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Abstract. Let F be a p-adic field, let L be the completion of a maximal unramified extension ofF, 
and let u be the Frobenius automorphism of Lover F. For any connected reductive group Gover F 
one denotes by B(G) the set of u-conjugacy classes in G(L) (elements x, yin G(L) are said to be 
u-conjugate if there exists gin G(L) such that g- 1xa(g) = y. One of the main results of this paper 
is a concrete description of the set B( G) (previously this was known only in the quasi-split case). 
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Let F be a p-adic field, and let G be a connected reductive group over F. We 
write L for the completion of the maximal unramified extension Fun ofF in some 
algebraic closure F of F. We write a for the Frobenius automorphism of L over 
F; it induces an automorphism of G(L) which we also denote by a. We say that 
two elements x, y in G(L) are a-conjugate if there exists g E G(L) such that 
g- 1 xa(g) = y, and we write B(G) for the set of a-conjugacy classes in G(L). 

In case F is Qlp the set B (G) can be identified with the set of isomorphism 
classes of isocrystals with G-structure. For example when G is G Ln. the set B (G) 
can be identified with the set of isomorphism classes of n-dimensional isocrystals, 
a set that can be easily described using the classification (due to Dieudonne and 
Manin) of the simple objects in the category of isocrystals. 

The set B (G) turns up naturally when one studies Shimura varieties over finite 
fields [LR], [K5], and also plays a role in recent work of Rapoport and Zink [RZ] 
on period spaces for p-divisible groups and Shimura varieties over p-adic fields. 
Thus it is of interest to have a concrete description of B (G) for any connected 
reductive group G. 

For quasi-split groups such a description is given in [K]. The first step is to 
associate to any element bE G(L) a homomorphism v: IDl -t Gover L, where IDl 
denotes the diagonalizable group over F with character group Ql. The conjugacy 
class of v under G(L) depends only on the class of bin B( G), and this conjugacy 
class of homomorphisms is fixed by a. Let B be a Borel subgroup (over F) in the 
quasi-split group G, letT be a maximal F-torus in B, and let A be the maximal 
F -split torus in T. Let 2t denote the real vector space obtained by tensoring the 
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cocharacter group of A with lR, and let C denote the closed Weyl chamber in !2t 
determined by B. The homomorphism 1.1 is conjugate under G(L) to a unique 
element ii E C (a homomorphism from IIll to A determines a point in the obvious 
((}subspace of !2t). Following [RR] we refer to the map b t-t ii from B( G) to Cas 
the Newton map. 

The Newton point ii determines a parabolic subgroup P = M N of G over 
F. We write B(G)p for the subset of B(G) consisting of all elements for which 
the associated parabolic subgroup is equal to P. The first main result of [K] is a 
description of the subset B( G)c (elements in this subset are said to be basic). The 
second main result of [K] is a description of B (G) p in terms of basic elements in 
B ( M), where M is a Levi component for P (see 5.1 for a precise statement). 

One of the main results of this paper is a description of B (H) for any inner form 
H of the quasi-split group G. In fact it is best to introduce a set B 8 (G), which, 
loosely speaking, is the disjoint union of the sets B(H) as H ranges through the 
inner forms of G (this point of view is suggested by work of Adams and Vogan 
[AV] on representations of inner forms of real groups). It turns out that B 8 (G) has 
a description (see 5.3) that is entirely analogous to the one for B(G) given in [K]. 

We continue to let H denote an inner form of G. In Section 6 we introduce a 
subset B(H, J..L) of B(H). Here J..L denotes a dominant coweight of the maximal 
torus T in the quasi-split group G. Pairs (H, J..L) as above arise naturally in the 
study of Shimura varieties. Indeed, to get a (tower of) Shimura varieties one needs 
to start with a connected reductive group HQ over Q and a minuscule coweight 
J..Lo of HQ over <C. We assume that F is Qp and that HQ is a ((}form of H. Let 
E c <C be the Shimura field (the field of definition of the conjugacy class of J..Lo). 

Fix an embedding L of E in Qp. Then there is a unique dominant coweight J..L ofT 
that is 'conjugate' to J..LO· Thus we obtain a pair (H, J..L) as above with J..L minuscule. 
Given the conjectural interpretation of our Shimura variety X as a moduli space of 
motives with H -structure, we expect the special fiber of any natural integral model 
of X to decompose as a disjoint union of pieces indexed by the set B(H, J..L). 

In Section 6 we find all pairs (H, J..L) for which the set B(H, J..L) has a unique 
element. For pairs (H, J..L) arising from Shimura varieties it seems plausible that 
B(H, J..L) has a unique element if and only if the Shimura variety admits p-adic 
uniformization at the place of E determined by L. The results in Section 6 sup­
port Rapoport's idea [R] that p-adic uniformization occurs only in very special 
circumstances and always involves products ofDrinfeld's spaces f!d. 

The last main result of this paper is Proposition 13.4. It is too technical to discuss 
in this introduction, but it is probably worthwhile to mention that this proposition 
will be needed in order to prove that the transfer factors of [KS] for unramified 
cyclic base change (use the Frobenius element as generator for the cyclic Galois 
group) have the form given in Section 7 of [K3]. The point is that the transfer factor 
in [K3] involves the groups B(T) while the one in [KS] involves hypercohomology 
groups. In order to compare the two it is necessary to introduce a hypercohomology 
variant B(T --+ U) of B(T) and prove a number of results about it; this is done 
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in Sections 7-13. In particular a duality theorem for B(T -t U) is proved in 
Section 11, a valuation mapping from B (T -t U) onto a finitely generated abelian 
group is defined in Section 12, and an important compatibility between the duality 
theorem and the valuation mapping is proved in 12.6 (this compatibility is needed 
to prove Proposition 13.4). 

One last point deserves mention as well. Although the set B (G) can be defined 
for any linear algebraic group Gover F, it is not the 'right' set unless G is connected. 
For disconnected groups one should use instead the variant B( G) defined in 1.4. 
The first three sections of the paper develop the elementary properties of B (G) 
and also serve as a review of B(G). Following Rapoport and Zink [RZ], in 3.3 we 
give a more natural definition of the group J appearing in [K] (the group J was 
introduced by Langlands in the appendix to [L]). 

It is a pleasure to acknowledge the influence ofM. Rapoport, with whom I have 
had many stimulating conversations on the material in Sections 1-6. 

The following notation is used throughout this paper. We denote by Int( x) the 
inner automorphism y r--7 xyx- 1• For an abelian group X we denote by XJR the 
group X ®z llt For a connected reductive group G we denote by Gder the derived 
group of G, by Gsc the simply connected cover of Gder. and by Gad the adjoint 
group of G. 

1. Preliminaries 

I. I . The following notation will be used throughout this paper. Let p be a prime 
number and let F be a p-adic field (a finite extension of Qp ). Let 

val: Fx -t Z 

be the usual valuation on F, normalized so that uniformizing elements have valu­
ation 1. Let o denote the valuation ring of F, let p denote its maximal ideal, let k 
denote the residue field o/p, and let q denote the number of elements ink. 

Let F be an algebraic closure ofF, let pun denote the maximal unramified 
extension of F in F, let L denote the completion of pun, and let L be an algebraic 
closure of L containing F. The Frobenius automorphism CJ of pun over F (which 
induces x r--7 xq on the residue field of Fun) extends continuously to an automor­
phism (also denoted CJ) of Lover F. Let r denote the Galois group ofF over F, 
and let W F denote the Wei! group ofF over F (the subgroup of r consisting of all 
elements in r whose restriction to pun is an integral power of CJ). Let Ip denote 
the inertia subgroup Gal(F/Fun) ofr. We will often abbreviate Wp, Ip toW, I. 
Of course I is also a subgroup of W, and we regard W as a topological group in 
the usual way, by requiring that I, with the Krull topology, be an open subgroup of 
W. Thus we have an exact sequence of topological groups 

I -t I -t W -t (CJ) -t I, (1.1.1) 

where (CJ) denotes the infinite cyclic group generated by CJ (we give (CJ) the 
discrete topology). It is not difficult to see that L = L ®pun F. Thus I is also equal 
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to Gal(L/ L), and we may regard elements of W (or even r) as automorphisms of 
Lover F. Note that the fixed field of Win Lis F. For any finite Galois extension 
K of F in F there is an exact sequence 

1 --+ WK--+ WF--+ Gal(K/ F) --+ 1. (1.1.2) 

1.2. Let A be a group on which W acts. We assume that theW -group A is discrete, 
by which we mean that the stabilizer of any element of A is open in W. This is 
equivalent to the condition that the action map 

WxA--+A 

be continuous when A is given the discrete topology. By a 1-cocycle of W in A 
we mean a continuous map T t-t aT from W to A (give A the discrete topology) 
satisfying the usual 1-cocycle condition 

aTP = aTT(ap) for all T, p E W. 

Note that an abstract 1-cocycle aT is continuous if and only if there exists an open 
normal subgroup N of W such that aT = 1 for all T E N, in which case aT is the 
inflation toW of an (abstract) 1-cocycle of WjN in AN. If aT is a 1-cocycle of 
W in A and b is an element of A, then b-laTT (b) is a 1-cocycle of W in A and is 
said to be cohomologous to aT. We define H 1 (W, A) to be the quotient of the set 
of 1-cocycles of W in A by the equivalence relation of being cohomologous. Then 

where N runs over the directed set of open normal subgroups of W. 

1.3. Let A be a W-subgroup of a discrete W-group B. Then there is an exact 
sequence of pointed sets 

(1.3.1) 

and if A is normal in B, this exact sequence can be prolonged by addingH1(W, B fA) 
at the right end. Of course the map 8 sends b E ( B j A) w, represented by b E B, to 
the class of the 1-cocycle T t-t b- 1T(b). 

1.4. Since the fixed field ofW in Lis F, the fixed point set ofW in X(L) is X(F) 
for any scheme X over F. Let G be a linear algebraic group over F. Then G(L) is 
a discrete W -group and G(L) w = G(F). We define a pointed set B( G) by 

B(G) := H 1 (W, G(L)). 

We define another pointed set as follows. Let B(G) be the quotient of G(L) by 
the equivalence relation a-conjugacy (two elements x, y E G(L) are said to be 
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a-conjugate if there exists 9 E G(L) such that y = 9- 1xa(9)). Clearly B(G) can 
be identified with the pointed set 

H 1 ({a), G(L)) = H 1(W/ I, G(L) 1 ), 

which can be identified (by inflation) with a subset of B{ G); in this way we will 
always view B{G) as a subset of B{G). Of course there is an exact sequence of 
pointed sets 

l ---+ B(G) ---+ B(G) ---+ H 1 (L, G) (1.4.1) 

(here, as always, we denote the Galois cohomology set H 1 (Gal(Lj L), G(L)) by 
H 1 (L, G)). If G is connected, then H 1 (L, G) is trivial [St], and the sets B(G), 
B(G) are equal. For disconnected groups B(G), B(G) need not coincide, and it is 
B( G) that is the more useful notion. 

The inflation maps for the surjections W---+ Gal{K/F) appearing in (1.1.2) 
yield injections 

H 1 (K/ F, G(K)) ---+ B(G) 

for every finite Galois extension K of F in F, and these fit together to give an 
injection 

H 1(F, G)'---+ B(G). (1.4.2) 

1.5. Let 

1 ---+ G I --+ G2 ---+ G3 ---+ 1 

be an exact sequence of linear algebraic groups over F. Then 

is an exact sequence of pointed sets. The group G3(F) acts on B(G1) in the 
following way. Let 93 E G3(F) and let g1 E B(Gt). Pick a 1-cocycle x 7 of Win 
G 1 (L) lying in the class g1, and pick an element 92 E G2(L) mapping to 93 under 
G2 ---+ G3. Then the action 

G3(F) x B(Gt) ---+ B(Gt) 

sends the pair (93, g1) to the class of the 1-cocycle 92x7 r(92)- 1• It is easy to see 
that the orbits of the action of G3 (F) on B( G t) coincide with the fibers of the map 

B(Gt)---+ B(G2). 

1.6. Let F' be a finite extension of F in F. Let G be a linear algebraic group 
over F', and let RG denote the F-group obtained from G by Weil's restriction of 
scalars. Then there is a Shapiro bijection 

B(RG) ~ B(G). (1.6.1) 
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2. 0'-L-spaces 

2.1 . As in [K] we use the terminology 0'-L-space to refer to a pair (V, <P) consisting 
of a finite dimensional vector space V over L and a O"-linear bijection <P: V ---+ V 
(thus <P(av) = O"(a)<P(v) for all a E L, v E V). There is an obvious tensor 
product on the category 0'-L-spaces of all such objects, and in fact 0'-L-spaces is 
a Tannakian category over F. 

Of course in the special case that F is (Q)p the category 0'-L-spaces is just the 
category of isocrystals. Just as for isocrystals the category 0'-L-spaces is semi­
simple, and there is a natural bijection from (Q) to the set of isomorphism classes 
of simple objects in 0'-L-spaces. Thus every object in O"-L-spaces has an isotypic 
decomposition 

v = ffiv;., 
rEQ 

and, as for isocrystals, we refer to Vr as the part of V having slope r. If V1, Vz are 
isotypic of slopes r 1, rz respectively, then Vi ® Vz is isotypic of slope r 1 + rz. If 
V is a simple object of slope r, then its endomorphism ring is a central division 
algebra over F whose Hasse invariant is the element -r of (Q)jZ. Note that in this 
paper we normalize the Hasse invariant in the same way that Serre does in the 
appendix to Section 1 of [S2]. This is also the normalization used in Section 2.6 of 
[K], so that for consistency the homomorphisms 

in Section 3 of [K] should all be replaced by their negatives (this inconsistency in 
[K] affects none of the results of that paper). 

