr(u)n-r(u), K G AT,* = K\ {0}, h\(v) = h,(u)hr(v), v e Kr*'= K* = K\ {0}.

lib. If r e Ouft, Jf;(O = * , ( O J C , ( O * , + , ( - lK,ftt), t^Kr = K, W) = wr+r,
K\u) = nr+f{u), u G Kr+f, h\(v) = Ar(o)A,(5), o e ATr*' = A"*.

For each r e $* we define 7(r) = { j £ <S>*\s' = kr', k = 1,2, or ^} and
/ , ( f ) = { j e / ( f ) | j o ' } . I f I 1 { r ) = { r v r 2 , . . . , r n ) , r, < r2 < ••• < rn, r,.e

$*, i = 1,2,..., n, we define ^ ( J ) = UU Xri{t,), t, e *,(, 7 = (/lf f2,..., tn)
and D(r ) = r^! + t2i2 + ••• +tnin. We write N,1 = JV^l) if r e * l a U $ l l a ,
Af1 = /i).(u)«r, M being a fixed element of ATr* if r G O1A.

We denote by Q>+ (respectively $") the positive (negative) root system contain-
ing n (-II). Furthermore, we define W1 = (Wr\ r G $*>, N1 = (Nr\u), r e
$*, « G A"*) and Hl = Nl n H. We define t/1 = (M G U\au = «}, F1 = {v
G F|ai; = v) and G1 = (t/1 ,F1). Clearly, G1 is determined by the Satake
diagram 11* = (II, d) and K, f, so we denote by L(II, 0; K, / ) (or (II*; AT)) the
group G1.

Clearly, we have r = T+ + T_ where T±= {y e T\pe(y) = ±y) so we have
T + = a and T.= fJh,. We define Wo = (wa, a e $°> and W^ =WOC\ W\
For each r G $, r ' = | ( r + r) is the restriction of r to F+.

PROPOSITION 2.

(a) L*(wG tf1 satisfy w(y) = y for all y G T+. Then w G Ĥ ,1.
(b) Let rv s G $*. 77ien there exists w & W1 such that (s^, r[) # 0, ^ = w(s).
(c) Lets G $*. 77iew //iereexwf w e J F 1 an̂ f r G II* such that w(s) G I(r).

PROOF, (a) Since w G W1 we have p̂ tv = wp'e where p̂  is the restriction of pe

to F, so we have »v(r_) = F_. Thus the restriction of w to T_ which is denoted by
w can be expressed in the form w = tow1 where t0 is a symmetry of II0 and
*>!<= Wo= W($°). It is clear that w f ^ y ) = y for all y e T+ since T_ is
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18 Cheng ChonHu [6]

spanned by $° over U and (F + , F_) = 0. Obviously, we have wf1w(n°) = II0.
Since the ordering of F + is compatible with the ordering of F we have
wf1w(4>+) = $ + so we have w{lw = 1. It follows that w = wl G Won W1 = W^.

(b) Let 4> = 0* \ $ll fc and O' be the restriction of 4> to F+. Clearly, 4»' is a
root system and there is a fundamental root system ft' of $ ' such that ft' c $ + '
where $ + ' is the restriction of $ + n $ * to F + . If r £ $ then either r = f or
r =£ r having (r, r) = 0, so we have

(C)

, , , ) , ) ,

Wr,s' = ,' - - i ^ r ' = ,' - ( / + y > r + !}(r + 0 = ( * ) ) , , e • .

It follows that ff(O') = W(Q)' where W($)' is the restriction of W($) to T+.
There exists $', f[ e <j>' such that 5' = ks', k = 1 or 2 and r/ = A:'̂ ', /:' = 1 or 2.
It is clear that there is w' e JT(<i>') such that (w^j'),^') # 0. By (C), there is
w e W(&) c FF1 such that kk'((w(s))', r{) ^ 0.

(c) There is s' £ $ such that 5' = ta', /k = 1 or 2. Clearly, there is f e ft' and
»v' <= H^($') such that w'(j') = ?'. There is r e II* such that r ' = k'r', k' = 1
or 2. By (C), there is w e Jf($) c Wl such that A:V = f' = w'(s') = lcw'(s') =
k(w(s))', so we have w(s) e I(r), r G II*. The proof is complete.

We define <J>*+ = {r G $ * + |r < r} where O*+= $* n $ + . Furthermore, we
define 2 * + = {r e $* + |r < 5 for all j e I(r)}. Let $f = $f+ U - $ * " and
2* = 2 * + U -2 f + . If r e 2 * + , / 1 ( r ) = { r = r 1 , r 2 , . . . , r n } , rx < r2 < • • • <
rn, r, G O* + , / = 1,2,...,«, we write K(r) = ATrj X Kri X • • • X ^ r . Assuming
/•j G FI*, rx G 2f+ if rx € <f>Ub, rx £ 2f+ if rx G $Ufc and there is r G / ( r j n

We shall omit the proof of the following Proposition 3 which is similar to those
of 13.6.1 and 13.6.4 of [1], and 2.8 and 2.10 of [2].

P R O P O S I T I O N 3.

(a) Let r G $* + , s G 2* + , t e Kr and T G K(S). Then X}{t), XS{T) G Ul

andXlr{t),X_s{T)&V\
(b) Each element u of U1 (« ¥= 1) and each element v of V1 (v ¥= 1) Ziaue a

unique expression in the forms:

,. G * * + , ^ G 2 * + , r,

rp,

^1)), y, G **+, «,- e 2 * + , r,. G Jfy*, Tj G AT(4y),

i = l , 2 , . . . , / , 7 = 1 , 2 , . . . , m , Y i < Y2 < ••• <yi,8<82< ••• < «»
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[7] The Satake diagrams 19

Let Jx(u) and Jx(v) denote rx and -yx respectively. We shall denote by J(u)
t h e se t {rv r2,...,rp} a n d b y J(v) t h e set {-ylt -y2, . . . , - y , } .

PROPOSITION 4.

(a) Let n e Nl, h e H1 and w G W1. Then an = n, ah = h and p'ew = wp'g
(b) H1 c N1 c G1.
(c) Nl/Hx s W1.
(d) W1 = <Wr\ r e n*, W^).

PROOF. It is easy to see that r + f £ 0 for each r e $ l l a , so for each u G ATr*,
Nr\u) can be expressed in the form Nr\u) = X}(u)Xl_r{-u-l)X}{u) and hence
N){u) G G1. The other results of statement (a), and statement (b) are obvious. It
is clear that the image N}{u) under the natural homomorphism from N onto W is
just W} for r G $*, « G K*, so statement (c) follows.

It follows from the properties of the Satake diagrams that F + is the subspace
spanned by O' over R. It is easily verified that W($') = W{0>)' — w(Il*)' where
H^II*) = (Wr\ r G IT*) and W(U*)' is the restriction of J^II*) to T+. Thus
by Proposition 2(a) the statement (d) is established. The proof is complete.

COROLLARY 1.

(a) Let r e 2f, T,TVT2 e K(r) and h e H\ Then Xr{Tx)Xr{T2) = Xr{U\
U e Klr), hXr(T)h-1 = Xr(T'), T e /^(r).

(b) Lef r G 2 * + n /(/-i), ^ G n * a«J t / j £ Jf(r). Le/ «' = Nr
lu(Nr

l)~l and
u" = X_r(U)uX_r(-U), and v' = N^N,1)-1 and v" = Xr(T)vXr(-T) where
u G Ul and v G V1 satisfying r € J(u) and -r £ J(v). Then u', u" G U1 and v',
v" G V1 satisfying r £ J(u') U J(u") and -r € j(v') U J(v") respectively.

