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The flow of a nematic liquid crystal in a Hele-Shaw cell with an electrically
controlled viscous obstruction is investigated using both a theoretical model and physical
experiments. The viscous obstruction is created by temporarily electrically altering
the viscosity of the nematic in a region of the cell across which an electric field is
applied. The theoretical model is validated experimentally for a circular cylindrical
obstruction, demonstrating user-controlled flow manipulation of an anisotropic liquid
within a heterogeneous single-phase microfluidic device.
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1. Introduction

Theoretical and experimental analysis of Hele-Shaw flows has proved to be a particularly
fruitful approach for investigating a wide variety of fundamental effects in fluid mechanics,
such as viscous fingering (Paterson 1981; Islam & Gandhi 2017), porosity (Homsy 1987;
Huppert & Woods 1995) and bubble dynamics (Kopf-Sill & Homsy 1988; Gaillard et al.
2021). Indeed, there has been extensive research into many aspects of Hele-Shaw flow (an
extensive list of the research up to 1998 is given by Howison (1998), and a more up-to-date
list is given in the review by Morrow et al. 2021), including extensions to non-Newtonian
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and structured fluids, including polymers (Kawaguchi, Makino & Kato 1997) and Oldroyd
B fluids (Chaffin & Rees 2018). However, perhaps surprisingly, there have only been
limited studies of the Hele-Shaw flows of nematic liquid crystals (nematics) (Sengupta
et al. 2013a,b). Nematics possess internal structure due to their intrinsic orientational
molecular order that can be described in terms of the average molecular orientation, which
is expressed mathematically by a unit vector n called the director (Stewart 2004). This
structure gives rise to a host of interesting phenomena, including anisotropic viscous and
elastic effects and, in the presence of an applied electric field, an induced polarisation in
the nematic that can be utilised to orient the nematic director that then produces a change
in the nematic effective viscosity (Stewart 2004). Although this effect has been extensively
utilised in liquid crystal displays, it has yet to be employed in Hele-Shaw flow, in which
context electrical control opens up new possibilities for flow manipulation.

Flow manipulation is key to many microfluidic-based technological and scientific
applications involving microlevel mixing, sorting, cloaking and splitting of flows (Na
et al. 2010; Urzhumov & Smith 2011; Taylor & Kaigala 2020; Loganathan et al.
2023). Previously reported methods that can manipulate flows on demand (Paratore
et al. 2022) have included single-phase methods which utilise micro/nanostructures
(Wang et al. 2020) and porous media (Urzhumov & Smith 2011). The present work
describes an alternative method using a localised and controllable viscosity change that
enables user-controlled flow manipulation of an anisotropic liquid within a heterogeneous
single-phase microfluidic device.

In this work, the flow of a nematic liquid crystal in a Hele-Shaw cell with an electrically
controlled viscous obstruction is investigated using both a theoretical model based on
the Ericksen–Leslie equations and physical experiments. The obstruction is created by
temporarily electrically altering the viscosity of the nematic in a region of the cell
across which an electric field is applied. After presenting the theoretical model, we
validate the model experimentally for a circular cylindrical obstruction, demonstrating
flow manipulation by varying the applied voltage.

2. Theoretical model

We begin by formulating a theoretical model using the equations describing the steady
flow of a nematic liquid crystal in a Hele-Shaw cell with an electrically controlled viscous
obstruction. In particular, we couple Gauss’s Law for the electric potential with the
standard Ericksen–Leslie theory for a nematic liquid crystal (Stewart 2004). The average
molecular orientation of the nematic is described by the director, n = cos θ cos φx̂ +
cos θ sin φŷ + sin θ ẑ, where x̂, ŷ and ẑ are the Cartesian coordinate unit vectors in the
x-, y- and z-directions, and φ(x, y, z) and θ(x, y, z) are the twist and tilt director angles
(i.e. the angle the projection of n onto the xy-plane makes with the positive x-axis and
the angle n makes with the positive z-axis), respectively. The electric field is written in
terms of the electric potential U(x, y, z), and the nematic flow is described by the fluid
velocity u = ux̂ + vŷ + wẑ, where u(x, y, z), v(x, y, z) and w(x, y, z) are the components
of the velocity in the x-, y- and z-directions, and the standard modified nematic pressure
p̃(x, y, z). As shown in figure 1, we denote the ‘outside’ nematic region across which
there is no applied electric field, in which variables have the subscript o, by Ωo, and the
‘inside’ nematic region across which the electric field is applied, in which variables have
the subscript i, by Ωi. The boundary between Ωi and Ωo is denoted by ∂Ω .

