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Abstract

Let BG be the classifying space of an algebraic group G over the field C of complex num-
bers. There are smooth projective approximations X of BG × P∞, by Ekedahl. We compute
a new stable birational invariant of X defined by the difference of two coniveau filtrations of
X, by Benoist and Ottem. Hence we give many examples such that two coniveau filtrations
are different.

2020 Mathematics Subject Classification: 20G10, 55R35, 14C15 (Primary);
57T25 (Secondary)

1. Introduction

Let p be a prime number and A =Q, Z or Z/pi for i ≥ 1. Let X be a smooth algebraic
variety over k =C. Let us recall the coniveau filtration of the cohomology with coefficients
in A,

NcHi(X; A) =
∑
Z⊂X

ker
(
j∗:Hi(X; A) −→ Hi(X − Z, A)

)
,

where Z ⊂ X runs through the closed subvarieties of codimension at least c of X, and j : X −
Z ⊂ X is the complementary open immersion.

Similarly, we can define the strong coniveau filtration by

ÑcHi(X; A) =
∑

f : Y→X

im
(

f∗ : Hi−2r(Y; A) −→ Hi(X, A)
)

,

where the sum is over all proper morphism f : Y → X from a smooth complex variety Y
of dim(Y) = dim(X) − r with r ≥ c, and f∗ its transfer (Gysin map). It is immediate that
ÑcH∗(X; A) ⊂ NcH∗(X; A).

It was hoped that when X is proper, the strong coniveau filtration was just the coniveau
filtration, i.e., ÑcHi(X; A) = NcHi(X; A). In fact Deligne shows that they are the same for
A =Q. However, Benoist and Ottem ([1]) recently show that they are not equal for A =Z.

Let G be an algebraic group such that H∗(BG; Z) has p-torsion for the (geometric) clas-
sifying space BG defined by Totaro [17] as a colimit of smooth quasi-projective varieties.
Moreover, Ekedahl [4] shows that BG × P∞ can be approximated by smooth projective
varieties X in the following sense.
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Here a (degree N) approximation is the projective smooth variety X = X(N) such that
there is a map g : X → BG × P∞ with

g∗ : H∗(BG × P∞; A) ∼= H∗(X; A) for all degree ∗ < N.

The aim of this paper is to compute the mod(p) stable birational invariant of X [1,
proposition 2·4]

DH∗(X; A) = N1H∗(X; A)/
(

p, Ñ1H∗(X; A)
)

for projective approximations X of BG × P∞ ([4, 10]). In fact, we see that DH∗(X; Z) 	= 0
happen very frequently in the above cases. In this paper, we say that X is an approximation
for BG when it is that of BG × P∞ strictly speaking. Let us write DH∗(X; Z) by DH∗(X)
simply as usual.

Here we give an example that we can compute a nonzero DH∗(X). For G = (Z/p)3 the
elementary abelian p-group of rank = 3, we know (for p odd)

H∗(BG; Z/p) ∼=Z/p
[
y1, y2, y3

] ⊗ �(x1, x2, x3) , degree |xi| = 1, Q0(xi) = yi,

H∗(BG)/p ∼=Z/p
[
y1, y2, y3

] (
1, Q0

(
xixj

)
, Q0 (x1x2x3) |1 ≤ i < j ≤ 3

)
,

where Q0 = β is the Bockstein operation, �(a, ..., b) is the Z/p-exterior algebra generated
by a, ..., b. and the notation R(a, ..., b) (resp. R{a, ..., b}) means the R-submodule (resp. the
free R-module) generated by a, ..., b.

THEOREM 1·1. Let G = (Z/p)3. For all N > 2p + 3 and all (degree N) approximations
X = X(N) for BG, we have

DH∗(X) ∼= DH3(X) ⊕ DH4(X)

∼=Z/p
{
Q0

(
xixj

)
, Q0 (x1x2x3) |1 ≤ i < j ≤ 3

}
for all degree ∗ < N.

But we have DH∗(X; Z/p) = 0 for all degree ∗ < N.

Remark. In general, DH∗(X) seems not to be an invariant of BG, but the above case is
determined by BG. Many cases of examples in this paper have this property.

Benoist and Ottem also study approximations of BG × P∞. They compute for example
G = (Z/2)3 and show that the invariant is nonzero for A =Z(2) by using compositions of
the Steenrod squares and Wu theorems. On the other hand, we show that arguments can be
extended for A =Z(p) for all prims p by using the Milnor operation Qn, which commutes
with all Gysin maps.

However it seems not so easy to give a nontrivial example for A =Z/p in the case X is an
approximation for BG as the above examples show.

For connected groups we have

THEOREM 1·2. Let G be a simply connected group such that H∗(BG) has p-torsion. Let
N > 2p + 3. Then all degree N approximation X for BG, we have DH4(X) 	= 0.

THEOREM 1·3. Let p be an odd prime number, and G = PGLp. Let N > 2p + 2. Then for
all degree N approximation X for BG, we have DH3(X) 	= 0.

https://doi.org/10.1017/S0305004123000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004123000282


Coniveau filtrations and Milnor operation Qn 523

THEOREM 1·4. Let p = 2 and X2m+1 = X2m+1(N) be an approximation for BSO2m+1 of
degree N ≥ 3. Then there exists 0 < L = L(m) such that for all approximations X2m+1 of
degree N > L, we have

DH∗ (X2m+1) ⊃Z/2{w3, w5, ..., w2m+1} for all 2m + 1 ≤ ∗ < N,

where wi is the ith Stiefel–Whiteny class for SO2m+1 ⊂ O2m+1.

2. Transfer and Qn

The Milnor operation (in H∗(−; Z/p)) is defined by Q0 = β and for n ≥ 1

Qn = P�nβ − βP�n , �n =
(

0, .., 0,
n
1, 0, ...

)

(for details see [8], [18, section 3·1]), where β is the Bockstein operation and Pα for α =
(α1, α2, ...) is the fundamental base of the module of finite sums of products of reduced
powers.

LEMMA 2·1. Let f∗ be the transfer (Gysin) map (for proper smooth) f : X → Y. Then
Qnf∗(x) = f∗Qn(x) for x ∈ H∗(X; Z/p).