2.2. There is a second way to look at 0'-L-spaces. By a Wp-L-space we mean a 
finite dimensional I-vector space V equipped with a semilinear action of the Weil 
group W F for which V is a discrete W p-module in the sense of 1.2 (semilinear 
means that T(av) = T(a)T(v) for all T E Wp, a E I, v E V). The category Wp­
L-spaces of all such objects has an obvious tensor product. There is an obvious 
®-functor V f--t L ®LV from 0'-L-spaces to Wp-L-spaces, the action of Wp on 
L ® L V being given by the formula 

T(a ® v) = T(a) ® <PJ(v) 

for all a E I, v E V and T E W F mapping to O"j E ( 0'). There is an obvious 
®-functor V f--t V 1 (invariants of inertia) from Wp-L-spaces to 0'-L-spaces, and 
by the usual Galois descent theory for Lj L this functor is quasi-inverse to the 
previous one. Thus both functors are ®-equivalences of ®-categories. We say that 
a simple object in W p-L-spaces has slope r if the corresponding simple object in 
0'-L-spaces has slope r. 
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Let F' be a finite extension of F in F. Then W F' is an open subgroup of 
finite index in Wp, and any Wp-L-space V can be viewed as a Wpt-L-space by 
restricting the action of Wp to WF'· If Vis isotypic of slope r as Wp-L-space, 
then it is isotypic of slope r·[F' : F] as W pt-L-space. 

3. a-L-spaces with G-structure 

3.1. Now let G be a linear algebraic group over F and let g7 be a 1-cocycle of W F 

in G(L) (see 1.2). For any representation 

p: G -t GL(V) 

of G on a finite dimensional vector space V over F we get a W p-£-space structure 
on L 0p V by letting T E Wp act by the T-linear automorphism 

p(g7 ) o (T 0 idv). 

In this way we get an F-linear functor (3 from Rep( G) to Wp-L-spaces sending 
V to L 0p V, and this functor is a ®-functor in an obvious way (we denote by 
Rep( G) the Tannakian category of representations of G on finite dimensional F­
vector spaces). The Tannakian category Wp-L-spaces has an obvious fiber functor 
w over L (forget the W p-action). The Tannakian category Rep( G) also has an 
obvious fiber functor we over L, namely the functor V H L ®p V. Therefore 
there is an obvious ®-isomorphism from w o (3 to we (namely the identity map on 
L®p V). 

We can tum this around. Suppose that ((3, a) is a pair consisting of a ®-functor 
(3 from Rep( G) to Wp-L-spaces and a ®-isomorphism a from w o (3 to we. Then 
for every representation V of G the isomorphism a allows us to view (3(V) as a 
discrete semi linear W p-module structure on L 0 F V. Thus for each T E W F there 
is a uniquely determined linear automorphism g7 (V) of V such that the action of 
T on L 0 F V is given by 

g7 (V) o (T 0 idv). 

There is a unique element g7 E G(L) such that 

p(gr) = 9r (V) 

for every representation (p, V) of G, and T H g7 is a 1-cocycle of W F in G (L). 
The two constructions above are inverse to each other, so that we get a bijection 

from the set of 1-cocycles of W F in G (L) to the set of ®-isomorphism classes of 
pairs ((3, a) as above. Now suppose that we are given an exact ®-functor (3 from 
Rep( G) to W p-L-spaces (we include F-linearity in the definition of ®-functor). 
Then w o (3 is a fiber functor on Rep( G) over L, so there exists a ®-isomorphism 
a from w o (3 to we. This isomorphism is well-defined up to a ®-automorphism 
of we, or, in other words, up to an element of G(L). Associated to ((3, a) is a 
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1-cocycle of W F in G (L), and changing a by an element of G (L) replaces the 
1-cocycle by a cohomologous one. In this way we get a bijection from the set of 
®-isomorphism classes of exact ®-functors f3 as above to the set B( G) defined in 
1.4. 

3.2. Let G and g7 be as above. Let lill be the diagonalizable group over F whose 
character group X* (lill) is ij (with trivial Galois action). Then, just as in [K, 4.2], 
we get from g7 a homomorphism v : lill --+ G over L. Indeed, as we saw above, 
for any representation (p, V) of G the 1-cocycle g7 turns L Q9p V into a Wp-L­
space, so that L 0 F V acquires a Q-grading (its slope decomposition), which can 
also be thought of as a homomorphism Vp : lill --+ GL(V) over L. The desired 
homomorphism v: lill --+ G over L is the unique one such that 

vp = p o v for all (p, V). 

Let x be an element of G (L). It is clear that replacing g7 by the cohomologous 
1-cocycle xg7 T(x)- 1 replaces v by Int(x) o v. 

Let F' be a finite extension of F in F. Then the restriction of g7 to W F' is a 
1-cocycle of W F' in G (L) and therefore determines a homomorphism v' : lill --+ G 
over L. It follows from 2.2 that 

v' = 1/[F':FJ. 

We claim that v is trivial if and only if the cohomology class of g7 lies in the 
image of the natural injection 

H 1 (F, G) --+ B(G). 

Indeed, if g7 comes from H 1 (F, G), then there exists a finite Galois extension 
F' of F in F such that the restriction of g7 to W F' is cohomologous to the 
trivial 1-cocycle. Therefore v[F' :F] is trivial, which implies that v itself is trivial. 
Conversely, if vis trivial, then for every representation (p, V) of G theW p-L-space 
V ®F L has slope 0. Therefore 

-w VH(V®pL) 

is a fiber functor on Rep( G) over F, and it follows that the functor 

{3: Rep(G)--+ Wp-L-spaces 

determined by g7 is ®-isomorphic to one of the form 

V H w(V) ®F L, 

where w is a fiber functor on Rep( G) over F. To such a fiber functor corresponds 
an element of H 1 ( F, G), and it is immediate that this element maps to the class of 
g7 in B(G). 
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3.3. We continue with G and g7 as above. We will again denote the Weil group 
Wp simply by W. Since G is defined over F, the action of Won L induces an 
action of Won G(L), which we refer to as the standard action. The 1-cocycle g7 

determines a twisted action of W on G(L); forT E W this twisted action r* is 
related to the standard action T by 

r* = Int(g7 ) a T. (3.3.1) 

We want to define a linear algebraic group J over F such that J(F) is equal to 
G(L) 1\' (the fixed point subgroup of the twisted W -action on G(L)). 

First let us define the functor J that we wish to represent by a linear algebraic 
group; here we are following Rapoport-Zink [RZ, 1.12]. For any F-algebra R there 
is a natural action of Won R 0F L. This yields an action of Won G(R ®p L), 
and again the 1-cocycle g7 determines a twisted action of Won G(R ®p L) (use 
(3.3.1), as before). We define the functor J by 

J(R) := G(R ®p L)w. 

When R is an £-algebra, the canonical £-algebra homomorphism 

R®pL-tR 

induces an injection 

J(R) = G(R ®p L)w <-7 G(R) 

(3.3.2) 

(the injectivity of this map follows from Appendix A and the discussion below). 
When R is L itself, the injection 

J (L) <-7 G (L) (3.3.3) 

is W -equivariant for the standard W -action on J(L) and the twisted W -action on 
G(L). Moreover the injections J(R) -+ G{R) defined above for each £-algebra R 
identify Jy; with a closed subgroup scheme of Gy;, namely the centralizer in G of 
the homomorphism v : IIJ) -+ G defined in 3.2. In particular (3.3.3) identifies J(L) 
with the £-points of the centralizer of v in G. 

In order to define J we only need the functor {3 from Rep( G) to Wp-L-spaces 
determined by g7 ; the choice of ®-isomorphism a (of fiber functors over L) needed 
to determine a particular 1-cocycle serves to identify J(R) with G(R®p L) w. We 
proceed as follows. Let R be an F -algebra. For any Tannakian category T over F 
we write TR for the category whose objects are the same as those in T and whose 
morphisms are given by 

Hom7 n(X, Y) := Homr{X, Y) 0F R. 

Then there is an obvious structure of R-linear ®-category on TR, and there is an 
obvious ®-functor 

T-+TR 
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(given on objects by the identity map). We denote by f3R the composition of f3 and 
the functor described above from W p-L-spaces to W p-L-spacesR. We then define 
J13(R) to be the group of 0-automorphisms of the ®-functor f3R (in particular 
J13 (F) is the group of 0-automorphisms of f3 itself). 

It follows from Appendix A that J13 is representable by an affine group scheme 
over F, and that a choice a of ®-isomorphism of fiber functors over L determines 
an isomorphism over L from J13 to the centralizer in G of the homomorphism 
v: IIJ)--+ G. Let g7 be the 1-cocycle associated to f3 and a. It remains to show that 

J13(R) = G(R ®F L)w. 

By definition an element x E J13(R) is given by a compatible family of elements 

xv E (EndwF,L(L ®F V) ®F R) x, 

one for each representation V of G, where compatible means functorial in V as well 
as compatible with all finite tensor products. It is obvious that for any W p-L-space 
U and any F-vector space T we have 

w - w 
U ®pT=(U®r;(L®pT)) 

(to prove this choose a basis forT). Applying this to theW p-£-space Endr;(L® F V) 
and the F -algebra R (again V is a representation of G), we see that 

EndwF,L(L ®F V) ®F R = (Endr;(L ®F V) ®r; (L ®F R)) w 

= (EndR®FL(R ®p L ®F V)) w 

(the second equality follows from the finite dimensionality of V). Therefore x is a 
compatible family of elements 

- w 
:rv E AutR®FL(R ®p L ®F V) . 

Since a compatible family of elements of 

AutR®Fr(R ®F L ®F V) 

is the same as an element of 

we conclude that 

-w J13(R) = G(R ®p L) 

(it is easy to see that the W -action is the twisted one described earlier). 

3.4. We continue with G and g7 as above. We let v: IIJ)--+ G be the homomorphism 
over L determined by g7 (as in 3.2), and we let J be the F-group obtained from g7 
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(as in 3.3). As in 3.3 we identify J over L with the centralizer in G of v. Since the 
slope decomposition of any W p-L-space is stable under W, the homomorphism v 
satisfies 

Int(gr) o r(v) = v for all T E W. (3.4.1) 

Since][)) is abelian, the homomorphism v factors through J (and even through the 
center of J), yielding a homomorphism 

v:]]))~J 

defined over F (use (3.4.1) to see that it is defined over F). 
Let Xr be a 1-cocycle of Win J(L). Then g~ := Xr9r is a 1-cocycle of Win 

G(L), and the map Xr t-t g~ on 1-cocycles induces a map 

B(J) ~ B(G). (3.4.2) 

Let v1 : ][)) ~ G be the homomorphism over L associated tog~. and let f-l: ][)) ~ J 
be the homomorphism over L associated to Xr. Note that since vis central in J, 
the product of f-l and v is a well-defined homomorphism][)) ~ J, and we claim that 

v 1 = f-LV. (3.4.3) 

To check this, pick any faithful representation V of G. Put V := V 0 FL. Then 
9r turns V into a W p-£-space, which we still denote by V. Of course g~ also turns 
- - -1 
V into a W p-L-space, which we denote by V . Now put 

U := EndwF,r(V) 

an F -vector space. The group J acts on U by left multiplication (note that J(F) 
is a subgroup of AutwF,L(V), and, more generally, that for any F-algebra R the 

group J(R) is a subgroup of AutwF,L®R(V 0F R)). Put 

U := U0pL 

= Endll)(V), 

and use the 1-cocycle Xr to tum U into a W p-£-space. The natural evaluation map 

Endll)(V) 0£ V ~ V, 

sending f 0 v to f ( v), yields a surjective map 
- - -1 
U0rV ~ V 

of Wp-L-spaces. Let fo E U be the identity endomorphism of V, and let v E V. _, -
We write v' instead of v when we regard vas an element of V . Then for x E lDl(L) 
we have 

v'(x)v' v'(x)fo(v) 

(f..l(x)fo)(v(x)v) 

= f..l(X)l/(x)v', 

https://doi.org/10.1023/A:1000102604688 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000102604688


266 ROBERT E. KOTTWITZ 

which shows that v' = J..LV, as desired. 

3.5. We continue to use the same notation. Restricting the map (3.4.2) to the subset 
H 1 (F, J) of B(J), we get a map 

H 1(F, J) ~B(G). (3.5.1) 

We claim that this map is injective and that its image is the set of classes of 
1-cocycles g~ (of W in G (I)) for which the associated homomorphism v' : llll ---+ G 
is conjugate under G(L) to v. The analogous result for B(G) appears in [RR]. 

It is clear from 3.2 and 3.4 that (3.5.1) maps H 1 (F, J) into the subset of B( G) 
described above. Now suppose that g~ is a 1-cocycle such that v' is conjugate to 
v; we must show that the class of g~ lies in the image of (3 .5 .1). Replacing g~ 
by a cohomologous 1-cocycle, we may assume that v' = v. For r E W define 
X7 E G(L) by g~ = x 7 g7 . Applying (3.4.1) to both g7 and g~, we see that 
lnt(x7 ) o v = v, which means that x 7 lies in J(L). Moreover x 7 is a 1-cocycle of 
Win J(L), and from (3.4.3) we see that the homomorphism J..L: llll---+ J associated 
to x 7 is trivial. Thus (see 3.2) the class of x 7 in B(J) lies in the subset H 1 (F, J), 
and this shows that the class of g~ in B( G) lies in the image of (3.5.1), as desired. 

It remains to check that (3.5.1) is injective. Suppose that x7 , y7 are 1-cocycles 
of W in J (L) arising as the restrictions of 1-cocycles of r in J (F), and suppose 
further that his an element of G(L) such that 

YT9T = hxTgTr(h)- 1. 

It follows from this equation that 

v = Int(h) o v; 

thus h E J(I) and 

YT = hxT(g7 r(h)g; 1 )- 1, 

which shows that y7 is cohomologous to x 7 . 

3.6. Let G be a linear algebraic group over F. Let N be the unipotent radical of 
G. We claim that the natural map 

B(G)---+ B(GIN) (3.6.1) 

is a bijection. Choosing a Levi factor Min G (see [BS, 5.1]), so that G = M N, we 
see immediately that (3.6.1) is surjective. Now we show that (3.6.1) is injective. Let 
g7 , g~ be 1-cocycles of W in G (I) whose images in (GIN) (I) are co homologous; 
we must show that g7 , g~ are cohomologous. Without loss of generality we may 
assume that the images of g7 and g~ in (GIN) (I) are equal. Let v, v': llll ---+ G be the 
homomorphisms associated to g7 , g~ respectively. Replacing g7 by ng7 r(n)- 1 for 
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suitable n E N(L) (note that this does not change the image of 9r in (G IN)(L)), 
we may assume that 1.1 factors through M, and in the same way we may assume 
that 1/ also factors through M. Since 9r, g~ have the same image in GIN ~ M, it 
follows that 1/ and v are equal. Therefore (see 3.5) there exists a 1-cocycle Xr of 
H' in J(L) such that 

Since g~ and g7 have the same image in GIN, the 1-cocycle x 7 takes values in the 
unipotent radical of J. Thus we are reduced to proving that B(U) is trivial for any 
unipotent group U. Since every homomorphism v: ][J) --+ U is trivial, we see that 
the natural map 

H 1 (F, U) --+ B(U) 

is bijective. It is well-known that H 1 (F, U) is trivial, and this concludes the proof. 

