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Abstract

The jaggedness of an order ideal I in a poset P is the number of maximal elements in I plus the
number of minimal elements of P not in I . A probability distribution on the set of order ideals of P
is toggle-symmetric if for every p ∈ P , the probability that p is maximal in I equals the probability
that p is minimal not in I . In this paper, we prove a formula for the expected jaggedness of an
order ideal of P under any toggle-symmetric probability distribution when P is the poset of boxes
in a skew Young diagram. Our result extends the main combinatorial theorem of Chan–López–
Pflueger–Teixidor [Trans. Amer. Math. Soc., forthcoming. 2015, arXiv:1506.00516], who used an
expected jaggedness computation as a key ingredient to prove an algebro-geometric formula; and
it has applications to homomesies, in the sense of Propp–Roby, of the antichain cardinality statistic
for order ideals in partially ordered sets.

2010 Mathematics Subject Classification: 05E18, 06A07 (primary); 14Q05 (secondary)

1. Introduction

Fix an a × b grid. Consider the set S of
(a+b

a

)
lattice paths from the lower-left

corner of this grid to the upper-right corner. Given a standard Young tableau T
of shape a × b and using English notation, we say a path s ∈ S is compatible
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with T if all the labels of T northwest of s are smaller than all of the labels of T
southeast of s. For example, the two standard Young tableaux of shape 2× 2 are
compatible with the path marked in bold red:

Define a probability distribution on S as follows: a path occurs with probability
proportional to the number of a × b standard Young tableaux with which it is
compatible. We call this distribution µlin, the linear distribution on lattice paths,
since it comes from linear orderings of the ab boxes in the grid. For example, the
six lattice paths in a 2× 2 grid occur in µlin with the probabilities shown below:

We define the jaggedness of such a lattice path to be its number of turns. This is
the same as the jaggedness of the order ideal to its northwest (see Definition 2.1).
We may ask: what is the expected jaggedness of a lattice path chosen according
to µlin? The answer is surprisingly simple.

THEOREM 1.1. The expected jaggedness of a lattice path in an a×b grid, chosen
under the distribution µlin, is exactly 2ab/(a + b), the harmonic mean of a and b.

Theorem 1.1 and a generalization thereof appeared recently in [6] as the
key combinatorial result underlying the computation of the genera of Brill–
Noether curves (Brill–Noether loci of dimension 1). Briefly: it is used to
compute the average vertex degree in the dual graph of a nodal degeneration,
parametrizing Eisenbud–Harris limit linear series, of a given Brill–Noether
curve. (For background on limit linear series, see [8].) Noted in [6] is the
unexpected appearance of the harmonic mean, as well as the observation that
if the distribution µlin is replaced by the uniform distribution, the answer is still
the harmonic mean.

The purpose of this paper is to give a vast generalization of Theorem 1.1, in
particular explaining the seeming coincidence above, and putting it in its proper
combinatorial context: order ideals in arbitrary posets, and toggle-symmetric
probability distributions on them. In particular, we would like to put forth these
distributions as an interesting class of distributions to study, especially in relation
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to the developing area of dynamical algebraic combinatorics. We define toggle-
symmetric distributions on order ideals of posets, and give, with proof, many
natural examples, in Section 2. The word ‘toggle’ refers to the procedure of
adding or removing an element from a set if it is permissible to do so. The term
was coined by Striker–Williams [17] in describing Cameron and Fon-Der-Flaass’
involutions on sets of order ideals of posets [5]. Indeed, our results have direct
applications to homomesy results for order ideals under special compositions of
toggles, as we discuss.

In Section 3, we prove our main result: a formula for expected jaggedness that
applies to all skew Young diagrams, not just rectangles, and any toggle-symmetric
distribution. Here is our main theorem:

THEOREM 1.2. Let σ be a connected skew shape with height a and width b.
Let µ be any toggle-symmetric probability distribution on the subshapes of σ .
The expected jaggedness of a subshape of σ with respect to µ is

2ab
a + b

(
1+

∑
c∈C(σ )

δ(c)Pµ(c)

)
. (1.1)

Here:

• C(σ ) is the set of outward corners of σ , and Pµ(c) is the probability (according
to µ) that the edges of the outward corner c are both included in the lattice path
that ‘cuts out’ the subshape (see Definition 3.2 for details);

• the displacement δ(c) is proportional to the signed distance between the
corner c and the antidiagonal of the partition (Definition 3.3).

For now, the main point is that the expected jaggedness can be calculated as
the harmonic mean of a and b, plus a sum of correction terms that can be
completely understood in terms of µ and σ . (When σ is a rectangle, there are
no correction terms and (1.1) gives the harmonic mean exactly, for any toggle-
symmetric distribution.)

There are several key differences between Theorem 1.2 and the corresponding
result [6, Theorem 2.8] of Chan et al. First, our theorem applies to any
toggle-symmetric distribution. Moreover, it is fully symmetric with respect to
interchanging rows and columns, which is not the case in [6]. Indeed, our
result makes explicit that the only dependence is on the outer corners and their
displacements. This will allow us to immediately derive that for any balanced
shape, the expected jaggedness is always the harmonic mean; see Corollary 3.8.

We also note that our results, combined with theorems of Striker [17], have
direct applications to homomesy results under the operations of rowmotion and
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gyration on posets. In particular, they allow us to recover and generalize a theorem
of Propp and Roby [12] on homomesies for antichain cardinalities. We explain
these applications in Section 3.2. In Section 4, we give four open questions we
would like to see explored.

We close this section by giving an example that illustrates Theorem 1.2.

EXAMPLE 1.3. Consider the Young diagram shape σ = (3, 1). The seven
subshapes of σ , equivalently the lattice paths in σ , are depicted below. The
numbers below each path indicate that subshape’s jaggedness, along with the
probability of that subshape’s occurrence according to the linear distribution.
Then we can calculate directly that Eµlin(jag) = 34/15.

Now, let us use Theorem 1.2 instead to compute Eµlin(jag), using the fact that µlin

is toggle-symmetric by Proposition 2.9 and Remark 2.11. The corner c occurring
at (1, 1) is the only outward corner of σ (see Section 3 for an explanation of our
coordinate system). Its displacement δ(c) is −1/6, as in Definition 3.3. Finally,
formula (3.7) obtained in Section 3.1 implies that Pµlin(c) = 1/3. Plugging these
values into (1.1) yields

E(jag) = (12/5)(1− 1/6 · 1/3) = 34/15,

as expected.

