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Abstract

Let G be a (not necessarily finite) group and p a finite dimensional faithful irreducible rep-
resentation of G over an arbitrary field; write 7 for p viewed as a projective representation.
Suppose that p is not induced (from any proper subgroup) and that 7 is not a tensor product
(of projective representations of dimension greater than 1). Let K be a noncentral subgroup
which centralizes all its conjugates in G except perhaps itself, write H for the normalizer of K
in G, and suppose that some irreducible constituent, o say, of the restriction p|, is absolutely
irreducible. It is proved that then ( p is absolutely irreducible and) 7 is tensor induced from
a projective representation of H , namely from a tensor factor = of pl, suchthat nl, =07
and kern is the centralizer of X in G.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): Primary 20 C 15,
20 C 20.

1. Introduction

All representations considered in this paper will be finite dimensional repre-
sentations over fields. For each representation p: G — GL(d, F) of a group
G (over an arbitrary field F), let p: G —» PGL(d, F) denote the ‘projective
representation’ obtained by composing p with the natural map of GL(d, F)
onto PGL(d,F).

Let p be a faithful irreducible representation of a (not necessarily finite)
group G over an algebraically closed field (of arbitrary characteristic), and
M a noncentral normal subgroup. As is well known, Clifford’s Theorem [4,
11.1] yields that if p is not induced (from any proper subgroup) then the
restriction pl,, is a direct sum of pairwise equivalent irreducible represen-
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tations. If moreover P is not a tensor product (of projective representations
of dimension greater than 1), then another theorem of Clifford [4, 11.20]
gives that p|, itself is irreducible. The aim of this paper is to take one
more step by showing that if in this setting 7 is not tensor induced (from any
projective representation of any proper subgroup), then M cannot be written
(nontrivially) as a central product of a conjugacy class of subgroups of G.
For example, M cannot be a finite nonabelian nonsimple minimal normal
subgroup.

For the motivating application, let G be a finite nonabelian group with
centre Z and generalized Fitting subgroup F (see [7, X.13]), and suppose
that G has a faithful primitive representation p {over an algebraically closed
field) such that p is neither tensor induced nor a tensor product (in any
nontrivial way). Then either F/Z is a simple group or it is a faithful ir-
reducible G/F-module, a module which carries a nondegenerate symplectic
form respected by the action of G/F and which is not ‘form-induced’ from
any proper subgroup of G/F . By a result of Berger [1, Theorem 7.8], in
the latter case F/Z is a ‘minimal module’: that is, viewed as a module for
any normal subgroup of G/F , it is either homogeneous or a direct sum of
two homogeneous components each of which is totally isotropic. Thus after
induction, tensor factorization, and tensor induction have been exploited,
what is left is either a ‘nearly’ simple group or a situation very similar to one
which has been extensively studied in the context of primitive linear groups
with an extraspecial normal subgroup.

The principal result is both more general and more positive than the con-
cise version stated above; it is given (in two versions) in Section 6. A number
of examples in Section 8 mark some of the boundaries of this approach.

REMARK (added 24 May 1990). I have learned that the main result of this
paper has also been obtained by Professor Peter Schmid in his paper ‘Coho-
mology of tensor induction’ (to appear in J. Algebra). The two treatments are
complementary, in that each explores several aspects of the problem which
are not dealt with by the other.

2. Projective representations

The reader will have noted that projective representations are here viewed
simply as homomorphisms into some PGL(d, F): in the present context,
there seems to be no advantage in the tradition of working with the not neces-
sarily homomorphic maps into GL(d , F) which yield these homomorphisms
upon composition with the natural map of GL(d, F) onto PGL(d, F). The
word ‘representation’ without the adjective ‘projective’ will always mean a
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homomorphism to a GL(d, F); for the sake of emphasis, these homomor-
phisms will at times be referred to as genuine representations.

It may be as well to review some general facts in terms of these conventions.
The only projective representation of dimension 1 is now the trivial one. A
projective representation n: G — PGL(d, F) is said to be (absolutely) irre-
ducible if the complete inverse image of Gn in GL(d, F) is an (absolutely)
irreducible linear group. Two projective representations are called equivalent
if their dimensions are equal and one is the composite of the other with an
inner automorphism of the relevant PGL(d,F). Given two genuine rep-
resentations p and o, it is easy to see that the corresponding projective
representations 7 and & are equivalent if and only if p is equivalent to
the tensor product of ¢ with a 1-dimensional representation. Thus while
the equivalence type of the direct sum p @ o depends only on the equiv-
alence types of p and o, in general the equivalence type of p&a is not
determined by the equivalence types of p and @. This is just a small part
of the reason why there is no sensible way to define direct sums of projec-
tive representations; the real reason is, of course, that the ‘block diagonal’
inclusion of the (abstract, external) direct product GL(c, F) x GL(d, F) in
GL(c+d, F) yields no homomorphism from PGL(c, F) x PGL(d, F) into
PGL(c+d, F). Accordingly, for projective representations one cannot define
induction either.