The above lemma is known (see the proof of [23, lemma 7·1]). The transfer f∗ is expressed
as g∗f ′∗ such that

f ′∗(x) = i∗(Th(1) · x), x ∈ H∗(X; Z/p)

for some maps g, f ′, i and the Thom class Th(1). Since Qn(Th(1)) = 0 and Qn is a derivation,
we get the lemma. However, we give here the another computational proof.

Proof of Lemma 2·1. Recall the following Grothendieck formula (e.g., [Q1])

Pt(f∗(x)) = f∗(ct · Pt(x)). (1)

Here the total reduced powers Pt(x) are defined

Pt(x) =
∑
α

Pα(x)tα ∈ H∗ (X; Z/p) [t1, t2, ...] with tα = tα1
1 tα2

2 ...,

where α = (α1, α2, ...) and degree(tα) = ∑
i 2αi

(
pi − 1

)
(each element in the cohomology

H∗(X; Z/p) is represented as a homogeneous part respective to the above degree). The total
Chern class ct is defined similarly, for the Chern classes of the normal bundle of the map f .

We consider the above equation with the assumption such that t2n = 0 and tj = 0 for j 	= n,
i.e., Pt(x) ∈ H∗(X; Z/p) ⊗ �(tn). That means

Pt(f∗(x)) = (
1 + P�n tn

)
(f∗(x)) (2)

f∗ (ct · Pt(x)) = f∗
((

1 + cpn−1tn
) (

x + P�n(x)tn
))

= f∗
(
x + (

cpn−1x + P�n(x)
)

tn
)

. (3)

From (1), we see (2) = (3) and we have

P�n (f∗(x)) = f∗
(
cpn−1x + P�n(x)

)
. (4)
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By the definition, β commutes with f∗, and we have

P�nβ(f∗(x)) = P�n f∗(βx) = f∗
(
cpn−1βx + P�n(βx)

)
. (5)

On the other hand

βP�n f∗(x)
(4)= βf∗

(
cpn−1x + P�n(x)

) = f∗
(
cpn−1βx + βP�n(x)

)
. (6)

Then (5)–(6) gives that
(
P�nβ − βP�n

)
f∗(x) = f∗

(
P�nβ − βP�n

)
(x). Thus we can prove

Lemma 2·1.
By the definition, each cohomology operation h (i.e., an element in the Steenrod algebra)

is written
(
with QB = Qb0

0 Qb1
1 ...

)
by

h =
∑
A,B

PAQB with A = (a1, ...), B = (b0, ...) bi = 0 or 1.

COROLLARY 2·2. We have PtQB (f∗(x)) = f∗
(
ct · PtQB(x)

)
.

Hence cohomology operations h (for H∗(−; Z/p)) which commute with all transfer f∗ are
cases ct = 1, i.e. A = 0 which are only products QB of Milnor operations Qi.

3. Coniveau filtrations

Bloch–Ogus [2] give a spectral sequence such that its E2-term is given by

E(c)c,∗−c
2

∼= Hc
Zar

(
X, H∗−c

A

) =⇒ H∗
et(X; A),

where H∗
A is the Zariski sheaf induced from the presheaf given by U �→ H∗

et(U; A) for an
open U ⊂ X.

The filtration for this spectral sequence is defined as the coniveau filtration

NcH∗
et(X; A) = F(c)c,∗−c,

where the infinite term E(c)c,∗−c∞ ∼= F(c)c,∗−c/F(c)c+1,∗−c−1 and

NcH∗
et(X; A) =

∑
Z⊂X;codimX(Z)≤c

ker
(
j∗ : H∗

et(X; A) → H∗
et(X − Z, A)

)
.

Here we recall the motivic cohomology H∗,∗′
(X; Z/p) defined by Voevodsky and Suslin

([18, 20, 21]) so that

Hi,i(X; Z/p) ∼= Hi
et(X; Z/p) ∼= Hi(X; Z/p).

Let us write H∗
et(X; Z) simply by H∗

et(X) as usual. Note that H∗
et(X) 	∼= H∗(X) in general,

while we have the natural map H∗
et(X) → H∗(X).

Let 0 	= τ ∈ H0,1(Spec(C); Z/p). Then by the multiplying τ , we can define a map
H∗,∗′

(X; Z/p) → H∗,∗′+1(X; Z/p). By Deligne ([2, foot note (1) in Remark 6·4]) and
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Paranjape ([9, corollary 4·4]), it is proven that there is an isomorphism of the coniveau
spectral sequence with the τ -Bockstein spectral sequence E(τ )∗,∗′

r (see also [16, 22]).

LEMMA 3·1. (Deligne) Let A =Z/p. Then we have the isomorphism of spectral
sequence

E(c)c,∗−c
r

∼= E(τ )∗,∗−c
r−1 for r ≥ 2.

Hence the filtrations are the same, i.e. NcH∗
et(X; Z/p) = F∗,∗−c

τ where

F∗,∗−c
τ = Im(×τ c : H∗,∗−c(X; Z/p) −→ H∗,∗(X; Z/p)).

LEMMA 3·2. Suppose that x ∈ H∗,∗(X) and for c > 0 its mod(p) reduction r(x) ∈
NcH∗(X; Z/p). Then if the map f : H∗+1,∗−c(X) → H∗+1,∗(X) is injective, then x ∈ NcH∗(X)
mod(p).

Proof . Consider the exact sequences

.

By the assumption of this lemma, we can take x′ ∈ H∗,∗−c(X; Z/p) such that r2(x) = f2(x′).
So δ2f2(x′) = 0. Since f3 is injective, we see δ1(x′) = 0, Hence there is x′′ ∈ H∗.∗−c′

(X) such
that r1(x′′) = x′. Thus we have the lemma.

Let cl : CH∗(X) ⊗ A → H2∗(X; A) be the cycle map, and Im(cl)+ be the positive degree
parts of its image.

LEMMA 3·3. We see that Im(cl)+ ⊂ N∗H2∗(X; A).

Proof . Recall that H∗.∗′
(X; A) → N∗−∗′

H∗(X; A). We have H2∗,∗(X; A) ∼= CH∗(X) ⊗ A.
Since 2∗ > ∗ for ∗ ≥ 1, we see cl(y) ∈ N1H2∗(X; A).