We follow the approach of Cousins, Mottram & Wilson (2024), who used a standard
thin-film approach (Cousins et al. 2023) to study the flow of a nematic in a Hele-Shaw
cell, but also accounting for the presence of the applied electric field. In particular, we
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Figure 1. A sketch of a perspective view of a Hele-Shaw cell containing an electrically controlled viscous
obstruction. The nematic regions Ωi (grey) and Ωo (light grey), and the boundary between them ∂Ω (dark
grey) are shown. The gap between the plates D, the length of the plates L, the width of the plates W, the origin
(black dot), and the flow within the cell are also indicated.

non-dimensionalise Gauss’s law and the Ericksen–Leslie equations so that x and y, z, U,
u and v, w, and p̃, are scaled with L, δL, V , U , δU , and η3U/(δ2L), respectively, where
δ = D/L � 1 is the small aspect ratio of the gap between the plates D and the length of
the plates L, V is the voltage applied across the region Ωi in the z-direction, U = Q/(DW)

is the characteristic flow speed for flow driven by a prescribed flux Q and W is the width
of the plates, and η3 is the isotropic viscosity of the nematic. Additionally, all viscosities
are non-dimensionalised with η3.

At leading-order in δ � 1, the thin-film Gauss’s Law for the electric potential is
given by

0 =
[
(ε⊥ + 	ε sin2 θ)Uz

]
z
, (2.1)

where ε⊥ is the constant dielectric permittivity perpendicular to the director, 	ε is the
constant dielectric anisotropy, and the subscript z denotes differentiation with respect to z.
Equation (2.1) is subject to the boundary conditions that there is a unit potential difference
between the electrodes that bound Ωi in the z-direction, namely U = 0 on z = 0 and U = 1
on z = 1 when (x, y) ∈ Ωi, and there is a zero potential difference between the plates
that bound Ωo in the z-direction, namely U = 0 on z = 0 and z = 1 when (x, y) ∈ Ωo.
Integrating (2.1) twice with respect to z and imposing the boundary conditions yields the
electric potential U in terms of the unknown tilt angle θ .

The thin-film Ericksen–Leslie equations (Stewart 2004; Cousins et al. 2024) are given
by the conservation of mass equation,

0 = ux + vy + wz, (2.2)

the thin-film linear momentum equations,

δRe u̇ = −p̃x + [
g1(θ, φ)uz + g3(θ, φ)vz

]
z , (2.3)

δRe v̇ = −p̃y + [
g3(θ, φ)uz + g2(θ, φ)vz

]
z , (2.4)

δ3Re ẇ = −p̃z, (2.5)
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where u̇, v̇ and ẇ are the material time derivatives of u, v and w, respectively, and the
thin-film angular momentum equations,

0 = θzz + sin θ cos θ φ2
z − Er m(θ) (cos φ uz + sin φ vz) − Fz sin θ cos θ U2

z , (2.6)

0 =
[
cos2 θ φz

]
z
− 1

2 Er(γ1 − γ2) sin θ cos θ (sin φ uz − cos φ vz) . (2.7)

In (2.3)–(2.7), m(θ), g1(θ, φ), g2(θ, φ) and g3(θ, φ) are the effective viscosity functions
defined by

2m(θ) = γ1 + γ2 cos 2θ, (2.8)

g1(θ, φ) = η1 cos2 θ cos2 φ + η2 sin2 θ + cos2 θ sin2 φ + η12 sin2 θ cos2 θ cos2 φ, (2.9)

g2(θ, φ) = η1 cos2 θ sin2 φ + η2 sin2 θ + cos2 θ cos2 φ + η12 sin2 θ cos2 θ sin2 φ, (2.10)

g3(θ, φ) = η1 cos2 θ sin φ cos φ − cos2 θ sin φ cos φ + η12 sin2 θ cos2 θ sin φ cos φ,