There is no such difficulty with tensor products: the Kronecker prod-
uct homomorphism of GL(c,F) x GL(d,F) into GL(cd,F) does yield
a homomorphism, indeed an embedding, of PGL(c, F) x PGL(d, F) into
PGL(cd,F). One can therefore define the tensor product of two projec-
tive representations; the equivalence type of the tensor product depends only
on the equivalence types of the tensor factors, and the formation of tensor
products commutes with the map p — 7 from genuine representations to
projective representations.

Similarly, the n-fold Kronecker product yields a homomorphism, x say,
of the n-fold direct power of GL(d,F) into GL(d",F). It is not hard
to see that there is a copy of the symmetric group S, in the group of all
permutation matrices in GL(d" , F) whose conjugation action on the image
of this embedding corresponds to permuting the Kronecker factors. Thus if
the n-fold direct power of GL(d, F) is regarded as the base group of the
(permutational) wreath product GL(d, F) Wr S, , this k extends to a ho-
momorphism «*: GL(d, F) Wr S, — GL(d", F), mapping the top group
of the wreath product to the copy of S, mentioned above. Let H be a
subgroup of index n in a group G, and p: H — GL(d, F) a representa-
tion of H. One may paraphrase [4, Definition 13.5] as follows: the rep-
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resentation p 1® ¢ tensor induced from p is the composite of a certain
embedding ¢: G — H Wr §, (defined in [4, 13.3]), the homomorphism
H Wr §, — GL(d,F) Wr S, obtained from p in the obvious manner,
and k" . As in Berger [1], this ¢ will be called a Frobenius embedding; the
relevant homomorphism H Wr S, — GL(d,F) Wr S, will be written as
p Wr S, . Recall that ¢ depends on the choice of representatives for the
cosets of G modulo H, but only up to composition with inner automor-
phisms of its codomain, so the equivalence type of pT®G depends only on
that of p.

There is a corresponding embedding x : PGL(d, F) Wr S, — PGL(d",F).
Given a projective representation n: H — PGL(d, F), one calls the com-
posite ¢(nr Wr S )X the projective representation nT®G of G tensor induced
from 7. This is consistent with the definition of tensor induction of projec-
tive representations given by Berger in [1, 2B] (but beware of confusion with
Definition 5.8 of that paper: the explanation for the connection with that
definition is in the second paragraph on page 25 of [1]). It is clear that the
equivalence type of nT®G depends only on that of =, and also that pT®G
is equivalent to ﬁT‘g’G.

It will pay to pursue the analogy one step further: the (genuine) represen-
tation pTG of G induced from p in the usual (additive) sense is easily seen
to be the composite homomorphism obtained as ¢ followed by p Wr S,
followed by the usual ‘block monomial’ embedding of GL(d,F) Wr §, in
GL(dn,F).

REMARKS. It is customary but not entirely justified to talk about ‘the’ rep-
resentation of a group induced or tensor induced from a given representation
of a subgroup, a custom implicit in any notation such as pTG or nT®G. As
has been seen, the equivalence type of the induced or tensor induced rep-
resentation is indeed well defined; however, in general there is no canonical
choice of a representative of that equivalence type. Such a choice would de-
pend not only on coset representatives but also on a linear order for the set
of cosets and on appropriate further conventions. Some of these difficulties
have been masked in the above discussion by speaking of ‘the’ embedding
K , of ‘the’ block monomial embedding, and so on, as if these were unique or
at least canonically chosen. (For induction or co-induction of genuine repre-
sentations, module language and tensoring with the group algebra or taking
a Hom set provide natural, choice-free, functorial alternatives, but so far |
have not seen a choice-free definition for a tensor induced module.)

A related abuse of language enshrined in tradition is the failure to ac-
knowledge that while the various representations of a group induced from a
given representation of a subgroup are all equivalent, they need not form a
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complete equivalence class. It is very convenient here, too, to say simply that
a representation is induced or tensor induced when one means only that it is
equivalent to at least one induced or tensor induced representation.