Each element y ∈ CH∗(X) ⊗ A is represented by closed algebraic set supported Y , while
Y may be singular. On the other hand, by Totaro [17], we have the modified cycle map c̄l

cl : CH∗(X) ⊗ A
c̄l−→ MU2∗(X) ⊗MU∗ A

ρ−→ H2∗(X; A)

for the complex cobordism theory MU∗(X). It is known [11] that elements in MU2∗(X) can
be represented by proper maps to X from stable almost complex manifolds Y . (The manifold
Y is not necessarily a complex manifold.)

The following lemma is well known.

LEMMA 3·4. If x ∈ Im(ρ) for ρ : MU∗(X)/p → H∗(X; Z/p), then we have Qi(x) = 0 for
all i ≥ 0.

Proof . Recall the connective Morava K-theory k(i)∗(X) with k(i)∗ =Z/p[vi], |vi| =
−2pi + 2, which has natural maps

ρ : MU∗(X)/p
ρ1−→ k(i)∗(X)

ρ2−→ H∗(X : Z/p).
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It is known that d2pi−1 = Qi for the first nonzero differential d2pi−1 of the Atiyah-Hirzebruch
spectral sequence converging to k(i)∗(X),

E∗,∗′
2

∼= H∗(X; Z/p) ⊗ k(i)∗ =⇒ k(i)∗(X).

Hence Qiρ2(x) = 0 which implies Qiρ(x) = 0.

LEMMA 3·5. (reciprocity law) If a ∈ Ñ1H∗(X; A), then for each g ∈ H∗′
(X; A) we have

ag ∈ Ñ1H∗+∗′
(X; A).

Proof . Suppose we have f : Y → X with f∗(a′) = a. Then

f∗
(
a′f ∗(g)

) = f∗
(
a′) g = ag

by Frobenius reciprocity law.
Let G be an algebraic group (over C) and r be a complex representation r : G → Un for

the unitary group Un. Then we can define the Chern class ci = r∗cU
i . Here the Chern classes

cU
i in H∗(BUn) ∼=Z

[
cU

1 , ..., cU
n

]
are defined by the Gysin map cU

n = in∗(1) for the inclusion
in : {0} ⊂C×n, that is,

in∗ : H∗(BUn) ∼= H∗
Un

({0}) in∗−→ H∗+2n
Un

(C×n) ∼= H∗+2i(BUn),

where HUn(−) = H∗(EUn ×Un −) is the Un-equivariant cohomology. Hence for the approxi-
mation XUn for Un, we see cU

i ∈ Ñ1H∗(XUn). So ci = r∗cU
i ∈ Ñ1H∗(X) for the approximation

X for BG.
By the reciprocity law (Lemma 3·5) we have

LEMMA 3·6. Let ci = r∗cU
i ∈ H∗(BG) be a Chern class for some representation r : G →

Un. For an approximation X for BG and for each g ∈ H∗′
(BG), we have gci ∈ Ñ1H∗(X).

The following lemma is proved by Colliot Thérène and Voisin [3] by using the affirmative
answer of the Bloch–Kato conjecture by Voevodsky ([20, 21]).

LEMMA 3·7. ([3]) Let X be a smooth complex variety. Then any torsion element in H∗(X)
is in N1H∗(X).

4. The main lemmas

The following lemma is the Qi-version of one of results by Benoist and Ottem.

LEMMA 4·1. Let α ∈ N1Hs(X) for s = 3 or 4. If Qi(α) 	= 0 ∈ H∗(X; Z/p) for some i ≥ 1,
then

DHs(X) ⊃Z/p{α}, DHs (
X; Z/pt) ⊃Z/p{α} for t ≥ 2.

Proof . Suppose α ∈ Ñ1Hs(X) for s = 3 or 4, i.e. there is a smooth Y with f : Y → X such
that the transfer f∗

(
α′) = α for α′ ∈ H∗(Y). Then for s = 4

Qi
(
α′) = (

P�iβ − βP�i
) (

α′) = (−βP�i
) (

α′) = −β
(
α′)pi

= −pi (βα′) (
α′)pi−1 = 0 (by Cartan formula)
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since β
(
α′) = 0 and P�i(y) = ypi

for deg(y) = 2. (For s = 3, we get also Qi
(
α′) = 0 since

P�i(x) = 0 for deg(x) = 1.) This contradicts the commutativity of Qi and f∗.
The case A =Z/pt, t ≥ 2 is proved similarly, since for α′ ∈ H∗(X; A) we see βα′ = 0 ∈

H∗(X; Z/p). Thus we have this lemma.
We will extend Lemma 4·1 to s > 4, by using MU-theory of Eilenberg–MacLane

spaces. Recall that K = K(Z, n) is the Eilenberg–MacLane space such that the homotopy
group [X, K] ∼= Hn(X : Z), i.e., each element x ∈ Hn(X; Z) is represented by a homotopy
map x : X → K. Let ηn ∈ Hn(K; Z) corresponding the identity map. (For K′ = K(Z/p, n)
define η′

n ∈ Hn(K′; Z/p) by the identity element of K′.) We know the image ρ(MU∗(K)) ⊂
H∗(K; Z)/p.

LEMMA 4·2. ([13, 15]) We have the isomorphism

ρ : MU∗(K) ⊗MU∗ Z/p ∼=Z/p
[
Qi1 ...Qin−2ηn|0 < i1 < ... < in−2

]
,

ρ : MU∗(K′) ⊗MU∗ Z/p ∼=Z/p
[
Qi1 ...Qin−1Q0η

′
n|0 < i1 < ... < in−1

]
,

where the notation Z/p[a, ...] exactly means Z/p[a, ...]/
(
a2| |a| = odd

)
.

The following lemma is an extension of Lemma 4·1 to s > 4.

LEMMA 4·3. Let α ∈ NcHn+2c(X), n ≥ 2, c ≥ 1. Suppose that there is a sequence 0 <

i1 < · · · < in−1 with

Qi1 ...Qin−1α 	= 0 in H∗(X; Z/p).

