
L I V E S O F H I E R A R C H I C A L T R I P L E S Y S T E M S I N C L U S T E R S 

A N D I N T H E F I E L D 

LUDMILA G. KISELEVA 
Institute of Astronomy, 
Madingley Road, Cambridge CB3 OHA, England 

A b s t r a c t . Evolution with time of isolated hierarchical triple stars, stable 
from a dynamical point of view, is studied using analytical and numerical 
approaches. The results are applied to the study of the evolutionary cycle 
of hierarchical systems formed by dynamical capture in open clusters (up 
to 10,000 stars). 

1. I n t r o d u c t i o n 

Stars show a marked tendency to form systems of different multiplicity, 
start ing from the smallest systems, binary and triple stars, up to globular 
clusters with Ν ~ 10 7 . Different investigators have used different meth-
ods for the identification of multiple stars, and have arrived at somewhat 
different conclusions, but modern observations give a frequency of binary 
and multiple stars in the Galactic field of up to 70% (Gliese & Jahreiss 
1988, Batten, Fletcher & McCarthy 1989, Duquennoy & Mayor 1991), and 
between 5 and 15% of these systems are at least triple. Batten, Fletcher & 
McCarthy (1989) claimed that about 20% of binaries in their sample can be 
at least triple. Among the 50 nearest stars ( G / K / M dwarfs), from van de 
Kamp (1971) and Henry & McCarthy (1990), are found 33 single, 13 binary 
and 4 triple stars. Duquennoy & Mayor (1991) gives the following ratio of 
single : double : triple : quadruple systems among the 164 nearest G-dwarf 
stars: 1.5(91 systems) : 1(62) : 0.105(7) : 0.026(2). They also pointed out 
tha t the number of triple and quadruple systems may be larger. 

A particularly large fraction of triple and quadruple systems can be 
observed among pre-main-sequence stars in star-forming regions. For ex-
ample, Ghez et al. (1993) found that triples and quadruples comprise 14% 
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of their sample for the Tau-Aur association. They estimate that the real 
frequency (taking into account the incomplete period coverage in their sam-
ple) may reach ~ 35%. Simon et al. (1995) identified at least 10 binaries, 
two triples and one quadruple among 35 young star targets in the Ophi-
uchus star-forming region, and 22 binaries and 4 triples among 47 systems 
in the Taurus region. Of course, some fraction of these systems may be 
unstable, and we observe them at the stage of the distant ejection of one 
companion. 

The majority of observed triple and higher multiplicity systems are 
hierarchical, i.e. a close binary has a distant component, which may also be 
a binary. Another possibility is tha t a binary with a distant component has 
another even more distant component still. The majority of non-hierarchical 
triples (except a very few special cases like, for example, the Eulerian or 
Lagrangian configurations) are dynamically unstable, i.e. they eventually 
(usually, within several crossing times) disintegrate into a bounded binary 
and a detached single body which can escape to infinity: for a detailed 
discussion, see reviews by Anosova 1986, Heggie 1988, Anosova & Orlov 
1994. 

Even for hierarchical triple-star systems, stability is not an easy ques-
tion. There are a number of criteria to identify triple systems as stable or 
unstable, obtained analytically (e.g. Golubev 1967, 1968, Zare 1977, Sze-
behely & Zare 1977, Marchai & Bozis 1982) or numerically (e.g. Harring-
ton 1975, 1977, Graziani & Black 1981, Donnison & Mikulskis 1992, 1995, 
Eggleton & Kiseleva 1995a; hereinafter EK). These criteria differ from each 
other, sometimes rather significantly. Part of the reason for this is that 
'stability' is a difficult concept to define and authors often use different 
stability definitions. In this paper we adopt the stability criterion of EK 
and also their definition of stability: tha t a hierarchical triple system is sta-
ble if it persists continuously for a very long time in the same hierarchical 
configuration (which excludes exchange as well as disintegration). 