4. B(H) for connected reductive H 

Let H be a connected reductive group over F. In this case there is more to be said 
about the objects v, J appearing in the previous section. The results in 4.6-4.18 
will be used in the next section. We also need to review the notion of basic elements 
in B(H). Since His connected, the sets B(H) and B(H) coincide (see 1.4), and 
therefore the results of [K] are valid for B(H). 

4.1. Choose a quasi-split group Gover F and a r-stable Gact(F)-orbit 'l1 of 
F -isomorphisms 

'lj;: G--+ H. 

Thus, for any 'ljJ E wand any T E r the automorphism 'lj;- 1 o T('lj;) of Gover F 
is inner. In other words 'l1 consists of a Gact(F)-orbit in the set of inner twistings 
G--+ H. 

Choose a maximal split torus A in G, letT be the centralizer in G of A (a 
maximal torus of G since G is quasi-split), and let B be a Borel subgroup of G that 
contains T and is defined over F. Let No denote the unipotent radical of B. Put 

QlQ = X*(A) ®z Q, 

2t =X* (A) ®z lit 

Let C denote the closed chamber 

{ x E Ql I (a, x) ~ 0 for every root a of A in Lie(No)} 

in Qt, and let CQ denote its intersection with the rational subspace QlQ of Qt. It is an 
easy consequence of standard facts about root systems (see [Kl, Lemma 1.1 .3] for 
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example) that there is a canonical bijection from CQ to the set of r-fixed points 
in the set of G(L)-conjugacy classes of L-homomorphisms ill> --+ G (view 2tQ_ as 
Hom(IIJ), A) in order to obtain a homomorphism IIJ)--+ G from an element of CQ). 

4.2. Let h7 be a 1-cocycle of W in H (L). Let v : IIJ) --+ H betheL-homomorphism 
associated to h7 in 3.2. It is obvious from (3.4.1) that the H(L)-conjugacy class 
of the homomorphism v is fixed by W (and hence by r). Composing v with the 
inverse of any inner twisting '1/J E w, we get an I-homomorphism 

'lj.;- 1 o v: ill>--+ G, 

whose G(L)-conjugacy class is fixed by rand independent of the choice of '1/J in w. 
Let iJ be the element of C Q corresponding to the G (I)-conjugacy class of 'lj.;- 1 o v 
under the bijection mentioned above. Clearly iJ depends only on the class of h7 in 
B(H). Following [RR] we call this map 

B(H)--+ Ql (4.2.1) 

(sending the class of h7 to iJ) the Newton map. We refer to iJ as the Newton point 
of h7 . Of course the Newton map takes values in the subset CQ of Qt. 

4.3. Let h7 be a 1-cocycle of W in H(L), let v : IIJ) --+ H be the associated 
L-homomorphism, and let iJ E CQ be the Newton point of h7 . In 3.3 we used the 
1-cocycle h7 to define a linear algebraic group J over F; recall that Jy; can be 
identified with the centralizer in H of v. Let M denote the centralizer in G of iJ 
(view iJ as a homomorphism ill> --+ G factoring through A). Since iJ is defined over 
F, so isM. 

We claim that J is an inner form of M. Indeed, let w J be the set of elements 
'1/J in w such that '1/J o iJ = v. It is evident that w J is non-empty, and that it forms 
a single orbit under the action of the group M(L), where M denotes the image of 
Min Gad· Let w~ denote the setofF-isomorphisms 

'ljJ~: M--+ J 

for which there exists '1/JJ E w J whose restriction to M is '1/J~. Then w~ is non­
empty and forms a single orbit under Mad(F). Moreover w~ is r-stable. Indeed, it 
is enough to show that w~1 is stable under W, and for this one uses that iJ is defined 
over F, that v is fixed by the twisted W -action (see (3.4.1)) and that the injection 
(3.3.3) is W-equivariant. Therefore (J, w~) is an inner form of M. 

4.4. Let h7 be a 1-cocycle of W in H (L). As in [K] we say that h7 is basic if the 
associated homomorphism v: IIJ) --+ Hover L factors through the center of H. In 
this case the centralizer of v in H is H itself, so that J is an inner form of H (and 
of G). If h7 is basic, then so is every cohomologous 1-cocycle; we say that a class 
in B(H) is basic if it consists of basic 1-cocycles, and we denote by B(H)b the set 
of basic elements in B(H). 
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Let G be a (connected) Langlands dual group for G, and let Z(G) denote its 
center. The Galois group r acts on Z(G), and the fixed point subgroup Z(G)r is 
a diagonalizable group over C. Recall [K, 5.6] that there is a canonical bijection 

(4.4.1) 

between B(H)b and the character group of Z(G)r (of course we have used the 

canonical r-equivariant isomorphism between Z(H) and Z(G)). 
Let Ac denote the maximal split torus in the center of G. Then any element 

v E X*(Ac) determines a homomorphism 

v: 8--+ ex 

of algebraic groups, which we may restrict to Z ( G)r, obtaining an element in 
X*(Z(G)r). In this way we get a homomorphism 

and by tensoring with IR we get from (4.4.2) an isomorphism 

2lc := X*(Ac)IR ~ X*(Z(G)r)JR. 

(4.4.2) 

(4.4.3) 

It follows from [K, 4.4, 5.8] that the restriction to B(H)b of the Newton map is 
equal to the composition of (4.4.1), the natural map 

X*(Z(G)r)--+ X*(Z(G)r)IR, 

and the isomorphism ( 4.4.3) (we view 2lc as a subspace of 21). 

4.5. Let Z be the center of G. Note that\[! allows us to identify Z with the center 
of H. There is an obvious action of the abelian group B(Z) on B(H) (the product 
of I -cocycles Zr in Z(L) and h7 in H(L) is defined to be the 1-cocycle T t---7 z7 h7 

in H(L)). 
It is clear that the stabilizer in B(Z) ofthe base point in B(H) is 

ker[B(Z)--+ B(H)], 

and this group coincides with 

ker[H 1 (F, Z) --+ H 1 (F, H)] 

(4.5.1) 

since the homomorphism 11-: Illl --+ Z associated to an element in (4.5.1) must be 
trivial. 

Now let h7 be any 1-cocycle of Win H(L), and let h denote its class in B(H). 
Let J be the F-group associated to h7 in 3.3. We claim that the stabilizer in B(Z) 
of his also the subgroup (4.5.1). Let z7 be a 1-cocycle of Win Z(L). Then the 
class of z7 stabilizes h if a~d only if there exists x E H (L) such that 

(4.5.2) 
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It follows from this equation (use (3.4.3), noting that Z can be identified with a 
subgroup of J) that 

JJ,V = Int(x) o v, (4.5.3) 

where J1- (respectively, v) is the homomorphism IDl --+ Z (respectively, IDl --+ H) 
associated to Zr (respectively, hr ). Projecting the equation (4.5.3) into the quotient 
of H by its derived group Hder• we see that J1- factors through Z n Hder• a finite 
group. We conclude that J1- is trivial; looking back at (4.5.3), we now see that x 
centralizes v and hence is an element of J(L). Rewriting (4.5.2) as 

Zr = X · hr T (X) - 1 h; 1 

= x · r*(x)- 1, 

we now see that the stabilizer in B(Z) ofh is 

ker[B(Z) --+ B(J)], 

which is also equal to 

(4.5.4) 

Let iJ : [J) --+ G be the image of hr under the Newton map, and let M be the 
centralizer of iJ in G, a Levi subgroup of G. It is well-known that 

is injective (this is true for any field F, notjustp-adic fields). Therefore the group 

ker[H 1 (F, Z) --+ H 1 (F, M)] 

is equal to 

ker[HI (F, Z) --+HI (F, G)]. 

It is a special property of p-adic fields that the group 

ker[HI(F,Z)--+ HI(F,G)] 

is equal to 

ker[HI (F, Z) --+HI (F, H)] 

for any inner form H of G. Applying this to the inner forms M, J as well, we see 
that (4.5.4) coincides with (4.5.1), as desired. 

The special property of p-adic fields stated above can be proved easily using the 
methods in [K2, Sect. I]. Indeed, if the derived group of G is simply connected, 
then both 
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and 

coincide with 

where 

D = G/Gder = H/Hder· 

Using z-extensions as in the proof of Theorem 1.2 in [K2], one reduces the general 
case to the special case just treated. 

4.6. The group Had(F) acts on H by F-automorphisms and therefore acts on 
B (H). We claim that this action is in fact trivial (it is obvious that H (F) acts 
trivially on B(H), but since 

H(F) -t Had(F) 

need not be surjective, it is not obvious that Had(F) acts trivially on B(H)). Let 
i: E Had(F) and pick x E H(F) representing i:. Then 

(4.6.1) 

is a 1-cocycle of r in Z (F). The action of i: E Had (F) on B( H) takes the 1-cocycle 
h7 of Win H(L) into the 1-cocycle 

h -l 
T H X TX , 

and this 1-cocycle is cohomologous to 

Equation ( 4.6.1) shows that the class of z7 in H 1 (F, Z) lies in 

ker[H 1 (F, Z) -t H 1 (F, H)]. (4.6.2) 

It follows from 4.5 that any element in (4.6.2) acts trivially on B(H). Therefore 
h7 z7 is cohomologous to h7 , as desired. 

4.7. Let X -t S be a map of sets, and lets E S. We write Xs for the fiber of 
X -t S overs. Recall that a commutative diagram 

X----Y 

s-~1--T 
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of sets and maps is said to be cartesian if the natural map from X to the fiber 
productS xr Y is an isomorphism (equivalently, if for every s E S the natural 
map Xs ---+ Yf(s) is bijective). 

Consider a commutative diagram of the following type 

X---- Y ---- Z 

f 
S ---- T ---- U. 

Let us denote by (L) (respectively, (R)) the left-hand (respectively, right-hand) 
square, and let us denote by (LR) the outer rectangle. If (L) and (R) are cartesian, 
then so is (LR). If (LR) and (R) are cartesian, then so is (L). If (LR) and (L) are 
cartesian and iff is surjective, then (R) is cartesian. 

4.8. We say that a homomorphism f : H ---+ H' from H to another connected 
reductive group H' over F is an ad-isomorphism iff maps the center of H into the 
center of H' and the induced map Had ---+ H~d is an isomorphism (in which case 
Hsc ---+ H~c is also an isomorphism). 

4.9. Recall from [K3, Sect. 6] (see also 7.5) that there is a canonical map 

B(H)---+ X*(Z(fif), (4.9.1) 

and that the restriction of (4.9.1) to B(H)b coincides with the bijection (4.4.1) 
(after identifying Z(H) with Z(G)). As Borovoi [B] has observed, the r-module 
X*(Z(H)) can be identified with 

for any maximal torus T in H (where Tsc denotes the inverse image ofT in Hsc). 
and since this cokernel is easily seen to be functorial in H, it follows that the 
construction H t---+ Z(H) is functorial in H for all connected reductive Hand all 
F-homomorphisms H---+ H'. It is easy to see that the maps (4.9.1) are functorial 
in H as well. Thus, an F -homomorphism f: H ---+ H' gives rise to a commutative 
square 

B(H) ---- B(H') 

j (4.9.2) 

X*(Z(ilf)- X*(Z(H')r). 
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PROPOSITION 4.1 0. If f is an ad-isomorphism, then the commutative square 
(4.9.2) is cartesian. 

We will prove the proposition in 4.17, after proving Lemmas 4.15 and 4.16. At 
the moment we are concerned with two useful corollaries of the proposition. 

COROLLARY 4.11. The set B(H) is the .fiber productofB(Had) and X*(Z(HY) 
~r ~ ~ 

over.\* (Z5c), where Zsc denotes the center of (H)sc· 

To prove the corollary take H' = Had in the proposition. 

COROLLARY 4.12. Let>. E X*(Z(Ht) and let h be a basic 1-cocycle ofW 
in H(L) whose class h in B(H) maps to>. under the bijection (4.4.1). Let Jh 
denote the inner form (see 4.4) of H determined by h, and let ]5~ denote the simply 
connected cover of its derived group; thus J.f:c is an inner form of Hsc· Then the 
composed map 

(see (3.4.2)) induces a bijection 

B(J~) :::= B(H)A, 

11·here B(H)A denotes the fiber over>. of 

B(H)--+ X*(Z(Hf). 

Consequently B(H) can be written as the disjoint union 

B(H) = II B(J5~). 
hEB(H)b 

To prove Corollary 4.12 one begins by applying the proposition to the ad-isomor­
phism Hsc --+ H in order to conclude that there is a natural bijection 

B(Hsc) :::= ker[B(H)--+ X*(Z(H)r)]. 

This is the special case of the corollary in which >. is trivial. Now consider the 
diagram 

B(Jh) __ ·h ___ B(H) 

j 
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This diagram commutes (use z-extensions to reduce to the case in which Hder is 
simply connected), and both horizontal arrows are obviously bijections. It follows 
that 

B(H)>. ~ ker[B(Jh) -t X*(Z(H)r)] 

~ B(Js~), 

as desired. 

4.13. Corollary 4.12 gives an even clearer picture of B(H) when it is combined 
with the following observation: for any simply connected group H the Newton 
map (4.2.1) 

B(H) --+ 2t 

is injective. More generally, for any connected reductive group H the map 

(4.13.1) 

is injective (the first component of the map (4.13.1) is the Newton map and the 
second component is the map (4.9.1)). 