3. Wreath products

Whether we are dealing with a tensor induced projective representation
or with an (additively) induced genuine representation, the image lies in a
wreath product with top group S, . By construction, each wreath product is
the semidirect product of its base group and top group, and so comes with.a
‘top projection’: an idempotent endomorphism with image the top group and
kernel the base group. Since G acts transitively on its set of cosets modulo
H , its image in the relevant wreath product is mapped by this top projection
onto a transitive subgroup of S, . This observation has a useful converse,
which is an easier variant of the ‘if’ part of [9, Theorem 1'].

LEMMA. Given any homomorphism y. G — A Wr S, such that the top
projection maps Gy onto a transitive subgroup of S, , there is a subgroup
H (of index n in G) and a homomorphism a: H — A such that y is a
Frobenius embedding ¢: G — H Wr S, followed by a Wr S, followed by an
inner automorphism of A Wr S, .

Proor. Call that top projection 7, let §,_, be a point stabilizer in S, ,

and H the complete inverse image Sn_l(yt)_1 . Since Gyt is transitive, this
choice of H already ensures that ¢(a Wr S,)t and yt can differ only by
an inner automorphism of S, , regardless of how ¢ and a may be chosen.
Differently put, to each choice of ¢ and «, conjugation by a suitable ele-
ment of the top group defines an inner automorphism of the wreath product,
o say, such that ¢(a Wr §,)o7 = y7. Next, consider the direct factorization
Ax A" of the base group A", with the first direct factor 4 being the coor-
dinate subgroup indexed by the ‘point’ whose stabilizer was chosen as S, _,
and the second direct factor 4! being the product of all the other coordi-
nate subgroups. Then §, | centralizes the first direct factor and normalizes
the second, so Sn_lA" is the direct product A x Sn_lA""1 ; let 7, stand
for the corresponding idempotent endomorphism of Sn_lA'l with image A4
and kernel Sn_lA"_1 . Note that Hy is contained in S,_ 4", so one may
define o as a: A~ hyt,. Define ¢ using coset representatives which may
be arbitrary except for the trivial coset H being represented by 1, take a
matching o, and set y' = p(a Wr S,)o . Appeal to the converse part of the
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Uniqueness Theorem of [8] with @ = 1 (noting that there the present 7 and
7, were called #n and =, respectively), and conclude that y' is y followed
by an inner automorhism, # say (this one being conjugation by a suitable
element of the base group). Then y = g(a Wr Sn)aﬂ'1 , and the proof is
complete.

A proof of the part of Clifford’s Theorem stated in the Introduction may
now be sketched as follows. Suppose that pl,, is not a direct sum of pairwise
equivalent irreducible representations. Show that in this case p is equiv-
alent to a representation whose image lies in a block monomial subgroup
GL(d/n,F) Wr S, in such a way that the top projection maps it onto a tran-
sitive subgroup of S, . The lemma then directly implies that p is equivalent
to a representation induced from a subgroup of index n. Thus one may
argue that this lemma is just an abstract form of one step from ‘the’ proof
of Clifford’s Theorem. It is this sketch which will be followed in proving the
main theorem of this paper as well.

REMARK. When 7 is finite, any subgroup of index n whose image under
y normalizes a coordinate subgroup is the complete inverse image of a point
stabilizer and thus can be chosen for the role of H .

4. Outer tensor products

In further preparation for the main theorem, some facts concerning outer
tensor products also need to be reviewed. It will be convenient to do this
in the language of linear groups instead of representations. The relevant
fragment of the familiar result (see [4, 10E]) may be elaborated as follows.

OuTER TENSOR PRODUCT THEOREM. Let K, ... , K, be (not necessarily
finite) subgroups of GL(V) where V is a finite dimensional vector space
over an arbitrary field F; suppose that K; and K ; commute elementwise
whenever i # j, and that the subgroup K, ---K, is irreducible. For each i,
choose an irreducible K-subspace V,, and denote by k; |V the restriction
to V; of an element k; of K,. Suppose in addition that each K, |V, is
absolutely irreducible. Then there is a vector space isomorphism @V, =V
which conjugates each @(k;| V) to the corresponding [] k;, and the subgroup
K, ---K, is absolutely irreducible.

