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Abstract
We propose a family of range-based risk measures to generalize the role of value at risk (VaR) in the formulation of
range value at risk (RVaR) considering other risk measures induced by a tail level. We discuss this type of measure
in detail and its theoretical properties and representations. Moreover, we present a score function to evaluate the
forecasts of these measures. In order to present the proposed concepts in an applied way, we performed illustrations
using Monte Carlo simulations and real financial data.

1. Introduction
The theoretical discussion of the properties that a risk measure must respect to be used in practical
matters gained prominence in the literature after the seminal work of Artzner et al. (1999), who devel-
oped the class of coherent risk measures. From there, other classes of risk measures were proposed, for
instance, the convex (Föllmer and Schied, 2002; Frittelli and Rosazza Gianin, 2002), spectral (Acerbi,
2002), and generalized deviation measures (Rockafellar et al., 2006). In this sense, an entire stream
of literature has proposed and discussed distinct features for risk measures, including axiom sets, dual
representations, and mathematical and statistical properties. For a detailed review of this literature, we
refer to the books of Pflug and Romisch (2007), Delbaen (2012), Rüschendorf (2013), and Föllmer and
Schied (2016) and the studies of Föllmer and Knispel (2013) and Föllmer and Weber (2015).

Based on the axiomatic discussion of risk measures, the indiscriminate use of value at risk (VaR)
has been criticized for not being a coherent measure since it does not satisfy the subadditivity/convexity
axiom. Thus, in contrast to the principle of diversification, the risk of a diversified position can be
greater than the sum of individual risks. Another drawback of VaR is that it completely disregards
losses beyond the α-quantile of interest. In order to remedy these deficiencies, some studies present
alternatives that satisfy the axioms of coherent risk measures and quantify the expected value of losses
that exceed VaR. Different authors have presented similar measures with different names to fill this gap
(Artzner et al., 1999; Pflug, 2000; Acerbi and Tasche, 2002; Rockafellar and Uryasev, 2002). The most
accepted measure in finance literature is the one proposed by Acerbi and Tasche (2002), which is named
expected shortfall (ES). From then on, the expected value of losses has become the primary focus from
a regulatory point of view (Basel Committee on Banking Supervision, 2013).

Despite the strengths presented by ES, the literature that discusses the statistical properties of risk
measures has shown some disadvantages compared to VaR. As Fissler and Ziegel (2016) show, the
ES is not directly elicitable (see Section 2, for details), which may partially justify its difficulties with
robust estimation and backtesting (Gneiting, 2011). The elicitability of a risk measure means that it is
the minimizer of expectation of some score function (Ziegel, 2016; Acerbi and Szekely, 2017). For risk
management, this property is important because it allows the evaluation of different forecasting proce-
dures by the scoring rule. An example of elicitable functionals is quantiles, making the VaR elicitable.
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Elicitable monetary risk measures are fully characterized in Bellini and Bignozzi (2015) and Delbaen
et al. (2016). Cont et al. (2010) also point out that there is a conflict between convexity and robustness
to data disturbance of risk measurement procedures. According to the authors, ES did not pass the qual-
itative robustness test and had a high sensitivity to outliers. This concept of robustness is generalized
beyond the weak topology by Kratschmer et al. (2014), allowing to capture the fine structure of robust-
ness. We recommend Embrechts et al. (2015) for a brief discussion, and some references regarding
different notions of robustness explored in scientific articles.

To remove the disadvantage of ES having non-robust estimators, Cont et al. (2010) slightly modified
the definition of the ES and proposed the range value at risk (RVaR). This measure can be understood as
the average of VaR levels across a range of loss probabilities α, β ∈ [0, 1]. RVaR is a robust risk measure,
and it includes VaR and ES as special cases. Although RVaR considers most of the tail, it does not reflect
very extreme losses captured by ES, implying that the measure is not convex. For more details on RVaR,
we suggest Cont et al. (2010), Bignozzi and Tsanakas (2016), Embrechts et al. (2018), Fissler and Ziegel
(2021), Bairakdar et al. (2020), and Bernard et al. (2020).

In this paper, we propose to generalize the role of VaR in the construction of RVaR by consid-
ering other risk measures induced by a tail level. Thus, for any risk measure ρs parameterized by a
level s ∈ [0, 1], we derive a range-based formulation Rρ . The definition of Rρ can be understood as a
weighting scheme over the probability on ([0, 1], B[0, 1]) defined as μ(A) = λ(A|[α, β]), where λ is the
Lebesgue measure. We discuss in detail Rρ , its properties, and theoretical representations. We analyze
the prominent examples of the family of proposed risk measures.

To present the proposed concepts more practically, we performed an illustration using Monte Carlo
simulation. In our example, we use VaR and ES as tail measures, as they are the two most popular regu-
latory risk measures in banks and insurance, in addition to Expectile and shortfall deviation risk (SDR).
We use the Expectile because it is the only coherent risk measure besides the expected loss (EL) that
respects the elicitability; some authors present it as an option to VaR and ES (Emmer et al., 2015; Ehm
et al., 2016; Bellini and Di Bernardino, 2017). The SDR was included because it contemplates the two
fundamental pillars of risk, which are the probability of extreme events and the variability of an expecta-
tion (Righi and Ceretta, 2016; Righi, 2019). In our numerical experiment, we present two examples. The
first illustration uses range-based risk measures for calculating the risk premium in an insurance setup,
and our second illustration explores our approach to predicting market risk. We quantify the risk fore-
casts with the AR-GARCH (autoregressive-generalized autoregressive conditional heteroskedasticity)
model considering different probability distributions. In the Online Supplementary Material, we present
an illustration with real financial data. In this illustration, we assess the risk forecasts using realized loss
(Gneiting, 2011; Emmer et al., 2015; Fissler and Ziegel, 2016, 2021), realized cost (Righi et al., 2020),
and model risk measures (Kellner and Rösch, 2016; Müller and Righi, 2020; Berkhouch et al., 2022). In
the Online Supplementary Material, we also report additional results from our numerical experiments,
which include absolute and relative bias and root mean square error of the risk forecasts.

Our study contributes both to the academic literature and to the financial industry. The use of
another functional instead of VaR in the ES formulation 1

β

∫ β

0
VaRs(X)ds, where β ∈ [0, 1] is the sig-

nificance level, is not new in the literature. Rockafellar and Royset (2013), Rockafellar et al. (2014),
and Rockafellar and Royset (2018), for instance, employ the ES instead of VaR, giving rise to a func-
tional called superquantile, which has the structure 1

β

∫ β

0
ESs(X)ds. Tadese and Drapeau (2021), Daouia

et al. (2020), Tadese and Drapeau (2020) explored the Expectile-based ES as 1
β

∫ β

0
Expectiles(X)ds,

which changes VaR by Expectile. Both approaches are special cases in our framework. Furthermore,
our approach applies to any risk measure parameterized by a tail level s ∈ [0, 1]. From a general point of
view, risk measurement combinations have their properties studied on the framework of Righi (2023).
However, we explore this case in detail, developing new and specific results. Furthermore, from a tech-
nical point of view, we make the theory for L1, while their paper is for L∞, and we do not need some of
their measurability assumptions. Liu and Wang (2021) also propose an analysis for tail risk measures
as those that only depend on a tail part from some distribution function. Nonetheless, their approach is
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distinct from the one we propose. To the best of our knowledge, the present research is the first one that
generalizes the role of VaR in the construction of RVaR by using other tail risk measures.

Our study contributes from a practical point of view because we provide an extensive analysis consid-
ering numerical and financial data to illustrate the practical usefulness of our framework. Thus, although
this is not the objective of this study, we corroborate with previous studies that compare the risk fore-
casts obtained by different volatility specifications and/or probability distributions. See, for example,
Diaz et al. (2017) and Garcia-Jorcano and Novales (2021). Different from previous works that mainly
evaluate ES and VaR forecasts (Kuester et al., 2006; Orhan and Köksal, 2012; Righi and Ceretta, 2015),
we also evaluated the forecasts obtained by Expectile, SDR, and RVaR, which until then had not been
investigated in studies for this purpose.1

The remainder of this paper divides into the following contents: in Section 2, we expose definitions
and results regarding risk measures from literature. In Section 3, we define the range-based risk measure
and study its properties. In Section 4, we present a numerical example to illustrate our approach. In the
Online Supplement, we describe additional results from numerical examples and exhibit an empirical
illustration of our approach to capital determination.

2. Background
Consider the probability space (�, F , P). All equalities and inequalities are in the P-a.s. sense. We
have that L0 = L0(�, F , P), L1 = L1(�, F , P), and L∞ = L∞(�, F , P) are, respectively, the spaces of
(equivalent classes under P-a.s. equality of) finite, integrable and essentially bounded real random vari-
ables in (�, F , P). Let P be the set of all probability measures on (�, F). We denote EQ[X] = ∫

�
XdQ,

FX,Q(x) =Q(X ≤ x), and F−1
X,Q(α) = inf

{
x : FX,Q(x) ≥ α

}
, respectively, the expected value, the (nonde-

creasing and right continuous) probability function and its left quantile for X under Q ∈P . We drop
subscripts regarding probability measures whenQ= P. Furthermore, letQ⊆P be the set of probability
measures that are absolutely continuous about P with essentially bounded Radon-Nikodym derivatives
dQ
dP

∈ L∞. Moreover, 1A is the indicator function of event A.
We begin with a brief background on the definitions and results from the risk measures literature we

use alongside the paper. In this sense, we first define risk measures as functionals on L1.