PROOF. Statement (a) is obvious.
(b) First we shall show that statements (1) and (2) below are true. Let s e 2* + ,

r* sand T',U' e K{s). Then
(1) A ^ I / ' X A ? ) - 1 = ^ ( i / x ) , ux G /s:(Si), ^ ^ r,Sl G s f + ,
(2) the element u* defined by M* = X_r(T')Xs(U')X_r(-T) belongs to f/1

and satisfies r & J(u*).
The proof of the statements (1) and (2) is given in the following.
(1) Since r G /(r^, rx G II*, we have Wr\s) e ^»*+ and Wr\s) <£ I(r). Thus

we have JV^Cl/'XJV,1)"1 = ^ ( t / j ) where J1 G / ( ^ ( S ) ) n 2* + , sx± r and
[/j G ̂ C(Ji), so statement (1) follows.

(2) Let s* e I(s) and r* G 7(-r). Then the roots is * + jr*, i, j being a pair
of positive integers, must belong to 4>*+ since r G /(/-J), rt e IT*. Thus by
Chevalley's commutator formula we have u* G U, SO we have u* G t/1 since
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au* = u*. It is clear that (is* + jr*)' ¥= kr', k = 1,2, | . Hence we have r £
J(u*), so statement (2) follows.

By statements (1) and (2) we have u', u" e U1, satisfying r <2 J(u') U J(u").
Similarly, we have v', v" e V\ satisfying -r <£ J(v') U J(v").
We define Go = (xa(t), a e 4>°, r e AT; #>, 71 = G1 O Go and tf1 = y1*/1.

PROPOSITION 5.

(a) Lety G Y1, h e #* am/« G iV1. 77ie« a^ = y andhyh'1, nyn'1 G y1.
(b) i /1 c y1 c G1.
(c) For each r G $*, /i^u) e H\ v e K*'.
(d) Le/rG Sf, T e AT(r) awJj' e Yl. ThenyXr(T)y~l = Xr(T'). r ' G *"(,)•
(e) Letu<E U\v<= V1 andy G y1. Thenyuy'1 G t/1 andyvy~l G F1.

PROOF. If w e ff1 and jS G 0° then we have p£tv = wp£ and ^8' = 0, so we
have (w(£))' = 0. It follows that nyn'1 e y1. The other parts of statement (a),
and statement (b) are clear. Statement (c) is obvious for all r G $* \ $114. By
13.7.2 of [1] (cf. the case in which J has type A2) we have h\{v) e Z/̂ 1 for all
r e $116, f G K*' since 7 = { r , r, r + r} has type A2 for all r G $ m also. We
shall prove statement (d). Let r* e /(/•) and j8 e 4>°. Then the roots ir* +jP,
i, j being a pair of positive integers must belong to I(r) since ft' = 0, so
statement (d) follows. By (d), statement (e) is established immediately.

COROLLARY 2. B1 is a subgroup of G1.

3. The quasi-Bmhat decomposition of L(He, K)

For each r e II*, there exists a maximal sub-diagram (II,., 8) of the Satake
diagram (11,0) such that the restriction 11^ of I l r n n * t o F + i s a basis of the
root system I(r)' U -I(r)' (cf. pp. 456-458 of [4]). A Satake diagram (II, 0) is
said to have R-rank 1 if the dimension of T+ spanned b y ^ + r l r e l l } over R
is equivalent to 1. Clearly, for each r G IT*, the Satake diagram (FT,, 0) is a
Satake diagram of R-rank 1. All Satake diagrams of R-rank 1 are given in Table
I. We shall consider separately the Satake diagrams of R-rank 1.

(1) I I r s n ( A , ) (cf. Table 1^: h(r) = /(#•) = {r}, r = f.
(2) n r = II(A, X A,)(cf.TableI2): Ix(r) = {/•}, /(/•) = {r,r}, r * f.
(3) Ilr = n ( A 3 ) (cf. Table I 3 ) : I,(r) ={r = e2-e3 = rv r* = e2-e4 = r2),

I(r) = {/-!, r2, rx = ex - eA, r2 = el - e3}. Let ax = ex - e2 and a 2 = e3 - eA.
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We have -f2 + rx + ax = 0 and rx - r2 + a2 = 0, so by 4.1.2 of [1] we have

By (B), we have Nf2akrk_ai = # , „_„ / : v It follows that -£2£4 = 1 since
/c? = kr = 1 and k_a = - 1 . Similarly, we have -£i£3 = 1.

We shall denote by lk the set {1 ,2 , . . . , k — 1} and by m an integer satisfying
1 < m < n, n being the rank of I l r , r G II*.

(4) I I , = n ( A n ) (cf. Table I4) : r = ex - e2, s = en - en+l, r0 = ex - en + 1 =
r
n = r + f. A(r ) = {r0, rt = ei+1 - en+l, i e / „} , I(r) = {r0, /•„ fi = ex + ei+l, i
e / „ } . Let $t = ei+l - em+l, i e Im. Then we have ft - r,. + rm = 0 and -/?, - r,

+ rm = 0, / e Im, so by 4.1.2 of [1] we have

By (B) we have £,£,' = 1. Since -r0 + r, + r, = 0 we have iV_roir. = Nr^ = A', _ro

= TJ, / G /„. It is clear that r,. + r,. - rm - rm = 0, / e /m. Thus by 4.1.2 of [1] we
have Nr,,f,

N-rm,-rm = -^-rm,r,Nr,,-rm ' G 7m- It follows from (B) that -N.,^ =
N--,m,f,> ' G / « . so we have Nr ̂  =Xm,rm = i\, * e 7m-

(5)-(6). n r = n(Bn) or n (D n ) (cf. Table I5, I6): r = e l - e2. We write
rt = ei ~ ei+\ a n d n = el + ej+1, i G 7n and ay = e J + 1 + em + l and /?y = - e > + 1

+ em+1, j G 7m. We have rn+l = ev Let r0 denote ex and a0 denote -em+1.
Ur = n(B n ) : Ix{r) = {r0J r,., i e / „} , 7(r) = (r0, r,, r,., i G /„} .
n r = n (D n ) : / x ( r ) = {r,, i e / „} , /(/•) = {r,f r,, 7 e /„} . We have a, + rm -

r, = 0 and ft + rm- r,. = 0, / G 7m. By 4.1.2 of [1] and (B) we have

Moreover, we have |,^,' = 1 and TJ,TJ; = 1 for / G Im. It is clear that rm - r0 - a0

= 0 and fm - r0 + a0 = 0, so by 4.1.2 of [1] we have Nr^r<> = N_ao^ = ^ . , o i ^
= TJ0, Nfmt_,o = Naofm = iiV_ro,ao = TJ0, and T , 0 ^ = + 1 .

Clearly, all £„ £,, ij,, 7j;, i) and T/' mentioned in 1-6 are equal to + 1 .
We obtain statements (2A) and (2B) immediately.
(2A) For each r G IT*, s G 7(r), we have (s, s) = 0 if IT, * II(An), and we

have AsS = ^ i 5 = -1 and s * s if Ur = II(An) (cf. Table I4).
(2B) For each r G n * , I(r) = { j £ $ * + | Wr\s) e <."}.

LEMMA 1. L « ( r e 2X*+ n 7 ( r* ) , / f G n * , 7x(r) = {ru r2, . . . , / •„} a n J 71 =

(*!, r 2 , . . . , /„) e K(r). If D(T) * 0 then X_r(T) = Xr(T*)Nr%(T*')y =
y'Xr{T')N}Xr{T"\ T\ T*', T', T" G K(ry y\ y G Y\
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PROOF. We shall consider the cases 1-6 separately.
1. Table 1^ X_r(T) = Xlr(t) = xir{t), T= (t) G K(r). Since D(T) * 0 we

have / + 0, so we have

X_r(T) = xr{rl)hr{-rl)nrxr{r') (by 6.4 of [1])

= Xr(T*)NMT*')y,

where y = hr(-t) = /^(-f) G Z/1 c y 1 and nr = TV/ G TV1, and 7 * = ( r 1 ) , 7 * '
= ( r ) e A - ( r ) .