2. Toggle-symmetric distributions

For background on posets see [16, Section 3]. Fix a finite poset (P,6). An
order ideal of P is a subset I ⊆ P such that for every p ∈ I and every q ∈ P
with q 6 p, we have q ∈ I . We denote the set of order ideals of P by J (P). If
P = P1 t P2 then the set of order ideals decomposes as J (P) = J (P1)×J (P2)

so we assume from now on that P is connected. We do not consider the empty
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poset connected. Let I ∈ J (P) and let p ∈ P be any element. We say p can be
toggled in to I if p is a minimal element not in I , and that p can be toggled out of
I if p is a maximal element in I . Equivalently, p can be toggled in to I if p /∈ I
and I ∪ {p} ∈ J (P), and p can be toggled out of I if p ∈ I and I \ {p} ∈ J (P).

DEFINITION 2.1. The jaggedness of an order ideal I ∈ J (P), denoted jag(I ), is
the total number of elements p ∈ P which can be toggled into I or out of I .

In this paper we consider J (P) as a discrete probability space and so refer to
functions on J (P) as random variables. Define, for each p ∈ P , two indicator
random variables T +p ,T −p : J (P) → R that record whether p is toggleable-in
(respectively toggleable-out) of an order ideal. Explicitly, for every I ∈ J (P),
we define

T +p (I ) :=
{

1 if p can be toggled in to I ,
0 otherwise,

T −p (I ) :=
{

1 if p can be toggled out of I ,
0 otherwise.

These random variables are highly related to Striker’s toggleability statistic
[17, Definition 6.1]. Indeed, her toggleability statistic Tp simply decomposes as
Tp = T +p − T −p . Note furthermore that jag =

∑
p∈P(T +p + T −p ). In this paper, we

show how certain conditions on Tp imply conditions on jag, as in the following
main definition of the section.

DEFINITION 2.2. Let µ be a probability distribution on J (P). Given an element
p ∈ P , we say that µ is toggle-symmetric at p if

Pµ( p can be toggled in to I ) = Pµ(p can be toggled out of I ).

Equivalently, µ is toggle-symmetric at p if

Eµ(Tp) = Eµ(T+p )− Eµ(T−p ) = 0.

We say that µ is toggle-symmetric if it is toggle-symmetric at every p ∈ P .

We would like to introduce toggle-symmetric probability distributions as an
interesting class of distributions on order ideals of posets. We now give plenty of
good examples of toggle-symmetric distributions. Throughout, we fix a poset P
with n := #P .
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2.1. Toggle-symmetric distributions arising from P-partitions. In this
subsection we define several families of toggle-symmetric distributions that arise
from P-partitions and related objects like linear extensions. For background on
P-partitions see [16, Section 3.15] or the recent historical survey [9].

DEFINITION 2.3. A linear extension of P is a bijection

` : P → {1, 2, . . . , n},

such that p 6 q for p, q ∈ P implies `(p) 6 `(q). The linear distribution
µlin on J (P) is defined as follows: for I ∈ J (P) we define µlin(I ) to be the
probability that, choosing a linear extension ` of P and k ∈ {0, 1, 2, . . . , n}
uniformly at random, the order ideal `−1({1, . . . , k}) is equal to I .

DEFINITION 2.4. A weak reverse P-partition of height m is a map

` : P → {0, 1, . . . ,m},

such that p 6 q for p, q ∈ P implies `(p) 6 `(q). Fix m > 1. The weak
distributionµm,6 on J (P) is defined as follows: for I ∈ J (P)we defineµm,6(I )
to be the probability that, choosing a weak reverse P-partition ` of height m
and k ∈ {1, 2, . . . ,m} uniformly at random, the order ideal `−1({0, . . . , k − 1}) is
equal to I .

REMARK 2.5. There is a bijection between J (P) and the set of weak reverse
P-partitions of height 1 given by sending an order ideal I to 1 − 1I where 1X

is the indicator function of a subset X ⊆ P . Thus µ1,6 is simply the uniform
distribution on J (P), which we denote µunif.

DEFINITION 2.6. A strict reverse P-partition of height m is a map

` : P → {0, 1, . . . ,m},

such that p < q for p 6= q ∈ P implies `(p) < `(q). The rank of P ,
denoted rk(P), is the maximum length of a chain of P . Given m > rk(P),
the strict distribution µm,< on J (P) is defined as follows: for I ∈ J (P) we
define µm,<(I ) to be the probability that, choosing a strict reverse P-partition ` of
height m and k ∈ {0, 1, . . . ,m + 1} uniformly at random, the order ideal `−1({0,
. . . , k − 1}) is equal to I .

REMARK 2.7. We say that P is ranked if there exists a rank function
rk : P → Z>0 such that rk(q) = rk(p)+ 1 whenever q covers p (denoted p l q)
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in P . We always assume that 0 is in the image of the rank function in which
case rk is uniquely determined if it exists. We say that P is graded if it is ranked
and moreover rk(p) = 0 for all minimal elements p of P and rk(q) = rk(P) for
all maximal elements q of P . Equivalently, P is graded if all maximal chains
of P have the same length. When P is graded, the distribution µrk(P),< is easy
to describe: it is uniform on the set of all order ideals rk−1({0, . . . , k − 1})
for k ∈ {0, . . . , rk(P)+ 1}. In this case we call µrk(P),< the rank distribution and
denote it by µrk.

Now we show that all of the above distributions µlin, µm,6, and µm,< are toggle-
symmetric. We start by proving toggle symmetry for µm,6 and µm,<.

LEMMA 2.8. For any poset P and any m > 1, the distribution µm,6 on J (P) is
toggle-symmetric. Similarly, for any m > rk(P), the distribution µm,< on J (P) is
toggle-symmetric. In particular, the uniform distribution µunif is toggle-symmetric
and, if P is graded, the rank distribution µrk is toggle-symmetric.

Proof. Let us start by proving the lemma with the weak distribution µm,6. For a
given p ∈ P , we define an involution τp on the set of weak reverse P-partitions
of height m, and this involution will verify that µ is toggle-symmetric at p. Let
P̂ denote the poset obtained from P by adjoining a minimal element 0̂ and a
maximal element 1̂. Let ` be a weak reverse P-partition of height m; we extend `
to P̂ by setting `(̂0) := 0 and `(̂1) := m. Then for p, q ∈ P we define

τp(`)(q)

:=

{
`(q), q 6= p,
max{`(r) : r l p, r ∈ P̂} +min{`(r) : p l r, r ∈ P̂} − `(p), q = p.

(2.1)

Evidently τp is an involution and preserves the relevant weak inequalities. For ` a
weak reverse P-partition of height m and k ∈ {1, 2, . . . ,m} we have

T +p (`−1({0, . . . , k − 1})) =

{
1 if max{`(r) : r l p, r ∈ P̂} < k 6 `(p),
0 otherwise.