Known triple systems are not so numerous in open clusters as in the 
field, but the statistics are increasing due to the improvement of obser-
vational techniques, and to the systematic surveys undertaken at several 
observatories within the last few years. There is thus growing evidence for 
the existence of triple and even quadruple systems in open clusters, with 
a variety of characteristics. These systems are usually highly hierarchical. 
Triple (or even higher multiplicity) systems are found in the Pleiades (Mer-
milliod et al. 1992), the Hyades (Griffin & Gunn 1981, Griffin et al. 1985, 
Mason et al. 1993), Praesepe (Mermilliod et al. 1994), M67 (Mathieu et al. 
1990), and NGC 1502 (Mayer et al. 1994). The system in NGC 1502 con-
tains an eclipsing massive binary SZ Cam (rai = 13.7MQ, rri2 = 9 .7MQ, 

P = 2.7G?) which is the brightest member of the cluster. The variability of 
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the orbital period of this binary has been known for some time, but only 
recently new high-dispersion spectra (Mayer et al. 1994) have allowed the 
third body to be identified. Because of its large mass (minimum I8.6M0) 
and because of observed shifts in the third-body lines, this ' third body' 
can possibly be a binary, and the system as a whole may be a hierarchical 
quadruple system with P Q ut = 50.7y, e = 0.77. 

Mermilliod et al. (1994) have summarised the data for 11 main-sequence 
triple systems known so far in open clusters, in which one component is a 
spectroscopic binary. Four of these systems contain a very close binary 
(Pin G (2.4, 4.0)d). Only 3 out of 11 outer orbital periods are known, and 
the least hierarchical system (vB 124 in the Hyades) has a period ratio 

X = Pout/P\n ~ 250. 
Only one hierarchical triple system has been detected so far in globular 

clusters, but this is surely only the first step to the discovery of others which 
are likely to be present. This famous system in M4 contains the millisecond 
pulsar PSR B1620-26 (Backer et al. 1993, Thorsett et al. 1993; see also 
Rasio et al. 1995 and Hut 1995 for a discussion). 

The above da ta indicate the importance of the numerical and analytical 
s tudy of the formation and evolution of hierarchical systems in the Galactic 
field and in star clusters, which we discuss in the present paper. We partic-
ularly concentrate on hierarchical systems stable from the point of view of 
their internal dynamical evolution. 

2. I so la ted s tab le hierarchical tr iple 

Dynamical stability requires tha t the ratio XQ of outer period to inner 
period must be larger than a factor of ~ 3 — 6, if both orbits are nearly 
circular and all three bodies are of comparable mass: Kiseleva, Eggleton 
& Anosova 1994, Kiseleva, Eggleton & Orlov 1994. More generally, for 
eccentric orbits, the outer periastron must be larger than inner apastron 
by a factor of ~ 2 — 16 (EK; see also Harrington 1975). Table 1 gives, 
for a wide range of mass ratios, the minimum YQ necessary for stability in 
coplaner prograde orbits, where YQ = R°*LJR™?. This minimum YQ is not 
very sensitive to the two eccentricities, and so is not different by more than 
~ 20% from the value for two circular orbits, which is what is shown in the 
Table. In Table 1, α = l o g 1 0 ^ > 05 , β = l og 1 0 ^ f * , where mu m2 

are the masses of the components of the close binary and 7 7 2 3 is the mass of 
the third body. The period ratio XQ and the above distance ratio YQ are of 
course closely related by Kepler's law, given the two eccentricities and the 
two mass ratios. 