2. Table I2: .V_r(7) = A / ^ O = x_r(t)x_-r(i), T = (t) G A:(r). Since Z)(r) # 0
we have ? # 0, so we have

X_r{T) = xAri)xr(i-i)hX-rl)hA-i-l)nrn,xXrl)xr(i-i)

(by 6.4.4 of [1])

= XXT*)N}XXT*')y
where ^ = /ir(-r)/?,(/) G 7 1 and nr«, = N} G TV1, and T* = ( r 1 ) , T*' = (/)

3. Table I3: X_XT) = X^t^X1.^) = x.^x.^x.^t^x.-^), T =
{tv t2) G A:(r). Since D(T) # 0 we have T # (0,0). If either ^ or t2 is equal to
zero the lemma is true as in the case of Table I2. We assume that tx # 0 and
t2 * 0. Then by 6.4.4 and 5.2.2 of [1] we have

(by 5.2.2 of [1])

where d=tl- ^3t'i
1t2i2 and y} = xai(-y^t2)xaiU4i{

li2). Since D(T) * 0
and - ^ £ 3 = 1 we have d = i^l(tj1 + / 2 / 2 ) = i[lD{T) # 0. Thus we have

where y2 = x_a^3d-li2)x_a2(-^4d-1t2). Finally we have

X_XT) = xjrf )x,i(rr)xr2(r2*)^(f2*)/J,nA(/*')x?i

where >> = /i,1(-?i)^ri(-^)>'2>'1 and nrnfi = TVr
x e TV1 (rx = r), and r*

t\D(Ty\ q = t'2D(T)-\ t*' = tlt t? = t2&Kr and T* = (r*, ?*), T*'
(If ' , l 2* ')e«: ( r ) . Clearly, we have y G GO. Since A^r(r), Xr(r*), ^ , (7* '
TV,1 e G\ so 7 G y1.
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4. T a b l e I 4 : X_r(T) = J C o ( ' o ) * - \ ( ' i ) • •" * - \ ( O w h e r e to=- WD(T) - E,

D ( T ) = t x t \ + t 2 i 2 + ••• + t n _ J n _ v e £ K r o = { / e K \ t = - / " } , ( / • „ = r 0 ) . S i n c e

D(T)=tO we have T =£ (0,0,. . . ,0) , so there exists an integer m satisfying
1 < m < n such that tn_1 = tn_2 = • • • = tm + l = 0 and tm + 0 (we write /„, =
0- By 6.4.4 and 5.2.2 of [1] we have

= x^r1)hrJi-r1)nTjx.rJit)x.r^to)x.rm(ni~\)x.-ri(i1)xfii{iJ-%),

x.^tj • • • x_-rmJim_l)xPm_i(Sm-1r
1im_1)x_rm_i(tm_1)xrJii-1)

where

and

We write u = -7]t'lt0 and v = -i]u~1t0. Since D(T) ^ 0 we have r0 ¥= 0 and
f£ ^ 0, so we have M # 0 and v =f= 0. Thus we have

-fm-l('m-l)X-rm-l(
tm-l)

w h e r e t* = v - l ( i \ ( D ( T ) - t i ) + t 0 ) , a n d y 2 = J C . ^ - ^ ' M - 1 ^ ) • • •

•^-/3m .(-^m-i""1'™-!) a n d yi = ^ . ^ i " " 1 ' ! ) • " 5sm .(^m-i^'^m-i)- Finally, we
have X_r(T)=Xr(T*)Nr

1Xr(T*')y where y = h-lhr^-i)hra{-u)hf{~v)y,y2yi

G 7 1 and AT,1 = hn-rnrnfm = hnfm+fm = hnr e J V ' . l i G tf1 and T*, T*' e AT(r).
5. Table I5: ^Jcr™) = A ^ r " ) * - , . ^ ) • • • ^ J r J . Since D(T)¥=0 there

exists an integer m satisfying 1 < m < n such that tn = tn_l = • • • = tm + 1 — 0
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and tm # 0. We shall write tm = /. By 6.4.4 and 5.2.2 of [1] we have

X_r(T) = x^JiOx.^Ox.^x^)--- x_fmi(im^)x,rmJtm^)

= xJr1)/!J-r1)* JO*- JfK^'iK^'i)*- J*i*i''"V)

where yx = x^rhjx^Mj • • • x^d^J^t^Jx^ 1(vm~it~1im-i)
and d = rlD(T). Since Z>(7) ^ 0 we have d * 0. By 6.4.4 and 5.2.2 of [1] we
have

where

and

Clearly, we have A^1 = ntnr = nf nrji^nai or AT1 = n-rJ
lrm according as rm + r

or rm = r. We define y* = hfm(-i)hrjk-d)y2yl. Furthermore, we write y =
n~p]n~aiy* o r y = y* according as rm ¥= r or rm = r. Finally, we have X_r(T) =
X,(T*)Nr

lXr(T*')y where y & Yy and N) = nfnr e JV1, and 71*, T*' e A"(0.

Table I6: by a similar argument to that in the cases 4 and 5, the following result
can be proved to be true for this case: X_r(T) = Xr(T*)Nr

1Xr(T*')y where
y e Y\ N,1 = nfnr e N1 and 71*, 7*' e K{r).
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We may summarize the results of the cases 1-6 in the form X_r(T) =
Xr{T*)N}Xr(T*')y where y G Y1 and T*, T*' G K(r).

Thus it follows from Proposition 5 that

X_r(T) = y'X,(T')N,Xr(T"), y' G 7 \ T', T" G JC(r).

The proof is complete.
Similarly, we have the following lemma.

LEMMA 1'. With the notation of Lemma 1, if D(T) + 0 //lew ^ ( 7 ) =
Ar_,(r*)A/r

1Ar_r(:r*')>' = y'X_r(T')N}X_r(T") y, y' G y1, T*, T*', T', T" G

COROLLARY 3. With the notation of Lemma 1, // Ilf = I I , n n 0 ^ 0 , r *
(0,0,... ,0) and D(T) = 0, ^en X_r(T) <£ BxNlBl\ if U°r = 0 then X_r(T) e
fiW1^1 U B1.

LEMMA 2. L«»rG 2* + n /(r*), rf G n*, /j(r) = {rlt r2,..., rn) and T =
(tl,t2,...,tn), U= ( i i j , M 2 , . . . , « „ ) e A: ( r ) OT/is/J; Z ) ( r ) = 0. 77ie« JC =

^ ( r ) ^ . ^ ! / ) can fee expressed in the form x = Xr(T0)X_r(UQ)Xr(T(;)y, y e F1,
r0, To', Uo G AT(r), satisfyingD(T0) * 0.

PROOF. We define Ko= {te K\t = t] and AT0* = AT0\ {0}. We write Tx =
(ij — x, t2,..., O and f/x-i = (ux — zx~l, u2,..., un), z = 2 or 1 according to
r G <&11(, or r e $ . If we put x e #0* then 7;, Ux-i G AT(r) since rt ^ $1A. If
x G AT* we have Z)(7X) = x2( 1 + x-x(r + /)) and D(f/X-.) = z2x"2 + zx~\u +
u) + D(U). It is clear that D(TX) = 0 and D(Ux-i) = 0 are the equations in the
unknown x'1 with coefficients in the field K. Let \K£\ be the cardinality of AT0*.
Clearly, we have |AT0*| ̂  4, so there exists at least an element c of AT0* such that
D(TC) # 0 and D(£/c.) * 0.

We write r = rv By Corollary 1 and Lemma 1' we have

x = Xr(T)X_r(U) = Xr(Tc)X}(c)X_r(U)

Since D{Uc-\) ^ 0 by Lemma 1 we have

x = Xr(Tc)Xlr(zc-l)h\r(zc-l)Nr%(T*)K%(T*')y'

= Xr(T0)X_r(U0)Xr(T(;)y
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where y', y = hr{-zc)y G Y1 and To = Tc, T*,T*',U0* G K(r) satisfying D(T0)
* 0.

LEMMA 3. Let r e 2* + n /(/•*), /f <= U* and T,U,U' G A"(r). 77KTI x =
A',r(f/)Xr(7)Ar_,((/') can be expressed in the form x = yXr(f )X_r{U)Xr(t'),
y e y \ I/, f, f' e tf(r).