Then DcH∗(X) = NcH∗(X)/(p, ÑcH∗(X)) ⊃Z/p{α}.
Proof . Suppose α ∈ ÑcHn+2c(X), i.e. there is a smooth Y of dim(Y) = dim(X) − c with

f : Y → X such that the transfer f∗
(
α′) = α for α′ ∈ Hn(Y).

Identify the map α′ : Y → K with α′ = (
α′)∗

ηn. We still see from Lemma 4·2,

Q
(
α′) = Qi1 ...Qin−2(

(
α′)∗

ηn) ∈ Im(MU∗(Y) −→ H∗(Y; Z/p)).

From Lemma 3·4, we see

Qin−1Q
(
α′) = Qin−1Qi1 ...Qin−2

(
α′) = 0 ∈ H∗(Y; Z/p).

Therefore Qin−1Q(α) must be zero by the commutativity of f∗ and Qi.

Remark. For α ∈ NcHn+2c(X; Z/p), one can prove an A =Z/p version of the above lemma
using the second isomorphism in Lemma 4·2. But we can see Qi1 ...QinQ0α = 0 always (even
when Qi1 ...Qin−1α 	= 0), hence Z/p version would be vacuous.

5. Classifying spaces for finite groups

Let G be a finite group or an algebraic group, and BG its (geometric) classifying space.
For example, when G = Gm is the multiplicative group, we see

BGm = BS1 ∼= P∞, H∗(P∞) ∼=Z[y] with degree |y = c1| = 2,

for the infinite (complex) projective space P∞. Note that BGm is a colimit of complex
projective spaces.
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Though BG itself is not a colimit of complex projective varieties, we can take a complex
projective variety X(N) ([4]) for a given N ≥ 3 such that there is a map j : X(N) → BG × P∞
with

H∗(BG × P∞; A)
j∗∼= H∗(X(N); A) for all < N.

In this paper, we call the above X(N) a (degree N) complex projective approximation for
BG (which is an approximation of BG × P∞ strictly speaking).

Note that the quotient

NnH∗(X; A)/(ÑnH∗(X; A))

is an invariant under replacing X with X × Pm for all n and all abelian groups A. In fact, from
Künneth formula,

H∗ (
X × Pm; A

) ∼= H∗(X; A) ⊗Z[y]/
(

ym+1
)

,

where y ∈ CH1(Pm) is the first Chern class. Let Ideal(y) be the ideal of H∗(X × Pm; A) gener-
ated by y. Then Ideal(y) ⊂ Ñ∗H∗(X × Pm; A) by the Frobenius reciprocity law (Lemma 3·5).
Moreover Benoist and Ottem show that the above quotient when n = 1 is a stable birational
invariant of X ([1, proposition 2·4]).

In this paper, we will study the following (mod(p)) stable rational invariant

DH∗(X; A) = N1H∗(X; A)/
(

p, Ñ1H∗(X; A)
)

.

Hereafter, we consider DH∗(X; A) when A =Z. Let p be an odd prime. (The case p = 2
is different but a similar argument works.) Let G = (Z/p)3 the rank = 3 elementary abelian
p-group. Then the mod(p) cohomology is

H∗(BG; Z/p) ∼= H∗(BZ/p; Z/p)3⊗ ∼=Z/p[y1, y2, y3] ⊗ �(x1, x2, x3).

Here degree |yi| = 2, |xi| = 1, β(xi) = yi, and �(a, ..., b) is the Z/p-exterior algebra generated
by a, ..., b.

The integral cohomology (modulo p) is isomorphic to

H∗(BG)/p ∼= Ker(Q0) ∼= H(H∗(BG; Z/p); Q0) ⊕ Im(Q0),

where H(−; Q0) = Ker(Q0)/Im(Q0) is the homology with the differential Q0. It is
immediate that H(H∗(BZ/p; Z/p); Q0) ∼=Z/p. By the Künneth formula, we have
H(H∗((BG; Z/p); Q0) ∼= (Z/p)3⊗ ∼=Z/p. Hence we have

H∗(BG)/p ∼=Z/p{1} ⊕ Im(Q0)

∼=Z/p[y1, y2, y3]
(
1, Q0(xixj), Q0 (x1x2x3) |i < j

)
,

where the notation R(a, ..., b) (resp. R{a, ..., b}) means the R-submodule (resp. the free R-
module) generated by a, ..., b. Here we note H+(BG) is just p-torsion.

Also note that y1, y2, y3 are represented by the Chern classes c1. From Lemma 3·6,
we see

Ideal(y1, y2, y3) = 0 ∈ DH∗(X).
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We know Qi(yj) = ypi

j and Qj is a derivation. Let us write

α = Q0(x1x2x3) = y1x2x3 − y2x1x3 + y3x1x2.

Note α ∈ H4(X), pα = 0, and α ∈ N1H∗(X) from Lemma 3·7. Moreover

Q1(α) = Q1(y1x2x3) − ... = y1yp
2x3 − y1yp

3x2 − ... 	= 0 ∈ H∗(X; Z/p).

Similarly, for αij = Q0(xixj), we see Q1(αij) 	= 0. Hence from Lemma 4·1 and Lemma 3·6,
we have

THEOREM 5·1. Let X = X(N) with N > 2p + 3 be a (degree N) approximation for
B(Z/p)3. Then we have

DH∗(X) ∼=Z/p{αij, α|1 ≤ i < j ≤ 3} for all ∗ < N.

Proof . We see H∗(BG)/(p, y1, y2, y3) ∼=Z/p{1, αij, α}. Of course 1 	∈ N1H∗(X), we have
the theorem from Lemma 4·1.

THEOREM 5·2. Let X = X(N)n be an approximation for (BZ/p)n with N >

|Q0Q1...Qn−1(x1...xn)|. Then we have for αi1,...,is = Q0(xi1 ...xis),

DH∗(X) ⊃Z/p
{
αi1,...,is |2 ≤ s, 0 < i1 < i2... < is ≤ n

}
for ∗ < N.

Here the notation DH∗(X) ⊃ B∗ means DHt(X) ⊃ Bt for the degree t-homogeneous parts of
B for all t < N strictly speaking.

Proof . We have the theorem from Lemma 4·3 and Qi1 ...Qis−2(αi1,...,is) is

Qi1 ...Qis−2Q0(xi1 ...xis) = ypi1

i1
...ypis−2

is−2
yis−1xis + ... 	= 0.