Thus
Eµm,6(T +p ) = E(`(p)−max{`(r) : r l p, r ∈ P̂})

for ` a uniformly random weak reverse P-partition of height m. Similarly,

Eµm,6(T −p ) = E(min{`(r) : p l r, r ∈ P̂} − `(p)).
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But then observe that

Eµm,6(T +p ) = E(`(p)−max{`(r) : r l p, r ∈ P̂})

= E(min{`(r) : p l r, r ∈ P̂} − τp(`)(p))
= Eµm,6(T −p )

and thus indeed µm,6 is toggle-symmetric.
The proof of the lemma for the strong distribution is exactly analogous to the

weak distribution. Let ` be a strict reverse P-partitions of height m; we extend ` to
P̂ by setting `(̂0) := −1 and `(̂1) := m+1. For p ∈ P we define an involution τp

on the set of strict reverse P-partitions by the exact same formula (2.1) as above.
This involution again establishes that Eµm,<(Tp) = 0. The last sentence follows
from Remarks 2.5 and 2.7.

PROPOSITION 2.9. We have

lim
m→∞

µm,6 = lim
m→∞

µm,< = µlin.

Proof. To prove this proposition we define an intermediary distribution µm,↪→ on
J (P) based on injective order-preserving maps. It will turn out that µm,↪→ = µlin.
For m > n − 1 and I ∈ J (P) we define µm,↪→(I ) to be the probability
that, choosing an injective order-preserving map ` : P → {0, 1, . . . ,m} and
k ∈ {0, 1, . . . ,m + 1} uniformly at random, the order ideal `−1({0, . . . , k − 1}) is
equal to I . First we claim

lim
m→∞

µm,6 = lim
m→∞

µm,< = lim
m→∞

µm,↪→.

This is clear because as m →∞ the fraction of (weak or strict) order-preserving
maps P → {0, 1, . . . ,m} that are injective approaches 1. Furthermore, in the case
of µm,6, as m →∞ the probability that a uniformly chosen k ∈ {0, . . . ,m + 1}
actually lands in {1, . . . ,m} approaches 1.

Next we claim that µm,↪→ = µlin for all m > n − 1. Given an order ideal
I , let L(I ) denote the set of linear extensions ` : P

∼=
−→ {1, . . . , n} that are

compatible with I ; that is, if p ∈ I and q 6∈ I then `(p) < `(q). Let Φn,m denote
the set of order-preserving injective maps φ : {0, . . . , n + 1} → {−1, . . . ,m + 1}
such that φ(0) = −1 and φ(n + 1) = m + 1. Then

Pµm,↪→(I ) ∼
∑
`∈L(I )

∑
φ∈Φn,m

(φ(#I + 1)− φ(#I )),

where the sign ∼ denotes proportionality up to a constant. The reason is that
the order-preserving injective map φ|{1,...,n} ◦ ` gives rise to I if and only if I is
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compatible with `, and furthermore, if I is compatible with the linear extension
`, then I arises from the map φ|{1,...,n} ◦ ` with probability proportional to
φ(#I + 1)− φ(#I ).

But now we claim the inner sum
∑

φ∈Φn,m
(φ(#I + 1)− φ(#I )) is a constant,

not depending on #I . Indeed, given φ ∈ Φn,m , call the signature of φ the multiset
of consecutive differences

{φ(1)− φ(0), φ(2)− φ(1), . . . , φ(n + 1)− φ(n)}.

Then the sum
∑
(φ(#I + 1)− φ(#I )) restricted to any given signature-

equivalence class in Φn,m is a constant, not depending on #I . Therefore, the same
is true for the sum over all φ ∈ Φn,m . This shows that µm,↪→(I ) is proportional to
#L(I ) and so µm,↪→ = µlin.

From Lemma 2.8 and Proposition 2.9 we conclude:

COROLLARY 2.10. The linear distribution µlin on J (P) is toggle-symmetric.

So for any poset P we have the following ‘spectrum’ of toggle-symmetric
distributions:

µunif
µm,6 // µlin µrk

µm,<oo

where the rightmost distribution µrk applies only to graded P .

REMARK 2.11. Actually, we can give a much more direct and satisfying proof of
Corollary 2.10 which goes by way of defining some interesting involutions σp for
p ∈ P on the set of linear extensions of P . Note that Corollary 2.10 was proved for
skew shapes in [6, Lemma 2.9], using involutions on pairs (linear extension, order
ideal). Instead, the involutions σp that we use here can be regarded as ‘shuffle’
operations on the set of linear extensions only, in the spirit of [2]. They are defined
as follows. Let ` be a linear extension of P . Extend ` to P̂ by setting `(̂0) := 0
and `(̂1) := n + 1. Let p ∈ P and x := `(p) and x ′ := max{`(r) : r l p, r ∈ P̂}
+min{`(r) : p l r, r ∈ P̂} − x . Then for q ∈ P , define

σp(`)(q) :=


x ′ if `(q) = x,
`(q)− 1 if x < `(q) 6 x ′,
`(q)+ 1 if x ′ 6 `(q) < x,
`(q) otherwise.

It is straightforward to verify that σp is indeed an involution on the set of linear
extensions of P , and that, exactly analogously to the proof of Lemma 2.8, this
involution verifies that Eµlin(Tp) = 0.
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2.2. Toggle-symmetric distributions arising from the toggle group. The
toggle group was introduced by Cameron and Fon-der-Flaass [5] in order to
study a certain combinatorial map on order ideals that is now called rowmotion.
For background on the toggle group, rowmotion, and gyration, see [18]. For an
element p ∈ P we define the toggle at p, denoted τp : J (P)→ J (P), by

τp(I ) :=

{
I∆{p} if I∆{p} ∈ J (P),
I otherwise

where ∆ denotes the symmetric difference. These are the same τp as defined in
the proof of Lemma 2.8 for the weak distribution when m = 1 via the bijection
mentioned in Remark 2.5. The toggle group is the subgroup of the permutation
group SJ (P) generated by all toggles τp for p ∈ P . Recently Striker [17] proved
that certain distributions on J (P) arising from toggle group elements are toggle-
symmetric.

DEFINITION 2.12. Rowmotion is the element of the toggle group

τ`−1(1) ◦ τ`−1(2) · · · ◦ τ`−1(n)

where ` is any linear extension of P . Note that because τp and τq commute
unless p l q or q l p this composition indeed gives a well-defined map.

DEFINITION 2.13. Assume P is ranked. Gyration is the element of the toggle
group

τo1 ◦ τo2 ◦ · · · ◦ τon1
◦ τe1 ◦ τe2 ◦ · · · ◦ τen0

with

{e1, . . . , en0} = {p ∈ P : rk(p) even} and {o1, . . . , on1} = {p ∈ P : rk(p) odd}.