(2.11)

where γ1 and γ2 are the non-dimensional rotational and torsional viscosities, and η1,
η2, η3 and η12 are the non-dimensional Miesowicz viscosities (Miesowicz 1946). Also
appearing in (2.3)–(2.7) are three non-dimensional groups, namely the Ericksen number
Er = η3DU/K = η3Q/(WK), the Reynolds number Re = ρDU/η3 = ρQ/(η3W), where
ρ is the constant density of the nematic, and the Freedericksz number Fz = ε0	εV2/K,
where ε0 is the permittivity of free space and K is the Oseen–Frank one-constant elastic
constant (Stewart 2004). The Freedericksz number is a ratio of the applied voltage and the
Freedericksz voltage (Stewart 2004). Note that electric potential U only enters the thin-film
Ericksen–Leslie equations via the angular momentum equation (2.6). The thin-film
Ericksen–Leslie equations (2.2)–(2.7) are subject to standard no-slip and no-penetration
conditions on the plates, namely u = v = w = 0 at z = 0 and z = 1.

We proceed by assuming that viscous effects and electromagnetic effects dominate
elastic and inertial effects. In particular, we assume that Er � 1 � δRe in Ωo and that
Er, Fz � 1 � δRe in Ωi. As we shall see in § 4, this regime is representative of our
experimental system for which Er ≈ 2 × 102, δRe ≈ 10−6 and Fz ≈ 3 × (10–103). These
assumptions have previously been found to be reasonable for nematic layers with similar
dimensions and material parameters (Mottram et al. 2016). In addition, note that the
present model does not account for the presence of defects; however, while it is clear from
the experimental results described in § 5 that defects occur, the good agreement between
the experimental results and the predictions of the theoretical model suggests that they
have little effect on the overall behaviour of the flow.

In Ωo, (2.3)–(2.7) are depth-averaged by integrating with respect to z between z = 0 and
z = 1 and rearranged to yield the well-known flow-alignment solution,

ûo = ûo(x, y) = − 1
12ηo

∂ p̃o

∂x
, v̂o = v̂o(x, y) = − 1

12ηo

∂ p̃o

∂y
, ŵo = 0, (2.12)

θo = θo(z) =
{

+θL, when 0 ≤ z ≤ 1/2,

−θL, when 1/2 < z ≤ 1,
tan φo(x, y) = v̂o

ûo
, (2.13)

where ηo = ηL is the local effective viscosity of a flow-aligned nematic, θL is the Leslie
(or flow-alignment) angle given by the solution of m(θ) = 0 (Stewart 2004, § 5.2), and
depth-averaged quantities are denoted by hats. The solution for θo in (2.13) is obtained from
the leading-order-in-Er angular momentum equation (2.6) together with the assumption
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that there is a narrow internal layer near z = 1/2 across which θo changes from θL to
−θL, as is known to occur at sufficiently high flow rates (Stewart 2004, § 5.2) and has
been described theoretically in the limit of small Leslie angle and large Ericksen number
(Quintans Carou et al. 2006; Cousins et al. 2020). The unknown pressure p̃o = p̃o(x, y) is
obtained from the depth-averaged conservation of mass equation (2.2),

∂2p̃o

∂x2 + ∂2p̃o

∂y2 = 0. (2.14)

In Ωi, the thin-film Gauss’s Law (2.1) and thin-film Ericksen–Leslie equations
(2.2)–(2.7) are harder to solve. Specifically, the asymptotic regime Er, Fz � 1 � δRe
leads to a system of partial differential equations that, in general, require a numerical
approach. However, as we shall see shortly, the behaviour observed in the physical
experiments can be captured by using an ansatz for the tilt angle θi of similar form to
the solution for θo in (2.13). Equations (2.3)–(2.7) are depth-averaged and rearranged to
yield

ûi = ûi(x, y) = − 1
12η̄i

∂ p̃i

∂x
, v̂i = v̂i(x, y) = − 1

12η̄i

∂ p̃i

∂y
, ŵi = 0, (2.15)