Indeed, let h, h' be two elements in B(H) having the same image under the 
Newton map. Pick a 1-cocycle h lying in the class h and let J be the group 
associated to h in 3.3. In 3.5 we saw that h' lies in the image of 

(4.13.2) 

Let M be the Levi subgroup of G associated to h in 4.3 (recall that J is an inner 
form of M). The diagram 

B(J) __ ·_h-- B(H) 

j 
X*(Z(M)f) ~ X*(Z(Gl) 

commutes, where>. denotes the image ofh in X*(Z(G)r), and ·A denotes the map 
obtained by composing the restriction map 

and the map from X* ( Z ( G)r) to itself given by multiplication by >.. As before one 
proves the commutativity of the diagram above by using z-extensions to reduce to 
the case in which Hder is simply connected (which implies that Gder. Mder. Jder are 
simply connected as well). 
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Now suppose thath, h' also have the same image in X*(Z(H)r) = X*(Z(G)r). 
Pick an element x E H 1 (F, J) that maps to h' under (4.13.2). It follows that the 
image of x under 

(4.13.3) 

is trivial. Recall from [K2, 1.2] that 

where 'll'o(Z(M')f) denotes the group of connected components of Z(M)r. More­
over Z (G) r meets every connected component of Z ( Mf, since [ Z ( M) / Z (G) ]r is 
connected (reduce to the case in which Z(G) is trivial, and then note that Z(M) is 
a torus whose character group has a basis permuted by f). Therefore the composed 
map ( 4.13 .3) is injective, and we conclude that x is trivial. It follows that h = h', 
and this completes the proofthat ( 4.13 .1) is injective. 

4. I4. It remains to prove Proposition 4.10. We say that an ad-isomorphism f is 
good if the conclusion of Proposition 4.10 holds for f; our goal is to prove that 
every ad-isomorphism is good. To this end we must first prove two lemmas. 

LEMMA 4.15. Let f: H --+ H' be a surjective ad-isomorphism whose kernel Z 
is a torus such that H 1 (F, Z) is trivial. Then f is good. 

Consider the exact sequence 

I --+ Z--+ H ____!__.. H'--+ 1, 

as well as the associated exact sequence 

I --+ Z(H') --+ Z(H) --+ Z--+ I. 

We must show that the square 

B(H) --- B(H') 

is cartesian. Let h' E B(H') and let>..' denote its image in X*(Z(H')r). We must 
show that 
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(as before X 8 denotes the fiber of X --+ S overs E 8). The group B(Z) acts 
transitively on B(H)h'· Since Z is a subgroup of the center of H the discussion in 
4.5 shows that the stabilizer in B(Z) of any point in B(H) is equal to the stabilizer 
of the base point in B(H), namely 

ker[B(Z) --+ B(H)], 

which is also equal to 

ker[H 1 (F, Z) --+ H 1 (F, H)]. 

Since H 1 (F, Z) is trivial by hypothesis, we see that B(Z) acts simply transitively 
on B(H)h'· 

The group X*(Zr) acts transitively on X*(Z(HYh'· Since H 1 (F, Z) is trivial, 
the group .zr is connected [K2, 1.2], whence 

X*(zr)--+ X*(Z(H)r) 

is injective. Therefore X*(Zr) acts simply transitively on X*(Z(HYh'· Using 
the canonical isomorphism 

B(Z) ~ X*(Zr) 

of [K], we see that 
~ r 

B(H)h' ~ X*(Z(H) Lv, 
as desired. 

LEMMA 4.16. Let f : H --+ H' be an ad-isomorphism, and assume that Hcter. 

H~er are simply connected. Then f is good. 

Put D = H/Hder and D' = H'/H~er· Recall that f5 = Z(H) and D' = Z(H'). 
The map ( 4. 9.1) can be thought of as the natural map 

B(H) --+ B(D), 

using the identifications 

B(D) ~ X*(Dr) ~ X*(Z(Hf). 

Thus our problem is to show that the square 

B(H)- B(H') 

B(D)- B(D') 
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is cartesian. Let dE B(D) and let d' be its image in B(D'). We must show that 

B(H)d ~ B(H')d'· 

We claim that both of these fibers are in natural one-to-one correspondence with 
the set B(J~). where his a basic 1-cocycle in H(L) whose image in B(D) is d, 
and where Jh is the inner form of H obtained from h as in 4.4. Of course this 
claim is a special case of Corollary 4.12, but in order to avoid circular reasoning, 
we must establish Corollary 4.12 directly in the case that Hder is simply connected. 
Looking back at the method used to derive Corollary 4.12 from Proposition 4.1 0, 
we see that it is enough to show that 

B(Hsc) ~ ker[B(H) ---+ B(D)]. 

It follows from the exactness of 

1-+Hsc-+H---tD-t 1 

that B(Hsc) maps onto ker[B(H)---+ B(D)]. The fibers of the map 

B(Hsc) ---+ B(H) 

coincide with the orbits of D(F) on B(Hsc) (see 1.5). It follows from the triviality 
of H 1 (F, Hsc) (see [Kn]) that the map H(F) ---+ D(F) is surjective. Therefore the 
orbits of D(F) on B(Hsc) coincide with the orbits of H(F) on B(Hsc). Looking 
back at 1.5, we see that the action of H(F) on B(Hsc) is induced by the conjugation 
action of H(F) on Hsc· It follows from 4.6 that this action is trivial. We conclude 
that B(Hsc) ---+ B(H) is injective, and our proof is complete. 

4.17. Now we prove Proposition 4.10. Let f: H---+ H' be any ad-isomorphism. It 
is easy to construct (see [K4, 2.4.4]) a commutative diagram 

H ----'-1-- H' 
in which the two vertical arrows are z-extensions. Clearly !1 is an ad-isomorphism. 
By Lemma 4.16 f 1 is good. By Lemma 4.15 p' is good. It is clear that the compo­
sition of two good ad-isomorphisms is good. Therefore p' o !1 = fop is good. By 
Lemma 4.15 pis good, and moreover 

X*(Z(Ht)r)---+ X*(Z(H)r) 

is surjective. Therefore the fact that f o pis good implies that f is good (see 4.7). 
The proof of Proposition 4.10 is complete. 
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4.18. Let h7 be a basic 1-cocycle of Win H(L), let J be the F-group associated 
to h7 in 3.3, and let v E Q( denote the Newton point of h7 • As we noted in 4.4, J is 
an inner form of H (and G), so that the Newton maps for J and H both take values 
in Qt. It follows from (3.4.3) that the diagram 

B(J) B(H) 

(4.18.1) 

Qt--·v _ __.. Q( 

commutes, where ·v denotes translation by v in the abelian group Q( and the vertical 
arrows are Newton maps. Since h7 is basic, it is evident that the map 

B(J) ~ B(H) 

is bijective. Thus we conclude from (4.18.1) that the image of the Newton map 
for H is the translate by v of the image of the Newton map for J. Note that if the 
center of H is connected, then the natural map 

is surjective, so that every inner form of H is of the form J for a suitable 1-cocycle. 
In particular the Newton maps for inner forms of an adjoint group all have the same 
image, since the relevant Newton points v are trivial in this case. 

5. Simple description ofB(H) for connected reductive H 

Let G be a quasi-split connected reductive group over F. For such G a simple, 
concrete description ofB(G) is given in [K]. Our goal here is to give an analogous 
description for all connected reductive groups over F. This is best accomplished 
by considering simultaneously all inner forms H of the given quasi-split group G. 

5. I. We first need to recall from [K] the description of B (G) in the quasi-split case. 
By a parabolic subgroup of G we mean a parabolic subgroup of G defined over F. 
Fix a Borel subgroup B of Gover F. As usual we refer to parabolic subgroups of 
G containing B as standard parabolic subgroups of G. We fix a maximal torus T 
in B over F, and for any standard parabolic subgroup P of G we write P = M N, 
where N is the unipotent radical of P and M is the unique Levi component of P 
containing T. We write Ap (or AM) for the maximal split torus in the center of M. 
Let 2tp denote theIR-vector space X* (Ap) ®z JR. As usual P determines an open 
chamber Q(t in 2tp, defined by 

Q(t = { x E Qtp I (a, x) > 0 for every root a of Ap in Lie(N) }. 
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We also use the notation A, Qt, QtQ, C and CQ from 4.1 (A is the maximal split 
torus in T). 

Any element gin B( G) determines a standard parabolic subgroup Pg. as follows. 
Let ii E C be the image of g nnder the Newton map (see 4.2). The closed chamber C 
in Qt is the disjoint union 

c = IIQtt, 
p 

where P runs over the standard parabolic subgroups of G (as usual we identify Qtp 

with a subspace of Qt). By definition Pg is the unique standard parabolic subgroup 
P for which ii E Qtt. 

For any standard parabolic subgroup P = M N of G, we denote by B( G)p the 
subset of B( G) consisting of all elements g for which Pg is equal toP. Thus B( G) 
is the disjoint union 

B(G) =II B(G)p, (5.1.1) 
p 

where P runs through the set of standard parabolic subgroups in G. Of course 
B( G)a is simply the set B( G)b of basic elements in B( G) (see 4.4). For any basic 
element m in B(M), the image of m under the Newton map (forM) lies in Qtp. 

We write B(M)t for the subset ofB(M)b consisting of all m whose image under 
the Newton map lies in the subset Qtt of Qtp. 

It follows from [K, Sect. 6] that the canonical map 

B(M) ---+ B(G) 

induces a bijection 

B(M)t ~ B(G)p. (5.1.2) 

There is a natural homomorphism 

X*(Z(Mf) ---+ Qtp (5.1.3) 

obtained by composing the natural map 

X*(Z(Mf)---+ X*(Z(M')f)R 

with the isomorphism (4.4.3) 

-r 
Qtp ~ X*(Z(M) )R· 

Let X*(Z(M)r)+ denote the subset of X*(Z(M)r) consisting of all elements 
whose image in Qtp lies in Qtt. Combining (5.1.2) with the bijection (4.4.1) 

B(M)b ~ X*(Z(M)r), 
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we get a bijection 

(5.1.4) 

Moreover the composition of the maps (5.1.4) and (5.1.3) gives the restriction to 
B(G)p of the Newton map (view 2lp as a subspace of2l). 

5.2. An inner form of G is a pair (H, w) consisting of a connected reductive group 
Hover F and a r-stable Gad(F)-orbit w ofF-isomorphisms 

'lj;: G--tH. 

Let (Hi, wJ), (Hz, Wz) be two inner forms of G. An isomorphism from (HI, W1) 
to (Hz, Wz) is an F-isomorphism a: H1 --+Hz carrying W1 into Wz. The group of 
automorphisms of (H, w) is equal to Had(F). There is an obvious bijection from 
the set of isomorphism classes of inner forms of G to the set H 1 (F, Gad). obtained 
by sending ( H, w) to the class of the 1-cocycle T 1--t 'lj;- 1 o r( 'ljJ), where 'ljJ is any 
element in w. 

Consider triples (H, w, h) consisting of an inner form (H, w) of G and an 
element h E B (H). An isomorphism from one triple ( H 1 , w 1, hI) to another 
(Hz, Wz, hz) is an F-isomorphism a: H1 --+Hz carrying W1 into Wz and h1 into 
hz. Let Bs (G) denote the set of isomorphism classes of triples (H, W, h). Note that 
any ad-isomorphism G --+ G' (see 4.8) induces a natural map 

Bs(G) --+ Bs(G'). (5.2.1) 

There is an obvious map 

Bs(G) --+ H 1 (F, Gad), (5.2.2) 

sending (H, w, h) to the element in H 1 (F, Gad) determined by the inner form 
( H, w) of G. Let ( H, w) be an inner form of G, and let x denote the corresponding 
element in H 1 (F, Gad)· Then there is a canonical bijection from B(H) to the fiber 
of (5.2.2) over x; to prove this use that Had(F) acts trivially on B(H) (see 4.6). 
Speaking loosely, Bs(G) is the disjoint union of the sets B(H) asH runs through 
the inner forms of G. 

Let (H, w, h) be a triple as above. The map (4.9.1) for H produces from han 
element>. in X*(Z(HY). which we regard as an element of X*(Z(G)r). We 
define a map 

(5.2.3) 

by sending (H, W, h) to>.. 

5.3. We are going to give a simple, concrete description of B5 (G) that is quite 
analogous to the one we already have for B(G). Let (H, w, h) be a triple as above. 
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The Newton map for H produces from h an element D E 2l. We define a map (still 
called the Newton map) 

(5.3.1) 

by sending (H, w, h) to D. Again the Newton map takes values in the subset CQ of 
2l. 

Just as in 5.1 we use the Newton map to associate a standard parabolic subgroup 
P(H. W, h) to (H, W, h), and for a given standard parabolic subgroup P of G we 
write Bs (G) p for the subset of Bs (G) consisting of all (isomorphism classes ot) 
triples (H, w, h) such that P(H, W, h) is equal toP. 

Let Zsc denote the center of ( G)sc. the simply connected cover of the derived 
group of G. Of courser operates on Zsc. and as usual we denote by Zfc the group 
of fixed points. There is a canonical bijection [K2, 1.2] 

(5.3.2) 

Recall that we have chosen a maximal torus T of G contained in the Borel 
subgroup B. Let Tsc (respectively, Tad) denote the inverse image (respectively, 
image) ofT in Gsc (respectively, Gad). There is a surjective homomorphism 

Dual to this is the surjective homomorphism 

whose kernel is Zsc· Thus (T)sc is an extension of (T)ad by the finite abelian group 
Zsc· Since the group X*((T)ad) = X*(Tsc) has a basis that is permuted by r (for 
example the basis of simple coroots of Tsc). the group (T)~d of r -invariants in 

(T)ad is connected; hence the homomorphism 

~ r ~ r 
(T)sc --+ (T)ad 

is also surjective. Thus we get an extension 

~r ~ r ~ r 
1 --+ Zsc --+ (T)sc --+ (T)ad -+ 1 (5.3.3) 

~ r ~r 

of (T)ad by Zsc· 
Dual to T.~c -+ T is a surjective homomorphism 

which induces a surjective homomorphism 

~r ~ r 
T -+ (T)ad· (5 .3.4) 
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Pulling back the extension (5.3.3) by means of the homomorphism (5.3.4), we 
obtain an extension 

1 -t .Zfc -t f[ -t Tr -t 1 (5.3.5) 

of fr by z[c, where we have written fs for the fiber product off and (T)sc over 

(T)ad· 
For any standard parabolic subgroup P = M N of G, the group T is a maximal 

torus in M, and therefore there is a canonical r -equivariant embedding 

Z(M) '-t T, 
which induces an embedding 

Z(M)r '--+ fr. (5.3.6) 

Pulling back the extension (5.3.5) by means of the homomorphism (5.3.6), we 
obtain an extension 

~r - r - r 1 -t Zsc -t Zs(M) -t Z(M) -t 1, 

where we have written Z 8 (M) for the inverse image under 
~ ~ 

Ts -tT 

of the subgroup Z(M) ofT. 
Since Z( G)r is the kernel of (5.3.4), there is a canonical isomorphism 

~ r ~ r ~r 

Z8 (G) = Z(G) X Zsc• 

and hence there is a canonical embedding 

Z(G)r '--+ Z8 (G)r. 