PROOF. We shall consider separately the various possibilities.
1°. Suppose D(T) ¥= 0. By Lemma V we have

x = X_r(U)y'X_r(T')N}X_r(T")X_r(U') = y'K'XX

where / e y1, r ' , 7"', C/j*, Ux e Jf(r).
(a) Suppose D(UX) # 0. By Lemma 1' we have

x = y'N}y"X_r{U{)KX_r{U{')X_r(U?) = yXr{t)X_,(U),

y" e y1, t//, t//'

(b) Suppose D(UX) = 0. By Lemma 2 we have

x = y'N}Xr{To)X_r{Uo)Xr{T»)> y'x '• K e ^ . ^c ô'̂  ̂ o e A:(

satisfying D(T0) ¥= 0. By the results of case (a) and Proposition 5 we have

x=y1Xr(f1)X_r(U1)Xr(T,;)yi'=yXr(T)X_r(U)Xr(f'),

yx e Y\ 7\, t/x

2°. Suppose D(T) = 0. By Lemma 2 we have

x = A-

for y' G y1, f/0, r0, To' e A"(r) satisfying D(T0) * 0. Thus it follows from 1° that
x=y1Xr(f1)X_r(U1)Xr(fl' + T{)y' = yXr(T)X_r(U)Xr{t'), by Corollary l(a)
and Proposition 5, where yx e Y1 and Ux, tv f{ e K^r).

The proof is complete.

COROLLARY 4. Let r G 2f+ n /(r*), rf G II*, ( / J e #(r) a«J « G N\
b G JB1. 77ie« x = bnXr(T)X_r(U) can be expressed in the form x =
b*n*X_r(U*)Xr(f*), b* G fi1, «* G JV1, f *, U* G AT(r).

PROOF. We denote by w the image of n under the natural homomorphism from
iV onto W and by 5 the root w(r).

1. Suppose s e $ + . Then J G $ * + and * can be expressed in the form
x = bXSx(Tx)nX_r(U), sx = I(s) n 2* + , 7\ G AT(r). Clearly we have bXh{Tx) =
ft* G B1, so the lemma follows for this case.
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2. Suppose s e $ " .
(a) Suppose D(T) =£ 0. By Lemma 1' and Proposition 5 we have x =

bny'X_r{T')KX-AT")X_r{U) = byX,x{Tx)nN}X_r{U*) where sx = I(-s) n
2f + , _v, / G Yl and 7", 71" e K{r), so the lemma follows for this case.

(b) Suppose D(T) = 0. By Lemma 2 we have x = bnXr(T0)X_r(U0)Xr(TQ')y',
/ G y1, r0, To', Uo G /C(r) satisfying D(T0) ± 0. Thus by case 2(a) and Proposi-
tion 5 the lemma is established.

This completes the proof.
We denote by Â 1 the subgroup of N1 consisting of the elements whose image

under the natural homomorphism from N onto W belong to WQ
X.

LEMMA 4. Let x = bnvun' where b G B1, n, n' G N1, v G F 1 and u G Ul. Then
x can be expressed in the form x = bnvtt, b G B1, n G A^1, v G V1, u G U1.

PROOF. By Proposition 4 we have n' = nxn2 • •• nq where nt G Â 1 or n, = A7 ,̂
r; G II*, i = \,2,...,q. Let n" = w2«3 ••• nq and let Wj be the image of nx

under the natural homomorphism from N onto W.
1. Suppose nx G A^1. Then we have w1 G W ,̂1, SO we have w^s) G I(S) for each

5 e $* + . Thus we have x = b^-fi^n", bx G B1, ftx G A71, Cx G V1, ux G (71.
2. Suppose «j = iVr̂ , ^ G II*. Clearly there is r e 2 * + n /(/-j). We have

AT.1 = A |̂ since r G /(rx). By Proposition 2 and Corollary 1, x can be expressed
in the form x = fc/iAr.r((/i)y*Ar

r(r1)«1Af.1/j" where Ux, Tx G A:(r) and u* e F 1

and U , G I/1 satisfying - r£ . / ( i ;* ) and r £ J(ux). By Corollary 1 we have
x = fenX.^t/JA^rO^UjAr,1/!" = fcnAr

r
1;Tr(lY)Ar_r(7Y)i/1M;n" where t//, 7/ G

K(r) and «i, «! G V1 and u{ G f/1, satisfying -r £ J(vx) U J(v'x) and r ^ J(MJ)
U J(u[). By Corollaries 4 and 1 we have x = fc*n*Ar_r(t/*)A'r(f *)u'1u(/i" =
hxnxvxuxn", where 6*, fej G B\ n*, nx e AT1, 5X G K1, «! G U\ U*, t* G K{r).
By repeating a finite number of times the process used above we obtain the
required expression for the element x.

LEMMA 4'. Let x = bnvuv' where b G B1, n G AT1, u, v' G F 1 a«^/ M G U1. Then
x can be expressed in the form x = bonovouo where b0 G B1, «0 G Nl, v0 G F l

andu0 G Ul.

PROOF. By Proposition 3, v' can be expressed in the form v' =
X _ S i ( U x ) X _ S 2 ( U 2 ) • • • X _ S m ( U J , 8jG 2 f + , Uj G ^( 4 y ) , j = l , 2 , . . . , m , 8 X < 8 2
< ' ' ' < ^m- I1 follows from Proposition 2(c) that there exist wx G Wl and
rx G II* such that w^Sj) e /(rj). Clearly, by Proposition 4 there exists Wj G Â 1

whose image under the natural homomorphism from Af onto W is w{1, so we
have X_Si(Ux) = ^X.^T^ni1 where r <= 2f+ n I(rx), rx G n* . It follows from
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Lemma 4 that x = bnvuX.AT^nlh)" where j e f l 1 , h e JV1, v e F1, u e U1

and »" = ^.S2(f/2)---Ar_^(f/m) e F1. By Corollary 1 we have x =
bhX_r(U)Xr(T)v'1u'1X_r(T1)n[1v"where U,Tf= K(r), and i^ G F 1 and «( G C/1

satisfy -r € J(v\) and r € /(u{)- T n u s i l follows from Corollary 1 that JC =
bhX_r(U)Xr(T)X_r(Tl)v1ulnl1v" where ^ G F1 and ux G ^ satisfy -r £ /(i^)
and r £ J(ur). Thus we have

x = bnyXr(f) X_r(U) Xr(f')vlUln;V (by Lemma 3)

= b*n*X_r(U*)Xr(f*)Xr(f')vlu1ni1v" (by Corollary 4)

= ft*« V / u X V (by Corollary 1)

= byh^vjiyv" (by Lemma 4)

where y G F \ b*,~bx G fl\ n * , ^ e JV1, y'/, gx e F1, u{', ux e f/1 and f, t/,
7", C/*, f* G A"(,). By repeating a finite number of times the process used above
we obtain the required expression for the element x.

By Proposition 4 for each w e Wl we can choose an element nw of N1 such
that n w corresponds to w under the natural homomorphism from N onto W. The
elements nw, for all w G W1, form a set iV"/.

W e d e f i n e G, = U w 6 ^ BxnwVlB\ nwe Ne\

THEOREM 1. Gx « a subgroup of G and G1 = G^

PROOF. If x e Gj then x can be expressed in the form x = bnjub', b', b e B1,
nwe N1, w e Wl, v G F1. It is clear that x'1 = b'^v^n'Jb'1. By Lemma 4 we
have x'1 = bhvub'1 = bhvb' where u e £/\ b, b' G 51 , « G A^1 and v G F1. Let
wt denote the image of ft under the natural homomoprnism from JV onto W.
Since h G JV1 we have wx G W1, SO we have fi = hnWi, h G 7/1, «Wi G JV/ by
Proposition 4. It follows that x~l G GX.