(Note the n = |α′| in Lemma 4·3 is written by s − 1 here.)

COROLLARY 5·3. If n 	= m ≥ 3, then X(N)n and X(N)m are not stable birational
equivalent.

Next we study small non-abelian p-groups. Let G be a non-abelian group of order p3

(see Section 8, for details). Then Heven(BG) is generated by Chern classes, and Hodd(BG)
is a (just) p-torsion. We can identify Hodd(BG) ⊂ Hodd(BG; Z/p).The operation Q1 acts on
Hodd(X), and induces the injection

Q1 : Hodd(BG) ↪→ Heven(BG).

Such groups are four types (see Section 8 below), and they are called extraspecial p-
groups G = p1+2± of order p3. When G = Q8 = 21+2− the quaternion group of order 8, we
know Hodd(X) = 0. However when G = D8 = 21+2+ the dihedral group of order 8, the coho-
mology Hodd(BG) is generated as an Heven(BG) module by an element e of deg(e) = 3.
When G = E = p1+2+ for p ≥ 3, Hodd(BG) is generated by e1, e2 with deg(ei) = 3. When
G = M = p1+2− for p ≥ 3, Hodd(BG) is generated by e′ but deg(e′) = 2p + 1.
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From Lemma 3·5 (Frobenius reciprocity) and the main lemma (Lemma 4·1), we have the
following theorem.

THEOREM 5·4. Let X = X(N) with N > 2p + 3 be an approximation for an extraspecial
p-group G of order p3. Then we have for all ∗ < N:

DH∗(X) ∼=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 for G = Q8

Z/2{e} for G = D8

0 or Z/p{e′} for G = M

Z/p{e1, e2} for G = E.

In particular, the above theorem implies that when G = p1+2+ , all X = X(N) satisfy
DH3(X) 	= 0 but DH∗(X) = 0 for all 4 ≤ ∗ < N.

In this paper, we can not decide DH∗(X) when G = M.

6. Connected groups

At first, we consider when G = Un, SUn or Sp2n for all p, where the cohomology H∗(BG)
has no torsion. Then H∗(BG) is generated by Chern classes, e.g.,

H∗(BUn) ∼= CH∗(BUn) ∼=Z(p)[c1, ..., cn],

H∗(BSp2n) ∼= CH∗(BSp2n) ∼=Z(p)[c2, c4, ..., c2n].

Hence DH∗(X) = 0 for the approximations X for these groups.
Next we consider the case G = SO3 and p = 2. Then

H∗(BG; Z/2) ∼=Z/2[w1, w2, w3]/(w1) ∼=Z/2[w2, w3],

where wi is the ith Stiefel–Whitney class for SO3 ⊂ O3 and w2
i = ci is the ith Chern class for

SO3 ⊂ U3. (Also it is the elementary symmetric polynomial in Z/2[y1, ..., yi].)
Here we know Q0(w2) = w3, and Q1(w3) = w2

3 = c3. Therefore we have [22]

H∗(BG; Z/2) ∼=Z/2[c2, c3]{1, w2, w3 = Q0(w2), w2w3 = Q1w2}
∼=Z/2[c2, c3]{w2, Q0(w2), Q1(w2), Q0Q1(w2) = c3} ⊕Z/2[c2]

∼=Z/2[c2, c3] ⊗ �(Q0, Q1){w2} ⊕Z/2[c2].

In particular H∗(BG)/2 ∼= Ker(Q0) ∼=Z/2[c2, c3]{1, w3}. Then from Lemma 4·1, we have

THEOREM 6·1. Let G = SO3 and X be an approximation of BG for 6 < N. Then
DH∗(X) ∼=Z/2{w3} for ∗ < N.

Using Lemma 4·3, we have

THEOREM 6·2. Let Xn = Xn(N) be approximations for BSOn for n ≥ 3. Moreover, let
|Q1...Q2m−1(w2m+1)| < N. Then we have

DH∗(X2m+1) ⊃Z/2{w3, w5, ..., w2m+1} for all 2m + 1 ≤ ∗ < N.
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Proof . Since Q0w2i = w2i+1, we see w2i+1 ∈ N1H2i+1(X) from Lemma 3·7. We have the
theorem, from Lemma 4·3 and the restriction to H∗(B(Z/2)2i; Z/2),

Q1...Q2i−2(w2i+1) = Q1...Q2i−2Q0(w2i) = y1y2
2...y22i−2

2i−1 x2i + · · · 	= 0.

Remark. The same inclusion

DH∗(X) ⊃Z/2{w3, w5, ..., w2m+1}.
holds for G = SO2m+2. Since O2m+1 ∼= SO2m+1 ×Z/2, the orthogonal group O2m+1 (hence
O2m+2) also has the same property.

We next consider simply connected groups. Let us write by X an approximation for BG2

for the exceptional simple group G2 of rank = 2. The mod (2) cohomology is generated by
the Stiefel–Whitney classes wi of the real representation G2 → SO7

H∗(BG2; Z/2) ∼=Z/2[w4, w6, w7], P1(w4) = w6, Q0(w6) = w7,

H∗(BG2) ∼= (
D′ ⊕ D′/2[w7]+

)
where D′ =Z[w4, c6].

Then we have Q1w4 = w7, Q2(w7) = w2
7 = c7 (the Chern class).

The Chow ring of BG2 is also known

CH∗(BG2) ∼= (
D{1, 2w4} ⊕ D/2[c7]+

)
where D =Z[c4, c6] ci = w2

i .

In particular the cycle map cl : CH∗(BG) → H∗(BG) is injective.
It is known w4 ∈ N1H∗(X; Z/2) ([22]) and from Lemma 3·2, we see w4 ∈ N1H∗(X).

Since Q1(w4) = w7 	= 0, from Lemma 4·1, we have DH4(X) 	= 0. This fact is known in [1].
Moreover H∗(BG)/(c4, c6, c7) ∼= �(w4, w7) implies:

PROPOSITION 6·3. For X an approximation for BG2, we have the surjection

�(w4, w7)+ � DH∗(X) for all ∗ < N.