Combining this with the obvious embeddings 

~r -r 
Zs(G) '--+ Zs(M) , 

we obtain embeddings 

Z(G)r '--+ Z8 (M)r. 

(5.3.7) 

(5.3.8) 

Let f : G -t G' be an ad-isomorphism. There is a unique Levi subgroup M' of 
G' such that f- 1(M') = M, and there is an obvious cartesian diagram 

Zs(M')r - Z 8 (M)r 

(5.3.9) 
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Since Zfc is a finite abelian group, we see from (5.3.7) that there is a canonical 
isomorphism 

which we compose with the isomorphism (4.4.3) 

-r X*(Z(M) )JR ~ 21p, 

obtaining an isomorphism 

-r X*(Zs(M) )JR ~ 21p. 

Thus we have a canonical map 

-r 
X*(Zs(M) ) --+ 21p. 

(5.3.10) 

(5.3.11) 

We denote by X* (Zs(M)r)+ the subset of X*(Zs(M)r) consisting of all elements 
whose image under (5.3.11) lies in the subset 21~ of21p. 

THEOREM 5.4. There is a canonical bijection 

and this bijection is functorial with respect to ad-isomorphisms f: G --+ G'. The 
composition of this bijection with the map (5.3.11) coincides with the restriction to 
B8 (G)p of the Newton map. The composition of this bijection with the map 

dual to (5.3.8) coincides with the restriction to B8 (G)p of the map (5.2.3). The 
composition of this bijection with the map 

dual to the inclusion of Zfc in Zs(M)r coincides with the restriction to Bs(G)p of 
the map 

B8 (G)--+ H 1(F,Gact) ~ X*(Zfc) 

obtained by composing (5.2.2) and (5.3.2). The bijection is characterized by the 
last three properties. 

It follows from 5.2 and 4.13 that the obvious map 

B8 (G)--+ 21 X X*(Z(G)r) X X*(Z[c) (5.4.1) 

is injective. Therefore there can be at most one bijection satisfying the last three 
properties stated in the theorem. 
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We begin by constructing the desired bijection in the case that G is an adjoint 
group. Let (H, W) be an innerform of G. Choose 1/J E \]!and let g7 := 1/1-1 o T( 1/1) 
be the associated 1-cocycle of r in Gad(F) = G(F). Of course we can restrict g7 

toW, obtaining a 1-cocycle of Win G(L). As in (3.4.2) we have the map 

B(H) -t B(G) (5.4.2) 

sending the class of a 1-cocycle h7 of W in H (L) to the class of the 1-cocycle 
1/1- 1 (h 7 )g7 • It is obvious that the map (5.4.2) is bijective and independent of the 
choice of 1/J in \]!.Looking back at (4.18.1), we see that the diagram 

B(H) B(G) 

(5.4.3) 

Ql====Ql 

commutes, where the two vertical arrows are Newton maps (from 3.2 we know that 
the Newton point of g7 is trivial). 

Let AH E X*(Zfc) be the image under the map (5.3.2) of the class of g7 . We 
have already noted (see the proof of Corollary 4.12) that the diagram 

B(H) --B(G) 

j (5.4.4) 

X*(Zr) ~ X*(Zr) sc sc 

commutes, where the vertical arrows are oftype (4.9.1). 
Let P be a standard parabolic subgroup of G. Viewing B(H) as a subset of 

B8 (G), we define B(H)p to be the intersection of B(H) and Bs( G)p. It follows 
from the commutativity of (5.4.3) that the bijection (5.4.2) induces a bijection 

B(H)p -t B(G)p. 

Combining the bijections (5.4.5) for varying (H, W), we get a bijection 

~r 

Bs(G)p -t B(G)p x X*(Zsc), 

the restriction to B(H)p C B8 (G)p of(5.4.6) being given by 

hT f--7 ('lr 1(hT)gT,AH)• 

Comb,ining (5.4.6) with the bijection (5.1.4), we get a bijection 

B8 (G)p -t X*(Z(M')f)+ X X*(Zfc). 

(5.4.5) 

(5.4.6) 

(5.4.7) 
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Since G is adjoint, there is a canonical splitting of the extension (5.3.5), obtained 
as follows: in this special case Tf is the fiber product of fr with itself over (f);d, 
and therefore the diagonal map from fr to that fiber product provides the desired 
splitting. Since the extensions (5.3.7) are obtained as pull-backs from (5.3.5), they 
all have canonical splittings as well. Thus 

(5.4.8) 

in our special case, and we can view (5.4.7) as a bijection 

(5.4.9) 

It is easy to check that (5.4.9) has the three desired properties. 
Now we consider the general case. There is a commutative square 

Bs(G) -- Bs(Gad) 

j (5.4.10) 

where the vertical maps are of type (5.2.3). It follows from Proposition 4.10 that 
the square (5.4.10) is cartesian. Let P = M N be a standard parabolic subgroup 
of G and let P,, M, denote the images in Gad of P, M respectively. The inverse 
image ofB8 (Gad)P1 under 

is B s (G) p; therefore the square 

Bs(G)p - Bs(Gad)P1 

j j (5.4.11) 

is cartesian as well. Using the bijection (5.4.9), we see that there is a canonical 
bijection 

(5.4.12) 

where we have written Y for X*(Zfc). The target of (5.4.12) is a subset of the 
abelian group 
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and this abelian group can be identified with X* (A), where A is the group 

A:= (Zs(MI)r x Z(G)r)jzfc 

(Zfc is embedded in the product as follows: the first component of the embedding 
is the inverse of (5.3.8) for Gad and the second component is the canonical map 
from Zfc to Z(G)r). 

There are natural homomorphisms 

(5.4.13) 

and 

(5.4.14) 

the first coming from (5.3.9) and the second from (5.3.8). Together these yield a 
homomorphism 

Z5 (MI)r x Z(G)r--+ Z8 (M)r 

and this homomorphism yields an isomorphism 

A::::= Zs(M)r. (5.4.15) 

In this way the target of (5.4.12) can be viewed as a subset of X*(Z8 (M)r) and 
this subset is easily seen to be X*(Z8 (Ml)+. Thus we get a canonical bijection 

(5.4.16) 

as desired. It is routine to check that this bijection satisfies all the properties stated 
in the theorem. 

6. The Subset B(H, p,) of B(H) 

In this section we define certain subsets B(H, p,) of B(H). Motivation for intro­
ducing these subsets is given in the introduction. 

6.1. Let G be a quasi-split connected reductive group over F, and let (H, w) be an 
inner form of G. We use the same notation as in the last two sections. In particular 
B denotes a Borel subgroup of G over F, and T denotes a maximal F -torus in B. 
Let p, E X* (T) and suppose that p, lies in the closed Weyl chamber in X* (T)R 
determined by B. Of course we may also regard p, as a character on T, which we 
can restrict to the subgroup Z(G)r ofT, obtaining an element 

p, 1 E X*(Z(G)r) = X*(Z(ilf). 

We can also restrict p, to fr; then, applying the homomorphism 

X*(Tr) --+ Ql 
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(a special case of (5.1.3)) to this element of X* (fr), we obtain an element 

Jl-2 E QL 

Equivalently, viewing Ql as the subspace of r-invariant elements in X*(T)JR, we 
have 

w,_ = [r: rJ.Irl :L: r(J.L), 
rErjr'" 

where r J.l denotes the stabilizer of J.L in r. 

(6.1.1) 

6.2. Let B(H, J.L) denote the subset ofB(H) consisting of all hE B(H) such that 
the image of h under the map (4.9.1) is equal to J.LI and such that the imageD E Ql 
of h under the Newton map ( 4.2.1) satisfies 

(6.2.1) 

Here :::;; is the usual order on Ql; thus D :::;; J.Lz means that J.L2 - D is a nonnegative 
linear combination of positive coroots in X* (T)JR, or, equivalently, a nonnegative 
linear combination of positive relative coroots in Qt. Let Op be the relative Weyl 
group of the maximal split torus A in T; recall that Op can be identified with the 
fixed points or of r in 0, where n denotes the absolute Wey 1 group ofT in G. It 
is known (see [A]) that (6.2.1) is equivalent to the following condition: 

D lies in the convex hull of the orbit Op · J.Lz of J.Lz under Op. (6.2.2) 

6.3. Since J.Lt, J.Lz depend only on the restriction of J.L to fr, the subset B(H,J.L) 
depends only on this restriction, or, equivalently, only on the image of J.L in the 
group X*(T)r of coinvariants of r in X*(T). 

6.4. It follows easily from Theorem 5.4 that B(H, J.L) is a finite set. It is clear that 
B(H, J.L) contains the unique basic element in B(H) whose image under (4.4.1) is 
equal to Ji.J, and it is clear that B(H,J.L) contains no other basic element. We say 
that the pair (H, J.L) is uniform ifB(H, J.L) has exactly one element, namely the basic 
element we just described. Again motivation for making this definition is given in 
the introduction. 

6.5. Let Tad denote the image ofT in Gad. and let J.Lad denote the image of J.L under 

X*(T) --+ X*(Tad)· 

Then the natural map B(H) --+ B(Had) induces a bijection 

B(H, J.L) ~ B(Had, J.Lad)· (6.5.1) 

Indeed, this follows immediately from Corollary 4.11. In particular (H, J.L) is uni­
form if and only if (Had, J.Lad) is uniform. 
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Suppose that His a product 

and that J.L 1, J.L2 are the two components of J.L. Then there is an obvious bijection 

(6.5.2) 

In particular (H, J.L) is uniform if and only if (HI, J.Li) and (H2, J.L2) are both uniform. 
Let E be a finite extension of F in F, and let Go be a quasi-split connected 

reductive group over E. We useR( Go) to denote the F -group obtained from G0 by 
Weil's restriction of scalars from E to F. Suppose that G = R(Go). By Shapiro's 
lemma every innerform (H, w) is isomorphic to one of the form (R(Ho), R(w0 )), 

where (Ho, w0 ) is an inner form of Go. Of course T, B are of the form R(T0 ), 

R(Bo) for a maximal torus To and Borel subgroup Bo in Go containing To. The 
dominant coweight J.L lies in 

where Ind(X*(To)) denotes the r-module induced by therE-module X*(To) (we 
denote by r E the Galois group ofF over E). Thus J.L can be thought of as a function 

satisfying 

<jJ(pT) = p · </J(T) for all p ErE, T E r. 

Pick a set r 0 of coset representatives for the co sets r E \r and form the sum 

J.Lo = L <jJ(T) E X*(To), 
TEro 

noting that each <jJ(T) is dominant in X*(To), so that J.Lo is dominant as well. Of 
course the image of J.Lo in the group of co invariants X* (To )r E is well-defined. It is 
easy to see that there is a canonical bijection 

B(H, J.L) = B(Ho, J.Lo). (6.5.3) 

6.6. If J.L = 0, then (H, J.L) is uniform. Indeed, in this case the Newton point iJ of 
any hE B(H,J.L) must be 0. Therefore B(H,J.L) consists ofbasic elements, and as 
we have seen, B(H, J.L) contains exactly one basic element. 

LEMMA 6.7. Suppose His an F-simple adjoint group, and suppose that J.L is 
nonzero. Suppose further that H is not anisotropic over F. Then (H, J.L) is not 
uniform. 
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By hypothesis H contains a proper parabolic subgroup Q. Choose a Levi sub­
group L of Q. Let P = M N be the unique standard parabolic subgroup of G such 
that 'lj;( P) is conjugate to Q under H (F) for all 'lj; E w. Let w M be the set of 
'lj; E w such that 'lj;(P) = Q and 'lj;(M) = L; then w M is (the setofF-points of) 
an F -torsor under M. In particular L is an inner form of M. 

Now let w be an element of the relative Weyl group OF of A in G. Restricting 
the characterwJ-L on T to the subgroup Z(M)r, we get an element of X*(Z(M)r), 
which by means of the canonical bijection 

B(L)b ~ X*{Z(M)r) 

determines a basic element x(w) in B(L). Let h{w) E B{H) denote the image of 
x( w) under the natural map 

B(L) -t B(H). 

The elements h{w) all belong to B(H,J,L). Since His adjoint, the element h(w) 
is basic in B(H) if and only if its image under the Newton map is trivial, which 
happens if and only if the restriction of w 1-L to the identity component of Z ( M) r is 
trivial. Therefore h( w) is basic in B(H) if and only if WJ-L2 lies in the kernel K of 
the natural surjection 2l -t 2lM (dual to Z(M)r '---+ fr). 

Note that our hypothesis that J-L is nonzero implies that /-L2 is nonzero (this 
is clear from ( 6.1.1) since J-L is dominant and r preserves the cone of dominant 
coweights). Since G is F -simple and adjoint, the relative root system of A in G 
is irreducible (since G is quasi-split its relative Dynkin graph is the quotient by r 
of its absolute Dynkin graph [T, 2.5.3]). Therefore the representation of OF on 2l 

is irreducible, and hence nF . /-L2 spans 2l. We conclude that there exists w E nF 
such that WJ-L2 rt, K. The corresponding element h(w) in B(H, J-L) is not basic, and 
therefore (H, J,L) is not uniform. 

6.8. Using (6.5.1), (6.5.2), (6.5.3), we see that in order to classify all uniform 
pairs (H, J,L) it suffices to classify the ones for which H is an absolutely simple 
adjoint group. By Lemma 6.7 we may further assume that H is anisotropic over 
F (otherwise (H,J,L) is uniform only for J-L = 0). Any absolutely simple, adjoint, 
anisotropic group over F is an inner form of PGL'If [Kn]. Therefore we may assume 
that G = PGLn for some n ;:: 2 and that H = Dj;nl px, where Dj/n denotes a 

central division algebra over F having dimension n2 and Hasse invariant j /n (of 
course j must be relatively prime ton). We denote the algebraic group Dj/nl px 

by Hj/n-
We make the usual choices forT, B (diagonal matrices and upper triangular 

matrices, taken modulo scalar matrices), and we represent coweights J-L E X* (T) as 
n-tuples (M 1, ••• , J,Ln) of integers, modulo constant n-tuples (a, ... , a). Of course 
1-L is dominant if and only if 

1-L I ;:: /-L2 ;:: • • · ;:: 1-Ln • (6.8.1) 
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For any integer k between 1 and n we write fL(k) for then-tuple ( 1, ... , 1, 0, ... , 0) 
in which 1 is repeated k times and 0 is repeated n - k times. 