Again, because most toggles commute, this composition gives a well-defined
map.

THEOREM 2.14 (Striker [17]). Let P be a poset and let ϕ : J (P) → J (P) be
rowmotion or, in the case where P is ranked, gyration. Then the distribution µ
that is supported uniformly on a fixed ϕ-orbit O is toggle-symmetric.

Actually, Striker phrased her result in the language of homomesy. Homomesy
is a certain phenomenon in dynamical algebraic combinatorics, recently
introduced by Propp and Roby [12], concerning statistical averages along
orbits of combinatorial maps.
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DEFINITION 2.15. Let S be a set of combinatorial objects and ϕ : S → S an
invertible map. We say that the statistic f : S → R is homomesic, or more
specifically, c-mesic, with respect to the action of ϕ on S if there is c ∈ R such
that (1/#O)

∑
s∈O f (s) = c for each ϕ-orbit O. In other words, we say f is

homomesic with respect to ϕ if the average of f is the same for each ϕ-orbit.

For more about homomesy, see Section 3.2 below, especially Remark 3.12.
What Striker proved was that, for any poset P and any p ∈ P , the signed

toggleability statistic Tp is 0-mesic with respect to rowmotion [17, Lemma 6.2]
and is 0-mesic with respect to gyration when P is ranked [17, Theorem 6.7].
Clearly these results are equivalent to Theorem 2.14 as stated above.

3. The expected jaggedness in skew shapes

In this section, we prove a general result giving a formula for the expected
jaggedness of an order ideal in a poset P for any toggle-symmetric distribution
whenever P is the poset corresponding to a skew Young diagram.

A partition λ = (λ1 > · · · > λk) is a sequence of weakly decreasing positive
integers. Recall that associated to λ is a Young diagram consisting of λi boxes in
the i th row, left-justified. Given two partitions λ and ν of the numbers ` and n
respectively, we say that ν ⊆ λ if νi 6 λi for all i . We use the usual convention
that λi = 0 if i is greater than the number of parts of λ. We use English notation
when drawing partitions, so for instance the Young diagram corresponding to the
partition λ = (4, 3) is

DEFINITION 3.1. Let ν ⊆ λ be two partitions. The diagram obtained by
subtracting the Young diagram of ν from the Young diagram of λ is called a
skew Young diagram or skew shape. We write σ = λ/ν for this shape.

Let σ = λ/ν be a skew shape. Throughout, we let a denote the height of σ , that
is, the number of rows in σ , and let b denote the width of σ , that is, the number of
columns. In order to refer to the boxes of σ and their corners, we fix coordinates as
follows. Place σ in an a × b rectangle. Our convention will be that the northwest
corner of the rectangle is (0, 0) and the southeast corner is (a, b). The corners
of the boxes of σ are then various lattice points in this rectangle. Furthermore,
we extend this coordinate system to the boxes of σ by writing [i, j] for the box
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Figure 1. With σ = (3, 3, 1)/(1), in this figure we depict (2, 1, 1)/(1) ∈ J (σ )
shaded in yellow and its associated lattice path in bold red.

whose southeast corner is (i, j). For example, the upper-leftmost box of a Young
diagram is the box [1, 1].

Associated to any skew shape σ is a poset Pσ whose elements are the boxes
of σ and with [i, j] 6 [k, l] if and only if i 6 k and j 6 l. Note that Pσ is
always ranked (where the rank function rk([i, j]) = i + j − κ , for an appropriate
constant κ , records the diagonal) but is not always graded. All of the general
poset-theoretic constructions from Section 2.1 have more common names when
specialized to skew shapes, which we record in the following dictionary:

Poset Pσ Skew shape σ
Order ideals Subshapes

Linear extensions Standard Young tableaux
Weak reverse Pσ -partitions Reverse plane partitions
Strict reverse Pσ -partitions Increasing tableaux

We will not go through all of these terms in detail, but let us comment for a
moment on subshapes. If σ = λ/ν is a skew shape, then a subshape of σ is a skew
shape ρ/ν where ρ is a partition satisfying ν ⊆ ρ ⊆ λ. These are clearly the same
as order ideals of Pσ and so we use the notation J (σ ) for the set of subshapes of
σ . We also often identify a subshape ρ/ν ∈ J (σ ) with its lattice path, which is
the sequence of steps of the form (−1, 0) and (0, 1) connecting the point (a, 0) to
(0, b) (in the coordinate system defined above) given by the southeast border of
ρ. In this way J (σ ) is in bijection with the set of lattice paths connecting (a, 0)
to (0, b) that stay within the diagram of σ . For an example of this bijection see
Figure 1.

DEFINITION 3.2. Let σ be a skew shape. We say σ is connected if the poset
Pσ is connected. Suppose σ is connected. Then an outward corner of σ is two
consecutive steps along the boundary of σ that do not belong to the same line and
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Figure 2. A diagram explaining our notation for corners. Box [3, 4] of σ is shaded
yellow and the points where corners c ∈ C(σ ) occur are marked with a circle
(either filled or unfilled); the points where corners c ∈ C34(σ ) occur are the
unfilled circles.

do not border a common box of σ . We say that a corner occurs at the lattice point
(i, j) where its two steps meet. We write C(σ ) for the set of outward corners of σ .

Note that because σ is a skew shape, the outward corners of σ are either
northwest corners or southeast corners, that is, they comprise part of the
northwest border of σ or the southeast border, respectively.

The following notation will be convenient for us: given a box [i, j] ∈ σ , we
define

Ci j(σ ) := {c ∈ C(σ ) occurring strictly northwest or strictly southeast of [i, j]}.

When we say that a corner c occurs ‘strictly northwest’ or ‘strictly southeast’
of a box [i, j], we mean that it occurs strictly northwest (respectively strictly
southeast) of the center of that box. For example, a corner at the point (i, j)
occurs strictly southeast of the box [i, j]. Figure 2 illustrates our notation for
corners.

For c ∈ C(σ ) and µ a probability distribution on J (σ ) we use the
notation Pµ(c) to mean the probability with respect to µ that a subshape
of σ , thought of as a lattice path, includes the two steps of the corner c. It is
important to note that if the corner c ∈ C(σ ) occurs at (i, j), then saying that the
lattice path ρ ∈ J (c) includes c is a stronger statement than merely saying that
ρ passes through (i, j).