By Voevodsky [18, 19], we have the Qi operation also in the motivic cohomology
H∗,∗′

(X; Z/p) with deg(Qi) = (2pi − 1, p − 1). Then we can take

deg(w4) = (4, 3), deg(w6) = (6, 4), deg(w7) = (7, 4), deg(c7) = (14, 7).

By Theorem 3·1, the above means

w7 = Q1w4 ∈ N7−4H∗(X; Z/2) = N3H∗(X; Z/2).

We cannot see here that 0 	= w7 ∈ DH∗(X), but see the following proposition.

PROPOSITION 6·4. Let N > |Q2w7| = 14. For an approximation X = X(N) for BG2, we
have

Z/2{w7} ⊂ D3H∗(X) = N3H∗(X)/(2, Ñ3H∗(X)).

Proof . Suppose w7 ∈ Ñ3H∗(X). That is, there is x ∈ H1(Y) with f∗(x) = w7 for f : Y → X.
Act Q2 on H∗(Y; Z/2), and

Q2(x) = (
P�2β + βP�2

)
(x) = 0
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since β(x) = 0 and Pi(x) = Sq2i(x) = 0 for i > 0. But Q2w7 = c7 	= 0. This contradicts to the
commutativity of f∗ and Q2.

THEOREM 6·5. Let G be a simply connected group such that H∗(BG) has p-torsion. Let
X = X(N) be an approximation for BG for N ≥ 2p + 3. Then DH4(X) 	= 0.

Proof . We only need to prove the theorem when G is a simple group having p torsion
in H∗(BG). Let p = 2. It is well known that there is an embedding j : G2 ⊂ G such that (see
[10, 25] for details)

H4(BG)
j∗∼= H4(BG2) ∼=Z{w4}.

Let x = (j∗)−1w4 ∈ H4(BG). From [25, lemma 3·1], we see that 2x is represented by Chern
classes. Hence 2x is the image from CH∗(X), and so 2x ∈ N1H4(X). This means there is
an open set U ⊂ X such that 2x = 0 ∈ H∗(U) that is. x is 2-torsion in H∗(U). Hence from
Lemma 3·5, we have x ∈ N1H4(U), and so there is U′ ⊂ U such that x = 0 ∈ H4(U′). This
implies x ∈ N1H4(X).

Since j∗(Q1x) = Q1w4 = w7, we see Q1x 	= 0. From the main lemma (Lemma 4·1), we see
DH4(X) 	= 0 for G.

For the cases p = 3, 5, we consider the exceptional groups F4, E8 respectively. Each sim-
ply connected simple group G contains F4 for p = 3, E8 for p = 5. There is x ∈ H4(BG)
such that px is a Chern class [25], and Q1(x) 	= 0 ∈ H∗(BG; Z/p). In fact, there is embedding
j : (Z/p)3 ⊂ G with j∗(x) = Q0(x1x2x3). Hence we have the theorem.

COROLLARY 6·6. Let X be an approximation for BSpinn with n ≥ 7 or BG for an
exceptional group G. Then X is not stable rational.

Remark. Kordonskii [6], Merkurjev ([7, corollary 5·8]), and Reichstein–Scavia show [14]
that the classifying space BSpinn itself is stably rational when n ≤ 14. Hence the (Ekedahl)
approximation X is not stable rationally equivalent to BG. In fact, these X is constructed
from a quasi projective variety BG as taking intersections of subspaces of PM for a large M.
(The author thanks Federico Scavia who pointed out this remark.)

At last of this section, we consider the case G = PGLp. We have (for example [5,
theorems 1·5, 1·7]) additively

H∗(BG; Z/p) ∼= M ⊕ N with M
add.∼= Z/p

[
x4, x6, ..., x2p

]
,

N = SD ⊗ �(Q0, Q1){u2} with SD =Z/p
[
x2p+2, x2p2−2p

]
,

where x2p+2 = Q1Q0u2 and suffix means its degree. The Chow ring is given as

CH∗(BG)/p ∼= M ⊕ SD{Q0Q1(u2)}.
From Lemma 4·1, we have:

THEOREM 6·7. Let p be odd. For an approximation X for BPGLp, we see Z/p{Q0u2} ⊂
DH∗(X), and moreover there is a surjection

Z/p
[
x2p2−2p

] {Q0u2}� DH∗(X)/(Im(cl)) for all ∗ < N

for the cycle map cl : CH∗(X) → H2∗(X).
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In the above case, we do not see here that DH∗(X) for ∗ < N is invariant of BG. (See the
remark in the introduction.)

7. Z/p-coefficient cohomology for abelian groups

In the preceding sections, we have seen that cases DH∗(X; A) 	= 0 are not so rare for A =
Z(p), Z/pi, i ≥ 2. However currently it seems difficult to make such example for A =Z/p.
(Recall the final remark in Section 4.)

Question 7·1. Is DH∗(X; Z/p) = 0 for each smooth projective variety X?

At first, we consider the case G = (Z/p)3.

LEMMA 7·2. Let X = X(N), N > 3 be an approximation for (BZ/p)3. Then we have
DH∗(X; Z/p) = 0 for all ∗ < N.

Proof . Recall the mod p cohomology

H∗(BG; Z/p) ∼=Z/p[y1, y2, y3] ⊗ �(x1, x2, x3).

Here yi is a Chern class. Hence xjyi = 0 ∈ DH∗(X; Z/p) by reciprocity law. Hence we only
need to check it for z ∈ �(x1, x2, x3). But these z 	∈ N1H∗(X; Z/p) (see Lemma 7·4 below).
Hence DH∗(X; Z/p) = 0.

Example of Gysin maps. We can take a quasi projective approximation X̄(N) of BZ/p
explicitly by the quotient (the N-dimensional lens space)

X̄(N) =CN∗/(Z/p) where CN∗ = (
CN − {0}) .

Next we consider the projective approximation

X(N) −→ X̄(N) × PN −→ BZ/p × P∞.

Let us write Xi (resp. X′
i) for i = 1, 2, 3 the above X̄(N) (resp. X̄(N − 1)) for a sufficient large

number N. Let

i1 : Y1 = X′
1 × X2 × X3 −→ X = X1 × X2 × X3.