Let Xj, x2 G Gv Then xx and x2 can be expressed in the form xx = b^^v^
and x2 = b2nwy2b'2 where i j , b{, b2, b'2 G 5 1 , «W]) / i ^ G JV/, w1; w2 G ff1 and
y1( u2 G F1. Clearly, we have b[b2 = yu, y G y1, M G f/1. Thus XjX2 can be
expressed in the form

xtx2 = hn^ywinVjb'2 = bxy'nwv'xunwv2b'2

(by Proposition 5)

= ~bhvuv2b'2 (by Lemma 4)

= &o"oMo*2 = hnoVoK (by Lemma 4')
where y' G y1, u, it0 G f/1, fc, b0, b'o = iiofe2 G B1 and i>i, t5, Co G F1. It is clear
that hQ = hnw where /i G H1 and «w G JV/, w being the iamge of n0 under the
natural homomorphism from JV onto W, so we have xxx2 G Gv It follows that Gl

is a subgroup of G.
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For each w e ^ w e have B^n^B1 c G1 since B\ V1 c G1 and nw <= N} c
G1. Thus we have Gx c G1. On the other hand, we have U1, V1 c Gv Since Gx is
a subgroup of G and G1 = (I/1, F1) we have G1 c Gx, so we have G1 = Gv

By Theorem 1 and Proposition 4(c) we have

Gx = U B1fiB,K1«1 = 51JV1K1*1, nK^N}.

The decomposition (3.A) of G1 is called the "quasi-Bruhat" decomposition of G1

(of L(I19, K)). In general, if IT0 ^ 0 , G1 cannot be expressed in the form
G1 = BWB1 by Corollary 3.

4. The simplicity of L(II*, K)

The steps of the proof of the simplicity of L(Ue, K) are quite analogous to
those in the proof for the twisted groups given in [6].

We shall show that there exists X <= K* such that A2 * X2 if K* * K£.
Assuming the contrary, then x2 = x2 for all x e K*, so we have {a + x)2 =
(a + 3c)2 where a is an arbitrary element of AT0*, and hence we have x = x for all
x G K*. We have a contradiction. Thus there is X e K* as required. Similarly,
we shall show that there exists n ^ K* such that /i4 # jS4 if K* # if0*. Assuming
the contrary, we have x* = Jc4 for all x e JC*, so we have (a ± x)4 = (a ± 3c)4

where a is an arbitrary element of K£, and hence we have x2 = x2 for all
JC e K *. We have a contradiction. Thus there exists n e .K * as required.

LEMMA 5. Le/ r1; r2 e $*+
 JMC/I f/ia/ rx ^ r2 anJ r\^ h- Then there exists

1 or x(r2) =

PROOF. We have ^ r V = 2(r', 5/)/('"', r') = z(Ars + Afs), r, s e 0* where z =
1 or 2 according to r e $ or r e $11/,, since (r, r) = 0 if r e 0 U a and (r, f) =
- \(r, r) if r G <Dn/,. Thus the following statement (4.A) holds.

(4.A) Let h(x) = ^H^X r e $*+, c e ^0- Then f o r * e $*> x(*) = c*(r'-s'>
where <p(r',s') = z'lAr.s,.

Let F denote the set {r1( r2). We shall consider separately different possibili-
ties.

I. Suppose 7(rx) # 7(r2).
(a) Suppose (ri, /-2') = 0. Then we put /i(x) = A1^!). By (4.A) we have xC'i) = 1

and x(.ri) = 4 or 2 according to r2 e $ or r2 e Ollft.
(b) Suppose (r[, r{) * 0. (1) F n $llfe = 0 . Then we put A(x) = h\(-X) where

r e ? satisfies (/•',/•') > (s',sr), s e F\{r}. It follows from the properties of
Satake diagrams that Ar,s, = 8, 8 = +1 if (/•', r') > (5', 5')- By (4.A) we have
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X(r) = (-1)2 = 1 and x(*) = (-1)* = - 1 . (2) If there is a root r of F such that
r <£ $ u i and s = F\{r} <= $Ufc then we put h(x) = h\{-\). It follows from the
properties of the Satake diagram AIII that (r',rr) > (V, s'). By (4.A) we have
XO) = 1 and x(-y) = - 1 . (3) If F c <5>nb then we put h(x) = h\2(-\). It follows
from the properties of the Satake diagram AIII that Ar r = -A-r r = -Ar -r = 1
and Ariri = A-rih = 2. Thus by (4.A) we have x(ri) = 1 and x(r2) = - 1 .

II. Suppose / ( r j = I(r2).
(a) Suppose rt £ ®ub- Then we put h(x) = h\(S) where r G <Pn n F, and

S — b~1X2, X e K*, satisfying X2 # X2 and b = XX. (In this case, there is r e F
such that r G Ou.) It follows from the properties of the Satake diagrams that
Ars = A?s = l a n d Afr = 0, 5 G F \ {r}. Thus we have X ( J ) = t"2X2X2 = 1 and
x(r) = b~2X4 = X2X~2 * 1.

(b) Suppose rx G ^U(,. (1) If there is r G F such that r e Olfc then we put
h(x) = h\(-l). It follows from the properties of the Satake diagram AIII that
Ars = l,and hence we have x(^) = -1 and x(r) = l s 6 f\ {r} (s G $n/)). (2)
If f n $ l t = 0 then we put h(X) = h ^ h ^ h 1 ^ ) , for y = rx + r,,
( i G ^ * satisfying /w4 ¥= JiA, b = /x/x. It follows from the properties of the Satake
diagram AIII that Ar^ = A^ = -1 and A,ifi = 0, and Ajri = Ayh = AVi =
Avr2 = A

yfl = !• Thus w e h a v e X(h) = jn2/!-1^-3 = |i2jS"V/*M"3 = 1 and xC^)
63 2 6 3 V

The proof is complete.
Obviously, such /i(x) in case (1) in the proof of Lemma 5, satisfy x(/?) ^ 1 f°r

all | 8 e $ ° . Thus we have

COROLLARY 4. Let r, s G $*+ and r' # 5'. 77ien there exists h(x) e fl^1 such
that x(r) = 1» X(-0 ^ 1 or x(.s) = 1, x(r) ^ 1> aw^ moreover, x(P) = 1 / o r a "

COROLLARY 5. L r̂ n G NX\NQ. Then there exists h(x) e Z/1

nh{x)n'x = h'(x') * Kx\ and moreover, X(P) = x'(P) = I for all $

PROOF. Let w denote the image of n under the natural homomorphism from N
onto W. Since n G N1\NQ we have w G fF1 \ WQ. Thus by Proposition 2(a)
there is r G $* + such that 5' = w(r') # /•'. By Proposition 4 we have p'ew = wp'e.
Thus if s = w(>) then we have s = w(r), so we have s' = w(r)' ¥= r'. We shall
consider separate cases.

I. Suppose w(r)' = -/•'.
(a) Suppose r G $U/>. Then we put h(x) = A).^) where rx = r + r G $1A. It is

clear that h'(x') = ^-r,(2), so we have x(r) = 2 and x'(r) = 2- Thus we have
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(b) Suppose r e l . (1) Suppose the R-rank of (II, 6) is not 1. Then it follows
from the properties of the Satake diagrams that there is rt e $*, I(rx) # I(r),
such that (r\ r[) * 0. We put h(%) = h\(2) or h(x) = h\(2) according to (/•', r')
> (I-,', r[) or (r', r') < {r[, r[). Thus we have xC'i) = 8, X Vi ) = 8~\ 8 = 2 or I
or x(r) = y • x'(r) = Y'\ Y = 2 or \, according to (/•', /•') > {r[, r[) or (r\ r') <
(r[,r[). (2) Suppose the R-rank of (11,0) is equal to 1. We put h(x) = h\(2).
Clearly, we have h'(x') = h\r{2), so we have x(r) * x'(r) s m c e p > $•

II. Suppose w(r)' =£ -r'. Then it follows from Corollary 4 that there is
h(x) e Hl such that xC'") * x(£s) where £ = 1 or -1 as s e O*+ or s e 0*".
Thus we have A(x) ^ A'(x')-

It is clear that such h(x) above satisfy x()8) = 1 for all y8 e 0°.
The proof is complete.
We shall prove the following statement.
(4.B) Let h(x) e H1 be such that h(x) * 1; then there exists r e $* + such

that x(/") ^ 1-
PROOF. Assume the contrary. Then there exists a e II0 such that x(°0 ^ 1- It

is easy to see that there exists s e <J>* + such that (a, s) # 0 so we have s + ; « 6 $ ,
y = ±1 . Clearly, we have r = s + ja e $*+. Thus it follows that x ( r ) ^ 1-
r e $*+. We have a contradiction, so the statement is established.