DEFINITION 3.3. Let σ be a connected skew shape with height a and width b.
The main antidiagonal of σ is the line joining (a, 0) to (0, b). For (i, j) ∈ R2

let Ed(i, j) denote the vector from (i, j) to the main antidiagonal of σ and
orthogonal to it. For an outward corner c ∈ C(σ ) that occurs at (i, j) we define

https://doi.org/10.1017/fms.2017.5 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.5


M. Chan, S. Haddadan, S. Hopkins and L. Moci 14

the displacement of c to be

δ(c) :=

{
the unique x ∈ R with Ed(0, 0) = x · Ed(i, j) if c is a northwest corner,
the unique x ∈ R with Ed(a, b) = x · Ed(i, j) if c is a southeast corner.

Note that δ(c) is a signed quantity. Explicitly,

δ(c) =


1−

i
a
−

j
b

if c is a northwest corner,

−1+
i
a
+

j
b

if c is a southeast corner.

Now we can state the main theorem of our paper, which computes the expected
jaggedness of a subshape of σ for any toggle-symmetric distribution as the
harmonic mean of its height and width, up to a sum of signed correction terms.

THEOREM 3.4. Let σ be a connected skew shape with height a and width b.
Let µ be any toggle-symmetric probability distribution on J (σ ). The expected
jaggedness of a subshape of σ with respect to the distribution µ is

Eµ(jag) =
2ab

a + b

(
1+

∑
c∈C(σ )

δ(c)Pµ(c)

)
. (3.1)

In the rest of this section we prove Theorem 3.4. In order to do that, we define
a set of random variables Ri j that we refer to as rooks. The proof of the main
theorem involves strategically placing rooks on our skew shape σ .

Let [i, j] be a box in σ . We write T +i j and T −i j for the toggle-indicator random
variables T+

[i, j] and T−
[i, j] on J (Pσ ) = J (σ ) defined in Section 2. We define the

rook random variable Ri j : J (σ )→ R as follows:

Ri j :=
∑

i ′6i, j ′6 j
[i ′, j ′]∈σ

T +i ′ j ′ +
∑

i ′>i, j ′> j
[i ′, j ′]∈σ

T −i ′ j ′ −
∑

i ′<i, j ′< j
[i ′, j ′]∈σ

T −i ′ j ′ −
∑

i ′>i, j ′> j
[i ′, j ′]∈σ

T +i ′ j ′ . (3.2)

The equation defining Ri j is complicated and it is best understood by a drawing
as in Figure 3. In this figure, we record the coefficients of the terms T+i ′ j ′ and T−i ′ j ′
in Ri j in the northwest and southeast corners, respectively, of the box [i ′, j ′]. The
reason we call Ri j a rook is explained by the next lemma, which says that for a
toggle-symmetric distribution µ only the toggleability statistics corresponding to
boxes in the same row or column as [i, j] contribute to the expectation Eµ(Ri j).
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Figure 3. An example of a ‘rook’ at the box [3, 2].

LEMMA 3.5. Let σ be a skew shape and µ a toggle-symmetric probability
distribution on J (σ ). Then for any [i, j] ∈ σ we have

Eµ(Ri j) =
∑
[i ′, j]∈σ

Eµ(T +i ′, j)+
∑
[i, j ′]∈σ

Eµ(T +i, j ′).

Proof. Expanding formula (3.2),

Ri j =
∑

i ′<i, j ′< j
[i ′, j ′]∈σ

T +i ′ j ′ −
∑

i ′<i, j ′< j
[i ′, j ′]∈σ

T −i ′ j ′ +
∑

i ′>i, j ′> j
[i ′, j ′]∈σ

T +i ′ j ′ −
∑

i ′>i, j ′> j
[i ′, j ′]∈σ

T −i ′ j ′

+

∑
[i, j ′]∈σ

T +i ′, j +
∑
[i, j ′]∈σ

T +i, j ′ .

Since µ is a toggle-symmetric distribution by linearity of expectation we get

Eµ

 ∑
i ′<i, j ′< j
[i ′, j ′]∈σ

T +i ′ j ′ −
∑

i ′<i, j ′< j
[i ′, j ′]∈σ

T −i ′ j ′

 = 0; Eµ

 ∑
i ′>i, j ′> j
[i ′, j ′]∈σ

T +i ′ j ′ −
∑

i ′>i, j ′> j
[i ′, j ′]∈σ

T −i ′ j ′

 = 0.

Hence the claimed expression for Eµ(Ri j) indeed holds.

LEMMA 3.6. Let σ be a connected skew shape and µ a probability distribution
on J (σ ). Then for any [i, j] ∈ σ we have

Eµ(Ri j) = 1+
∑

c∈Ci j (σ )

Pµ(c).
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Figure 4. This figure illustrates how each subshape may contribute to E(Ri j). Here
[i, j] = [3, 2] and the points where corners c ∈ Ci j occur are marked with a circle.
Two lattice paths ρ1, ρ2 ∈ J (σ ) are drawn in bold blue (dashed) and bold red
(solid); one verifies Ri j(ρk) = 1+ #Ci j(ρk) for k = 1, 2.

Proof. Let ρ ∈ J (σ ). Let Ci j(ρ) be the set of all corners c ∈ Ci j(σ ) included in
the lattice path ρ. We observe that Ri j(ρ) = 1+#Ci j(ρ). This observation is again
best understood by a picture, as in Figures 3 and 4. In Figure 3, the set Ci j(σ ) is
empty, and the claim that Ri j(ρ)= 1 for any lattice path ρ drawn through the skew
shape corresponds to the observation that the turns in ρ always have total weight
1 (with the weights as drawn). As usual, we identify lattice paths and subshapes.

The more general formula Ri j(ρ) = 1 + #Ci j(ρ) then corresponds to the fact
that any outward corner c ∈ Ci j(σ ) used by ρ is no longer labeled −1, simply
because there is no box at c to be toggled in or toggled out. This is illustrated in
Figure 4.

But
Eµ(#Ci j(ρ)) =

∑
c∈Ci j (σ )

Pµ(c)

and hence the claimed expression for Eµ(Ri j) indeed holds.

LEMMA 3.7. For any connected skew shape σ with height a and width b there
exist integral coefficients ri j ∈ Z for [i, j] ∈ σ such that

• for all 1 6 i 6 a,
∑
[i, j ′]∈σ ri, j ′ = b;

• for all 1 6 j 6 b,
∑
[i ′, j]∈σ ri ′, j = a.

Proof. If we interpret the coefficient ri j as the number (possibly negative) of rooks
placed at box [i, j] ∈ σ , the equalities say that each row should be attacked by a
total of b rooks and each column by a total of a rooks. There are many possible
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Figure 5. An example of a rook placement that satisfies Lemma 3.7. Here a = 4
and b = 7; the southeast border strip is shaded in yellow.

such placements. Here is one. Let B := {[i, j] ∈ σ : [i+1, j+1] /∈ σ } denote the
set of boxes in the southeast border strip of σ . We claim there is a unique choice
of the ri j satisfying the desired equalities with ri j = 0 if [i, j] /∈ B. Let b1, b2,

. . . , bm be the elements of B in the unique order so that b1 is southwesternmost,
bm is northeasternmost, and bk is adjacent to bk+1 for all 1 6 k < m. Then for
each 1 6 k 6 m, exactly one of the following holds:

(I) bl is not in the same row as bk for all l > k;

(II) bl is not in the same column as bk for all l > k.