Similarly we define Y2, Y3, and the disjoin union Y = Y1 � Y2 � Y3.
Recall that for p : odd

H∗(X; Z/p) ∼=Z/p[y1, y2, y3]/
(

yN+1
1 , yN+1

1 , yN+1
3

)
⊗ �(x1, x2, x3),

and H∗(Yi; Z/p) ∼= H∗(X; Z/p)/
(
yN

i

)
for i = 1, 2, 3. For p = 2, some graded ring

grH∗(X; Z/2) is isomorphic to the above ring (in fact x2
i = yi).

For the embedding fi : X′
i → Xi, it is known fi∗(1) = c1(Ni) where Ni is the normal bundle

for X′
i ⊂ Xi. Hence the Gysin map is given by

f1∗(1) = y1, f2∗(1) = y2, f3∗(1) = y3.

Therefore we have for x = (x2x3 + x3x1 + x1x2) ∈ H∗(Y1 � Y2 � Y3; Z/p),

f∗(x) = y1x2x3 + y2x3x1 + y3x1x2 = Q0(x1x2x3) = α.
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(Note that the element x = (x1x2 + x2x3 + x3x1) is not in the integral cohomology H∗(Y).)
Thus we see α ∈ ÑcH∗(X; Z/p). More generally, we see

THEOREM 7·3. Let X = X(N) be an approximation for (BZ/p)n with Z/p-coefficients.
Then we have

DH∗(X; Z/p) = 0 for all ∗ < N.

We recall here the motivic cohomology. By Voevodsky [18], H∗,∗′
(BZ/p; Z/p) satisfies

the Künneth formula so that (for p odd)

H∗,∗′
(B(Z/p)n; Z/p) ∼=Z/p[τ , y1, ..., , yn]/

(
yN+1

1 , ..., yN+1
n

)
⊗ �(x1, ..., xn).

Here 0 	= τ ∈ H0,1(Spec(C); Z/p), and deg(yi) = (2, 1), deg(xi) = (1, 1).
From Lemma 3·1, we can identify NcH∗

et(X; Z/p) = F∗,∗−c
τ where

F∗,∗−c
τ = Im( × τ c : H∗,∗−c(X; Z/p) → H∗,∗(X; Z/p)).

LEMMA 7·4. ([16, theorem 5·1]) Let X = X(N) be an approximation for (BZ/p)n for a
sufficient large N. Then we have

H∗(X; Z/p)/N1H∗(X; Z/p) ∼= �(x1, ...., xn).

Proof . Let x ∈ Ideal(y1, ..., yn) ⊂ H∗,∗′
(X; Z/p). Then deg(x) = (∗, ∗′) with ∗ > ∗′, and x is

a multiplying of τ . Hence x ∈ N1H∗(X; Z/p).

Proof of Theorem 7·3. Let x ∈ N1H∗(X; Z/p). From the above lemma, x ∈ Ideal(y1, ..., yn)
which is in the image of the Gysin map. That is x ∈ Ñ1H∗(X; Z/p).

We can extend Theorem 7·3, by using the following lemma. Let us write by XG an
approximation for BG. Let j : BS → BG and i; Y → XS. We consider maps:

LEMMA 7·5. Let G have a Sylow p-subgroup S. If DH∗(XS; Z/p) = 0, then
DH∗(XG : Z/p) = 0 also for BG.

Proof . Let j : BS → BG so that j∗ = corG
S is the transfer (with the codimension c = 0) for

finite groups. Note that j∗N1H∗(XG; Z/p) ⊂ N1H∗(XS; Z/p) by the naturality of j∗. Hence
given x ∈ N1H∗(XG; Z/p), the element y = j∗(x) is in N1H∗(XS; Z/p).

By the assumption in this lemma, there are i : Y → XS and y′ such that y′ ∈ H∗(Y; Z/p)
with i∗(y′) = y. We consider maps:

H∗(Y; Z/p)
i∗→ H∗(XS; Z/p)

j∗→ H∗(XG; Z/p).

Then we have j∗i∗(y′) = j∗y = j∗j∗(x) = [G; S]x.
Similarly, we can prove:

COROLLARY 7·6. Let G have an abelian Sylow p-subgroup. Let X = X(N) be an
approximation for BG. Then we have DH∗(X; Z/p) = 0 for all ∗ < N.

8. The groups Q8 and D8

When |G| = p3, we have the short exact sequence

0 −→ C −→ G −→ V −→ 0,
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where C ∼=Z/p is in the center and V ∼=Z/p ×Z/p. Let us take generators such that C =
〈c〉, V = 〈a, b〉. Moreover we can take [a, b] = c when G is non-abelian.

There are two cases, when p = 2, the quaternion group Q8 and the dihedral group D8. We
will show here

THEOREM 8·1. Let X = X(N) be an approximation for Q8 or D8. Then DH∗(X; Z/2) = 0
for all ∗ < N.

8·1. The case G = Q8. Then a2 = b2 = c. Its cohomologies are well known (see [12]):

H∗(BG)/2 ∼=Z/2[y1, y2, c2]/
(

y2
i , y1y2

)
‖yi| = 2,

H∗(BG; Z/2) ∼=Z/2[x1, x2, c2]/(x1x2 + y1 + y2, x1y2 + x2y1)

∼=Z/2{1, x1, y1, x2, y2, w} ⊗Z/2[c2],

where x2
i = yi |xi| = 1, and w = y1x2 = y2x1, |w| = 3.

Therefore, we see

H∗(BG; Z/2)/(y1, y2, c2) ∼=Z/2{1, x1, x2}.
Of course deg(xi) = (1, 1) in H∗,∗′

(BG; Z/2) and they are not in N1H∗(BG; Z/2). Thus we
have Theorem 8·1 for G = Q8.

8·2. The case G = D8. Then a2 = c, b2 = 1. It is well known

H∗(BG)/2 ∼=Z/2[y1, y2, c2]/(y1y2){1, e} with |e| = 3.

The mod 2 cohomlogy is written [12]

H∗(BG; Z/2) ∼=Z/2[x1, x2, u]/(x1x2) (with |u| = 2)

∼=
(
⊕2

j=1Z/2[yj]{yj, xj, yju, xju} ⊕Z/2{1, u}
)

⊗Z/2[c2].