LEMMA 6. Suppose y e 7 1 am/,y # 1. Then
(1) >> ^ Z 1 where Z 1 w //ie centre of Gl,
(2) //iere exists w e t / 1 SMCA thatyuy~1u'1 = u* =t \ or there exists v e F 1

thatyvy~lv~l = v* ± \.

PROOF. It is clear that statement (1) and statement (2) are equivalent. We shall
prove statement (1).

Since y e Y1 c Go, by 8.4.4 of [1], y can be expressed uniquely in the form:

y = * a i ( ' i K 2 ( ' 2 ) • • • xap(tp)h(Xo)nwxfii(t[)xp2(t'2) • • • xpfc)

where a,., % e O 0 + = 0 ° n $ + , /,., / ; G ^ * , i = 1,2,. . . , /> , y = l , 2 , . . . , ^ ,

HXo)GH and w G ^ 0 satisfy w(0y.) e $ - , y = 1 ,2 , . . . , r̂. We write $y =

{ax,a2,...,ap} and <&'y= {/3l,P2,...,Pq}. Suppose $y # 0 . Then there exist

a G $,, and Wj G WO such that w^o) = j8, jSe II0. It follows from the proper-
ties of the Satake diagrams that there exists r e $ u such that (r, /?) ^ o. Thus we
have (s,a) ¥= 0, s = w[\r) G $ n . Let ^ J a = c. Clearly, we have c = 1, - 1 , 2,
-2. Since there exists X G A" * such that X2 * X2 then there exists 5 G AT * such
that (58"1)c # 1. We put /i^xO = h\(8); hence A^Xi) G H1 satisfies Xi(«) =
(SS-1)^ # 1. Thus we have >> € Z1 if ^ * 0 . Similarly, we have 7 £ Z1 if
$^ # 0 . Thus the lemma is true if <&y i= 0 or <by * 0. Assume Oy = $'y = 0 .
Then we have y = h(xo)nw. Suppose w =t 1. Then there exists r e $ u such that
W(T-) = J # r. We put / = 1 if xo( J) ^ 1. and t G ATQ" = {t G A"* |r ^ f} if
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= 1. For such /, we have X}(t)yX}(-t) * y if y = h(xo)nw and w * 1.
Suppose ^ = $£ = 0 and w = 1. Then we have y = h(xo) ^ 1- Thus there
exists r 6 $ * such that Xo(r) ^ 1 by (4.B). Hence we have y € Z1 if y # 1. This
completes the proof.

We shall denote by R1 an arbitrary normal subgroup of G1 satisfying \Rl\ > 1.
(For a set 5, we denote by \S\ the cardinality of the set 5.)

LEMMA 7. \Rr n f/1! > 1.

PROOF. Since \R*\ > 1 there is x' e R1 such that x' * 1. By Theorem 1, x' can
be expressed in the form x' = ftWft", ft', ft" G 51, n' G JV1, «/ G F1. Since Z?1

is a normal subgroup of Gl there exists x ^ R1 such that x # 1 and x can be
expressed in the form x = vbnw, t £ F1, ft G 5 \ w G W^1, nw G iV/. We have
ft = wy, u G f/1, _v G y1, so we have x = vuyn, where M, D, ^ and nw = n are given
as above. We shall consider separate cases.

(1) Suppose u = 1 and u = 1.
(a) Suppose w G ff1 \ WQ. Then by Corollary 5 there exists /i(x) e Hl such

that ^ ( x ) " " 1 = h'(x') * Hx) and X(j8) = x'(0) = 1 for all $ e $°. Let xx =
h(x)xh(x)'1x-\ Then Xj = h(x)h'(x')~l = ^i(Xi) ^ 1- Since R1 is a normal
subgroup of G1 we have Xi = Ai(xi) e R1- It follows from (4.B) that there exists
r G $* + such that Xi(O ^ 1. We define « = A"r

1(r)A1(xi)Ar
1(-O*i(Xi)"1, ' e

ATr*. Then we have u = X}(t*), t* G K* and ii G Z?1, SO the lemma is true for
this case.

(b) Suppose w G WQ. Then x = y G y1, j ^ 1. By Lemma 6 there exists
M* G ^ n i } 1 such that «* ¥= 1 or there exists v* e F1 n Z?1 such that o* # 1.
Obviously, the lemma is valid if there exists u* e U1 n i?1, M* # 1. In the
following (cf. case 2), we shall show that the lemma is true if there exists
v* G F 1 n K \ u* ^ l.

(2) Suppose f = 1, M ^ 1 or v =£ 1.
We write s = Jx{u) or s = Ji(v) according as v = 1 or v ± 1. Then h(x) =

/i^(2) satisfies x(^) = 2 or 4 according as J G $116 or s G $. Moreover, we have
X(£) = 1 for all $ G $°. We define x[ = h(x)xh(x)'1x~1.

(a) Suppose v = 1, M # 1. Then we have x[ = M(/I(X)/J'(X')"1""1 =
"i^iCXi)""1 where u[ = h(X)uh(Xyl e t / \ and A'(x') = ^ ( x ) " " 1 and h1(Xl)
= ^(X)^'(x')"1 e H1. We write JCX = u'^h^Xi)- Clearly, we have x(, xx G Z?1

since Z?1 is a normal subgroup of G1. Since x(s) ^ 1 we have ux = u'1^ ¥= I,
Jx{ux) = s, so xx = Ui/ii(Xi), «i e f/1, ux =h 1. Let ii = A(x)^i*(x)"1-«r1- Then
we have u e U1 C\ R1, it & 1, since x(s) ^ 1 and Ji(ux) = J, SO the lemma
follows for this case.

(b) Suppose v =£ 1. Similarly, then we have Xj = A^Xi)^i«i G ^x where Uj G
V1, MvJ = s, v1* 1, «! G (71 and /i^Xi) e i?1. Since ^i # 1 then /(Ui) can
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be expressed in the form / (u x ) = {-sv -s2, • • •, sq}> •*, G $ f + , ' = 1,2,. ..,q,
q > 1. Suppose q > 1. By Lemma 5 there exists /i(x) G Hl such that x(si) = 1,
X(J2) * 1 o r X(*2) = 1. x(*i) * 1- We write x'2 = x{1h(x)x1h(x)'1- Then we
have x'2 = u{lv2uf where v2 = Vi1h(x)vlh(x)~1 G V1 and wf = h(x)u1h(x)~1-
We write JC2 = v2ufu[l = v2u2, u2 = ufuf1 e f/1. By the properties of ^(x)
mentioned above we have J(v2) = {-s^sf,..., -s*}, sf G $* + , i = 1,2,...,/>
satisfying - i f < - ^ or -sx* = -JX, -5^ < -s2 according as x(si) = 1, x(s2) * 1
o r x(si) = 1, x(si) * 1- Clearly we have x'2, x2 e R1. By repeating a finite times
the process used above, finally there is x* e R1 such that x* can be expressed in
the form x* = v*u* where u* e U1 and u* e K1 satisfying /(u*) = {-/•},
A- G $*+, so we have x* = ^ r ( r )u* , / G K*. This means ^ = 1. It follows from
Lemma 5 that x* = X/(/'"1)/i1

r(-r'-
1)iVr

1A;1(''"1)"*, t' = z~h. We write x* =
h\{-t'-1)N}X}{t'-x)uX\t''1). Since R1 is a normal subgroup of G1 we have
Jc* G R\ It is clear that Jc* = h\{-rl)N}u*, u* e f/1. If fi* = 1 then the
lemma is true for this case by (la) above. If ft* ^ 1 then the lemma is true for
this case by (2a) above. Thus the lemma is valid for the case (2b). Clearly, the
cases (la), (lb), (2a) and (2b), considered above, exhaust all possibilities. The
proof is complete.