LEMMA 6.9. The pairs (Hl/m fL(l)) and (H(n-l)/n' fL(n-1)) are uniform. There 
are no other uniform pairs of the form (Hjfn' fL) except those for which fL is 0. 

It is more convenient to work with GLn and Dj;n rather than their adjoint groups, 
and by (6.5.1) it is harmless to do so. We must show that the only uniform pairs 
(Dj/n' IL) with fL nonconstant (in other words, not of the form (a, ... , a)) are 
obtained by taking j = 1 and IL of the form 

(1,0, ... ,0) +(a, ... ,a) 

or by taking j = n - 1 and IL of the form 

( 1, ... , 1, 0) + (a, ... , a). 

6.1 0. We begin the proof of the lemma by working out the image of the Newton 
map for Dj;n. Of course CQ consists of all n-tuples v = (vi, ... , vn) of rational 
numbers satisfying 

(6.10.1) 

For such an n-tuple and a rational number x we say that the multiplicity of x in v 
is the number of indices i for which Vi is equal to x, and we write mv(x) for this 
multiplicity. 

It follows from 5.1 that the image of the Newton map for GLn is the set E 
consisting of all elements v E CQ such that 

mv(vi) ·viE Z fori= 1, ... ,n. 

Let g7 be a basic 1-cocycle of W in GLn (L) whose image under the Newton map 
IS 

(-jjn, -jjn, ... , -j/n). 

Let J be the inner form of G associated to g7 (see 4.4). Then J is isomorphic to 
D jx/n (see 2.1 ). It follows from 4.18 that the image Ej of the Newton map forD jxfn 
satisfies 

(-jjn, -jjn, ... , -jjn) + Ej =E. 

Therefore Ej consists of all elements in CQ of the form 

(jjn,jjn, ... ,jjn) + v 

for some element v in E. 
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Let (J.LI, ••. , J.Ln) be a dominant coweight for the diagonal torus in G = GLn. 
Thus J.L satisfies (6.8.1 ). We assume that J.L is nonconstant, so that p 1 > J.l.n· Since 
Z(G)r =ex, the group X*(Z(G)r) is torsion-free. Therefore the Newton map 

B(Dj/n) -+ Ej ~ E 

is bijective, and under this bijection the subset B(Dj/n' p) corresponds to the subset 
of E consisting of all elements v such that 

v + (j/n, ... ,j/n}:::; p. (6.10.2) 

Recall the explicit form of the order :::; on Ql = IR.n: x = (x 1, •.. , xn) andy = 
(YI, .... Yn) satisfy x :::; y if and only if 

XI+ X2 + · · · + Xn-1 + Xn = Y! + Y2 + · · · + Yn-! + Yn· 

The unique basic element in B(Dix/n, p) corresponds to the constant solution 

v = (a, ... , a) 

of ( 6.1 0.2), where a is determined by the condition 

na + j = J.L 1 + · · · + J.Ln · 

In order to prove the lemma we must show that the inequality (6.1 0.2) has a noncon­
stant solution v E E except in the two special cases specified in the statement of the 
lemma. We can simplify this task considerably by means of the following remark. 
If (6.10.2) admits a nonconstant solution v E E, then it admits a nonconstant 
solution in E of the special form 

v' = (ajr, ... ,ajr,bjs, ... ,b/s), (6.10.3) 

where r, s are integers between 1 and n- 1 such that r + s = n, and where ajr 
is repeated r times and b/ s is repeated s times. Indeed, if v = (v1, ... , vn) E E is 
nonconstant and satisfies (6.1 0.2), we let r be the multiplicity of v1 in v and define 
a, bE Z by 

a = rv1 = · · · = rvr, 

b = Vr+ I + · · . + Vn · 
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It is easy to see that v' E E, and that v' ~ v; thus v' is a nonconstant solution of 
(6.1 0.2) of the desired form. 

An n-tuple v' of the form (6.10.3) is nonconstant and lies in E if and only if 

as> br, 

and it satisfies (6.10.2) if and only if 

a + b + j = J.£ 1 + · .. + J.l.n 

and 

an+ rj ~ n(J.£1 + · · · + J.l.r). 

(6.10.4) 

(6.10.5) 

(6.10.6) 

Using (6.10.5) to eliminate b, we see that (6.10.2) has a nonconstant solution of the 
form (6.10.3) if and only if there exists a E Z satisfying 

r(J.£1 + · · · + J.l.n)- rj <an~ n(J.£1 + · · · + J.l.r)- rj. (6.10.7) 

It is obvious that (6.10.7) has a solution whenever the difference between 

n(J.£1 + .. · + J.l.r)- rj 

and 

r(J.£1 + · · · + J.l.n)- rj 

is greater than or equal to n. Therefore, if (6.10.7) has no solutions we conclude 
that 

n(J.£1 + · · · + J.l.r)- r(J.£1 + · · · + J.l.n) < n. (6.10.8) 

Now suppose that (6.10.2) has no nonconstant solutions in E. Then (6.10.8) 
holds for each r between 1 and n - 1. Adding the inequalities (6.1 0.8) for r = I 
and r = n- 1, we find that 

J.£1- J.l.n < 2. 

Since J.£ 1 , J.£2 are integers satisfying J.£ 1 > J.l.n, we conclude that J.£ 1 - J.l.n = 1. Up 
to the addition of a constant vector (which is of no importance), J.£ must be equal 
to J.£(k) for some k between 1 and n- 1. Taking r =kin (6.10.8), we find that 

nk- e < n 

which is equivalent to 

(k-l)(k-n+1)?0 

and implies that k = I or k = n- 1. Thus J.£ is equal to J.£(1) or J.£(n- 1) (up to 
constant vectors). 
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Suppose that 11. = ~J.(l). Then (6.10.7) reduces to 

r - r'j < an ~ n- rj. (6.10.9) 

If (6.1 0.2) has no nonconstant solutions in E, then (6.1 0.9) has no solution for 
r· = I, which can happen only if j is congruent to 1 modulo n. Conversely, if 
j = I, then (6.1 0.9) reduces to 

0 <an~ n- r, 

which has no solutions (no matter what r is). Similarly, if 11. = ~J.(n - 1 ), then 
(6.1 0.2) admits nonconstant solutions in E except when j is congruent to n - 1 
modulo n. The proof of the lemma is now complete. 

6.11. Now we classify all uniform pairs (H, 11.) with I-" nonzero and H adjoint and 
F-simple. By Lemma 6.7 His necessarily anisotropic over F, and hence we may 
assume that there exists a finite extension E ofF and a central division algebra D 
over E such that H = R(Ho) (as in 6.5 we useR to denote Weil's restriction of 
scalars from E to F), where Ho is theE-group Dx I Ex. Write the Hasse invariant 
of D as j In with 1 ~ j ~ n - I and (j, n) = 1. Of course Go = PGLn (E) is a 
quasi-split inner form of Ho, and R( Go) is a quasi-split inner form of H. 

Giving a dominant coweight 11. for R( Go) is the same as giving a family of 
dominant coweights !-"(~) for Go, one for each embedding~: E ---+ F over F. We 
saw in 6.5 that (H, !-") is uniform if and only if (Ho, IJ.o) is uniform, where 

Clearly 1-"0 is nonzero if and only if 11. is nonzero. Therefore, by Lemma 6.9 either 
j = I and f-LO= ~J.(l), or j = n- I and IJ.o = f..L(n- 1). 

Suppose that j = I and f-Lo = !-"( 1). Since there is no nontrivial way to decom­
pose 11.( I) as a sum of dominant coweights, the coweights 11.(~) must be 0 except 
for one embedding ~o. for which f..L(~o) = f..L(1). Similarly, if j = n- 1, then the 
coweights 11.(~) must be 0 except for one embedding ~o. for which IJ.(~o) = ~J.(n- I). 

7. The map we: G(L) -t X*(Z(G) 1 ) 

7 .I. Let H be a connected reductive group over L. Recall from I.1 that we denote 
by I the group Gal(L I L). In this section we are going to construct a natural 
surjective homomorphism 

WH: H(L) ---+ X*(Z(Hi). (7 .1.1) 

We will also see that when H is defined over F, the map we can be used to 
construct the map (4.9.1) 

B(H) -t X*(Z(fif). 
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7.2. We begin by constructing WH in the case of tori. LetT be a torus over L. Then 
the natural map 

X*(T) = X*(T) ~ X*(T1 ) 

identifies X*(T1 ) with X*(T)I, the group of coinvariants of I in X*(T). Thus we 
seek to define a functorial surjection 

(7.2.1) 

Of course there is a natural surjection 

(7.2.2) 

(an element f-L in X* (T) determines a homomorphism>. t--t (>., J.L) from X* (T) 1 to 
Z, where(·,·) denotes the canonical pairing between X*(T) and X*(T)). There is 
an obvious functorial map 

vr: T(L)---+ Hom(X*(T)1 ,z), 

sending t E T(L) to the homomorphism 

>. t--t val(>.(t)) 

(7.2.3) 

from X*(T) 1 to Z. Here val denotes the usual valuation on L, normalized so that 
uniformizing elements have valuation 1. We are going to define wr in such a way 
that 

(7.2.4) 

Note that vr is always surjective. Indeed, let Ta denote the maximal anisotropic 
subtorus ofT and put S = T /Ta. Consider the commutative diagram 

T(L) ---- S(L) 

"T] "'] 
Hom(X*(T) 1,Z)- Hom(X*(S) 1 ,z). 

The bottom arrow is an isomorphism, and the top arrow is surjective since H 1 ( L, Ta) 
is trivial. Moreover vs is obviously surjective, since Sis split. Therefore vr is sur­
jective. 

The map qy is an isomorphism whenever X*(T)I is torsion-free, and in this 
case we define wr to be the unique map satisfying (7.2.4); since vr is surjective, 
so is wr. Of course wr is functorial in T for such T. Recall that a torus T over L 
is said to be induced if X* (T) has a Z-basis that is permuted by I. If Tis induced, 
then X* (T)I is torsion-free, so that wr has been defined. 
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For any torus T there exists an induced torus R and a surjective map 

x.(R) --7 x.(T) 

of I -modules. Moreover there exists another induced torus Sand an I -module map 

such that 

x.(S) --7 x.(R) --7 x.(T) --7 o 

is exact. In this way we get an exact sequence 

in which the kernels off and g are tori. The diagram 

S(L) --- R(L) --- T(L) --- 1 

(7.2.5) 

x.(s)I- x.(R)I- x.(T)I o 
is commutative and has exact rows (use that H 1 (L, kerf) and H 1 (L, ker g) are 
trivial). We define w~ to be the unique map from T(L) to X. (T)I making 

R(L) T(L) 

(7.2.6) 

commute (the existence and uniqueness of w~ fdllow from (7 .2.5)). 
Let T --7 U be a map of tori. Choose an induced torus Q and a surjection 

X.(Q) --7 X.(U) 

of I -modules, and let h: Q --7 U be the corresponding map of tori. We claim that 

T(L) U(L) 

(7 .2.7) 
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commutes. Indeed, it is easy to construct an induced torus R', a surjective !-map 

and an !-map 

such that 

R' ----- R ---- T 

R' ----- Q ___ ...., U 

commutes. The surjectivity of R' (L) ----* T(L) together with the functoriality of w 
for the maps R' ----* R and R' ----* Q of induced tori establishes the commutativity 
of(7.2.7). 

It follows from the commutativity of (7 .2. 7) that w~ is independent of the choice 
of g. Thus we may define wr to be any one of the maps w~. The commutativity 
of (7.2.7) further implies that wr is functorial in T. The map wr is surjective and 
satisfies (7.2.4) (use (7.2.5) to deduce these statements from the corresponding 
ones for the induced torus R). 

7.3. Let L' be a finite extension of Lin L, and let I' denote the subgroupGal(L/ L') 
of I. Then the diagrams 

(7.3.1) 

and 

{3 N (7.3.2) 
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both commute. In (7.3.1) N is the norm map from T(L') to T(L) and a is the 
obvious surjection (induced by the identity map on X*(T)). In (7.3.2) (3 is induced 
by the embedding L <-....7 L' and N is given by 

N(p,) = L TJ-1. 

rE/1\f 

for an element p, E X* (T)I represented by an element J-1. E X* (T). It is easy to 
prove the commutativity of these diagrams by reducing to the case in which T is 
an induced torus and then using (7.2.4). 

Diagram (7.3.1) suggests a shorter way to define the map w, as the referee 
pointed out. Choose a finite Galois extension L' of L in L that splits T. The 
norm map N identifies T(L) with the coinvariants of Gal(L' / L) on T(L') (see the 
appendix to Chapter 1 in [S 1]). It is clear how to define w for T(L'), and we define 
w for T(L) to be the unique map making the diagram (7.3.1) commute. It is easy 
to see that the resulting map is independent of the choice of L'. 

7.4. Now we define the surjection WH for any connected reductive group H. We 
begin with the case in which the derived group Hder of H is simply connected. 
Then we put 

D = H/Hder· 

Recall that 

D = Z(H). 

We define wy to be the unique map making the diagram 

(7.4.1) 

D(L) 

commute. Note that w H is surjective since w D and the map 

H(L) ---+ D(L) 

are both surjective. 
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Now consider the general case. Pick a z-extension H' --+ H with kernel Z. The 
map w H' has already been defined. We define w H to be the unique map making 

H'(L) ~ X*(Z(H')I) 

j (7.4.2) 

H(L) __3!!_!!_.. X*(Z(Hl) 

commute. Of course uniqueness follows from the surjectivity of H'(L) --+ H(L) 
and existence follows from the commutativity of 

The map w H is surjective since the maps w H' and 

are surjective. Using [K4, 2.4.4], one sees easily that WH is independent of H' and 
that w H is functorial in H. 

There is an obvious homomorphism 

(7.4.3) 

sending hE H(L) to the homomorphism 

.X f-t val(.X(h)) 

from X* ( Z (H)) I to Z (we view elements of X* ( Z (H)) I as homomorphisms from 
H to <Gm defined over L). There is an obvious surjective homomorphism 

(7.4.4) 

whose kernel is the torsion subgroup of X*(Z(H)I). It is not hard to check that 

(7.4.5) 

(reduce first to the case in which Hder is simply connected and then to the case of 
tori). 
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7 .5. Now suppose that H is a connected reductive group over F. Then the surjection 
WH commutes with the action of the Frobenius element a. Therefore WH induces 
a map 

B(H)---+ X*(Z(H/)(u), (7.5.1) 

where the subscript (a) indicates that we are taking coinvariants for the group 
(a). Since X*(Z(HY) can be identified with the group of coinvariants of I in 

X*(Z(H)). we see that 

X*(Z(H) 1)(u) = X*(Z(H))r 

= X*(Z(H)r). 