Table 1 shows tha t for all systems with a massive distant component, 
i.e. 7 Π 3 > m i + 7 7 1 2 , Yo m i n > 4; and that for systems with m i «" πΐ2 ~ 7 7 1 3 , 
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TABLE 1. Minimum initial ratio y o

m i n of 
systems with initially doubly-circular orbi 

OL 0.0 0.2 0.4 0.6 

™>ΐΙ™>\2 .50 .39 .28 .20 

ß(m3/m12) 

-2.0(100) 15.53 15.62 15.85 15.90 

-1.8(63) 13.35 13.49 13.65 13.77 

-1.6(40) 11.48 11.64 11.74 11.88 

-1.4(25) 9.87 10.01 10.18 10.29 

-1.2(16) 8.57 8.65 8.81 8.86 

-1.0(10) 7.34 7.42 7.55 7.66 

-0.8(6.3) 6.31 6.41 6.51 6.61 

-0.6(4.0) 5.39 5.51 5.61 5.70 

-0Λ(2.5) 4.61 4.72 4.82 4.91 

-0.2(1.6) 3.95 4.03 4.11 4.20 

0.0(1.0) 3.37 3.46 3.47 3.60 

0.2(0.63) 3.11 3.12 3.10 3.22 

0Λ(.40) 2.99 2.99 2.97 2.93 

0.6(.25) 2.88 2.87 2.87 2.84 

0.8(.16) 2.81 2.81 2.79 2.76 

Ι.Ο(.ΙΟ) 2.74 2.74 2.72 2.70 

1.2(.063) 2.70 2.69 2.68 2.34 

1Λ(.040) 2.67 2.35 2.33 2.29 

1.6(.025) 2.32 2.32 2.29 2.25 

1.8(.016) 2.31 2.31 2.27 2.22 

2.0(.010) 2.29 2.28 2.26 2.21 

emi-major axes a o u t /^in for stability of triple 
;s. 

0.8 1.0 1.2 1.4 1.6 1.8 2.0 

.14 .09 .06 .04 .025 .016 .01 

16.00 16.05 16.14 16.15 16.14 16.17 16.20 

13.82 13.87 13.91 13.94 13.98 13.98 14.00 

11.99 12.04 12.03 12.10 12.11 12.11 12.10 

10.34 10.42 10.44 10.44 10.46 10.48 10.51 

8. .95 8. .99 9. 00 9. ,05 9. 07 9.07 9.08 

7. 72 7. .76 7. ,82 7. 83 7. 86 7.86 7.87 

6. .67 6. .72 6. ,76 6. ,79 6. ,79 6.79 6.81 

5. .76 5. .82 5. ,85 5. ,87 5. ,89 5.90 5.91 

4. .97 5. .02 5. ,06 5. ,08 5. ,09 5.10 5.10 

4. ,27 4. 31 4. ,34 4. ,36 4. ,37 4.38 4.38 

3. .63 3. .67 3. ,70 3. .72 3. ,73 3.74 3.74 

3. .04 3. .05 3. ,09 3. .12 3. ,14 3.15 3.16 

2. .94 2, .87 2, .85 2. .83 2. .65 2.58 2.60 

2. .81 2 .80 2, .73 2, .72 2, .71 2.70 2.69 

2. .73 2 .67 2, .65 2, .63 2, .61 2.63 2.59 

2 .36 2 .33 2, .29 2 .26 2 .22 2.23 2.21 

2 .30 2 .26 2 .22 2 .18 2 .17 2.15 2.13 

2 .25 2 .20 2 .18 2 .14 2 .07 2.05 2.04 

2 .22 2 .18 2 .12 2 .09 2 .05 1.84 1.82 

2 .19 2 .15 2 .10 2 .08 2 .03 1.83 1.63 

2 .17 2 .14 2 .10 2 .05 1 .84 1.63 1.60 

3 < Y o m m — 4. Thus a strongly hierarchical structure is required for 
dynamical stability in these cases. In this work we consider only triple 
systems with YQ significantly above Y 0

m i n . 

In dynamically stable hierarchical triples the distant component always 
pumps an eccentricity into the inner binary on a time scale shorter than 
the orbital period of the binary. In its turn, the binary also pumps an 
eccentricity into the outer orbit, although the inner orbit seems to be more 
sensitive to perturbations (Figs 1 and 2). 