NORMALIZER ADDENDUM (EXTERNAL FORM). Let N denote the intersec-
tion of the normalizers N LK) and N, the normalizer of the restriction
K|V, in GL(V)): then this QV, =V conjugates Q N, to N.
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Since two isomorphisms @ ¥; = V' which conjugate each @(k; | V) to
[1k; can differ only by a scalar factor, the abuse of language in referring to
‘this’ @ ¥, = V carries no danger. For an equivalent form of this addendum,
let Z stand for the centre of GL(V) and A4, for the linear span of K; in
Endg V' : note that, as (abstract) F-algebra, 4, is isomorphic to EndgV;.
Further, let L; denote the normalizer of K, in the group of units, G, say,
of 4;;0f course, Z<L,<N.

NORMALIZER ADDENDUM (INTERNAL FORM). The quotient N/Z is the di-
rect product of the L,/Z .

COROLLARY 1. The quotient N/Z is contained in the direct product of the
G,/Z.

COROLLARY 2. The quotient N/(K,---K,Z) is isomorphic to the direct
product of the L,/K,Z .

Proof of the external form of the Normalizer Addendum. It will be con-
venient to write 1, ambiguously but simply, for the identity transformation
of every vector space. The proof will be by induction on n. The initial step
is the critical one: the case n = 2.

The key fact is that the normalizer in GL(V,®V,) of the algebra 1QEnd, V,
is precisely GL(V}) ® GL(V,). Indeed, GL(V,) ® GL(V,) is obviously con-
tained in that normalizer. As the simple modules for a full matrix algebra
over F form a single isomorphism class, such an algebra has no outer au-
tomorphism: thus to each element g of the normalizer there is a y in
GL(V,) such that g(1® y_') centralizes 1 ® End, V,. On the other hand,
V, ® ¥, as module for 1 ® End, ¥, is the direct sum of dim¥, pairwise
isomorphic simple modules, so the endomorphism ring of this module has
the same dimension as (Endg ¥;) ® 1: thus the centralizer of 1®End.V, in
End. (¥, ® V,) is precisely (Endg V;)®1. It follows that g(1 ey H=x®l
for some x in GL(V]),and then g =xQ®y.

By a similar argument, the centralizer of (K, |V])® 1 in End (V| ® V,)
is just 1 ® End,V,: therefore l\IGL(Vl@VZ)((K1 | ¥)) ® 1) must normalize
1 ® Endg ¥V, as well, and so by the result of the previous paragraph it must.
lie in GL(¥))® GL(V,). Of course it contains the centralizer 1® GL(V,) of
(K,1V))®1 in GL(V, ®V,), so by Dedekind’s Law

Nopver) (K1 V) ®1) = (N, ® 1)(1® GL(V;)) = N, ® GL(V)).
By symmetry we also have
Nornavy (1 ® (K31V))) = GL(V)) ® N,
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so we can conclude that the intersection of the normalizers of (K, |V))® 1
and 1® (K, | V,) is (N, ® GL(V,)) n (GL(V;) ® N,). As each N, con-
tains all scalar transformations on the corresponding V;, it follows that this
intersection is N, ® N, , and the proof for n = 2 is complete.

For the easy inductive step, let n > 2. An element of GL(® V;) which
normalizes the copies of the K (that is, the groups obtained as the Kronecker
product of one K, | ¥, with the identity tranformations on the V] with
J # i), will also normalize the product (K, |V,)® (K,|V,)®1®---®1 of
the first two of these subgroups, and therefore by the inductive hypothesis it
must be of the form x® y with x € GL(V;®V,) and ye N;®---Q N, .
Since 1 ® y normalizes all relevant subgroups, so does x ® 1, and therefore
x. must normalize both (K, [V;)®1 and 1® (K, |V,): by thecase n =2,
therefore x must lie in N, ® N, .

Proof of the internal form of the Normalizer Addendum. Thecase i =1 is
typical: @ V; = V' conjugates (Endg V|)®1®---®1 to 4, and N,®1®---®1
to L,.

5. The other theorem of Clifford

The ‘other theorem of Clifford’ referred to in the introduction says that if p
is a representation of a group G and its restriction pl,, to a normal subgroup
M is a direct sum of copies of an absolutely irreducible representation o of
M , then there exist projective representations # and 7 of G with 7|,, =7
and kerm > M such that @ = 7 ® n. The input and output of this theorem
are not matched in a way that would facilitate repeated application. Using
the Normalizer Addendum, one can strengthen the conclusion and weaken
the hypothesis so as to remedy this, as follows.