Moreover B(H) can be identified with B(H). Thus (7.5.1) can also be viewed as 
a map 

B(H)---+ X*(Z(H)r). (7.5.2) 

We claim that the map (7.5.2) coincides with the map (4.9.1). As usual one uses 
z-extensions to reduce to the case in which H is a torus. Then by [K, 2.2(b)] one 
reduces to the case H = Gm, which is easy to treat directly. 

7.6. LetT be a torus over F. We write T(L)o for the kernel of 

vr: T(L)---+ Hom(X*(T) 1 ,Z) 

and we write T ( L) 1 for the kernel of 

Obviously T(L) 1 is a subgroup of finite index in T(L )o. Moreover T(L) 1 is equal 
to T(L )o if X*(T)I is torsion-free, which happens wheneverT is an induced torus. 

We claim that 

H 1((a),T(L)I) ={I}. (7.6.1) 

Choose induced tori R, S over F and an exact sequence 

of r -modules. The diagram 

S(L) --- R(L) --- T(L) --- I 
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is commutative with exact rows, and all the vertical arrows are surjective. Therefore 
the map 

R(L)t-+ T(L)t 

is surjective, and hence the map 

is surjective as well. Therefore it suffices to prove (7.6.1) for induced tori T. 
We may assume that T = RE;FIGm for a finite extension E ofF in F. Then 

T(L) = Mx X ... X Mx, 

where M is the compositum of E and L in F, and 

T(L)t = o~ X ... X o~, 

where oM denotes the valuation ring in M. By Shapiro's lemma we reduce to the 
case in which there is only one factor Mx (this occurs when E is totally ramified 
over F), and then by replacing L, F by M, Ewe reduce to the case in which Tis 
Gm . Thus we must show that the map 

()- 1: 0~ -+ 0~ 

is surjective. This is an easy exercise (see the proof of Proposition 2.3 in [K]). We 
are done proving the claim. 

Now consider the exact sequence 

1-+ T(L)t-+ T(L) ~ X*(T)I-+ 1. 

We see from the associated long exact cohomology sequence of (r:r)-cohomology 
that 

(7.6.2) 

is surjective, and that 

is an isomorphism. We already knew the second fact, but this alternative proof 
provides additional insight. 

7. 7. Again let H be a connected reductive group over F. The restriction of w H to 
H(F) provides a homomorphism 

H(F) -+ X*(Z(H/)(a). (7.7.1) 

We claim that (7.7.1) is surjective. 
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For tori (7. 7.1) can be thought of as (7 .6.2), which we already know is surjective. 
If the derived group Hder of H is simply connected, the surjectivity of (7.7.1) 
follows from the surjectivity of the map (7.6.2) for the torus HI Hder· For arbitrary 
H choose a z-extension 

I ---+ z ---+ HI ---+ H ---+ 1. 

Consider the commutative square 

H'(F) ~ X*(Z(H') 1 )(u) 

j 
H(F) ~ X*(Z(H) 1 )(u). 

We know that (7. 7.1 )' is surjective. Moreover, since Z 1 is connected, the sequence 

I ---+ X*(Z1 )---+ X*(Z(fi'l)---+ X*(Z(H) 1)---+ 1 

is exact. Taking invariants under (a), we find that 

X*(Z(H') 1 )(u) ---+ X*(Z(H) 1 )(u) 

is surjective; here we used that the group 

H 1((a),X*(Z1 )) = X*(Z1 )(u) 

= X*(Z)r 

is torsion-free. We see from the commutative square above that (7.7 .1) is surjective, 
as desired. 

8. Algebraic 1-cocycles 

Let T be a torus over F and let K be a finite Galois extension of F in F that 
splits T. Let W Kl F be the Weil group associated to K I!! (see B.3 for a review of 
W K 1 F). In this section we will define a group 

H~lg(WKIF• T(K)) 

and a canonical isomorphism 

H11g(W KIF• T(K)) ~ B(T). 

8. I. Let T f--7 t7 be an abstract 1-cocycle of W K 1 F in T( K) (of course W K 1 F acts 
on T(K) in the obvious way, through its quotient Gal(KI F)). We say that t 7 is an 
algebraic 1-cocycle if there exists an element J.L E X* (T) such that 

tx = J.L(X) 
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for all x in the subgroup K x of W K 1 F. The cocharacter J.L is uniquely determined 
by the 1-cocycle and is fixed by r. We write Z~g(WKIF• T(K)) for the group of 

algebraic 1-cocycles of W KIF in T(K). Any abstract 1-coboundary T t-+ C 1r(t) 
is obviously algebraic (the associated f.L is trivial). We define H~1g(W KIF• T(K)) 
to be the quotient of Z~1g(WKIF• T(K)) by the subgroup of 1-coboundaries. 

Let £ k 1 F be the extension of r by K x obtained from the extension W K 1 F of 

Gal(K/ F) by Kx by pulling back along the surjection 

r--+ Gal(K/F); 

thus£ kiF is the fiber product of W KIF and rover Gal(K/ F). As in B.3, we let 

[KIF denote the extension of r by Fx obtained from £kiF by pushing out along 
the injection 

Kx '--t Fx. 

Thus [kiF and Fx can be identified with subgroups of [KIF; the product of 

these two subgroups is £KIF and their intersection is Kx. Recall that [KIF is a 
topological group (see B.3). 

Let t 7 be an abstract 1-cocycle of £KIF in T(F). We say that t 7 is an algebraic 
1-cocycle if the map T t-+ t 7 is continuous for the discrete topology on T(F) and 
there exists J.L E X* (T) such that 

tx = 1-i-(x) 

for all x in the subgroup Fx of£ Kl F· Again J.L is uniquely determined and invariant 
under r, and again 1-coboundaries are algebraic. We write 

I -
Zalg(£KIF• T(F)) 

for the group of algebraic 1-cocycles of £KIF in T(F), and 

I -
Halg(£KIF• T(F)) 

for its quotient by the subgroup of 1-coboundaries. 
There is an obvious map 

I I -
Za1g(W KIF• T(K)) --+ Zalg(£KIF, T(F)), (8.1.1) 

defined as follows. Let t 7 be an algebraic 1-cocycle of WKIF in T(K), and let f.L 
be the associated cocharacter. We inflate t7 using the canonical surjection 

t:}<IF--+ WKIF• 

obtaining a 1-cocycle t~ of £kiF in T(K) whose restriction to the subgroup Kx 

of £kiF is given by f.L· We lett~ be the unique 1-cocycle of £KIF in T(F) whose 
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restriction to £ k 1 F is equal to t~ and whose restriction to Fx is given by 1-"· Note 

that t~ is algebraic. The map tr t--t t~ is the desired map (8.1.1 ). 
Let r K denote the subgroup Gal(F / K) of r. We use the canonical splitting of 

the extension 

-x 
I -7 F -7 £K/F -7 r -7 1 

over the subgroup rK to identify rK with an (open) subgroup of £K/F· Since T 
splits over K, the group H 1 (K, T) is trivial. Therefore the restriction tor K of any 
algebraic 1-cocycle ar of £KIF in T(F) is a 1-coboundary. Therefore there exists 
a cohomologous 1-cocycle br whose restriction to r K is trivial. It then follows 
easily that (8.1.1) induces an isomorphism 

(8.1.2) 

8.2. Put s = [K : FJ. Choose a uniformizing element 1r in F. Recall from B.2 
that the choice of 1r determines an extension 'Ds of r by Fx. We define the notion 
of algebraic 1-cocycle of V 8 in T(F) in the same way we did for £KIF (impose 
continuity and the existence of an appropriate cocharacter J.L ofT); in this way we 
get groups 

I -
Zalg('D8 , T(F)), 

The isomorphisms (B.3.2) induce isomorphisms 

I - I -
Zalg('D8 , T(F)) ~ Zalg(£K/F, T(F)), 

and the induced isomorphisms 

I - I -
Halg('Ds, T(F)) ~ Hatg(£K/F, T(F)) (8.2.1) 

all coincide. 
Lettr be an algebraic 1-cocycle of V 8 in T(F). For any representation p: T -7 

GL(V) ofT on a finite dimensional vector space V over F we get a representation 
ofV8 on F ®F V by letting T E V 8 act on F 0F V by the T-linear automorphism 

p( tr) o ( T 0 idv) 

(we are also denoting the image ofT in r by T). Recall (see Appendix B) that 
giving a representation of V 8 is the same as giving an object in 0,, the category of 
0'-L-spaces whose slopes lie in the subgroup ~Z of Q. In this way tr determines 
a ®-functor (3 from Rep(T) to 0,. Let wr denote the obvious fiber functor (over 

F) V t--t F ®F V on Rep(T), and let w'!' be the fiber functor (over F)) on Ts 
constructed in B.2. There is an obvious ®-isomorphism from w'!' o (3 to wr. 
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As in 3.1 this construction yields a bijection from Z~g('D8 , T(F)) to the set of 
®-isomorphism classes of pairs ({3, a), where f3 is an exact ®-functor from Rep(T) 
toTs. and a is a ®-isomorphism from w"! o f3 to wr. This in tum yields a bijection 
from H~1g('D8 , T(F)) to the set of ®-isomorphism classes of exact ®-functors f3 
from Rep(T) toTs. 

We claim that any exact ®-functor {3from Rep(T) to a-L-spaces factors through 
the full Tannakian subcategory Ts. In other words we claim that the image of the 
Newton map 

B(T) -+ X* (T)r ® Q 

is contained in the subgroup X*(T)r ® (~Z). Since this image is the same (see 
[K]) as that of the map 

X* (T) -+ X* (T)r ® Q 

sending J..L to 

l: T(J..L), 
s 

TEGai(K/F) 

we see that the claim is true. Therefore we get a bijection from H~g('D8 , T(F)) 
to the set of ®-isomorphism classes of exact ®-functors f3 from Rep(T) to W p­

L-spaces. Comparing this with what was proved in 3.1, we obtain a canonical 
isomorphism 

(8.2.2) 

Let t 7 be an algebraic 1-cocycle of 1) s in T (F). Composing T t-+ t 7 with the map 
(B.2.5) from Wp to 'D8 , we get a (continuous) 1-cocycle of Wp in T(F), which 
we can regard as a 1-cocycle of W F in T(L). This map on 1-cocycles induces the 
map (8.2.2). 

Lett be a positive integer such that s divides t. Recall from B.2 that there is a 
canonical surjection 

'Dt-+ 'Ds, 

which gives rise to an inflation map 

I - i I -
Halg('Ds, T(F)) - Halg('Dt, T(F)). (8.2.3) 

It is easy to check the commutativity of the diagram 

(8.2.4) 

B(T) ====B(T), 
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in which the vertical arrows are isomorphisms of type (8.2.2). 

8.3. Combining (8.2.1) and (8.2.2), we get an isomorphism 

H~lg([I</F• T(F)) ~ B(T). 

305 

(8.3.1) 

Let tT be an algebraic 1-cocycle of [I</F in T(F). Then by composing T f-t tT 
with the map (B.3.3) from WF to [I</F• we get a (continuous) 1-cocycle of WF 
in T(F), which we view as a 1-cocycle of WF in T(L). This map on 1-cocycles 
induces the isomorphism (8.3.1 ). It follows from the discussion at the end of B.3 
that the isomorphism (8.3.1) is independent of the choice of uniformizing element 
7r. 

8.4. Combining (8.3.1) and (8.1.2), we get a canonical isomorphism 

(8.4.1) 

It is easy to see that the diagram 

H 1(KjF,T(K))- H~1g(WI</F,T(K)) 

(841)1 

H 1 (F, T) _....:.(_IA_.z"-) --- B(T) 

(8.4.2) 

commutes, where the top arrow is the inflation map for the surjection 

WI</F--+ Gal(K/F) 

and the left vertical arrow is the inflation map for the surjection 

r --t Gal(K/F) 

(the second inflation map is an isomorphism since H 1 (K, T) is trivial). 

9. Hypercohomology 

Let f: T --t U be a map ofF-tori. We regard T --+ U as a complex of length 2, 
concentrated in degrees 0 and I. Let K be a finite Galois extension of F in 
F that splits T and U, and put s = [K : F]. In this section we will define 
hypercohomologygroupsB(T--+ U) andH~1g(WI</F,T(K)--+ U(K)) and show 
that they are canonically isomorphic. 

9.1. First we define B(T --+ U). By a 1-hypercocycle of WF in T(L) --+ U(L) 
we mean a pair (t, u) consisting of a 1-cocycle t of WF in T(L) and an element 
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u E U(L) such that j(t) =au (here au denotes the coboundary of u, namely the 
1-cocycle T f---t u-1T(u)). By a 1-hypercoboundary we mean a pair of the form 
(at, f(t)), where tis an element ofT(L). We let 

B(T -t U) 

denote the group of 1-hypercocycles modulo 1-hypercoboundaries. 
There is an exact sequence 

-t cok[T(F) -t U(F)] -t B(T -t U) 

-t ker[B(T) -t B(U)] -t 1. (9.1.1) 

Let C (respectively, W) denote the kernel (respectively, cokernel) off: T -+ U. 
Of course W is a torus, but C need not be. There is a second exact sequence 

1 -t B(C) -t B(T -t U) -t W(F), (9.1.2) 

and if C is connected then the map 

B(T -t U) -t W(F) 

is surjective. 

9.2. Now we define H~1g(WK/F• T(K)-+ U(K)). By a 1-hypercocycle we now 
mean a pair (t, u) consisting of an algebraic 1-cocycle t of W K/F in T(K) and an 
element u E U(K) such that j(t) =au. By a 1-hypercoboundary we mean a pair 
of the form (at, f(t)), where tis an element ofT(K). We let 

H~1g(WK/F,T(K)-+ U(K)) 

denote the group of 1-hypercocycles modulo 1-hypercoboundaries. 