Definition 1. A functional ρ : L1 →R∪ {−∞, ∞} is a risk measure. Its acceptance set is defined as
Aρ = {

X ∈ L1 : ρ(X) ≤ 0
}
. ρ may possess the following properties:

(i) Monotonicity: if X ≤ Y , then ρ(X) ≥ ρ(Y), ∀ X, Y ∈ L1.
(ii) Translation Invariance: ρ(X + C) = ρ(X) − C, ∀ X ∈ L1, ∀ C ∈R.
(iii) Convexity: ρ(λX + (1 − λ)Y) ≤ λρ(X) + (1 − λ)ρ(Y), ∀ X, Y ∈ L1, ∀ λ ∈ [0, 1].
(iv) Positive Homogeneity: ρ(λX) = λρ(X), ∀ X ∈ L1, ∀ λ ≥ 0.
(v) Law Invariance: if FX = FY , then ρ(X) = ρ(Y), ∀ X, Y ∈ L1.
(vi) Comonotonic Additivity: ρ(X + Y) = ρ(X) + ρ(Y), ∀ X, Y ∈ L1 with X,Y comonotone, that is,

(X(w) − X(w′)) (Y(w) − Y(w′)) ≥ 0 holds P× P-a.s.

We have that ρ is called monetary if it fulfills Monotonicity and Translation Invariance, convex if
it is monetary and respects Convexity, coherent if it is convex and fulfills Positive Homogeneity, law
invariant if it has Law Invariance and comonotone if it attends Comonotonic Additivity.

Under some properties, we have a robust characterization for coherent risk measures. Such portrayal,
known as dual representation, allows us to understand a risk measure as a worst-case scenario for the
loss expectation.

1Müller and Righi (2018) assess the predictive ability of multivariate models to predict VaR, ES, and Expectile. For the univariate
sense, there are no records, as far as we know, of studies comparing the accuracy of Expectile predictions considering different
probability distributions.
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Theorem 1. (Theorems 2.11 and 3.1 of Kaina and Rüschendorf, 2009). A map ρ : L1 →R is a coherent
risk measure if and only if it can be represented as

ρ(X) = max
Q∈Qρ

EQ[−X], ∀ X ∈ L1, (2.1)

where Qρ ⊆Q is nonempty, closed in total variation norm, and convex set called the dual set of ρ.
Moreover, ρ is continuous in the L1 norm.

Remark 1. We have that L1 norm continuity and continuity under dominated P-a.s. convergence, also
known as Lebesgue continuity in the risk measures literature, are equivalent for real-valued functionals.
See Chen et al. (2022) for results on continuities of risk measures and an overview of the literature.

Example 1. We now expose some examples of risk measures that are governed by a tail significance
parameter α ∈ [0, 1]. Such functionals are nonincreasing and integrable in α for any X ∈ L1.

(i) Value at risk (VaR): This is a law invariant comonotone monetary risk measure defined as

VaRα(X) = −F−1
X (α).

We have that

AVaRα = {
X ∈ L1 : P(X < 0) ≤ α

}
.

(ii) Expected shortfall (ES): This is a law invariant comonotone coherent risk measure defined as

ESα(X) = − 1

α

∫ α

0

F−1
X (s)ds, α ∈ (0, 1], and ES0(X) = VaR0(X).

We have

AESα =
{

X ∈ L1 :
∫ α

0

VaRs(X)ds ≤ 0

}
and

QESα =
{
Q ∈Q :

dQ

dP
≤ 1

α

}
, α > 0.

(iii) Expectile: It is defined as

Expectileα(X) = − arg min
x∈R

E
[
α((X − x)+)2 + (1 − α)((X − x)−)2

]
= − arg min

x∈R

∫ 1

0

(
α

(
(F−1

X (s) − x)+)2 + (1 − α)
(
(F−1

X (s) − x)−)2
)

ds.

It is law invariant coherent for α ≤ 0.5. In this case, we have

AExpectileα =
{

X ∈ L1 :
E[X+]

E[X−]
≥ 1 − α

α

}
and

QExpectileα =
{
Q ∈Q : ∃ a > 0, a ≤ dQ

dP
≤ a

1 − α

α

}
.

(iv) Shortfall Deviation Risk (SDR): This measure was proposed and studied in Righi and Ceretta
(2016), Righi and Borenstein (2018), and Righi (2019). It is defined as

SDRα(X) = ESα(X) + kE
[
(X + ESα(X))−]

= − 1

α

∫ α

0

F−1
X (s)ds + k

∫ 1

0

((
F−1

X (s) + ESα(X)
)−)

ds,
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where k ∈ [0, 1] and X− = max{−X, 0}. The penalty term is known as shortfall deviation (SDα).
It is a law invariant coherent risk measure with

ASDRα =
{

X ∈ L1 :
∫ α

0

VaRs(X − SDα(X))ds ≤ 0

}
and

QSDRα =
{
Q ∈Q :

dQ

dP
= dQρ

dP
(1 + βEP[W]) − βW,

dQρ

dP
∈QESα , W ∈W

}
,

where W = {W : W ≤ 0, ess sup |W| ≤ 1}.
Interesting features are present when there is Law Invariance, which is the case in most practical

applications. We focus on dual representation. For the following results, we assume our probability
space is atomless.

Theorem 2. (Theorem 7 of Kusuoka, 2001, Theorem 4.1 of Acerbi, 2002, Theorem 7 of Frittelli and
Gianin, 2005, Theorem 2.2 of Filipović and Svindland, 2012). ρ : L1 →R is a law invariant coherent
risk measure if and only if it can be represented as

ρ(X) = sup
m∈Mρ

∫
(0,1]

ESp(X)dm(p), ∀ X ∈ L1, (2.2)

where Mρ =
{

m ∈M :
∫

(u,1]
1
v
dm = F−1

dQ
dP

(1 − u), Q ∈Qρ

}
and M is the set of probabilities over (0, 1].

If in addition ρ is comonotone, then

ρ(X) =
∫

(0,1]

ESp(X)dm(p) =
∫ 1

0

VaRp(X)φ(p)dp, ∀ X ∈ L1, (2.3)

where m ∈Mρ , φ : [0, 1] →R+ is a nonincreasing functional such that
∫ 1

0
φ(u)du = 1 and

∫
(u,1]

1
v
dm =

φ(u).

A recently highlighted statistical property is Elicitability, which enables comparing competing mod-
els in risk forecasting. See Ziegel (2016), Bellini and Bignozzi (2015), Kou and Peng (2016), Fissler
and Ziegel (2016, 2021) and the references therein for more details. We now adapt it to our framework.

Definition 2. A map S : Rk+1 →R+ is called scoring function if ω → S(X(ω), y) ∈ L1 for any X ∈ L1 and
any y ∈Rk. A function ρ : L1 →Rk is elicitable if exists a scoring function Sρ : Rk+1 →R+ such that

ρ(X) = − arg min
y∈Rk

E
[
Sρ(X, y)

]
, ∀ X ∈ L1. (2.4)

Remark 2. Elicitability, when confined to risk measures, can be restrictive depending on the demanded
financial properties at hand. In this sense, we may end up with only one example of risk functional which
satisfies the requisites. See Theorem 4.9 of Bellini and Bignozzi (2015) and Theorem 1 in Kou and Peng
(2016). For instance, VaR and Expectile, when finite, are elicitable, respectively, under scores on R2

SVaRα

(x, y) = α(x − y)+ + (1 − α)(x − y)− (2.5)

and

SExpectileα

(x, y) = α((x − y)+)2 + (1 − α)((x − y)−)2, (2.6)

while ES and SDR are not. However, under joint elicitability of (VaRα(X), ESα(X)), we can have a useful
score for ES, on R3, as

SESα

(x, y, z) = y
(
1x<y − α

) − x1x<y + ez

(
z − y + 1x<y

α
(y − x)

)
− ez + 1 − log(1 − α) . (2.7)
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3. Range-based risk measures
We are now in conditions to define the main functional in our approach. The goal is to consider a risk
measure parameterized by a tail level α ∈ [0, 1], as is the case of those we presented as examples, and
to derive a range-based formulation.

Definition 3. A collection of risk measures {ρs : L1 →R∪ {−∞, ∞}, s ∈ [0, 1]} defines a tail level
functional if s → ρs(X) is nonincreasing and integrable in [α, β] for any X ∈ L1. Its range-based risk
measure is defined as

Rρ(X) := Rα,β
ρ

(X) =
⎧⎨
⎩

1
β−α

∫ β

α
ρs(X)ds, if α < β,

ρα(X), if α = β,
(3.1)

where 0 ≤ α ≤ β ≤ 1.

Remark 3.

(i) Since s → ρs(X) is nonincreasing and integrable over [α, β], it follows automatically that ρs(X)
is finite for λ-almost all s ∈ [α, β] for any X ∈ L1. In the following, when clear from the context,
we assume that {ρs : L1 →R∪ {−∞, ∞}, s ∈ [0, 1]} is a tail-level functional.