Thus for k = 1, . . . ,m with bk = [ik, jk], we can choose the corresponding
coefficients rik , jk in order: if we are in case (I) we choose rik , jk so that∑
[ik , j]∈σ rik , j = b; if we are in case (II) we choose rik , jk so that

∑
[i, jk ]∈σ ri, jk = a.

For each row or column, there is at least one bk in that row or column, so in the
end all the equations will be satisfied. The result is an assignment of coefficients
that looks like Figure 5.

Proof of Theorem 3.4. Let ri j be the coefficients from Lemma 3.7. Note that the
sum of all coefficients is

∑
[i, j]∈σ ri j = ab. Also, for any [i ′, j ′] ∈ σ the sum of

coefficients in its row and its column is
∑
[i, j]∈σ

i=i ′
ri j +

∑
[i, j]∈σ

j= j ′
ri j = a + b. Using

Lemma 3.5, we get

E

(∑
[i, j]∈σ

ri j Ri, j

)
=

∑
[i, j]∈σ

ri j

 ∑
[i ′, j]∈σ

E(T +i ′, j)+
∑
[i, j ′]∈σ

E(T +i, j ′)


=

∑
[i, j]∈σ

 ∑
[i ′, j]∈σ

ri ′, j +
∑
[i, j ′]∈σ

ri, j ′

E(T +i, j )

= (a + b)
∑
[i, j]∈σ

E(T +i, j ). (3.3)
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On the other hand, by Lemma 3.6,

E

(∑
[i, j]∈σ

ri j Ri, j

)
=

∑
[i, j]∈σ

ri j

1+
∑

c∈Ci j (σ )

Pµ(c)


=

∑
[i, j]∈σ

ri j +
∑
[i, j]∈σ

ri j

∑
c∈Ci j (σ )

Pµ(c)

= ab +
∑

c∈C(σ )

 ∑
[i, j]∈σ with

Ci j (σ )3c

ri j

Pµ(c). (3.4)

As depicted in Figure 6, for any corner c ∈ C(σ ) occurring at (x, y) and for
any [i, j] ∈ σ , we have c ∈ Ci j(σ ) if and only if (x > i and y > j) or (x < i
and y < j). Let c ∈ C(σ ) be a southeast corner occurring at (x, y). We have∑

[i, j]∈σ with
Ci j (σ )3c

ri j =
∑
[i, j]∈σ

ri j −
∑
[i, j]∈σ

i6x; j>y

ri j −
∑
[i, j]∈σ

i>x; j6y

ri j

= ab − (a − x)b − (b − y)a

= ab
( x

a
+

y
b
− 1

)
.

With similar calculations we can see for any c ∈ C(σ ) a northeast corner occurring
at (x, y) we also have

∑
[i, j]∈σ

Ci j (σ )3c
ri j = ab(1 − x/a − y/b). In other words, for

c ∈ C(σ ), ∑
[i, j]∈σ

c∈Ci j (σ )

ri j = ab · δ(c). (3.5)

Putting equations (3.3), (3.4) and (3.5) together yields

(a + b)
∑
[i, j]∈σ

E(T +i, j (σ )) = ab

(
1+

∑
c∈C(σ )

δ(c)P(c)

)
.

But since µ is a toggle-symmetric measure, Eµ(jag) = 2
∑
[i, j]∈σ E(T +i, j (σ )).

Hence the claimed formula for Eµ(jag) holds.

Let us say a skew shape σ is balanced if it is connected and δ(c) = 0 for all
c ∈ C(σ ). In other words, a connected skew shape is balanced if all outward
corners occur at the main antidiagonal. An immediate corollary of our main
theorem is the following:
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Figure 6. In the above diagram, let X1 be the set of pink boxes and X2 the set of
dark red boxes. Let c1 be the corner occurring at (2, 5) (in pink) and c2 the corner
at (3, 2) (in dark red). Then [i, j] ∈ X1 if and only if c1 ∈ Ci, j(σ ) and [i, j] ∈ X2

if and only if c2 ∈ Ci, j(σ ).

Figure 7. Examples of balanced skew shapes.

COROLLARY 3.8. Let σ be a balanced skew shape with height a and width b. Let
µ be any toggle-symmetric probability distribution on J (σ ). The expected
jaggedness of a subshape in J (σ ) with respect to the distribution µ is
2ab/(a + b).

Some examples of balanced skew shapes are depicted in Figure 7. They include
rectangles like (A), staircases like (B), ‘stretched’ staircases (that is, staircases
where we have replaced each box by a k × l rectangle) like (C), as well
as other more general shapes like (D). For any a, b > 1, there are a total
of 3gcd(a,b)−1 balanced skew shapes with height a and width b (because there are
gcd(a, b)−1 lattice points occurring strictly inside the rectangle a×b and on the
main antidiagonal, and at each of these we can have a northwest outward corner,
a southeast outward corner, or neither).

Along the same lines, let us say that a connected skew shape σ is abundant if all
of its northwest corners occur on or above its antidiagonal and all of its southeast
corners occur on or below its antidiagonal. And let us say that σ is deficient if all

https://doi.org/10.1017/fms.2017.5 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.5


M. Chan, S. Haddadan, S. Hopkins and L. Moci 20

of its northwest corners occur on or below the antidiagonal and all of its southeast
corners occur on or above the antidiagonal. Then we immediately get:

COROLLARY 3.9. Let σ be a skew shape of height a and width b and µ be any
toggle-symmetric probability distribution on J (σ ).

• If σ is abundant, then the expected jaggedness of a subshape in J (σ ) with
respect to the distribution µ is at least 2ab/(a + b).

• If σ is deficient, then the expected jaggedness of a subshape with respect to µ
is at most 2ab/(a + b).

We remark that in the case where σ is a rectangle and µ = µlin or µunif,
Corollary 3.8 recovers a result of Chan et al. [6]. Indeed, [6, Remark 2.16] points
out the ‘remarkable’ fact that for rectangles, the uniform and linear distributions
have the same expected jaggedness; Corollary 3.8 is a vast generalization,
and perhaps even explanation, of this phenomenon. Theorem 3.4 also gives a
reformulation of [6, Theorem 2.8] (which deals with µlin only) which exhibits
more explicitly the way in which expected jaggedness depends on the shape of σ .