θi = θi(z) =
{

+θ̄i, when 0 ≤ z ≤ 1/2,

−θ̄i, when 1/2 < z ≤ 1,
tan φi(x, y) = v̂i

ûi
, (2.16)

where θ̄i is an unknown constant tilt angle and

η̄i = η1 cos2 θ̄i + η2 sin2 θ̄i + η12 sin2 θ̄i cos2 θ̄i (2.17)

is the local effective viscosity resulting from a balance of flow- and field-aligning torques
in Ωi. This unknown constant tilt angle θ̄i and the unknown pressure p̃i = p̃i(x, y) are
then obtained from the depth-averaged thin-film angular momentum equation (2.6) and
the depth-averaged conservation of mass equation (2.2), respectively, namely

Er m(θ̄i)

4η̄i

√(
∂ p̃i

∂x

)2

+
(

∂ p̃i

∂y

)2

+ Fz sin θ̄i cos θ̄i = 0, (2.18)

∂2p̃i

∂x2 + ∂2p̃i

∂y2 = 0. (2.19)

Note that, from (2.13) and (2.16), the relevant twist angle, φo or φi, coincides with the
direction of the depth-averaged flow in the xy-plane in both Ωo and Ωi.

It is possible to reformulate the Laplace equations (2.14) and (2.19) in terms of complex
potentials and to seek to determine semi-analytical solutions (θ̄i must, in general, be
obtained numerically) for a variety of shapes ∂Ω using conformal mapping techniques;
however, we do not pursue this approach here.

When η̄i > ηo the model describes the flow through and around a viscous obstruction.
Far from ∂Ω the flow is uniform and in the x-direction, while the pressure and the normal
component of the fluid velocity are continuous across ∂Ω . Equations (2.14) and (2.19)
subject to these boundary conditions are similar to the systems that describe many classical
Hele-Shaw systems, including flow past a cylindrical obstruction (Hele-Shaw 1898) and
flow through a cylindrical porous obstruction (Greenkorn et al. 1964).

In order to compare the predictions of the model with experimental observations, in the
next section we consider the case of a circular cylindrical obstruction.
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3. A circular cylindrical obstruction

We consider the case in which Ωi is a circular cylinder with non-dimensional radius R
centred on the origin, such that Ωo is the region x2 + y2 > R2, Ωi is the region x2 + y2 <

R2, and ∂Ω is the circle x2 + y2 = R2. Using an analogous method to that detailed in
Greenkorn et al. (1964) for a porous circular cylindrical obstruction, (2.14) and (2.19)
subject to the appropriate boundary conditions can be solved analytically to yield

p̃o = −12
(

1 + η̄i − ηo

η̄i + ηo

R2

x2 + y2

)
x and p̃i = − 24ηoη̄i

η̄i + ηo
x, (3.1)

and hence, from (2.18), θ̄i satisfies the algebraic equation

12Er ηom(θ̄i)

ηo + η̄i
= Fz sin 2θ̄i. (3.2)

The range of accessible viscosities is set by the choice of nematic liquid crystal.
The experiments were carried out using the well-characterised nematic material
4-Cyano-4-pentylbiphenyl, commonly referred to as ‘5CB’ (Dunmur, Fukuda & Luckhurst
2001). When Fz = 0 (i.e. when V = 0), (3.2) yields θ̄i = θL + kπ, where k is an integer, for
which η̄i = ηo = ηL (= 0.73 for 5CB), whereas in the limit Fz → ∞ (i.e. when 	ε > 0
and V → ∞), (3.2) yields θ̄i → (2k + 1)π/2, where again k is an integer, for which
η̄i → η2 (= 3.23 for 5CB), i.e. for 5CB, η̄i can be more than four times larger than ηo.

With appropriate geometric and material parameters, (3.2) can be solved numerically
for θ̄i using a standard root-finding method, and the pressure is then given analytically
by (3.1). The streamlines and the tilt angle of the director can then be determined from
(2.12)–(2.13) and (2.15)–(2.16).