(ii) When ρ is VaR, we recover the usual RVaR. The special case of β > α = 0 gives rise to the
tail average R0,β

ρ
= 1

β

∫ β

0
ρs(X)ds. When ρ is VaR, ES, or Expectile, such formulation results,

respectively, in the ES, the superquantile of Rockafellar and Royset (2018), and the expectile-
based expected shortfall of Tadese and Drapeau (2021). In fact, one can write for β > α the
range as

Rα,β
ρ

(X) = βR0,β
ρ

(X) − αR0,α
ρ

(X)

β − α
. (3.2)

(iii) Some caution is required for the range functional to allow for α = β = 0 or α = β = 1 in order
to include the usual risk measures from the literature. This because, for unbounded X, one can
define, for instance, VaR0 = ES0 = Expectile0 = − ess inf X = ∞. However, note that endpoints
do not alter the integration since λ{α} = λ{β} = 0, where λ is the Lebesgue measure on [0, 1].
Regarding the acceptance set of Rρ , when it is well defined, it can be addressed as

ARρ
=

{
X ∈ L1 :

∫ β

α

ρs(X)ds ≤ 0

}
. (3.3)

(iv) Our range-based risk measures can be of the tail type, that is, to possess the p-tail property,
studied in Liu and Wang (2021), as F−1

X (s) = F−1
Y (s) for all s ∈ (0, p] implies ρ(X) = ρ(Y). Such

property means that the risk is entirely determined by the left tail region of its distribution. If
we consider risk measures determined by quantiles as ρs(X) = S

(
FX(·|X ≤ F−1

X (s))
)

for some
map S on the space of distribution functions, as is the case of VaR and ES, we have that Rρ has
the p-tail property if β ≤ p.

(v) A related concept is the one of interdifferences, as studied in Bellini et al. (2022), which are
maps as X → ρα(X) − ρβ(X). Such functionals are typically measures of variability, also known
as deviation measures in the literature. Other possibility for extension is to consider maps
φ : [0, 1] →R that works as spectrum and to study functionals as 1

β−α

∫ β

α
ρs(X)φ(s)ds. This

is related to spectral risk measures of Acerbi (2002).

We now explore some results of our approach. We focus on the case β > α as otherwise claims are
trivially obtained. We begin with the preservation of properties since it is crucial for using Rρ in financial
applications.

https://doi.org/10.1017/asb.2023.28 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.28


642 Marcelo Brutti Righi and Fernanda Maria Müller

Proposition 1. If X → ρs(X) fulfills any property in Definition 1 for λ-almost all s ∈ [α, β], then also
does Rρ .

Proof. The properties are preserved from the monotonicity and linearity of the integral. �
Remark 4. Rρ also preserves Lipschitz continuity from tail-level functionals. Lipschitz continuity
regarding metrics on probabilities is directly linked to quantitative robustness, as in Wang et al. (2021).
Thus, this kind of robustness is preserved. In contrast, qualitative ones, such as in Cont et al. (2010)
and Kratschmer et al. (2014), linked to regular continuity, are not preserved. Moreover, by monotonic-
ity and linearity of the integral operator, any property for risk measures based on inequalities of linear
forms are preserved by the proposed range structure. See, respectively, Cerreia-Vioglio et al. (2011),
El Karoui and Ravanelli (2009), and Delbaen (2012) for details on Quasi-convexity, Cash-subadditivty,
and Relevance, for instance.

We now derive in the next result the dual set for range-based risk measures.

Proposition 2. Let X → ρs(X) be a coherent risk measure with fixedQ′ ∈Qρs for λ-almost all s ∈ [α, β].
Then Rρ also is finite and coherent and its dual set QRρ

is given by the closure in total variation norm
of {

Q ∈Q : Q(A) = 1

β − α

∫
[α,β]

Qs(A)dλ(s) ∀ A ∈F , Qs ∈Qρs for λ -almost all s ∈ [α, β]

}
. (3.4)

Moreover, Q∗ ∈QRρ
is optimal for Rρ(X), that is, Q∗ = arg max

Q∈QRρ

EQ[−X], if and only if Qs is optimal

for ρs(X) for λ-almost all s ∈ [α, β].

Proof. Coherence and finiteness of Rρ are straightforward. We then focus on the dual representa-
tion. By Theorem 1, QRρ

is nonempty. We claim that the proposed dual set is composed by probability
measures. Let Q(A) = 1

β−α

∫
[α,β]

Qs(A)dλ(s) for any A ∈F , where Qs ∈Qρs for λ-almost all s ∈ [α, β].
Note that such Q exists since some Q′ ∈Qρs for λ-almost all s ∈ [α, β]. Further, by definition of Q we
have that s →Qs(A) is measurable for any A ∈F . It is direct that both Q(∅) = 0 and Q(�) = 1. For
countably additivity, let {An}n∈N be a collection of mutually disjoint sets. Then, since both s →Qs(A)
and s → ∑∞

n=1 Q
s(An) are bounded we have by Monotone Convergence Theorem that

Q(∪∞
n=1 An) = 1

β − α

∫
[α,β]

∞∑
n=1

Qs(An)dλ(s) =
∞∑

n=1

(
1

β − α

∫
[α,β]

Qs(An)dλ(s)

)
=

∞∑
n=1

Q(An).

Hence, Q is a probability measure. By continuity of probability measures, limit points are also prob-
ability measures. Further, it is clear that QRρ

is closed and convex. Notice that Qρs ⊆Qρr if and only if
s ≤ r. Moreover, we have that

EQ[−X] =
∫ ∞

0

1

β − α

∫
[α,β]

(1 −Qs(X ≤ x))dλ(s)dx +
∫ 0

−∞

1

β − α

∫
[α,β]

Qs(X ≤ x)dλ(s)dx

= 1

β − α

∫
[α,β]

(∫ ∞

0

(1 −Qs(X ≤ x))dx +
∫ 0

−∞
Qs(X ≤ x)dx

)
dλ(s)

= 1

β − α

∫
[α,β]

EQs [−X]dλ(s).

The measurability of s → ρs(X) for any X ∈ L1 it is attained from the definition of {ρs, s ∈ [0, 1]}.
This also implies that the maps s → EQs∗ [−X] = maxQ∈Qρs EQ[−X] are measurable any X ∈ L1. From
Hölder inequality, we have EQs∗ [| − X|] < ∞. Thus, Rρ(X) = 1

β−α

∫
[α,β]

EQs∗ [−X]dλ(s) ≥ EQ[−X] for
any Q ∈QRρ

. By taking supremum (which is not affected by closure operation), we get Rρ(X) ≥
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supQ∈QRρ
EQ[−X]. For the converse, consider for each n ∈N the partition Pn of [α, β] as Pn ={

tk
n = α + k(β−α)

n
, k = 0, . . . , n

}
. Define for each n ∈N the set Qn as and{

Q ∈Q : Q(A) = 1

β − α

n−1∑
k=0

Qtnk (A)(tn
k+1 − tn

k ) ∀ A ∈F , Qtnk ∈Q
ρ

tnk
∀ k = 0, . . . , n − 1

}
.

It is clear that Qn ⊆QRρ
. Define for each n ∈N the map

Rn
ρ
(X) = sup

Q∈Qn
EQ[−X] = 1

β − α

n−1∑
k=0

ρ tnk+1 (X)(tn
k+1 − tn

k ), X ∈ L1.

We then have that Rn
ρ
(X) → Rρ(X) for any X ∈ L1. Thus, we get for any X ∈ L1 that

Rρ(X) ≥ sup
Q∈QRρ

EQ[−X] ≥ lim
n→∞

sup
Q∈Qn

EQ[−X] = lim
n→∞

Rn
ρ
(X) = Rρ(X).

Hence, from Theorem 1, Rρ(X) = maxQ∈QRρ
EQ[−X]. Moreover, Q∗ ∈QRρ

is the argmax if and only
if Rρ(X) − EQ∗ [−X] = 1

β−α

∫ β

α

(
ρs(X) − EQs [−X]

)
dλ(s) = 0. Since Rρ(X) ≥ EQ∗ [−X], we have that this

is equivalent to ρs(X) = EQs [−X] for λ-almost all s ∈ [α, β]. �
Remark 5. The last Proposition implies, from Theorem 1, that coherent Rρ is continuous in the L1

norm and in the dominated P-a.s. convergence. Further, the integral that defines the dual set QRρ
can

also be understood as Q= 1
β−α

∫
[α,β]

Qsds, where Qs ∈Qρs for λ-almost all s ∈ [α, β]. This is the concept
of Bochner integral; see Aliprantis and Border (2006) chapter 11 for details.

We now expose a result for the representation of Rρ under Law Invariance and Comonotonic
Additivity. For such a claim, we assume that our probability space is atomless.

Proposition 3. If X → ρs(X) is a law invariant coherent risk measure for λ-almost all s ∈ [α, β], then
the representation is

Rρ(X) = sup
m∈cl(MRρ )

∫
(0,1]

ESp(X)dm(p), ∀ X ∈ L1, (3.5)

with MRρ
=

{
m ∈M : m = 1

β−α

∫
[α,β]

msdλ(s), ms ∈Mρs ∀ s ∈ [α, β]
}

and the closure taken under the
total variation norm. If, in addition, we have Comonotonic Additivity, then

Rρ(X) =
∫

(0,1]

ESp(X)dm(p) =
∫ 1

0

VaRp(X)φ(p)dp, ∀ X ∈ L1, (3.6)

where m ∈ cl(MRρ
) and φ(u) = 1

β−α

∫
[α,β]

φs(u)dλ(s).