For each r G $* we define X} = {X}(t), t runs through Kr).

LEMMA 8. There exists r G $* such that \R* n X}\> I.

PROOF. By Lemma 7 there exists « e R1 n U1, u ± 1. We write J(u) =
{rx, r2,..., rp}, r, e $f +, / = 1,2, . . . ,p,p ^ 1. Clearly, the lemma is valid for
the case of p = 1. Assume p > 1. By Lemma 5, there exists h(x) £ Hl such that
X('i) = 1, X(r2) * 1 or X(r2) = 1, x( ' i) * 1- Let ttl = «-1A(x)«A(x)"1. It is
clear that Mj G R1 n f/1 and /(wO = (rf, r2*,..., r*}, r,* G $* + , / =
1,2,..., q, satisfying rx < rx* or rx = rx*, r2 < r2*, according as x(''i) = 1, x(ri)
# 1 or x ( r 2 ) = 1> x( r i) : j t 1- Finally, by repeating a finite number of times the
process used above we have u* = X}(t) e R1 n X/, f G AT,*. This completes the
proof.

LEMMA 9. For every s G $*+, X,1 c .R1.

PROOF. We shall prove the following statements.
(a) Let h(x) G R1 such that x(r) # 1, r e 4>*. Then Z,1 c R1.
For every c G Kr we put / = -(1 — x(r))~lc> a nd hence we have

A(x)Jfr
1(0*(x)"%1(-0 = ^ ( - ( 1 - X('))O = ^r(c) e R\ The statement fol-

lows.
(b) Let X}(t) e R1, r G OX*J = $llf t n $f+, ( e #r*. Then there exists u G

A:*+, such that X}+f(u) G Z?1.
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It is c lear t ha t Xt <= Kr = K *, X <= K*, X_* X. W e have

X}{t)Xl(Xt)Xl(-t)Xl(-Xt) = X}+r(u) G R1 where u = ri(tXt + Xtt) = rjti(X -
X) =£ 0, M G K*+-r, TJ = +1. The statement follows.

(c) Let X}(t) G R\ r e *f + \ *«£, r G tf*. Then A,1 c Z?1.
We have h^r^XXOh^r1)-1 = Jftr1) and N^XXr^N,1)-1 = X^-r1),

so we have Xlr(-t~
l) e **• It follows that Nr\t) = XXOX*,(-(-*)XXO e fl1

since r G $* + \ O*^. It is clear that ^ ( 2 / ) G R1. Similarly, we have Nr\2t) G
R1. We write h(x) = K^OKU)- Clearly we have h(x) G Z?1 and /i(x) =

where Â 1 = «r(!) if r e $i» ^ = Nr if r G $ n - S i n c e ^ * ' + \ ^n t we have
X(r) = 4 ^ 1 . Thus by statement (a) above we have X} c R1.

By Lemma 8 and statements (b) and (c) we obtain the following statement.
(d) There exists r G $*+ \ <!>*,+ such that X} c R1.
By a process which is similar to that in the proof of statement (c) we have the

following statement immediately.
(e) Let X) c R\ r <= $f+ \ *f^. Then h\{u) e R1 for all ueKr*

 + .
Now, we shall prove the lemma.
Clearly, this lemma is true for the case of 11° = 0 . In the following we assume

IT0 # 0 . By statements (d) and (e) there exists r e $f+ \$f1t such that
h\{u) G Rl for all u G JCr*'. It is clear that there exist elements Xlt X2, \ 3 and X4

of AT * satisfying condition
(4.C): (XiXO2 ^ 1. x22 ^ ^22> x ^ 3 ^ 1 and X2

4 # \ 4 .
All such elements X1; X2, X3 and X4 of K* satisfying (4.C) form a subset S of

K*. If r = r we put /i(x) = /1U2). s o w e h a v e X(^*) ^ 1 f°r each s* G $*+,
satisfying (r, 5*) # 0 since ^4rj. = 1, - 1 , 2 or -2. If r # r and s* G $*+, satisfy
(r ,5 '*)#0 or ( r , 5 * ) ^ 0 then we have Ars. = +1, +2 if (r,s*)*0 and
/4?J» = ±1 , + 2 if (r, 5*) ¥= 0, so we can choose an appropriate X* of S such that
Mx) = ^r(^*) satisfies x(s*) * 1- It is clear that such h(x) a s above belongs to
R1. By Proposition 2(c), for each s e $*+ there exists w £ Wl such that
(r', J{) ^ 0, 5j = w(i), and hence we have
(r + r,sl + j j = ( r , ^ ) +(r , J j +(f,Sl) +(r,sl) = 2(r,5x) + 2(r,Sl) # 0.

Hence (r, JX) and (r, 5j) cannot be equal to zero simultaneously, so we have
(r, s j ^ 0 or (r, 52) ^ 0. By the results mentioned above and statement (a) we
have X^ c R1. It follows that nX^n'1 = X} c R1 where n G iV1 whose image
under the natural homomorphism from N onto Jf is w"1. This completes the
proof.

By Lemma 9 we obtain the following corollary immediately.

COROLLARY 6. U\ V1 c R\

THEOREM 2. G1 is a simple group.
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PROOF. By Corollary 6 we have U1, V1 c R1, so we have Gl = (U\ V1) c R1.
On the other hand, we have Rl c G1. It follows that Rl = G1, so Gl is a simple
group. This completes the proof.

5. The identifications of L(Ue, K)

See Table II.
(1) If all the circles of the Satake diagram II* are white, IT* is called a normal

diagram or a quasi-normal diagram according as the Satake diagram II* does not
have double-ended arrows or does have double-ended arrows.

If the Satake diagram IT8 is a normal diagram then the simple group L(Ue, K)
is identified with the Chevalley group L(K0); if the Satake diagram IT* is a
quasi-normal diagram then the simple group L(He, K) is identified with the
twisted group 2L(K).

(2) Let Ft* be a Satake diagram and let k be the number of black circles of the
Satake diagram n*.

(I) Let IT* be the Satake diagram of the type AIII. Then An(Il", AT) =
PSUn+x{K, / ) , / = (xlxn+l + j)xn+lXl) - (x2xn + r)xnx2)
+ • • • +(-l)m(XmXn_m + 2 + T)Xn_m + 2Xm) + Xm + lXm + l + ••• +Xm + k + lXm + k + 1,

m = \{n — k), TJ = (-1)", m must be a positive integer.
(II) Let II* be the Satake diagram of the type BI. Then Bn(n*, K) =

PSl2n+1(K0,f),
/ = * o * o + * i * - i + x2x_2 + ••• +xn_kx_n+k

+ \Xn-k+l ~ aX-(n-k + l))\Xn-k+l ~ ^X-(n-k + l))

" X - (« - * : +2) ) + " " '

+ (xn- ax_n)(xn- ax_n),
a being a generator of K over KQ.

(Ill) Let II* be the Satake diagram of the type DI. Then Dn(II9, K) =
PSl2n(k0,f),

/ = xxx_x + x2x_2 + ••• +xn_kx_n + k

~^~\Xn-k+l ~ aX-(n-k+l))\Xn-k+l ~ aX-(n-k+l)J

~*~\Xn-k + 2 ~ aX-(n-k + 2))\Xn-k + 2 ~ aX-(n~k+2)) + ' ' '

+ (xn- ax_n)(xn- ax_n),
a being a generator of K over Ko.

The proof of this statement will be given in (A.I).
(3) If we put K = C, then all simple groups L{Tle, C) exhaust all simple

algebraic groups defined over R which have been considered by J. Tits [7] (except
the two types given by Table II'). The construction of the simple groups
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L(Ile, C) for all Satake (except the types given by Table II') is a uniform
construction of the simple algebraic groups defined over R which are individually
given (or constructed) for different Satake diagrams (U -indices) by J. Tits [7]. The
detailed consideration about L(II9,C) = L(IT,0;C,/) will given in another
paper.