Fig. 1 shows tha t average values over time of the inner and outer ec-
centricities ein and ëout increase rather smoothly as the period ratio XQ 
decreases (but still does not approach too closely the critical value X Q 1 1 1 1 

for stability). However, such smooth behavior of ë o u t ( X o ) a n d ë-m(Xo) is not 
universal. Kiseleva, Eggleton & Anosova (1994) found 'resonances' for some 
(a,/?)-pairs, i.e. ë o u t or e-m can rapidly increase and then decrease again in 
a narrow range of XQ. For yet other (OJ,/3)-pairs the resonance is 'disrup-
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X0 (α=Ο.Θ, 0=0.8) X0 (α=0.Β, ß = -0.Q) 

Figure 1. The mean values over time of the inner and outer eccentricities in hierarchical 
triples with coplanar initially circular orbits, as functions of the initial period ratio Xo-
In upper and middle panels dashed lines show results for equal mass inner binaries (i.e. 
α = 0) and solid lines for binaries with a rather significant mass ratio ^ « 16 (i.e. 

a = 1.2). 

tive': for some rather narrow range of XQ the system breaks up, typically 
by ejection of a distant component, even though the system appears to be 
stable over very long time intervals at smaller as well as larger values of 
Xo] although of course the system will eventually break up at some smaller 
Xo still. Fig. 1 shows that for Xo > 20 the initial orbital elements are pre-
served in both binaries to better (usually much better) than 1%, so tha t 
inner and outer subsystems can be considered as rather unaffected by each 
other. However, Heggie (1996) has shown analytically that for non-coplanar 
triple systems there is a secular periodic change of the inner eccentricity 
which must over a sufficiently long time (which depends on both inner and 
outer periods, initial eccentricities, and masses) reach its maximum value 
e m a x rpkjg v a j u e does not depend on any parameters of the triple system 
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Figure 2. The fluctuations of inner and outer eccentricity with time for a system with 
τη I = m 2 ~ τη 3 and x 0 = i o . The upper panel shows results of numerical 3-body simulations 
and the lower panel gives data produced using Heggie's analytical approach (see text) . 

except the relative inclination i between two orbital planes (other parame-
ters affect only the time scale) If i « 90° e™ a x « 1 and the two stars may 
collide or at least have a very strong tidal interaction. This affect cannot 
be neglected in the numerical study of triple stars in clusters which we will 
discuss in the next Section. Fig. 1 also show that the changes of the orbital 
characteristics of the inner binary in practice do not depend very much on 
the mass ratio a of the components of this binary. However, e o u t depends 
on a rather strongly. 

Fig. 2 presents the behaviour in time of instantaneous e\n and e o u t for a 
stable (Xo — 10) triple with three components of equal masses for numeri-
cal simulations (upper panel) and the analytical approximation by Heggie 
(private communication) based on 1st order perturbation theory. Fig. 2 
shows a resonably good aggreement between these two approaches, espe-
cially for e o u t - Although the fine details of both functions differ, the am-
plitudes e™** and periods of fluctuations are nearly the same. For ei n the 
difference between the two approaches is more significant. The Bulirsch-
Stoer integration procedure used in numerical simulations does not allow 
us to have more than 4-5 outputs per inner orbit, and so for uniformity we 
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used the same sampling for the analytical curves; however the small dots 
on the lower panel correspond to 20 outputs per inner orbit. 

3 . Hierarchical s y s t e m s in o p e n c lusters 

A few numerical simulations for clusters of 500 - 10,000 stars with different 
fractions of primordial binaries were performed, using the N-body code 
NBODY4 (Aarseth 1996) on HARP in IoA. The procedure for identification 
and observation of dynamically formed hierarchical systems in clusters is 
described in Kiseleva et al. (1995): a newly formed hierarchical system 
(triple or quadruple in the sense that the distant component can itself be a 
binary) is recorded if it satisfies the EK stability criterion and at the same 
time the distant star forms a hard binary with respect to the centre of mass 
of the inner binary. Usually there are more triples than quadruples; however 
in some runs the fraction of quadruples may be up to 45%. Hierarchies can 
be destroyed because of perturbing effects of the remaining cluster stars 
o r / and some stellar evolutionary effects. 