Proof. Law invariance implies P ∈Qρs for λ-almost all s ∈ [α, β]. By Theorems 1 and 2, we have
that for any m ∈MRρ

, there is Q′ ∈QRρ
such that∫

(0,1]

ESα(X)dm = sup

{
EQ[−X] :

dQ

dP
∼ dQ′

dP
,
∫

(u,1]

1

v
dm = F−1

dQ′
dP

(1 − u)

}
= EQ′[−X], ∀ X ∈ L1.

Thus, the result for (3.5) follows similarly steps of those for Proposition 2 by considering the
maps s → ∫

(0,1]
ESp(X)dms(s) = EQs [−X] = maxQ∈Qρs EQ[−X]. For (3.6), the claim is a consequence of

Theorem 2. The measurability of s → φs(u) for any u ∈ [0, 1] can be found in Remark 4.15 of Righi
(2023). �

In the context of tail risk, one typically has that smaller values for α lead to larger losses. Thus,
studying the role of significance levels is relevant, and the following result explores such features.
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Proposition 4. We have the following for any 0 ≤ α ≤ β ≤ 1 and any X ∈ L1:

(i) ρβ(X) ≤ Rα,β
ρ

(X) ≤ ρα(X).
(ii) (α, β) → Rα,β

ρ
(X) is nonincreasing.

(iii) if s → ρs(X) is convex for any X ∈ L1, then ρ
α+β

2 (X) ≤ Rα,β
ρ

(X) ≤ ρα(X) + ρβ(X)

2
.

(iv) if both s → Rs,β
ρ

(X) and s → Rα,s
ρ

(X) are twice differentiable for any 0 ≤ α ≤ β ≤ 1 and any
X ∈ L1, we have that α → Rα,β

ρ
(X) is nonincreasing, concave and continuous, β → Rα,β

ρ
(X) is

nonincreasing, convex and continuous and (α, β) → Rα,β
ρ

(X) is continuous.

Proof. In the following, we fix for once 0 ≤ α ≤ β ≤ 1 and X ∈ L1. For (i), for any s ∈ [α, β] we have
that ρα(X) ≥ ρs(X) ≥ ρβ(X). Thus, by monotonicity of integral we have that

ρα(X) = 1

β − α

∫ β

α

ρα(X)ds ≥ Rα,β
ρ

(X) ≥ 1

β − α

∫ β

α

ρβ(X)ds ≥ ρβ(X).

Concerning (ii), let (α1, β1) ≥ (α2, β2). Then we have that Rα1,β1
ρ

(X) ≤ Rα2,β1
ρ

(X) ≤ Rα2,β2
ρ

(X). Item (iii)
is direct the Hadamard-type inequality.

Regarding (iv), we prove for α → Rα,β
ρ

(X). We have that the map α → ρα(X) = Rα,α
ρ

is monotone. We
then get that

∂Rα,β
ρ

(X)

∂α
= 1

(β − α)2

∫ β

α

ρs(X)ds − 1

β − α
ρα(X)

= 1

β − α

(
Rα,β

ρ
(X) − ρα(X)

) ≤ 0.

Since the map has a nonnegative derivative, it is nonincreasing. For concavity, we look for the second
derivative. We have that

∂2Rα,β
ρ

(X)

∂α2
= 1

(β − α)2

(
Rα,β

ρ
(X) − ρα(X)

) + 1

β − α

∂Rα,β
ρ

(X)

∂α
≤ 0.

Nonnegativity thus implies the map is concave. Together with monotonicity we have, it is continuous.
For β → Rα,β

ρ
(X) the deduction is quite similar. We have that

∂Rα,β
ρ

(X)

∂β
= − 1

(β − α)2

∫ β

α

ρs(X)ds + 1

β − α
ρβ(X) = 1

β − α

(
ρβ(X) − Rα,β

ρ
(X)

) ≤ 0,

∂2Rα,β
ρ

(X)

∂β2
= − 1

(β − α)2

(
ρβ(X) − Rα,β

ρ
(X)

) − 1

β − α

∂Rα,β
ρ

(X)

∂β
≥ 0.

Finally, continuity in the product Euclidean metric is obtained from the counterpart property in real
line for both the first and second arguments. �

Despite the continuity of probability tail levels, we can expect an asymmetric variation rate at extreme
tails. This pattern can represent, for instance, more sensibility to greater losses than to smaller ones
reflecting risk aversion, that is, s → ρs(X) be convex and continuous. This is the case, for instance of ρs =
1
s
E

[
e−sX

]
for s ∈ (0, 1] and ρ0(X) = −E[X], which is linked to the Entropic risk measure; see Föllmer

and Schied (2016) for details. The following result addresses this feature.

Proposition 5. Let s → ρs(X) convex for any X ∈ L1. Then ε → Rα−ε,β+ε
ρ

(X), with ε ∈ [0, min{α, (1 −
β)}], is nondecreasing for any 0 ≤ α ≤ β ≤ 1 and X ∈ L1.
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Proof. First, we get that any s ∈ [α − ε, β + ε], with ε ∈ [0, min{α, (1 − β)}], lies in the unit interval.
From convexity of s → ρs(X), we have that ε → Rα−ε,β+ε

ρ
(X) is differentiable. We then have that

∂Rα−ε,β+ε
ρ

(X)

∂ε
= − 2

(β − α + 2ε)2

∫ β+ε

α−ε

ρs(X)ds + 1

β − α + 2ε

(
ρβ+ε(X) + ρα−ε(X)

)
= 1

β − α + 2ε

(
ρβ+ε(X) + ρα−ε(X) − 2Rα−ε,β+ε

ρ
(X)

) ≥ 0.

The last inequality comes from item (iii) in Proposition 4. Hence, we have that the map ε →
Rα−ε,β+ε

ρ
(X) is nondecreasing. �

A question that naturally arises in the context of ρα ≥ Rα,β
ρ

≥ ρα is if exists an equivalent probability
tail level s ∈ [α, β] such that ρs = Rα,β

ρ
. This feature is studied in Li and Wang (2023), which introduce

the probability equivalent level of VaR-ES (PELVE) as the ratio of the ES confidence level to that of
VaR, which yields an equivalent risk value. We now define a functional to deal with this task in our
proposed context.

Definition 4. The probability equivalent level to Rρ is a functional �α,β := � : L1 → [0, 1] defined as

�α,β(X) = inf
{
x ∈ [α, β] : ρx(X) ≤ Rα,β

ρ
(X)

}
. (3.7)

Example 2. We now expose some simple examples to illustrate the equivalent probability level for
some risk measures and distributions. This approach can be useful to replace multinomial backtests, as
in Bettels et al. (2022), with those designed for the base risk measure.

(i) Let ρs = VaRs, which generates Rρ = RVaR. In this case, we have

�α,β(X) = inf
{
x ∈ [α, β] : F−1

X (x) ≥ −RVaRα,β(X)
}

= inf
{
x ∈ [α, β] : FX

(−RVaRα,β(X)
) ≤ x

} = FX

(−RVaRα,β(X)
)

.

For instance, if X ∼ Unif (c, d), that is, uniform distribution in [c, d], a simple computation
leads to

�α,β(X) =
∫ β

α
s(d − c)ds

(β − α)(d − c)
= α + β

2
.

(ii) For Let ρs = ESs and, again, X ∼ Unif (c, d) we obtain

�α,β(X) = inf

{
x ∈ [α, β] :

1

x

∫ x

0

F−1
X (y)dy ≥ 1

β − α

∫ β

α

1

s

∫ s

0

F−1
X (y)dyds

}

= inf

{
x ∈ [α, β] :

(d − c)x2

2x
≥ 1

β − α

∫ β

α

(d − c)s2

2s
ds

}

= inf

{
x ∈ [α, β] : x ≥ α + β

2

}
= α + β

2
.

The next Proposition explores the properties of the probability equivalent-level functional we have
defined. More specifically, we explore the existence and uniqueness of the satisfying value, an alternative
representation, monotonicity with respect to the probability levels, invariance, and quasi-concavity for
comonotone pairs.

Proposition 6. We have the following for any X ∈ L1:

(i) �α,β is well-defined, that is, ∃ x ∈ [α, β] such that ρx(X) ≤ Rρ(X).
(ii) α → �α,β(X) is nondecreasing and β → �α,β(X) is nonincreasing.
(iii) if ρs fulfills translation invariance and positive homogeneity for λ-almost all s ∈ [α, β], then

�(λX + c) = �(X) for any λ ≥ 0, any c ∈R and any X ∈ L1.
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(iv) if ρs fulfills positive homogeneity and comonotonic additivity for λ-almost all s ∈ [α, β], then
we have min{�(X), �(Y)} ≤ �(λX + (1 − λ)Y) for any λ ∈ [0, 1] and any comonotone pair
X, Y ∈ L1.