3.1. Computing the correction terms for various toggle-symmetric
distributions. Although Theorem 3.4 gives an especially nice formula for
Eµ(jag) when σ is a balanced, we now explain how even when σ is not balanced
the correction term

∑
c∈C(σ ) δ(c)Pµ(c) in this formula is easy to compute for all

of the ‘natural’ toggle-symmetric distributions defined in Section 2.1. Of course
the displacement δ(c) for c ∈ C(σ ) is easily computed; the issue is computing
Pµ(c). By Remarks 2.5 and 2.7, the distributions µunif and µrk are special cases
of µm,6 and µm,<, respectively, so from now on we discuss computing Pµm,6(c),
Pµlin(c), and Pµm,<(c).

First let us consider µ = µm,6; the other distributions will be similar. Let
RPP(σ ;m) denote the set of reverse plane partitions of shape σ and height m
(recalling the dictionary of terms above). Choose some outward corner c ∈ C(σ )
that occurs (i, j). Suppose first that c is a southeast corner. Then

Pµm,6(c) = E
(

m −max{`([i + 1, j]), `([i, j + 1])}
m

)
where ` ∈ RPP(σ ;m) is chosen uniformly at random. But

E(max{`([i + 1, j]), `([i, j + 1])}) = m + 1−
#RPP(σ ∪ {c};m)

#RPP(σ ;m)
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where σ ∪{c} denotes the skew shape obtained by adding a box at corner c (that is,
for this southeast corner, σ ∪{c} := σ ∪{[i+1, j+1]}). Indeed, this follows from
the same observation as [6, Lemma 2.10]: consider the map RPP(σ ∪ {c};m)→
RPP(σ ;m) given by forgetting the value at [i + 1, j + 1]; for any ` ∈ RPP(σ ;m)
the size of the fiber of this map at ` is m + 1 − max{`([i + 1, j]), `([i, j + 1])}.
Now suppose that c is a northwest corner. Then

Pµm,6(c) = E
(

min{`([i + 1, j]), `([i, j + 1])}
m

)
where ` ∈ RPP(σ ;m) is chosen uniformly at random. By the same reasoning as
before,

E(min{`([i + 1, j]), `([i, j + 1])}) =
#RPP(σ ∪ {c};m)

#RPP(σ ;m)
− 1.

Whether c is a southeast or northwest corner, we see that

Pµm,6(c) =
#RPP(σ ∪ {c};m)− #RPP(σ ;m)

m · #RPP(σ ;m)
. (3.6)

Similar analysis for the other distributions shows

Pµlin(c) =
#SYT(σ ∪ {c})

(|σ | + 1) · #SYT(σ )
(3.7)

where SYT(σ ) denotes the set of standard Young tableaux of shape σ and |σ | is
the number of boxes in σ , and

Pµm,<(c) =
#Inc(σ ∪ {c};m)+ #Inc(σ ;m)

(m + 2) · #Inc(σ ;m)
, (3.8)

where Inc(σ ;m) is the set of increasing tableaux of shape σ and height m.
Thus we have reduced the problem of computing Pµ(c) for µ in the spectrum

of toggle-symmetric distributions on J (σ ) defined in Section 2.1 to computing
the quantities #RPP(σ ;m), #SYT(σ ), and #Inc(σ ;m). Fortunately there are well-
known determinantal formulas for these. Let σ = λ/ν be a skew shape with λ =
(λ1, . . . , λk) and ν = (ν1, . . . , νk). Then a result of Kreweras [10] says that

#RPP(σ ;m) =
k

det
i, j=1

[(
λi − ν j + m
i − j + m

)]
.

Here we interpret
(x

y

)
= 0 for x < 0. In the special case µ = ∅ the above

formula was known to MacMahon [11, page 243]; for more details see [16,
Exercise 3.149]. The following formula is due to Aitken [1] (although in fact it is
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a simple consequence of the Jacobi–Trudi identity; see [15, Corollary 7.16.3]):

#SYT(σ ) = |σ |!
k

det
i, j=1

[
1

(λi − i − ν j + j)!

]
.

Here we interpret 1/x ! = 0 if x < 0. In the special case µ = ∅ we also have the
famous hook-length formula, which gives an even better answer for the number
of standard Young tableaux; namely,

#SYT(λ) = |λ|!
∏
[i, j]∈λ

1
hλ(i, j)

where hλ(i, j) is the hook length of box [i, j]; see [15, Corollary 7.21.6]
for details. As for increasing tableaux of bounded height, it follows from the
Reciprocity Theorem for order polynomials (see [16, Corollary 3.15.12]) that
if Ω is the unique polynomial satisfying Ω(m) = #RPP(σ ;m) for all m ∈ N
then #Inc(σ ;m) = (−1)|σ |Ω(−m). Thus the aforementioned result of Kreweras
also allows us to easily compute #Inc(σ ;m).

3.2. Connections to antichain cardinality homomesy. In this subsection we
give an application of our main result to the study of homomesies in combinatorial
maps. Recall the definitions of rowmotion, gyration, and homomesy from
Section 2.2.

Let P be a poset. To any I ∈ J (P) we associate the antichain A(I ) of P
consisting of the maximal elements of I . The antichain cardinality statistic is the
map J (P)→ R given by I 7→ #A(I ).

COROLLARY 3.10. If P is the poset associated to the skew shape σ and µ is any
toggle-symmetric distribution, then

Eµ(#A(I )) =
ab

a + b

(
1+

∑
c∈C(σ )

δ(c)Pµ(c)

)
.

Proof. This result was already obtained in the proof of Theorem 3.4. Explicitly,
the antichain cardinality statistic is just

∑
p∈Pσ T

−

p , so the average of this
statistic is

Eµ

(∑
p∈Pσ

T −p

)
=

1
2

(
Eµ

(∑
p∈Pσ

T −p

)
+ Eµ

(∑
p∈Pσ

T +p

))

=
1
2
Eµ(jag)

where Eµ(
∑

p∈Pσ T
−

p ) = Eµ(
∑

p∈Pσ T
+

p ) thanks to the toggle symmetry of µ.
Now apply Theorem 3.4.
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COROLLARY 3.11. For Pσ the poset corresponding to a balanced skew shape σ
of height a and width b and ϕ ∈ {rowmotion, gyration}, the antichain cardinality
statistic is ab/(a + b)-mesic with respect to the action of ϕ on J (Pσ ).

Proof. Let O ⊆ J (Pσ ) be a ϕ-orbit and let µ be the distribution on J (Pσ ) that
is uniform on O. By Theorem 2.14 we know that µ is toggle-symmetric. Thus by
Corollaries 3.8 and 3.10 we conclude that Eµ(#A(I )) = ab/(a + b).