Some new terminology will be necessary, which will also be useful in the
second version of the main result in the next section. Let us say that a
projective representation 7: G — PGL(V) and a (genuine) representation
o: M — GL(V) of anormal subgroup M of G are linked if (m®)o = (mao)*
whenever m € M, g € G, and x is a preimage of gt in GL(V). For
example, this is the case when 7 =7 and o = p|,, for some representation
p of G. If T and o are linked then of course ¢ is G-invariant (equivalent
to all its G-conjugates).

THE OTHER THEOREM OF CLIFFORD (EXTENDED FORM). To each G-invari-
ant absolutely irreducible representation ¢ of a normal subgoup M of G,
there is a unique t such that o and t are linked; then 1|, =G (so t is
absolutely irreducible) and kert = Cy(M/kero). If o' is equivalent to such
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a o, then the unique ©' linked to o' is equivalent to t. If m is a projective
representation of G which is linked to a direct sum of copies of such a o, then
the t© linked to o is a tensor factor of =.

(Of course the complementary tensor factor is then also unique, for T ®
7' =1®n" is impossible without =’ = n" )

The proof of the first two sentences is obvious. For the third, apply the
Normalizer Addendum with n = 2: let p be the relevant direct sum of
copies of o; let K, = Mp, so m — (mp|V|) can be identified with o
and put K, = C; LK) . Show that the irreducible constituents of K,
are absolutely irreducible and that K K, is irreducible. The conclusion is
that Gn < (G,/Z) x (G,/Z) . Following n by the projections of this direct
product onto its direct factors, one obtains two projective representations
whose tensor product is 7. The first tensor factor is then readily seen to be
linked to o, so it must equal 7.

REMARKS. A few caveats may be in order, even for the case of finite G
and faithful, absolutely irreducible, G-invariant ¢ . First, 7’| » = 0 does
not imply that kert’ = C;(M). Second, even if kert = C;(M) is also
assumed, one cannot conclude in general that 7' is equivalent to 7. (Exam-
ples in Section 8 will show the need for these comments.) Third, it must be
emphasized that even if 7’ is equivalent to 7, it is not linked to ¢ unless
it actually equals 7 (otherwise it is linked to a representation equivalent to
but distinct from ¢ ). Similarly, the uniqueness of the complementary ten-
sor factor (in the parenthetical remark after the theorem) is not just ‘up to
equivalence’. Thus in this context extreme caution is needed with otherwise
harmless abuses of language, like saying ‘is induced (or tensor induced)’ while
meaning ‘is equivalent to an induced (or tensor induced) representation (or
projective representation)’.

As there is no nontrivial 1-dimensional projective representation (in the
sense of this paper), no projective representation can be a tensor factor of
a strictly different projective representation of the same dimension. Thus
the first caveat already shows that, in [1, Corollary 5.19] for example, the as-
sumption that a restriction of a projective representation ‘is’ genuine (written
there as “ Y|, is nonprojective”) must be interpreted as requiring that the
projective representation be linked to the relevant genuine representation.

6. The main result

Reverting to those ‘harmless abuses of language’, recall that a (genuine)
representation is called primitive if it is irreducible and not induced from
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any proper subgroup. Similarly, a projective representation will be called
tensor primitive if it is irreducible, not a tensor product (of projective repre-
sentations of dimension greater than 1), and not tensor induced (from any
proper subgroup).

TENSOR INDUCTION THEOREM. Let G be a (not necessarily finite) group
with a faithful primitive representation p. Suppose that p is not a tensor
product (of projective representations of dimension greater than 1). Let K be
a noncentral subgroup which centralizes all its conjugates in G except perhaps
itself, set N;(K) = H, and suppose that some irreducible constituent, o say,
of ply is absolutely irreducible. Then (p is absolutely irreducible and) p is
tensor induced from a projective representation of H, namely from a tensor
Jactor © of ply such that n|, =G and kern = C;(K).

PrOOF. Denote the index |G : H| by n;set K, = K, let K, ... ,K,
be the conjugates of K in G, and M the subgroup generated by the K.
This M 1is a noncentral normal subroup of G. The primitivity of p en-
sures that the irreducible constituents of p|, are pairwise equivalent, by
the part of Clifford’s Theorem discussed above. Each K; is supplemented
by its centralizer in M , so another application of (another part of) Clifford’s
Theorem now yields that the irreducible constituents of p|, are pairwise
equivalent. By assumption then, all these constituents are a'bsolutely irre-
ducible. Therefore the Outer Tensor Product Theorem shows that the irre-
ducible constituents of p|, are also absolutely irreducible. Since P is not
a tensor product, it follows that p|,, itself is absolutely irreducible (use the
original version of ‘the other theorem of Clifford’). Of course H contains
M, so pl, is also absolutely irreducible. Since K is not normal in G and
p is faithful, Kp cannot consist of scalars and so K cannot be central in
H . The scene is now set for applying the extended form of ‘the other theo-
rem of Clifford’ with H, p|,, K, and ¢ in place of G, n, M, and o,
leading to the conclusion that p{, is the tensor product of two projective
representations of H , the first of which, 7 say, has kernel C;(K) and agrees
with @ on K. It remains to show that 7 is equivalent to 1T®G.