If in addition s → ρs(X) is continuous for any X ∈ L1, then we have the following:

(i) ∃ x ∈ [α, β] such that ρx(X) = Rρ(X). Further, if y → ρy(X) is not constant on [α, β], then such
x is unique.

(ii) �α,β(X) = �α,β
′ (X) := sup{x ∈ [α, β] : ρx(X) ≥ Rα,β

ρ
(X)}. In particular, for any 0 ≤ a ≤ b ≤ 1,

a < �α,β(X) < b if and only if ρb(X) < Rα,β(X)
ρ

< ρa(X).

Proof. For (i), the claim follows from nonincreasing of s → ρs(X) together to definition of Rρ .
For (ii), let α1 ≥ α2. Then the claim follows since [α1, β] ⊆ [α2, β] and infimum is greater for smaller

sets. Similarly for β1 ≥ β2.
For (iii), {x ∈ [α, β] : ρx(λX + c) ≥ Rρ(λX + c)α,β} = {x ∈ [α, β] : ρx(X) ≥ Rρ(X)α,β} for any λ ≥ 0,

any c ∈R and any X ∈ L1.
Regarding (iv), let X, Y ∈ L1 be comonotone and a < min{�(X), �(Y)}. Then, ρa(X) > Rρ(X) and

ρa(Y) > Rρ(Y). By positive homogeneity and comonotonic additivity of both ρa and, from Proposition 1,
Rρ , we have ρa(λX + (1 − λ)Y) > Rρ(λX + (1 − λ)Y) for any λ ∈ [0, 1].We thus obtain a < �(λX + (1 −
λ)Y) for any a < min{�(X), �(Y)}. Hence, min{�(X), �(Y)} ≤ �(λX + (1 − λ)Y). Analogously, we
have that �(λX + (1 − λ)Y) ≤ max{�(X), �(Y)}.

Regarding (v), existence is due to the intermediate value Theorem since ρα(X) ≥ Rα,β
ρ

(X) ≥ ρβ(X).
Regarding uniqueness, since y → ρy(X) is not constant on [α, β] it is straightforward to verify that y →
Ry,β

ρ
(X) is continuous and strict decreasing in [α, β].
For (vi), let X ∈ L1 and x ∈ [α, β] be such that ρx(X) = Rρ(X) and �α,β

′ (X) = sup{x ∈ [α, β] : ρx(X) ≥
Rρ(X)α,β}. Since, s → ρs(X) is nonincreasing, we have that �α,β(X) ≥ �α,β

′ (X). Moreover, by definition
we have �α,β

′ (X) ≥ x ≥ �α,β(X). Hence, �α,β(X) = �α,β
′ (X). The particular implication is direct from

definition of both � and �′, together to continuity of (α, β) → Rα,β
ρ

(X). �
Regarding statistical properties, it does not have to necessarily exist a score SRρ such that Rρ is elic-

itable at all. For the particular case of RVaR, as pointed out in Fissler and Ziegel (2021), there is a scoring
function over R4 that makes it jointly elicitable with (VaRα, VaRβ , RVaRα,β). Such scoring function
is as

SRVaRα,β
(x, y, z, w) = y

(
1x<y − α

) − x1x<y + z (1x<z − β) − x1x<z

+ (β − α) tanh((β − α) w)

[
w + 1

β − α

(
SVaRβ

(x, z) − SVaRα

(x, y)
)]

− log(cosh((α − β)w)) + 1 − log(1 − α) . (3.8)

Nonetheless, in the case {ρs, s ∈ [0, 1]} are elicitable, we may consider a range criteria for comparison
of forecasting for the resulting Rρ . We now define such concept.

Definition 5. Let ρs be elicitable under Sρs
: Rk+1 →R+ for λ-almost all s ∈ [α, β], and (s, ω) →

Sρs
(X(ω), y) integrable, in the product measure space, for any X ∈ L1 and any y ∈Rk. In this case its

range-based score is a map SRρ : Rk+1 →R+ defined as

SRρ (x) = 1

β − α

∫ β

α

Sρs
(x)ds. (3.9)

Remark 6. We have that the scores for VaR, ES, and Expectile are contemplated by such definition.
In fact, they are all continuous and bounded in the α parameter. For SDR, one can consider as an
approximation the score for ESα(Y), where Y = X − SDα(X). Furthermore, note that
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arg min
y∈Rk

1

β − α

∫
[α,β]

E
[
Sρs

(X, y)
]

ds = arg min
y∈Rk

E
[
SRρ (X, y)

]
.

However, such quantity does not have to coincide with

1

β − α

∫
[α,β]

arg min
y∈Rk

E[Sρs
(X, y)]ds = Rρ(X).

This is exactly why elicitability does not have to be inherited.

4. Numerical example
This section presents two numerical examples to explain the concepts and theoretical results of the pro-
posed approach from a practical point of view. In our experiments, we utilize as tail risk measures (ρα)
the VaR, ES, Expectile, and SDR, and the range-based risk measure generated from these functionals.
The number of Monte Carlo replications was set at 1,000. We use this value because it provides satis-
factory results when comparing risk forecasting models in simulation studies (Escanciano and Olmo,
2011; Yi et al., 2014). For window estimation (n), we employ 250 and 1000 observations. Both n are
common in the risk forecasting literature (Kuester et al., 2006; Yi et al., 2014; Righi and Ceretta, 2016),
and 250 is the minimum sample size recommended by the Basel Committee to determine daily risk fore-
casts of banks and other Authorized Deposit-taking Institutions (ADIs) (Basel Committee on Banking
Supervision, 2013).

Initially, we present a brief illustration of the use of range-based risk measures for calculating the
risk premium in an insurance setup. For the data generating process, we consider Weibull distribution
because it is common in actuarial and financial risk management problems (Gebizlioglu et al., 2011;
Ahmad et al., 2022). For simplicity, we omit the cumulative distribution function and probability den-
sity function of the Weibull distribution, but both functions can be seen in the research of Gebizlioglu
et al. (2011). The Weibull distribution has two parameters, the scale and the shape parameter. Based
on the numerical example of Gebizlioglu et al. (2011), who evaluated the performance of different esti-
mators for Weibull distribution and VaR estimation, we consider the scale parameter equal to 1 and the
shape parameters equal to 0.5, 1.5, and 3.0. We choose 99%, 97.5%, and 95% as confidence intervals
since they are typical values in the insurance literature (Tsai et al., 2010; Ahmad et al., 2022). In the
numerical insurance problem, we are interested in the upper tail. For risk estimation, we consider all
combinations between the referred confidence levels, that is, 97.50% and 99.00%, 95.00% and 97.50%,
and 95.00% and 99.00%. For a better description of the parameterizations of each scenario, see the
Online Supplementary Material.

For risk premium quantification, we consider the simulated data defined in some discrete probability
space � = (w1, · · · , wn), as X(wt) = Xt, t = 1, · · · , n, where n represents the number of observations.
Thus, we have P(X = Xt) = P(wt) = 1

n
, which results in the empirical distribution and expectation

given by

FX(x) = 1

n

n∑
t=1

1Xt≤x, E[X] = 1

n

n∑
t=1

Xi.

Based on the empirical distribution of the data, the estimation method we consider is the historical
simulation (HS). This method is a nonparametric approach that makes no assumptions about the data
distribution. Furthermore, HS is a common risk estimation approach (Kuester et al., 2006).

During the simulation process, in each Monte Carlo replica, we compute the risk premium using a
sample size n for each ρα and range-based measure generated from ρα. Our intention with this illustration
is to show the behavior of the insurance risk premium using our approach in relation to traditional
options in the literature. For this reason, our analysis will be based on the risk premium’s mean value
and standard deviation in an insurance setup. These results are exposed in Table 1.
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Table 1. the average and standard deviation of the risk premiums obtained in Monte Carlo experiments.

SN∗ VaRα VaRβ RVaRα ESα ESβ RESα SDRα SDRβ RSDRα Expectileα Expectileβ RExpectileα

Average values
1 13.586 20.976 16.842 22.887 31.955 26.698 24.316 32.869 27.891 12.300 17.276 14.439
2 8.928 13.474 10.948 16.854 22.761 19.412 18.745 24.194 21.137 9.059 12.237 10.480
3 8.936 20.812 13.132 16.844 31.692 22.129 18.719 32.601 23.851 9.052 17.081 12.101
4 2.373 2.733 2.541 2.767 3.105 2.915 2.813 3.131 2.955 1.955 2.246 2.087
5 2.074 2.378 2.217 2.500 2.783 2.627 2.573 2.831 2.690 1.736 1.961 1.841
6 2.069 2.745 2.337 2.495 3.126 2.740 2.568 3.152 2.798 1.733 2.252 1.951
7 1.540 1.657 1.595 1.663 1.764 1.708 1.676 1.771 1.718 1.356 1.461 1.404
8 1.440 1.543 1.489 1.576 1.664 1.616 1.598 1.677 1.634 1.273 1.358 1.313
9 1.440 1.658 1.530 1.577 1.767 1.652 1.599 1.774 1.669 1.272 1.463 1.355

10 13.257 20.347 15.743 20.828 27.607 24.180 21.811 28.074 24.533 11.890 16.028 13.622
11 8.820 13.260 10.556 16.252 21.133 18.710 17.785 22.205 19.707 8.959 12.021 10.311
12 8.729 20.035 12.568 16.252 28.533 21.242 17.861 29.119 22.352 8.970 16.050 11.714
13 2.358 2.725 2.501 2.719 3.008 2.867 2.759 3.026 2.883 1.960 2.252 2.089
14 2.070 2.366 2.195 2.478 2.721 2.600 2.544 2.763 2.643 1.738 1.963 1.842
15 2.062 2.706 2.309 2.475 3.027 2.705 2.544 3.047 2.751 1.736 2.254 1.950
16 1.534 1.646 1.578 1.643 1.730 1.687 1.655 1.735 1.691 1.357 1.460 1.404
17 1.435 1.534 1.477 1.566 1.642 1.603 1.586 1.654 1.617 1.271 1.356 1.310
18 1.434 1.636 1.515 1.564 1.726 1.633 1.584 1.731 1.648 1.270 1.457 1.351
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Table 1. Continued.