4. Experimental procedure

We now experimentally validate the theoretical model for a circular cylindrical viscous
obstruction. In particular, a Hele-Shaw cell with gap D = (2.7 ± 0.4) × 10−5 m, length
L = 4.4 × 10−2 m and width W = 2.0 × 10−2 m was filled with the nematic 5CB.
The lower and upper plates of the device were made of coated borosilicate glass
substrates, which were both coated with the amorphous fluorinated copolymer Teflon
AF (Poly[4,5-difluoro-2,2-bis(trifluoromethyl)-1,3-dioxole-co-tetrafluoroethylene]), CAS
37626-13-4) to impart a homeotropic nematic surface alignment (Bhadwal et al. 2020).
Transparent conducting indium tin oxide coatings on the upper and lower plates (ITO,
75 nm thickness and 75 �/sq resistivity) were patterned via direct write photolithography
to provide an electrically addressable circular cylindrical region. The separation between
the plates was maintained by using a PET (polyethylene terephthalate) spacer that also
creates solid sidewalls in the Hele-Shaw cell at a dimensional position y = ±W/(2L).
The area over which the patterned electrodes overlapped defines the circular cylindrical
nematic region (with a dimensional radius of R = 1.5 × 10−3 m) across which the electric
field is applied, Ωi, with an AC sinewave voltage ( f = 10 kHz, with r.m.s. voltage, V)
between the electrodes in the z-direction, using a waveform generator connected to a
voltage amplifier. A steady flow of 5CB within the cell was created by using two cylindrical
glass capillaries (one the inlet, the other the outlet), which were connected to two holes
in the upper plates using acrylic ferrules. The inlet was connected to a flow controller
that established a constant volume flux of Q = 1 μLs−1. Finally, the entire cell was sealed
with NOA-61 (Norland optical adhesive 61) and epoxy adhesive (Araldite Rapid) to prevent
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leaks. For each experiment, the voltage was applied for 30 s, and the flow profile data was
captured during a 10 s time interval starting 5 s after the voltage was switched on. For 5CB,
the Leslie angle is θL = 11.9◦, and the viscosity η̄i could be switched from a minimum of
η̄i = ηo ≈ ηL = 0.0238 Pa s at 0 V up to a maximum of η̄i ≈ η2 = 0.1052 Pa s at 50 V on
a time scale ranging between 0.05 s at 50 V and 5 s at 5 V. When the voltage was removed,
η̄i relaxed back to ηo on a time scale of approximately 1 s.

5. Results

Photographs of the Hele-Shaw cell viewed from above through crossed polarisers are
shown in figure 2(a) for a range of voltages (V = 5, 10, 15, 20 and 50 V). At the lowest
voltage shown, V = 5 V, very little difference in the flow in Ωo and Ωi is visible in the
photographs; however, as the voltage increases from V = 10 V to V = 20 V, the colour of
Ωi changes due to a reduction in the effective birefringence of the nematic layer resulting
from the electrically controlled director reorientation out of the xy-plane (Dunmur et al.
2001). At the highest voltage shown, V = 50 V, the strength of the electric field is sufficient
to effectively align the director in the z-direction (i.e. the director aligns normal to the
plates), resulting in Ωi becoming black as the effective birefringence of the nematic layer
is reduced to zero. Note that the unidirectional flow in Ωi is a consequence of the circular
shape of the obstruction. Other shapes would, in general, result in non-unidirectional flow
in Ωi. As figure 2 shows, increasing the viscosity in Ωi has the effect of deflecting the
flow through and around the obstruction created in Ωi. This deflection is shown in the
time-averaged photographs of the cell shown in figure 2(b), which was generated using
the minimum intensity projection method in ImageJ (Schneider, Rasband & Eliceiri 2012)
for a sequence of 100 frames extracted from experimental videos recorded at 10 frames
per second. In particular, figure 2(b) clearly shows that the degree of deflection increases
as the voltage increases. Figure 2(b) also includes streamlines predicted by the theoretical
model and shows them to be in excellent agreement with the experimental results.