Set C = CGL( d,F)(K p) and let G; denote the group of units in the lin-
ear span of K,p. Write Z for the centre of GL(d, F), and N for the
intersection of the normalizers of Kp and of C in GL(d, F). Corollary
1 (in Section 4) shows that Hp < N/Z < (G,/Z) x (C/Z); by definition,
T is pl, followed by the projection of this direct product onto its first di-
rect factor. Of course now the G;/Z are the coordinate subgroups of the
base group of a copy of PGL(V/d, F) Wr S, in PGL(d,F), a copy whose
inclusion, ¥ say, is obtained from Kronecker multiplication, just as in the
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definition of tensor induction of projective representations. That copy, W
say, may be recognized as the normalizer in PGL(d, F) of the set consist-
ing of these coordinate subgroups, and hence it contains Gp . Indeed, since
the K, are all conjugate in G, the ‘top projection’ of this wreath product
maps Gp onto a transitive subgroup of S, . The lemma of §3 therefore
ensures that (up to equivalence) 7 is tensor induced from a subgroup of in-
dex n. As Hp normalizes one of the coordinate subgroups and H has
index n, the remark at the end of Section 3 shows that the present H
can be chosen as that subgroup. The definition of « in the proof of that
lemma now amounts to naming a projective representation of H which ten-
sor induces to (a projective representation equivalent to) 7, as follows. Let
S,_, be chosen so that S, X is the normalizer of G,/Z in §,k. Then
N, (G)) = (G,/Z) x ((S,_,®)G,/Z)---(G,/Z)), and « is to be Pl fol-
lowed by the projection, m, say, of this direct product onto its first direct
factor. The second direct factor being contained in C/Z, this =z, is just a
restriction of the projection of (G,/Z) x (C/Z) onto its first direct factor.
This shows that the definition of a matches that of 7, and thereby completes
the proof.

ReEMARK: If p: G — GL(d, F) is a representation such that p = 1%¢
for some projective representation t of a subgroup H of index n, then (in
the notation of Section 2) one has that

Gp < (GL(\"/Z, F) Wr Sn)rc+ ,

so the pullback of p and x* gives a surjective homomorphism p*: G* — G
such that p*p factors also through x*. The top projection of this wreath
product must then map the relevant image of G:’ to a transitive subgroup
of §,, and it readily follows that pip = aT®G for some representation
o: H — GL(Vd, F) of the complete inverse image H* of H under p*.
(Moreover, here (xp*)t = x@ for all x in H*. Note however that kerp”
is usually not central in H", let alone in G*.) In this very weak sense
only, p may be viewed as a tensor induced genuine representation, not of
G but of the larger group G~ . (The first example in Section 8 will show
that p itself need not be tensor induced when the hypotheses of the Tensor
Induction Theorem are satisfied.) The same argument may be applied even
when a projective representation n = tT®G tensor induced from a subgroup
H is not (or indeed cannot be) written in the form p (for any genuine
representation p of G): the pullback of 71®C and the relevant k¥ yields

a surjective homomorphism #n*: G* — G such that n*n = 01®% for a
suitable genuine representation ¢ of the complete inverse image H", with
(xa*)t=xo forall x in H".
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COROLLARY. Let G be a (not necessarily finite) group and p a faithful
primitive representation of G such that p is tensor primitive. If M is a non-
central normal subgroup of G such that some irreducible constituent of pl,,
is absolutely irreducible, then p|,, is in fact irreducible and C (M) = Z(G).
If K is a nonnormal subgroup of G such that some irreducible constituent of
ply is absolutely irreducible, then some conjugate of K in G, other than K
itself, must fail to centralize K .

(Of course the first part of this omnibus corollary comes direct from Clif-
ford’s theorems and has nothing to do with tensor induction.)