SN∗ VaRα VaRβ RVaRα ESα ESβ RESα SDRα SDRβ RSDRα Expectileα Expectileβ RExpectileα

Standard deviation values
1 1.386 2.793 1.827 2.751 5.005 3.844 3.117 5.323 4.202 1.344 1.955 1.638
2 0.851 1.515 1.079 1.871 3.011 2.451 2.334 3.447 2.865 0.962 1.484 1.197
3 0.828 2.834 1.247 1.823 5.529 3.159 2.298 5.909 3.740 0.941 2.041 1.343
4 0.083 0.120 0.091 0.105 0.154 0.132 0.111 0.160 0.140 0.053 0.073 0.063
5 0.062 0.082 0.068 0.080 0.109 0.097 0.086 0.114 0.103 0.043 0.054 0.049
6 0.062 0.118 0.072 0.079 0.157 0.111 0.084 0.162 0.120 0.042 0.074 0.055
7 0.027 0.036 0.028 0.031 0.044 0.038 0.033 0.045 0.040 0.017 0.021 0.019
8 0.022 0.028 0.023 0.025 0.032 0.029 0.026 0.033 0.030 0.015 0.017 0.016
9 0.023 0.038 0.024 0.026 0.045 0.034 0.027 0.046 0.036 0.015 0.023 0.019

10 2.721 4.696 3.263 4.641 7.584 6.182 5.054 7.856 6.335 2.470 3.114 2.814
11 1.570 2.736 1.962 3.357 5.129 4.373 3.969 5.642 4.826 1.793 2.636 2.203
12 1.573 5.181 2.394 3.494 9.363 6.088 4.224 9.802 6.630 1.873 3.188 2.454
13 0.156 0.228 0.176 0.207 0.300 0.261 0.218 0.307 0.263 0.109 0.152 0.129
14 0.124 0.163 0.136 0.156 0.200 0.182 0.166 0.209 0.187 0.086 0.108 0.099
15 0.121 0.223 0.140 0.159 0.298 0.226 0.172 0.305 0.236 0.086 0.153 0.112
16 0.051 0.065 0.054 0.060 0.082 0.072 0.062 0.084 0.073 0.034 0.043 0.039
17 0.045 0.055 0.048 0.053 0.065 0.060 0.055 0.067 0.062 0.031 0.037 0.034
18 0.043 0.065 0.045 0.048 0.082 0.064 0.051 0.083 0.069 0.030 0.043 0.036
Note: SN∗ refers to scenarios. Scenarios 1–9 consider n = 1000, while Scenarios 10–18 consider n = 250. All scenarios consider scale parameters equal to 1. For scenarios 1–3 and 10–12, the shape parameter is equal to 0.5; for
scenarios 4–6 and 13–15, the shape parameter is equal to 1.5; and for the other analyzed scenarios, the value is equal to 3. Scenarios 2, 5, 8, 11, 14, and 17 use α = 95.00% and β = 97.50%; scenarios 3, 6, 9, 12, 15, and 18 consider
α = 95.00% and β = 99.00%; and scenarios 1, 4, 7, 10, 13, and 16 use α = 97.50% and β = 99.00%. This table describes the average and standard deviation values of risk premiums. The results are based on 1000 Monte Carlo
replications. For estimation, we consider the historical simulation.
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Our results indicate that risk premium increases for scenarios with lower values for the shape param-
eter (Weibull distribution). Distinct shape parameters result in marked effects on the behavior of the
data distribution. Smaller shape values generate simulated distributions with more extreme observa-
tions, which explains the higher risk premium values in these scenarios. We verified that the difference
is more accentuated when we take into consideration shape = 0.5. As expected, we identified that the
average value of the risk premium of the range measures is between the value determined by ρα and ρβ .
By illustration, for Scenario 4, the risk premiums quantified by VaRα, VaRβ , and RVaRα are, respectively,
2.373, 2.733, and 2.541. We also observe that the risk premium obtained via ρβ is greater than ρα. The
measure ρβ considers a more extreme tail associated with a higher insurance premium. Thus, we have
the premium of ρ99% > ρ97.5% > ρ95%. Another interesting finding is that the interval measures maintain
the behavior of the functionals used to generate them. In this sense, it can be mentioned that the risk pre-
mium determined by the ES for the same confidence interval is greater than that of the VaR. Following
this behavior, we realize that the premium obtained by RESα is greater than the premium quantified using
RVaRα . Notably, this is valid when we use the same values of α and β for both measures. Concerning
RSDRα because it has a penalty coefficient (deviation term), it was expected that his premium would be
higher compared to RESα and consequently to RVaRα . The lowest risk premium computed by RExpectileα

is consistent with the behavior of Expectile values concerning VaR and ES premiums (Bellini and
Di Bernardino, 2017).

In our second example, we perform an extensive numerical risk prediction study. We consider the
AR(p)-GARCH(q, s) model as a data generating process (DGP).2 This model can be defined as

Xt = φ0 +
p∑

i=1

φiXt−i + εt,

εt = σtzt, zt ∼ i.i.d. F(zt; θ ),

σ 2
t = a0 +

q∑
j=1

ajε
2
t−j +

s∑
k=1

bkσ
2
t−k, (4.1)

where Xt is the return for period t, φi, for i = 1, · · · , p, being p term autoregressive order, are parameters
of autoregressive model, εt is the error term, zt is a white noise process with distribution F(zt; θ), where
θ is a vector of parameters of distribution of zt, including zero mean and unit variance in addition to
additional parameters that vary as the distribution. σ 2

t is the conditional variance, and aj, for j = 1, · · · , q,
as well as bk, for k = 1, · · · , s, are parameters of the GARCH model (ω > 0, aj ≥ 0, bk ≥ 0), and q and s
are its order, respectively. For more details regarding GARCH models, we suggest Francq and Zakoian
(2019).

We use as model a Student’s t-AR(1)-GARCH(1, 1) because it takes into account common stylized
facts of financial data, which include volatility clusters and heavy tails, and it is employed by other
studies in risk measures forecasting (So and Philip, 2006; Angelidis et al., 2007; Ardia and Hoogerheide,
2014). Parameter values similar to those used by us are also considered by Escanciano and Olmo (2011),
Righi and Ceretta (2016), and Müller and Righi (2018). We use the degree of freedom parameter (η)
equal to 8 to simulate a series with heavy tails, as this feature is frequent in financial data. We consider
η = 800 to represent a normal distribution since when η → ∞ the t-distribution approaches normal. For
this decision, we follow Christoffersen and Gonçalves (2005), which resort Student’s t-distribution with
η = 500 to simulate a normal distribution.

As significance values, we employ 1%, 2.5%, and 5%. 1% and 5% are the most frequent values to fore-
cast risk measures (Kuester et al., 2006; Escanciano and Olmo, 2011; Müller and Righi, 2018), and 1%
and 2.5% are the levels recommended for VaR and ES forecasting, respectively, by the Basel Committee
on Banking Supervision (2013). The level pairs used in each experiment to forecast range-based risk

2We select the AR-GARCH model as a data generating process because, in the risk prediction literature, many studies use it.
See, for instance, Escanciano and Olmo (2011), Telmoudi et al. (2016) and Müller and Righi (2018).
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measures are named α and β. The VaR, ES, SDR, and Expectile are predicted considering both levels
in each scenario. Our chosen parameterizations are described in detail in the Online Supplementary
Material.

In each Monte Carlo replication, we generate the returns distribution considering each of the 12
analyzed scenarios. Each simulated sample has n + 1 observations. We use n observations for estimation
and the observation regarding the n + 1 position to evaluate risk predictions. In every replication, we
determine the real risk value corresponding to the n + 1 position.3 Descriptive statistics of the real risk
and the out-of-sample are available under request. As expected, for scenarios generated with lower η,
that is, η = 8, the average value of the real risk forecasts is higher. Smaller values of η imply heavier tails,
that is, a higher probability of extreme values than the normal distribution. In contrast, higher values of
η make the t-distribution close to the normal distribution with mean 0 and standard deviation 1.