In order to make a further comparison between the flow manipulation observed in the
experiments and predicted by the theoretical model, we used the image analysis software
package ImageJ (Schneider et al. 2012) with the plugin OrientationJ (Rezakhaniha et al.
2012) to determine the local direction of the flow observed in the experiments. Figure 2(c)
shows a comparison of the local direction of the flow obtained from the image analysis
(shown by red rods) and predicted by the theoretical model (shown by black rods) overlaid
with a heat map of the angle between these directions. Excellent agreement between the
image analysis and the theoretical model is evident, especially at low voltages (V = 5 and
10 V), where the results of the image analysis are often indistinguishable from the results
predicted by the theoretical model. At high voltages (V = 15, 20 and 50 V), a similar
agreement is achieved on the upstream (i.e. the left-hand) side of Ωo; however, we note
that the area over which the electrodes overlapped was not precisely circular, with a small
polygonal shape on the downstream side (i.e. the right-hand) of Ωi (the shape of which is
the black region shown in the photographs in figure 2(a) when V = 50 V) which results in
some disagreement between the image analysis and theoretical model on the downstream
side of Ωo. Additionally, at high voltages, the streaks in the experimental photographs
(which are formed by moving defects elongated along the direction of the flow and hence
visualise the streamlines) are reduced by the electric field as they pass through Ωi, which
leads to difficulty tracking the streamlines in the image analysis on the downstream side
of Ωo. In particular, figure 2 shows that the agreement between the image analysis and
the theoretical model is good even in the vicinity of ∂Ω at high voltages, where we might
expect the thin-film model to break down.
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Figure 2. (a) Photographs of the Hele-Shaw cell viewed from above through crossed polarisers (whose
orientation is shown by the black arrows in (a) for V = 5 V), (b) time-averaged photographs of the cell with
streamlines predicted by the theoretical model overlaid (shown by thin black lines) and (c) the local direction of
the flow obtained from the image analysis (shown by red rods) and predicted by the theoretical model (shown
by black rods) overlaid with a heat map of the angle between these directions, for Q = 1 μLs−1 and a range of
voltages (V = 5, 10, 15, 20 and 50 V). The white arrows in (a) show the flow speed and a white 0.5 mm scale
bar is shown in (a) for V = 5 V. The colour of Ωi changes due to a reduction in the effective birefringence of
the nematic layer.

Further confirmation of the very good agreement between the experimental results
and the predictions of the theoretical model is provided in figure 3, which shows the
local orientation of the flow (i.e. the angle the flow makes with the positive x-axis) as
a function of y at various x-positions for the range of voltages. The error bars shown
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Figure 3. The local orientation of the flow obtained from the image analysis (shown by the points) and
predicted by the theoretical model (shown by the black lines) as functions of y at various x-positions (indicated
by the blue arrow in the insets) relative to Ωi, for Q = 1 μLs−1 and a range of voltages (V = 5, 10, 15, 20 and
50 V). The coherency of the local orientation obtained from the image analysis is shown by the colour scale of
each point.

in figure 3 represent the standard deviation in the local orientation angle obtained by
analysing three different images summed over three separate time intervals of duration
2.5, 5 and 10 s. Since the orientation of the flow is calculated using the streaks in the
experimental photographs, which have different densities in different locations of the cell,
an additional measure of confidence is given by the coherency of the local orientation
of the flow (Rezakhaniha et al. 2012). This coherency ranges from 0 (ill-defined) to 1
(perfectly defined) and is shown by the colour scale of each point in figure 3. Specifically,
figure 3 shows that in Ωi, for high voltages, where the streaks are of low density, there is a
decrease in coherency.
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6. Conclusions

In summary, the flow of a nematic liquid crystal in a Hele-Shaw cell with an electrically
controlled viscous obstruction was investigated using both a theoretical model and physical
experiments. The obstruction was created by temporarily electrically altering the viscosity
of the nematic in a region of the Hele-Shaw cell across which an electric field was
applied. The theoretical model was validated experimentally for a circular cylindrical
obstruction, demonstrating user-controlled flow manipulation of an anisotropic liquid
within a heterogeneous single-phase microfluidic device. This new approach can readily
be extended to non-circular obstructions. Indeed, the use of self-registering shapes that
inherently ensure precise alignment, or arrays of shapes for pixelated flow control,
would be extremely interesting to investigate in future studies. Although the method
demonstrated requires manufacturing patterned electrodes, this can be achieved using
standard techniques such as photolithography, which, in the future, could be replaced
entirely with modern thin-film transistor liquid crystal display architecture (Yamamoto
2012) and could pave the way for a complete pixel-level customisable flow manipulation
in future single-phase Hele-Shaw cells.
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