Possible destructive effects of the secular increase of the inner eccen-
tricity in non-coplanar triple systems, as described above, have not been 
taken into account so far and the inner orbit was 'frozen' as long as the hi-
erarchy existed. However, numerical simulations show (Fig. 3) tha t relative 
inclinations i of the two orbital planes of dynamically formed hierarchical 
systems in clusters are uniformly distributed between 0° and 180° (keeping 
in mind tha t n(i)di oc s inidi) , and therefore the actual fraction of systems 
with i « 90° is rather significant. The factor which can significantly reduce 
the influence of ' Heggie's effect' on the inner binary is the time scale of this 
effect. Some statistical properties of hierarchical systems in clusters are 
shown in Fig. 4. Such factors as a large ratio of semiajor axes, massive in-
ner binary (mi + m 2 > 2 . 5 M Q ) , and relatively low-mass distant component 
(on average 7713 ~ (0.2 — 0.6)mj n) should increase the time interval which 
is required in order to reach e[£ a x . In this case the life-time of a hierarchy, 
which is typically between 1 and 3 Myrs although it can reach ~10 Myrs 
in some cases, may not be long enough. Also the tidal circulization which 
time scale can be comparable or even less that one of 'Heggie's effect' can 
play an important role and close binary, probably, cannot even approach 
their e[£ a x . This study has just begun and we cannot yet draw any final con-
clusion as to how the fate of the close binary may be affected over a long 
time by the presence of the very distant companion. Fig. 5 presents da ta 
from the last part of the run for the model cluster with 10,000 stars and 
500 primordial binaries. The left-hand panel shows the distibution of e[£ a x , 
with e™ a x calculated at the time when the hierarchy was formed. More than 
15% of systems may reach e[£ a x G (0.9; 1) if they are given enough time. 
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9 0 
inclination i° 

Figure 8. Distribution of relative orbital inclinations i for hierarchical triple and quadru-
ple systems in two runs for clusters of Ν = 5100 stars with 100 primordial binaries 
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Figure 4- Distribution of the ratio outer/inner semi-major axis (log a o u t /ctin. ) for models 
with 5100 stars (left-hand panel); 510 stars with 10 primordial binaries (dots) and 2050 
stars with 50 primordial binaries (solid line) on the right-hand panel 

Note tha t at the moment of hierarchy formation all inner binaries had cir-
cular orbits (most likely due to tidal circularization), although about 25% 
of triples and 39% of quadruples contained a non-primordial inner binary. 
The right-hand panel shows tha t if systems are allowed to reach their e™ a x , 
a few percent of inner binaries would suffer collisions or very strong tidal 
effects at the periastrons of their orbits. 

So far, we have not followed the processes of formation of hierarchical 
systems in clusters in detail. The most probable mechanism is the presence 
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Figure 5. Distributions of maximum values of inner eccentricity due to the secular effect 
of the distant component (left), and of minimum (periastron) separations between stars 
in the outer binary in units of their maximum stellar radius 

of primordial or, at later evolutionary stages, exchanged binaries (which can 
build up to 50% of all close binaries in hierarchies in some numerical runs), 
along with binary-binary interaction. However, our distribution of the ratio 
flout/^in (Fig. 4), especially for big clusters with Ν > 5000, differs very much 
from the results of binary-binary scattering experiment (McMillan, Hut & 
Makino 1991). It appears from numerical experiments that in large clusters 
at a late stage of their evolution new hierarchical systems can be formed 
via repetitive triple-binary and triple-triple exchanges. Outer eccentricities 
- most systems have very eccentric outer orbits with e o u t £ (0.7; 0.98)) 
and the periods for hierarchical systems produced in our models, are in 
reasonable agreement with the observations referred to above of multiples 
in open clusters, within the limited statistics for the latter. Let us note 
finally tha t at least one hierarchical system (in large clusters there can be 
up to 5 hierarchies at the same time) is present in a open cluster during 
about 20% of its life history and at all evolutionnary stages after the core 
collapse. 
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