The chosen form of the Tensor Induction Theorem is open to objection:
Clifford reduction leads to projective representations which do not come as
7 and which may not be capable of being written as such for any genuine
representation p of the group in question; in any case, it is incongruous that
the hypotheses should involve genuine representations when the conclusions
refer only to projective representations. The way to overcome these points
is to make full use of the extended form of ‘the other theorem of Clifford’
from Section 5 (and avoid those ‘harmless abuses’).

TENSOR INDUCTION THEOREM (EXTENDED FORM). Let n be a projective
representation of a (not necessarily finite) group G, and K a noncentral
subgroup of G which centralizes all its conjugates except perhaps itself. Write
H for the normalizer of K and M for the normal closure of K. Suppose
that n is linked to some faithful irreducible representation p of M, and
that an irreducible constituent o of ply is absolutely irreducible. Then (p is
absolutely irreducible and) n is equivalent to a projective representation tensor
induced from the unique projective representation t of H which is linked to
o (and is therefore such that kert = C;(K) and |, =70).

Modulo ‘the other theorem of Clifford’, this may be viewed as a (partial)
generalization of [1, Corollary 5.19]; it certainly would not have been thought
of without that result of Berger’s.

7. An application

Suppose now that G is a finite nonabelian group with a faithful primitive
representation p, over a field F which is a splitting field for all quasinilpotent
subnormal subgroups of G, and that P is tensor primitive. This immediately
implies that the centre of G is cyclic: call that Z , write F for the generalized
Fitting subgroup F~(G), and note that C;(F) < F (see [7, X.13)).
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There are two cases. First, let G have a component K (that is, a qua-
sisimple subnormal subgroup). Then all conjugates of K are also compo-
nents of G, so those (if any) which are different from K centralize K. By
the corollary of the Tensor Induction Theorem, K must be normal in G and
centralized only by Z: thus KNZ = Z(K) and KZ = F, whence F/Z is
isomorphic to the simple group K/Z(K).

The rest of the argument concerns the alternative, namely the case in which
G has no component, so F is just the Fitting subgroup. Since G is non-
abelian, F cannot be central in G, so by (the Clifford part of) that corollary
F is also nonabelian. Let M be minimal among the noncentral normal
subgroups of G contained in the second centre of F . for the same rea-
son, C;(M) = Z; in particular, MNZ = Z(M). Thus C,(M/Z(M)) is
nilpotent (for instance, by the ‘three subgroups lemma’), and it follows that
C;(M/Z(M)) = F . For each element f of F, define a map j~": M/Z(M)—
Z by f~: xZ{(M) — [x, f]. It is straightforward to check, first, that each
f so defined is a homomorphism, and second, that f — f defines a ho-
momorphism of F into Hom(M/Z(M), Z) with kernel C.(M), that is,
with kernel Z. Now lﬂl = |M/Z(M)| > |Hom(M/Z(M), Z)| > |F| (the
reason for the first inequality being that Z is cyclic), so in fact MZ = F
and F/Z is G-isomorphic to M/Z(M). We have already seen, in effect,
that M/Z (M) is a faithful irreducible G/F-module: so the same holds for
F/Z.

Let p be the (prime) exponent of M/Z(M): of course now M has p-
power order; the derived group M’ has exponent p and lies in the cyclic
centre, so M’ is the unique subgroup of order p in Z(M). If M has no
other subgroup of order p, then M must be a quaternion group of order
8. If M does have noncentral subgroups of order p as well, the minimal
choice of M guarantees that the subgroup generated by the elements of order
p in M must be M itself. It follows that M is either an extraspecial group
(of exponent p when p is odd) or the central product of an extraspecial
2-group with a cyclic group of order 4. (An example in the next section will
show that the latter possibility cannot be ruled out in general. It certainly
cannot occur when G is soluble, for in that case a minimal normal subgroup,
Q/F say, of G/F must have order prime to p and therefore M/M’ is the
direct product of [M, Q)/M’ and Z(M)/M', so the minimal choice of M
implies that [M, Q] = M and then Z(M) = M'.) As usual, commutators
yield a G-invariant nondegenerate symplectic form on M/Z(M); when p =
2 =|Z(M)|, one must consider also the G-invariant nondegenerate quadratic
form obtained from squaring (see [6, I11.13]).