(4) Suppose K = GF(q2), q being some prime-power. Then L(Ue, K) = L(K0)
or 2L(K) according as pe e Ad L or pg e Aut L \ Ad L.

We shall prove this statement for the Satake diagram IT* of the type AH in
(A.2). For the Satake diagram of other types the proof of this statement is similar
to that for the Satake diagram of type AIL

In the following we shall denote by Is the s X s unit matrix.
(A.I) We shall prove statement (2).
(I) If we change the matrix A in 14.5.1 of [1] to the matrix A(k) then we obtain

an argument along the lines of the proof of 14.5.1 of [1] by which the statement
(2)(I), can be proved, where A<k) is defined by

-1
m

(III) If we change the matrices B, A and 5 in 14.5.2 of [1] to the form B
(k),

A{k) and S(k) respectively then we obtain an argument along the lines of the proof
of 14.5.2 of [1] by which statement 2.III can be proved, where

B(k)-

' / ,„-2n-2k

Jtf*\
A(k)~

ln-k

ln-k

l2n-2k

Bn

A(k) _
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The matrices Bo, Ao and So are given in 14.5.2 of [1] and the number of the
matrices BQ, Ao and 50 within the matrices B^k\ A^k) and 5 ^ ' are all equal to
k. (We write the rows and columns in the order 1 ,2 , . . . , « - k,-l,-2,...,
- ( « - k), n - k + 1, - ( « - k + 1 ) , . . . , n, -n.)

(II) By a procedure which is similar to those of the proof of 2.III mentioned
above the statement 2.II is established.

(A.2) We shall prove the statement mentioned in 5.
Since L = An , the fundamental root system II of L can be expressed in the

f o r m I I = { a v a 2 , . . . , a n } , n b e i n g o d d , at = et- ei+1, i = l,2,...,n. F o r t h e
Satake diagram II* of type AHI we have p'9 = wawa • • • wa and pg = «a in«3

• • • na. Since K = GF(q2) there exists fee K* such that bb = - 1 where b = bl
Let e denote the generator of the multiplicative group K*. We define p* =
*«.(«••)*-«,(*,•)' a<=2h bt = b«>, «, = (_i)('--i>/2, i = l , 3 , . . . , / i , and p* =
h*(x*)p*P* ••• Pi, Hx*) e H satisfying x * ( « , ) = -es\ i = 1 , 3 , . . . , « , and
X*(ay) = 1, y = 2 , 4 , . . . , n - 1. Since pf e G we have

,( ) ) , ( ( ( ) . 1 = 1 ,3 , . . . , / ! .

It follows that

It is clear that h(x) satisfies the relations x(ai) = (ec~x^2)8', / = 1,3, . . . , n, and
X(aj) = ft*"1 = 1, j = 2 ,4 , . . . , n + 1. Since ta = 1 we have 6 = e( ?-1 ) / 2 , so we
have e'e"1*2 = e '^V*"1 '" = e^" 1 = 1. Thus we have x(«,-) = 1, / = l , 3 , . . . , n .
It follows that o(p*) = p9p*.

Clearly, L(K0)= (xr(t), r runs through $ , t runs through AT0>. For each
r G $*, / G A ô, we have

Thus for r G $*+, t e A"o, we have p*"1xr(OP* e Ĉ 1 and p*-^_r(Op*
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For each a e II0 there exist rx, r2 e $* such that a = rx + r2. Moreover, for
each t e Ko there exist tx, t2 e KQ such that

Thus we have p*-1xa(t)p* ^ G\ a ^ $°, f e A"o. It follows that p*-\L(K0))p*
c G 1 .

Clearly, an element JC of G = L(K) belongs to L(K0) if and only if f(x) = x.
It is clear that f(x) = p9a(jc)pj1 for all x e G. Thus it follows from p̂  = 1 and
°(P*) = PeP* t h a t f o r e a c h r&<S>*,t& Kr,

f{p*X}{t)p*-1) = Peo{p*X}{t)p*-l)p-e
l = p9o{p*)<,{Xx

r{t))o{p*-l)pe

= pePep*-lXl
r{t)p*-lpePg = p*X}{t)p*-\

so we have p*X}(t)p*~1 e L(AT0). Thus we have p*(L(n*, AT))p*-1 = L(K0).
This means for all x e G = L{K) that the mapping ^: x -* p*~lxp* is an
automorphism of G and ^(L(A:o)) = L(Ue, K). Thus we have L(K0) =
L(Yle,K).

TABLE I

I2

I3

I4

n(A,):

n(A, X A,):

n(A3):

n(AJ:

n(Bn):

r
0

r
0
>

/

«i

ex-

r
0

e2e2 -

- ^2 e2 -

" «2 e2 ~

e3 e3

e3

~ e4

en-l

\

~ enen~ en + \

L n(Dn):
6 "
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[27]

n(Bn):

The Satake diagrams

T A B L E I I n

en-\ enen

e, -

e i e i ~ ez en-i-enen

e, ± ey, / #>, / , ; = 1,2, . . . ,« , +2e,, / =

el - e2 e2 - e3

( e , ± e j , i * j , i,j= 1 , 2 , . . . , « }

39

n(E6):

±e,±ej,

-O A = - • = -
• e6 e6 + e7

7=3,4,5,6,7,

±1, £! = e2 = e8 = 1,

n(E7):

i±et ± ej,

±{\
\2 ,-_

- 2,3,4,5,6,7, + (e1 + <?„),

i - i
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n(E8):
ex - e2 e2 - e3 e3 - e4 e4 - e5 e5 - e6e6 + e7 X

el±eJ,i*j,i,j= 1,2,3,4,5,6,7,8,
g

X = -x

±U

In this table, for each simple Lie algebra L over C (except G2 and F4), the simple
root system U(L) and the root system <f>(L) which will be used in Table II are
given.

TABLE II

In this table, for each Satake diagram IT* = (11,8) (except the types given in
Table II'), Ae = (re; %; <pfl) defined in the proof of Proposition 1 are given.

Let k be the number of the black nodes of the Satake diagram II * and n be the
rank of L. We write m = \(n - k) if IT* is of type AIII, n = n - k if II* is of
the other types. Let 0 denote the empty set.

AI

SATAKE DIAGRAM

A9 =
Chevalley group

All
Ag= (I; 0;e1 - e2,e3 - e4,...,en- en+1)

AIII

Ae = ( T ; 0 ; em+1 - em+k + 1,em - em+k,...,ep - ep + s)

p = \n and 8 = 2 if n is even, p = \(n + 1) and 8 = 1 if n is odd

twisted group

= (T;0;0)
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[291 The Satake diagrams 4 1

Chevalley group

CII

DI

Ae = ( / ; 0 ; < ? m + 1 , < ? m + 2 , . . . , e n ) i f fciseven

At(l;0;0)

o • • O

(I; 0; em+1 - em+2, e m + 1

(T; 0;em+1 - em+2,em+l

• • , e„) H k IS odd

Chevalley group

is even

= ( T ; 0 ; 0 )

-n~i) if k is odd

twisted group

-oC^ Chevalley group

Dili •

As = (I;0;e1- e2,e3-eA,...,en^1 - en)

• o •
Ae = (r,0;e1- e2, e3 - e4,..., en_2 - en_x
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El o o-

Cheng ChonHu

Ae=(r;0;0)

EII •o—•=<>

Ae=(r;0;0)

EIII o-

Ae = (T; 0;e4 + e-,,es - e6)

EIV

EV

EVI

A8 = (l;0;e4- es, e4 + e5, e6 - en, e6 + e7)

Ae={l;0,0)

^ (*> ^ Q C\ Q

= (/ ; 0 ; e2 - e3, e4 - e5, e6 -

EVII o o-
0;e4- e5, e4 + e5, e6 - e7, e6 + e7)

EVIII o-

EIX

[30]

Chevalley group

twisted group

Chevalley group

Chevalley group

= (/; 0 ; e4 - e5, e4 + e5, e6 - e7, e6 + e7)
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FI o <i )n o Chevalley group

G " " Chevalley group
Ae = (l; 0; 0 )

TABLE II'

CII

FII
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