To forecast the mean (μt+1) and conditional standard deviation (σt+1), we use an AR(1)-GARCH(1,1)
model,4 which is defined in Equation (4.1) for p = q = s = 1. In the estimation, we assume that zt fol-
lows normal (norm), skewed normal (snorm), Student-t (std), skewed Student-t (sstd), generalized error
(ged), skewed generalized error (sged), and Johnson SU (jsu) distribution.5 We use the quasi-maximum
likelihood (QML) method to estimate model parameters. According to the results of Garcia-Jorcano
and Novales (2021), the risk forecast performance is associated with the probability distribution of the
innovations, and model selection plays a secondary role. For this reason, we focus on using the AR(1)-
GARCH(1,1) model with different probability distributions instead of considering different volatility
models.

In general, the risk forecasts are obtained in the following way:

ρα

t+1 = −μt+1 + σt+1ρ
α (zt + 1) , (4.2)

where ρα can be VaRα , ESα, SDα, SDRα, and Expectileα (see Example 1) and their range-based coun-
terparts (see Equation (3.1)). The Equation (4.2) is also valid when ρα refers to RVaRα. For SDRα, we
use k = 1, as performed by Righi and Borenstein (2018) when comparing risk measures for portfolio
optimization. In each replicate, we compute a 1-step-ahead forecast for each risk measure.6

According to the results7 of Table 2, the average value of the range-based risk measures is between the
average values of the tail risk measures for significance levels α and β, that is, ρα(X) ≥ Rρ(X) ≥ ρβ(X).
By a illustration, see the Scenario 1 and normal distribution, the average values of VaRα and VaRβ are
1.934 and 1.629, respectively, while for RVaRα is 1.762. Thus, we have VaRα ≥ RVaRα ≥ VaRβ . We can
conclude that Rρ gives greater protection than ρβ and is more conservative than ρα. For visual analysis of
this inequality, we present Figure 1, which illustrates the left tail of the sample generated using Scenario
58 with n = 105. This figure has four illustrations, one for each range measure and tail risk measure used
to generate it with α = 2.5% and β = 5%. In each illustration, we also include the ES2.5% value.9 The

3The real risk value is obtained similarly to Equations (4.2), where for μt+1, σt+1 we use the mean and conditional standard
deviation of the distribution of returns generated from the data generating process.

4Throughout the text, we will refer to AR(1)-GARCH(1,1) as the GARCH model and the abbreviation of the probability
distribution used for zt .

5We refer to each GARCH model with some abuse considering a different probability distribution for zt as a distinct model.
6We focus on the 1-day-ahead forecast because this horizon is frequent in empirical studies and simulation analysis of risk

management (Kuester et al., 2006; Müller and Righi, 2018).
7The descriptive values (deviation and average values) and other criteria of RVaR and RVaRα coincide, confirming theoretical

results. For this reason and brevity, we have omitted the RVaR results from the numerical results, but they are available on request.
We also omit for brevity and similarity of results the scenarios with n = 250, which are available under request

8We use n = 105 because as the number of observations in the sample increases, the bias and the volatility of the GARCH model
parameter estimates become insignificant (Fantazzini, 2009).

9In each illustration, we include ES2.5% because Basel and Solvency accords recommend it for the quantification of market risk.
Although VaR1% is also recommended, we did not include it because it is comparable, for normal distributions, to ES2.5%.
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Table 2. This table describes the average and standard deviation of the risk forecasts obtained in Monte Carlo experiments, considering Scenarios
1–6. The results are multiplied by 100.

SN∗ norm snorm std sstd ged sged jsu norm snorm std sstd ged sged jsu norm snorm std sstd ged sged jsu
Average values

VaRα VaRβ RVaRα

1 1.934 1.931 2.224 2.220 2.192 2.188 2.223 1.629 1.626 1.645 1.643 1.708 1.706 1.662 1.762 1.759 1.883 1.880 1.914 1.912 1.895
2 1.668 1.664 1.673 1.670 1.737 1.735 1.689 1.407 1.403 1.294 1.293 1.368 1.366 1.307 1.525 1.521 1.459 1.457 1.532 1.530 1.474
3 1.933 1.931 2.221 2.224 2.176 2.178 2.227 1.366 1.365 1.259 1.260 1.327 1.328 1.275 1.588 1.587 1.596 1.598 1.646 1.647 1.614
4 1.946 1.944 2.224 2.223 2.197 2.196 2.227 1.642 1.641 1.652 1.652 1.718 1.717 1.672 1.774 1.773 1.887 1.887 1.922 1.922 1.902
5 1.637 1.634 1.655 1.654 1.718 1.715 1.673 1.377 1.375 1.275 1.274 1.347 1.345 1.289 1.494 1.492 1.440 1.439 1.512 1.510 1.457
6 1.854 1.848 2.129 2.130 2.096 2.098 2.134 1.305 1.301 1.205 1.205 1.274 1.275 1.220 1.520 1.516 1.529 1.530 1.582 1.584 1.546

ESα ESβ RESα

1 2.217 2.213 3.112 3.106 2.704 2.700 2.967 1.944 1.941 2.375 2.370 2.230 2.227 2.324 2.062 2.059 2.676 2.671 2.432 2.428 2.591
2 1.983 1.977 2.388 2.383 2.253 2.249 2.340 1.754 1.749 1.923 1.920 1.892 1.889 1.907 1.857 1.851 2.124 2.120 2.052 2.049 2.096
3 2.214 2.213 3.111 3.115 2.683 2.686 2.975 1.713 1.712 1.899 1.901 1.853 1.855 1.886 1.908 1.907 2.317 2.320 2.164 2.166 2.273
4 2.226 2.225 3.099 3.098 2.704 2.704 2.963 1.955 1.954 2.372 2.371 2.235 2.234 2.326 2.073 2.071 2.669 2.668 2.435 2.435 2.590
5 1.948 1.945 2.381 2.378 2.236 2.232 2.331 1.721 1.719 1.911 1.909 1.874 1.871 1.894 1.824 1.821 2.114 2.111 2.035 2.031 2.084
6 2.127 2.120 2.977 2.977 2.587 2.589 2.848 1.642 1.637 1.819 1.819 1.783 1.785 1.806 1.830 1.825 2.219 2.220 2.084 2.086 2.177

SDRα SDRβ RSDRα

1 2.539 2.535 3.395 3.388 2.988 2.984 3.250 2.267 2.264 2.661 2.657 2.516 2.514 2.609 2.385 2.381 2.961 2.956 2.717 2.714 2.875
2 2.304 2.298 2.671 2.666 2.537 2.533 2.623 2.077 2.071 2.209 2.206 2.178 2.175 2.192 2.180 2.174 2.409 2.405 2.337 2.334 2.380
3 2.536 2.534 3.393 3.397 2.966 2.969 3.256 2.037 2.035 2.186 2.189 2.139 2.141 2.173 2.231 2.229 2.603 2.606 2.449 2.451 2.558
4 2.546 2.544 3.379 3.377 2.986 2.985 3.242 2.277 2.275 2.655 2.654 2.518 2.518 2.609 2.394 2.392 2.950 2.950 2.718 2.717 2.872
5 2.268 2.265 2.664 2.661 2.519 2.516 2.614 2.042 2.039 2.196 2.194 2.159 2.156 2.179 2.144 2.141 2.398 2.396 2.319 2.316 2.368
6 2.439 2.432 3.251 3.252 2.863 2.865 3.123 1.956 1.950 2.098 2.099 2.062 2.064 2.085 2.143 2.137 2.497 2.498 2.362 2.364 2.454

Expectileα Expectileβ RExpectileα

1 1.427 1.425 1.689 1.685 1.593 1.591 1.651 1.161 1.159 1.245 1.244 1.228 1.227 1.235 1.275 1.273 1.427 1.425 1.382 1.380 1.407
2 1.202 1.198 1.274 1.272 1.261 1.259 1.265 0.987 0.984 0.986 0.985 0.995 0.993 0.983 1.084 1.080 1.111 1.110 1.112 1.110 1.106
3 1.426 1.425 1.687 1.689 1.582 1.583 1.654 0.946 0.945 0.951 0.953 0.954 0.955 0.950 1.129 1.129 1.209 1.211 1.185 1.186 1.201
4 1.442 1.441 1.694 1.694 1.603 1.603 1.660 1.177 1.176 1.257 1.257 1.242 1.242 1.248 1.291 1.290 1.436 1.436 1.394 1.395 1.419
5 1.173 1.172 1.260 1.259 1.242 1.241 1.250 0.960 0.959 0.969 0.969 0.976 0.974 0.966 1.056 1.054 1.096 1.095 1.093 1.092 1.090
6 1.364 1.360 1.611 1.612 1.519 1.521 1.580 0.899 0.896 0.905 0.905 0.911 0.911 0.904 1.077 1.073 1.152 1.153 1.134 1.135 1.144
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Table 2. Continued.