In the case where ϕ = rowmotion and σ is an a × b rectangle, Corollary 3.11
recovers a result of Propp and Roby [12, Theorem 27]. Actually, Propp and Roby
prove a more refined result: they show the cardinality of the intersection of the
antichain with any fixed ‘fiber’ of Pσ is homomesic with respect to rowmotion
in this rectangular case. In other words, they show that the statistics

∑
[i, j ′]∈σ T−i, j ′

for 1 6 i 6 a and
∑
[i ′, j]∈σ T−i ′, j for 1 6 j 6 b are homomesic with respect to the

action of rowmotion on J (Pσ ). But when σ is an a × b rectangle and 1 6 i < a
we have ∑

[i, j ′]∈σ

T−i, j ′ =
∑

[(i+1), j ′]∈σ

T+(i+1), j ′

and similarly for columns. Thus by the toggle symmetry of µ, where µ is as in
the proof of Corollary 3.11, we conclude that in this case

Eµ

 ∑
[i1, j ′]∈σ

T−i1, j ′

 = Eµ

 ∑
[i2, j ′]∈σ

T−i2, j ′


for any 1 6 i1, i2 6 a, and similarly for columns. In this way we can recover Propp
and Roby’s refined fiber cardinality result as well. This argument also shows that
fiber cardinality is homomesic for gyration acting on rectangular shapes. (But
note that the fiber cardinality homomesy does not hold for arbitrary balanced
shapes.) At any rate, for nonrectangular, balanced σ when ϕ = rowmotion, and
for all balanced σ when ϕ = gyration, the antichain cardinality homomesy result
of Corollary 3.11 appears to be new.

REMARK 3.12. The homomesy phenomenon, although introduced only recently,
has already been observed in many circumstances [3, 7, 12, 14, 17]. This apparent
ubiquity, like that of the more famous cyclic sieving phenomenon [13] to which
it is related, is already at least a partial motivation for its study. But let us take a
moment to explain a more specific motivation for the kind of homomesy result we
obtained in this subsection. So let ϕ : S → S be an invertible map from a set S of
combinatorial objects to itself. A natural thing to study is the orbit structure of ϕ.
For example, when ϕ is rowmotion, a lot of research has focused on proving that
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the order of ϕ is small for ‘nice’ classes of posets like products of two chains [4].
The order of ϕ is of course just the least common multiple of the sizes of the orbits
of ϕ. Here is where homomesy can be useful: if f : S → Z is some statistic that
takes on integer values, and f is c-mesic with respect to the action of ϕ on S , then,
writing c = p/q in reduced terms, we must have that the order of every orbit is
divisible by q (this is the only way that q can always appear in the denominator).
In other words, f being (p/q)-mesic with respect to the action of ϕ says that the
greatest common divisor of the orbit sizes of ϕ is divisible by q; this addresses a
kind of dual problem to that of finding the order of ϕ. What is remarkable is that
often there is no easier way to prove this fact about the gcd of ϕ orbit sizes than to
exhibit homomesy for the appropriate statistic. For instance, Corollary 3.11 above
implies that if σ is a balanced skew shape of height a and width b then the gcd
of the orbit sizes of rowmotion acting on J (Pσ ) is divisible by (a + b)/gcd(ab,
a + b).

4. Open questions

We conclude with some open questions and threads of future research.

(1) For any poset P , the space of toggle-symmetric distributions on J (P) is
some convex polytope. Denote this polytope by P(P). What is the combinatorial
structure of P(P)? Note that P(P) has dimension #J (P)− 1− #P: specifically,
it is the intersection of the standard #J (P)-simplex in R#J (P) with some linear
subspace of codimension #P , and the uniform distribution on J (P) is an interior
point of the simplex that is always toggle-symmetric. It seems that P(P) can be
rather complicated; for example, computation with Sage mathematical software
shows that when Pλ is the poset corresponding to the partition λ = (3, 3, 3)
the polytope P(Pλ) is 10-dimensional and has 159 vertices. For a specific
question about P(P): are the distributions corresponding to ϕ-orbits for
ϕ ∈ {rowmotion, gyration} always vertices of P(P)?
(2) Rowmotion and gyration are both elements of the toggle group; moreover,
they are both compositions of all of the toggles in some order. Not all such
compositions of toggles are 0-mesic with respect to Tp for all p ∈ P; for instance,
Striker [17, Section 6] observes an instance where this fails for promotion, another
such element of the toggle group. Nevertheless, we could hope that there were
other toggle group elements ϕ : J (P)→ J (P) that are 0-mesic with respect to
Tp for all p ∈ P . It would be interesting to find such ϕ because then Corollary 3.8
would immediately imply that the antichain cardinality statistic is homomesic
with respect to ϕ.
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(3) For a connected skew shape σ with height a and width b and any ρ ∈ J (σ )
we claim that

1 6 jag(ρ) 6 min{2a, 2b, a + b − 1} <
4ab

a + b
.

To see this, first note that either ρ is nonempty or σ \ρ is nonempty and so there is
at least one box of σ that can be toggled in or out, proving 1 6 jag(ρ). Next note
that in each column, at most one box can be toggled in and at most one out, and
similarly for rows. This proves that jag(ρ) 6 min{2a, 2b}. The only case where
a + b − 1 < min{2a, 2b} is when a = b; in this case, note that if a box can be
toggled out of every column, then there is no box in the first column that can be
toggled in. So indeed the claimed inequality on jag(ρ) holds. The upshot of this
inequality is that for any distribution µ on J (σ ),

0 < Eµ(jag) <
4ab

a + b
.

If µ is toggle-symmetric then by Theorem 3.4 we conclude

−1 <
∑

c∈C(σ )

δ(c)Pµ(c) < 1.

It is not obvious a priori that this bound on
∑

c∈C(σ ) δ(c)Pµ(c) should hold for
all toggle-symmetric distributions µ. It would be interesting to give a simple
explanation for why it does hold, or to offer another expression for Eµ(jag) that
is evidently strictly between 0 and 4ab/(a + b).

A related question, pointed out by Pflueger, is to give a direct explanation for
why, for any balanced skew shape σ and any toggle-symmetric distribution, the
expected jaggedness of a subshape necessarily lies between a and b. (This is true,
of course, since the harmonic mean always lies between a and b.)

(4) Our main theorem, Theorem 3.4, which gives a formula for Eµ(jag) for toggle-
symmetric distributions µ, applies only to posets associated to skew shapes. Can
we generalize this result to a broader class of posets? In particular, is there a more
general notion of a ‘balanced’ poset for which all toggle-symmetric distributions
have the same expected jaggedness?
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