Consider the possibility that M/Z (M) as G/F-module is induced from
a proper subgroup, H/F say. This would mean that H is the normalizer
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in G of a subgroup K with M > K > Z(M) and M/Z(M) is the direct
product of the conjugates of K/Z(M). In the terminology of Berger [1],
form induction would mean in addition that any two distinct conjugates of
K centralize one another. The corollary of the Tensor Induction Theorem
prohibits this, so the conclusion is that M/Z (M) is form primitive. In view
of the G-isomorphism F/Z = M/Z(M), this completes the proof of the
claims made in the Introduction.

8. Examples

1. Consider the subgroup G generated in GL(4, 3) by the Kronecker
product of two copies of SL(2, 3) and a permutation matrix g of order
2 which interchanges the two Kronecker factors, and let p be the inclusion
of G in GL(4, 3) viewed as a representation over the algebraic closure F
of the field of 3 elements. This group G has no subgroup of index 4. The
unique subgroup of index 2 has no representation of dimension 2 which
would not be trivial on the centre. Consequently, no faithful 4-dimensional
genuine representation of G can be induced or tensor induced from any
proper subgroup. The image of 7 has a minimal normal subgroup of order
16; if P is written as a tensor product, its image is embedded in a direct
product, and this minimal normal subgroup must survive projection into at
least one of the direct factors. If that tensor factorization were nontrivial,
the direct factors would be copies of PGL(2, F), but this group has no
elementary abelian subgroup of order 16. For K, take one of the Kronecker
factors SL(2, 3). Then all hypotheses of the Tensor Induction Theorem are
satisfied, yet p is not tensor induced.

2, The same group G also has a 4-dimensional faithful absolutely irre-
ducible representation p over the rational field Q. In that case, p|, is
irreducible but not absolutely irreducible; all other hypotheses are satisfied;
yet P is not tensor induced. This shows that the assumption concerning
an irreducible constituent of p |, being absolutely irreducible cannot be
replaced by the requirement that p itself be absolutely irreducible.

3. In the notation of Bolt, Room, Wall [3]), let G be the commutator
subgroup CT’ of the normalizer CT in GL(4, C) of the 4-dimensional
‘complex Clifford group” % . Then G is a perfect group; its Fitting sub-
group F is £%, a central product of an extraspecial group of order 32
and a cyclic group Z of order 4; this Z is the centre of G, and G/Z is
a semidirect product of the self-centralizing minimal normal subgroup F/Z
with an alternating group A, . As any perfect group, G has no subgroup of
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index 2 or 4: so its inclusion p: G — GL(4, C) has nowhere to be induced
from, and the corresponding 7 cannot be tensor induced either. The argu-
ment concerning the first example can now be repeated to show that 7 is
not a tensor product. Nevertheless, G has no extraspecial normal subgroup:
it cannot possibly have one, for A4, is too big to fit into the automorphism
group of any extraspecial group of order 8 or 32.

It is one of the less well known achievements of Professor Wall that the auto-
morphism groups of the extraspecial groups were in effect determined already
in the papers [2), [3] (except for the case of odd prime square exponent). The
context dictated that the discussion be restricted to automorphisms which act
trivially on the centre; on the other hand, the delicate issue of just when does
the group of such automorphisms split over the group of inner automorphisms,
was completely resolved.

4. The last example may also be used to illustrate the need for the second
caveat in the remark at the end of Section 5 as follows. Since

H'(GP/Fp, Fp) #0

(see Holt and Plesken [5]), the centralizer C Aut(Gﬁ)(F P) contains some outer

automorphisms (see Robinson [10, Section 4]): let a be one. Then 7': g —
(gP)a defines a projective representation 7 of G such that ‘r'lF = plr and
kert' = kerp = Z. The equivalence of ' and 7 would mean that o is
conjugation by an element, x say, of PGL(4, C). That x would normalize
Gp and centralize Fp, so a preimage y of x in GL(4, C) would normalize
the complete inverse image CG of Fp: thus y € CT and so x € PCT
would follow. Since Fp = PCG and PCG is its own centralizer in PCT,
this would mean that x € Fp: but that would make « inner. This proves
that " and p are not equivalent.

5. The first caveat in that remark is much easier to justify. For this, let
G be the holomorph of the quaternion group Q; of order 8. The group R
of the right tranlations and the group L of the left translations are normal
subgroups of G, with AutQ; a common complement to them. There is just
one other normal subgroup of order 8 in G, namely the elementary abelian
A defined by 4 = (RN L)(InnQy); and all three factor groups of order 24
are isomorphic to PGL(2, 3). It follows that there exist homomorphisms
and v of G onto PGL(2,3) with kernels 4 and L, respectively; and it
is not hard to arrange that T and 7’ agrecon R.
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