Here yj = x2
j , u2 = c2 and Q0(u) = (x1 + x2)u = e, Q1Q0(u) = (y1 + y2)c2.

We note y1, y2, c2 ∈ CH∗(BG)/2 and

H∗(BG; Z/2)/(y1, y2, c2) ∼=
(
⊕2

j=1Z/2{xj, xju}
)

⊕Z/2{1, u}.

Moreover, deg(xj) = (1, 1), deg(u) = (2, 2) in the motivic cohomology
H∗,∗′

(BG; Z/2) and they are not in N1H∗(BG; Z/2). Here we note deg(xju) = (3, 3), but
there is u′

j ∈ H3,2(BG; Z/2) with xju = τu′
j from [24, lemma 6·2] (i.e., xju ∈ N1H∗(X; Z/2)).

Hence for the proof of Lemma 8·1 (for G = D8), it is only needed to show

LEMMA 8·2. Let N > 4 and X be an approximation for BG. Then we have xiu ∈
Ñ1H∗(X; Z/2).

To prove the above lemma, for a G-variety H, we consider the equivariant cohomology
(recall the arguments just before Lemma 3·6)

H∗
G(H; Z/p) = H∗(E(N) ×G H; Z/p),
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where E(N) is an (approximation of) contractible free G-variety. Let us write

XGH = approx. of E(N) ×G H so that H∗
G(H; Z/p) ∼= H∗(XGH; Z/p).

For a closed embedding i : H ⊂ K of G-varieties, we can define the Gysin map

i∗ : H∗
G(H; Z/p) −→ H∗

G(K; Z/p) by i : XGH
id×Gi−→ XGK.

Hereafter in this section, let G = D8. We recall arguments in [24]. We define the
2-dimensional representation c̃ : G → U2 such that c̃(a) = diag(i, −i) and c̄(b) is the per-
mutation matrix (1,2). By this representation, we identify that W =C2∗ =C2 − {0} is an
G-variety. Note G acts freely on W ×C∗ but it does not act freely on W =C2∗.

The fixed points set on W under b is

W〈b〉 = {(x, x)|x ∈C∗} =C∗{e′}, e′ = diag(1, 1) ∈ GL2(C).

Similarly W〈bc〉 =C∗{a−1e′}. Take

H0 =C∗{e′, ae′}, H1 =C∗ {
g−1e′, q−1ae′} ,

where g ∈ GL2(C) with g−1bg = ab (note (ab)2 = 1).
Let us write H = H0 � H1. Then G acts on Hi and acts freely on C2∗ − H. In fact it does

not contain fixed points of non-trivial stabiliser groups. We consider the transfer for some
G-variety H in C2∗, and induced equivariant cohomology

i∗ : H∗
G(H; Z/2) −→ H∗

G

(
C2∗; Z/2

)
.

LEMMA 8·3. We have

H∗
G(H0; Z/2) ∼=Z/2[y] ⊗ �(x, z) with y = x2, |x| = |z| = 1.

Proof . We consider the group extension 0 → 〈a〉 → G → 〈b〉 → 0 and the induced
spectral sequence

E∗,∗′
2 = H∗(B〈b〉; H∗′

〈a〉(H0; Z/2)) =⇒ H∗
G(H0; Z/2).

Since 〈a〉 ∼=Z/4 acts freely on H0, we see H0/〈a〉 ∼=C∗{e′, ae′}/〈a〉 ∼=C∗. Therefore we
have

H∗〈a〉(H0; Z/2) ∼= H∗(C∗/〈a〉; Z/2) ∼= H∗(C∗; Z/2) ∼= �(z), |z| = 1.

Since 〈b〉 acts trivially on �(z) we have this lemma

H∗
G(H0; Z/2) ∼= H∗(B〈b〉; Z/2) ⊗ �(z) ∼=Z/2[y] ⊗ �(x, z).

Note H∗
G(H0; Z/2) ∼= H∗

G(H1; Z/2) and hence we see

H∗
G(H; Z/2) ∼= ⊕2

j=1Z/2[yj]
{
1j, yj, xj, xjzj, zj

}
.

We consider the long exact sequence

· · · −→ H∗
G({0}; Z/2)

i∗=c2−→ H∗+4
G

(
C2; Z/2

)
−→ H∗+4

G

(
C2∗; Z/2

)
−→ · · · (∗)
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and we have H∗
G

(
C2∗; Z/2

) ∼= H∗(BG; Z/2)/(c2). Hence, we get

H∗
G

(
C2∗; Z/2

) ∼=
(
⊕2

j=1Z/2[yj]
{

yj, xj, xju
′
j, u′

j

})
⊕Z/2{1, u}.

Now we consider the transfer H∗
G(H; Z/2)

i∗→ H∗+2
G

(
C2∗; Z/2

)
. We have explicitly ([24,

p. 527])

i∗(1j) = yj, i∗(xj) = yjxj, i∗(xjzj) = xju
′
j, i∗(zj) = u′

j.

Therefore we have Lemma 8·2 and hence Theorem 8·1 for G = D8.
To see the above i∗, we recall the long exact sequence for i : H ⊂C2∗

· · · −→ H∗+1
G

(
C2∗ − H; Z/2

)
δ−→ H∗

G(H; Z/2)
i∗−→ H∗+2

G

(
C2∗; Z/2

)
(∗∗)

j∗−→ H∗+2
G

(
C2∗ − H; Z/2

)
−→ · · ·

The transfer i∗ is determined by the following lemma.

LEMMA 8·4. In the above (∗∗), we see δ = 0, and hence i∗ is injective.

Proof . Since G acts freely on C2∗ − H, we have

H∗
G

(
C2∗ − H : Z/2

) ∼= H∗ ((
C2∗ − H

)
/G; Z/2

)
,

which is zero when ∗ > 4 = 2dim((C2∗ − H)/G). Hence δ must be zero for ∗ > 4, and i∗
is injective for ∗ > 4. In particular, i∗

(
y2

j zj

)
= y2

j u′
j. Since H∗

G(H; Z/2) is Z/2[y1]-free (or

Z/2[y2]-free,) we see i∗(zj) = u′
j.
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