SN∗ norm snorm std sstd ged sged jsu norm snorm std sstd ged sged jsu norm snorm std sstd ged sged jsu
Standard deviation values

VaRα VaRβ RVaRα

1 0.833 0.846 0.917 0.923 0.903 0.911 0.923 0.752 0.762 0.748 0.752 0.765 0.771 0.758 0.787 0.798 0.814 0.819 0.821 0.828 0.823
2 0.926 0.921 0.882 0.875 0.930 0.924 0.885 0.837 0.832 0.764 0.760 0.805 0.801 0.767 0.877 0.872 0.814 0.809 0.860 0.854 0.817
3 0.973 0.982 1.058 1.073 1.023 1.034 1.079 0.790 0.792 0.729 0.735 0.754 0.758 0.743 0.859 0.864 0.835 0.844 0.850 0.856 0.854
4 0.907 0.925 1.027 1.034 1.011 1.021 1.036 0.809 0.821 0.822 0.826 0.843 0.849 0.834 0.851 0.866 0.903 0.908 0.913 0.920 0.915
5 0.793 0.793 0.766 0.772 0.804 0.808 0.782 0.716 0.715 0.658 0.662 0.690 0.693 0.668 0.751 0.750 0.704 0.708 0.739 0.742 0.716
6 0.689 0.699 0.734 0.745 0.730 0.743 0.749 0.582 0.587 0.550 0.554 0.564 0.569 0.557 0.621 0.628 0.605 0.611 0.619 0.628 0.616

ESα ESβ RESα

1 0.912 0.930 1.239 1.249 1.068 1.078 1.181 0.835 0.849 0.973 0.980 0.916 0.924 0.959 0.868 0.884 1.078 1.086 0.979 0.988 1.048
2 1.038 1.032 1.135 1.123 1.120 1.110 1.109 0.956 0.951 0.969 0.960 0.987 0.979 0.959 0.993 0.987 1.039 1.029 1.045 1.037 1.023
3 1.069 1.082 1.439 1.461 1.202 1.216 1.390 0.900 0.906 0.945 0.957 0.916 0.925 0.953 0.965 0.973 1.106 1.121 1.020 1.031 1.102
4 1.002 1.025 1.397 1.408 1.206 1.220 1.337 0.910 0.928 1.093 1.100 1.027 1.037 1.079 0.949 0.970 1.214 1.223 1.102 1.113 1.184
5 0.891 0.892 1.017 1.028 0.982 0.989 1.011 0.820 0.820 0.854 0.861 0.857 0.862 0.858 0.851 0.852 0.922 0.931 0.912 0.918 0.923
6 0.750 0.763 0.975 0.993 0.854 0.871 0.947 0.645 0.653 0.667 0.676 0.661 0.671 0.674 0.684 0.694 0.763 0.775 0.729 0.742 0.763

SDRα SDRβ RSDRα

1 1.001 1.017 1.316 1.325 1.145 1.154 1.256 0.921 0.933 1.049 1.055 0.991 0.998 1.033 0.956 0.969 1.155 1.162 1.055 1.063 1.123
2 1.144 1.137 1.219 1.207 1.207 1.197 1.193 1.061 1.055 1.053 1.043 1.074 1.066 1.042 1.099 1.091 1.124 1.113 1.133 1.123 1.107
3 1.168 1.181 1.522 1.543 1.283 1.296 1.473 0.996 1.003 1.029 1.040 0.996 1.004 1.037 1.062 1.071 1.191 1.205 1.101 1.111 1.186
4 1.103 1.127 1.480 1.491 1.291 1.305 1.421 1.009 1.029 1.177 1.185 1.111 1.122 1.163 1.049 1.071 1.298 1.307 1.187 1.199 1.268
5 0.985 0.986 1.093 1.104 1.060 1.067 1.087 0.913 0.912 0.929 0.937 0.934 0.939 0.933 0.945 0.945 0.998 1.007 0.990 0.995 0.999
6 0.819 0.830 1.034 1.051 0.913 0.930 1.005 0.708 0.715 0.720 0.728 0.714 0.724 0.726 0.750 0.758 0.819 0.831 0.784 0.798 0.819

Expectileα Expectileβ RExpectileα

1 0.703 0.713 0.777 0.783 0.741 0.748 0.768 0.644 0.652 0.662 0.666 0.654 0.659 0.662 0.669 0.677 0.706 0.711 0.689 0.695 0.704
2 0.770 0.767 0.765 0.759 0.777 0.773 0.759 0.703 0.701 0.681 0.678 0.696 0.693 0.679 0.733 0.730 0.716 0.712 0.731 0.727 0.713
3 0.809 0.813 0.887 0.899 0.835 0.843 0.884 0.670 0.671 0.653 0.659 0.657 0.660 0.659 0.720 0.723 0.726 0.735 0.718 0.723 0.732
4 0.747 0.759 0.858 0.863 0.814 0.821 0.846 0.673 0.680 0.713 0.715 0.702 0.707 0.712 0.704 0.713 0.769 0.773 0.748 0.753 0.765
5 0.659 0.658 0.668 0.673 0.671 0.674 0.671 0.603 0.602 0.592 0.595 0.600 0.601 0.595 0.628 0.627 0.623 0.627 0.630 0.632 0.627
6 0.592 0.599 0.634 0.643 0.612 0.621 0.635 0.520 0.524 0.514 0.518 0.515 0.519 0.518 0.545 0.550 0.548 0.554 0.546 0.552 0.553
Note: SN∗ refers to scenarios. This table describes the average and standard deviation values of risk and range-based forecasts. The results are based on 1000 Monte Carlo replications considering scenarios 1–6, as detailed in the Online
Supplementary Material. Scenarios 1–3 consider φ1 = 0.50, a0 = 4.00E − 06, a = 0.10, b = 0.85, η = 8.00, while scenarios 4–6 differ only in the value of ν, considering it equal to 800. For scenarios 1 and 4, we use α = 1.00% and
β = 2.50%. In the scenarios 2 and 5, we use α = 2.50% and β = 5.00%, while for the scenarios 3 and 6, we consider α = 1.00% and β = 5.00%. Scenarios 1–6 use a n = 1000. For risk estimation, we consider an AR(1)-GARCH(1,1)
model, where zt follows normal (norm), skewed normal (snorm), Student-t (std), skewed Student-t (sstd), generalized error (ged), skewed generalized error (sged), or Johnson SU (jsu) distributions.
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Figure 1. Tail and range risk measures with α = 2.5% and β = 5% for sample generated consider-
ing a AR(1)-GARCH(1,1) model with φ1 = 0.50, a0 = 4.00E − 06, a = 0.10, b = 0.85, η = 800.00 and
n = 105. The risk values are with the sign adjusted.

risk values are with the sign adjusted.10 We perceive that this inequality is maintained in most cases for
deviation values.

We verify as expected that lower significance levels imply higher average risk values. We inform a
pair of significance levels (α and β) to compute range-based risk measures. For level pairs with lower
values, the average risk value is higher. So, we have that higher risk values for α = 1% and β = 2.5%,
followed by α = 1% and β = 5%. On the other hand, the lowest risk values are found for α = 2.5%
and β = 5%. From a risk management point of view, lower significance levels result in higher levels of
security, which implies higher risk estimates.

For scenarios in which there is a change only in the value of degrees of freedom, we find that the
average risk forecasts tend to be higher for a smaller η. Lower degrees of freedom result in more extreme
values than when considering an η = 800. The measures considered in this study are applied under the
left tail. Thus, for the series with more extreme observations, it is expected that the value of the risk
measure will be higher than a distribution with light-tailed. By way of illustration, for Scenarios 2 (η = 8)
and 5 (η = 800) and RVaRα forecasts considering normal distribution, we have an average risk forecast
equal to 1.525 and 1.494, respectively. We also observe that the risk forecasts of scenarios with a smaller
estimation window but with the same GARCH parameters and significance level have a greater standard
deviation (in absolute value). This result can be justified by the fact that smaller window estimations
tend to present bias and variability in the GARCH model estimates (Hwang and Valls Pereira, 2006;
Fantazzini, 2009). As the sample size increases, this problem becomes insignificant. Hwang and Valls
Pereira (2006) point out that for the estimation of the GARCH model, it is recommended to use a sample
of at least 500 observations.

Expectile and RExpectileα result in the lowest risk estimates when compared with other risk measures.
For a visual description, we suggest reviewing Figure 1. According to Bellini and Di Bernardino (2017),

10As the value of the risk measures is sign adjusted, the inequality is reversed relative to the numerical results.
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for a normally distributed X, the Expectile is closely comparable to the VaR1% and ES2.5% when we con-
sider a significance level equal to 0.145% (Expectile0.145%). Moreover, the forecasts of the Expectile and
RExpectileα have less variability in absolute terms. However, this result is not maintained when assessing
the relative standard deviation (RSD), that is, RSD := Standard Deviation

Average value . The RExpectile is based on Expectile,
which unlike quantile measures, such as VaR, is obtained by minimizing the asymmetrically weighted
quadratic loss function (Newey and Powell, 1987). Due to the squared error loss function used for its
estimation (see Example 1, (iii)), Expectile is more sensitive to the tails distributions (Xie et al., 2014).
Thus, changes in the left tail have a more significant impact on the results of the Expectile and the
measure based on it compared to the other measures used, which naturally leads to greater relative
variability.

In summary, our results show the similarity between the range and tail measures used to generate
them. We numerically confirm our theoretical results and the representations. The mean value of the
range measures is between the values of ρα to ρβ , and RVaR coincide with the RVaR. In the Online
Supplementary Material, we further evaluate the risk predictions obtained from the numerical example.
Also, we present an illustration of our approach to capital determination.

Supplementary material. To view supplementary material for this article, please visit http://doi.org/10.1017/asb.2023.28.
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