9.3. There are also hypercohomology groups 

H~Jg(£K/F• T(F) -+ U(F)), 

H~1g(V8 , T(F) -+ U(F)) 

(define these in the obvious way, using algebraic 1-cocycles). There are canonical 
isomorphisms 

I I - -
HaJg(WK/F• T(K)-+ U(K)) ~ HaJg(£K/F• T(F)-+ U(F)) 

~ H~Jg(Vs, T(F) -t U(F)) 

~ B(T -t U) (9.3.1) 

analogous to (8.1.2), (8.2.1 ), (8.2.2). Indeed, the maps on 1-cocycles defining 
(8.1.2), (8.2.1 ), (8.2.2) can be used to define maps between the hypercohomology 
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groups above, and these maps on hypercohomology are all isomorphisms since the 
maps (8.1.2), (8.2.1), (8.2.2) are isomorphisms (use the exact sequence (9.1.1) and 
its analogs for the other hypercohomology groups). The resulting isomorphism 

H~lg(WK/F, T(K) --? U(K)) ~ B(T--? U) (9.3.2) 

is independent of the choice of 1r. 

9.4. The diagram analogous to (8.4.2) 

H 1(K/F,T(K)--? U(K))- H~1g(WK/F,T(K)--? U(K)) 

(9 3 2) j (9.4.1) 

H 1(F,T--? U) ------ B(T--? U) 

commutes, where we have written H 1 (K/ F, T(K) --? U(K)) for 

H 1 (Gal(K/ F), T(K) --? U(K)) 

and H 1(F,T--? U) for H 1(f,T(F) --? U(F)), as in [KS]. Note that the left 
vertical arrow in (9 .4.1) is an isomorphism since T and U split over K. The bottom 
arrow is analogous to ( 1.4.2). 

10. Hyperhomology 

As in Section 9 let f : T --? U be a map of F -tori and let K be a finite Galois 
extension ofF in F that splits T and U. Let X, Y denote the cocharacter groups 
X*(T), X*(U) respectively. We regard 

x____f:__y 

as a complex of length 2 placed in degrees 0 and 1. In this section we will define 
an isomorphism 

10.1. The group H0 (WK/F,X --? Y) is the hyperhomology group studied in 
Section A.3 of [KS], and our discussion here closely parallels the one there. For 
rn): 0 we write Cm(X) for the group of (abstract) m-chains of WK/F in X, so 
that Hm(W K/F, X) is the m-th homology group ofthe complex 

a a 
... --? C2(X) - C1 (X) - Co(X). 
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We then get a double complex 

-- Cz(X) ~ C1(X) ~ Co(X) 

-- Cz(Y) ~ C1(Y) ~ Co(Y) 

with vertical maps induced by f*: X ---+ Y, and from this double complex we get 
the complex 

a: (3 
... ---+ C1 (X) ffi Cz(Y) - Co( X) ffi C1 (Y) - Co(Y), 

with a given by 

a(xi,Yz) = (8xi,f*xl-ayz) 

and (3 given by 

(3(xo, Yl) = f*xo - 8y1. 

Then Ho(W K/ p, X ---+ Y) is the quotient 

ker(f3)/im(a) 

and we refer to elements of ker((3) as 0-hypercycles. 
We write C0 (T) for the group of 0-cochains of WK/F in T(K) and Z~g(T) 

for the group Z~1g(WK/F' T(K)) of algebraic 1-cocycles of WK/F in T(K); of 
course 

C0 (T) = T(K). 

We are going to define maps 

¢: C1(X)---+ C0 (T), 

'1j;: Co( X) ---+ Z~1g(T), 

making the diagram 

Cz(X) ~ C1 (X) ~ Co(X) . ·] 
o C0 (T) ~ z~Ig(T) 

(10.1.1) 
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commute. Both¢ and '1/J will be functorial in T. Just as in [KS], we will use¢, 'ljJ 
to define a homomorphism 

(10.1.2) 

sending the class of the 0-hypercycle (x0 , y 1) to the class of the 1-hypercocycle 
(~·(xo),¢(yt)). 

It remains to define¢, '1/J. We fix a (set-theoretic) section 

s: Gal(K/F)---+ WKIF 

of the canonical surjection 

As usual this section gives us a 2-cocycle ap,r of Ga1(K/ F) in Kx, defined by the 
equation 

We now define ¢ exactly as in [KS, A.3]. It sends a 1-chain w f-t xw of W K 1 F 

in X to the element 

p,T,a 

of T(K), where the product is taken over all 

(o-, T, a) E Gal(K/ F) x Gal(K/ F) x Kx. 

We define '1/J as follows. Let 

J.L E Co(X) = X 

and put 

v = L T(J.L). 
rEGai(KIF) 

Define a map 

t: WKIF---+ Kx 

by the equation 

w = t(w)s(p), 

where p denotes the image of w E W K 1 F under 

WKIF ---t Gal(K/F). 

(10.1.3) 
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Then 1./J sends /.L to the algebraic 1-cocycle 

w f--7 v(t(w)) · IT pT(I.L)(ap,7 ) (10.1.4) 
TEGal(K/F) 

of WK/F in T(K), where wE WK/F and p denotes the image ofw in Gal(K/ F). 
A direct calculation [L, A.1] shows that the 1-cocycle condition is satisfied, and it is 
obvious that this 1-cocycle is algebraic. It is not hard to check that the cohomology 
class of the 1-cocycle is equal to the corestriction of the element of 

H 1(KX,T(K)) = Hom(KX,T(K)) 

determined by /.L· 
If v = 0, or, in other words, if /.L lies in the subgroup C0(X) 0 of C0 (X) (the 

notation C0 (X) 0 comes from [KS]), then the first factor in (10.1.4) is 1, and the 
second factor coincides with the one used to define the map 

1./J: Co(X)o--+ Z 1(T) 

in [KS]. Thus the map 1./J used in this paper extends the one in [KS]. In particular 
(I 0.1.1) commutes, since 8 maps C1 (X) into Co(X)o and the analogous diagram 
in [KS] commutes. 

10.2. The maps </J, 1./J have all the desired properties, and thus the map (1 0.1.2) has 
now been defined. However we chose a section s of 

WK/F--+ Gal(K/F) 

in order to define </J, 1./J, and we need to check that the map (10.1.2) is independent 
of this choice. 

Lets' be another section and let </J', 1./J' be the corresponding maps. Let b7 be the 
1-cochain of Gal ( K /F) in K x defined by 

S1(T) = b7 S(T) 

forTE Gal(K/ F). Define a homomorphism 

k: Co( X) --+ C0 (T) 

by sending an element /.L E X to the element 

k(I.L) := 
TEGal{K/F) 

of T(K) (this map is the obvious extension of the one in [KS]). Clearly k is 
functorial in T, and a routine calculation shows that 

<P'- <P = k8 
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and 

'l/J'-'lj; = 8k. 

It then follows easily that the homomorphism ( 1 0.1.2) does not change when s is 
replaced by s'. 

I 0.3. We now show that the homomorphism (1 0.1.2) is an isomorphism. Using the 
5-lemma as in [KS], we see it is enough to prove that (1 0.1.2) is an isomorphism in 
the special case in which either T or U is trivial. Thus we must show that the maps 

and 

are isomorphisms. The first map is the usual Langlands isomorphism (see [KS] 
for a review). Composing the second map with the isomorphism (8.4.1), we get a 
functorial homomorphism 

Xr-+ B(T), (10.3.1) 

which we must show is an isomorphism. 
In fact (10.3.1) is equal to the isomorphism [K, 2.4.1]. By [K, 2.2(b)] it is 

enough to prove that (1 0.3.1) coincides with the map in [K] in the special case 
T = Gm (more precisely we use the obvious variant of [K, 2.2(b)] that applies to 
the category of tori over F that are split by K). 

In order to prove that (1 0.3.1) coincides with the map in [K] in the special 
case T = Gm, we need to introduce some homomorphisms taking values in 

Q. Put s = [K : F] and consider the extensions 'D8 , EK/F of r by Fx. Let 
vv (respectively, vt;) denote the unique continuous homomorphism from 'Ds 
(respectively, EKjF) to Q extending the valuation map 

-x 
val: F -+ Q 

on the subgroup Fx (we normalize the valuation on F so that it takes the value 1 
on uniformizing elements for F). The existence and uniqueness of vv, vc; follow 
from the triviality of Hi(r, Ql) fori ~ 1. Clearly the isomorphisms (B.3.2) 

'Ds :::::' EK/F 

carry vv into vc;. Looking back at the definition of the homomorphism (B.2.5), we 
see that the composition 

W (B.2.5) 'T"' vv tTl\ 
F- Us- "'t (10.3.2) 
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sends T E W F to j / s, where j is the unique integer such that the restriction ofT to 
pun is equal to aj; of course the composed map (10.3.2) is also equal to 

W (B.3.3) c V£ ff1\ 
p-c;,K/F-"'l· (10.3.3) 

Now let p, E X* ( Gm) be the identity map on Gm . Let Cw be the corresponding 
algebraic 1-cocycle of W K/ F in Kx (defined by the formula (10.1.4)), and let c~ 

be the algebraic 1-cocycle of £KIF in Px obtained from Cw by means of (8.1.1). 
The map w f---t val(c~) is a continuous homomorphism from £KIF to ij extending 

-x 
the homomorphisms· val on the subgroup P of £KIF• and therefore 

val(c~) = s · vE(w). 

Let c~ be the 1-cocycle of W F in P x obtained from c~ by means of the homomor­
phism (B.3.3). It follows from the discussion above that 

val(c~) = s · (j/s) = j, 

where j is the unique integer such that the restriction ofT E W F to pun is equal to 
aJ. Pick a cocycle c~' of (a) in (Fun) x whose inflation toW F is cohomologous to 
c~. Then 

val(c~') = 1. 

Of course c~' is an element ofT(L) whose class in B(T) = B(T) is equal to the 
image of p, E X*(Gm) under (10.3.1). Comparing with [K, 2.4], we see that this 
class in B(T) is also the image of p, under the isomorphism 

Xr -7 B(T) 

defined in [K]. This completes our proof. 

10.4. Combining the isomorphisms (9.3.2) and (10.1.2), we obtain an isomorphism 

(10.4.1) 

11. Duality for B(T -7 U) 

We let f: T -7 U, f*: X -7 Y and K/ F be as in Section 10. In this section we 
use (I 0.4. I) to prove a duality theorem for B(T -7 U). 

I I. I. First we must topologize B(T -7 U). Recall the exact sequence (9.1.1). We 
put the unique topology on B(T -7 U) for which B(T -7 U) is a topological group 
and the canonical map 

U(F) -7 B(T -7 U) 
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is open. We write 

for the group of continuous homomorphisms from B(T --+ U) to ex . 

11.2. Dual to f: T--+ U is a homomorphism 

j: D--+ f. 

The hypercohomology groups H 1(Wp,U--+ T) and H 1(WK/F,U--+ T) are 

defined in [KS, A.3], using continuous 1-cocycles of Wp and WK/F in U. The 
inflation map 

(11.2.1) 

is an isomorphism. Recall from [KS, (A.3.8)] that there is a canonical isomorphism 

I ~ ~ 

Hom(Ho(WK/F,X -t Y),Cx) == Habs(WK/F,U--+ T), 

where the subscript abs indicates that we regard W K 1 F as an abstract group 
when forming the hypercohomology group. Combining this with the isomorphism 
(I 0.4.1 ), we get an isomorphism 

and it is clear that this isomorphism restricts to an isomorphism 

I ~ ~ 

Homcont(B(T -t U), ex)== H (WK/F' U -t T), 

which we combine with (11.2.1) to get an isomorphism 

I ~ ~ 

Homcont(B(T -t U), ex) == H (Wp, U -t T). (11.2.2) 

In 1 I .5 below we will prove that the isomorphism ( 11.2.2) is independent of the 
choice of K. Combining (11.2.2) with the canonical injection 

H 1 (F, T -t U) --+ B(T--+ U) 

(the bottom arrow in (9.4.1)), we recover the surjection 

I ~ ~ ( I X) H (Wp, U -t T) --+ Homcont H (F, T--+ U), C 

of [KS, Lemma A.3.B]. 

11.3. We are going to prove a rather technical lemma that will be used in 11.5 
to prove that ( 11.2.2) is independent of the choice of K. The lemma will be used 
again in Section 12. 
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Let R denote the torus RKjFGm obtained from Gm by Weil's restriction of 
scalars from K to F. The group G(K/F) := Gal(K/F) acts on (the left of) R 
by F-automorphisms; for r E G(K/F) we write 07 for the corresponding F­
automorphism of R. Put 

Rt := II R, 
TEG(K/F) 

and consider the homomorphism 

R ___!!__... R 1 (11.3.1) 

whose projection to the factor R indexed by T E G(K/ F) is given by e:; 1 - idR E 
End(R). 

Of course X*(R) is the left regular representation of G(K/F) on the group 
ring Z[G(K/ F)]. We write /-LK for the element of X*(R) corresponding to the unit 
element 1 E Z[G(K/ F)]. Then (R, J.LK) represents the functorT t-t X*(T) on the 
category ofF-tori split by K. Note that 

T(J.LK) = B; 1(J.LK) 

for any r E G(K/ F). It follows that the class of J.LK in X*(R)r lies in the kernel 
of 

Now let CK denote the category whose objects are homomorphisms 

j:T---+U 

ofF -tori split by K and whose morphisms are given by commutative diagrams 

f T----u 

f l 

T' U'. 

Let f: T---+ U be an object in CK. Then giving a morphism from T/: R---+ R 1 to 
f: T ---+ U is the same as giving an element J.t E X* (T) and a family of elements 
J.t7 E X*(U), one for each T E G(K/F), satisfying 

f*(J.t) = L (r- l)(J.LT). (11.3.2) 
TEG(K/F) 

The class of J.l· E X*(T) in X*(T)r lies in the kernel of 

X*(T)r ~ X*(U)r. 
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Moreover. it is clear that for any element I-t E X,..(T} whose class in X*(T)r lies 
in the kernel of 

there exists a morphism from 7J: R--+ R1 to f: T --+ U that carries 1-"K E X* (R} 
into 1-t E X*(T). 

We are almost ready to state the technical lemma. For any object T --+ U in C K 

put 

H(T--+ U) := Ho(WK/F,X--+ Y) 

(as usual X= X*(T), Y = X*(U}). Of course His an additive functor from the 
additive category CK to the category of abelian groups. Suppose that we are given 
an additive functor I from C K to the category of abelian groups, and that we are 
also given two natural transformations a, f3 from H to I. 

LEMMA 11.4. Suppose that the maps 

a, f3: H(T--+ U) --+ I(T--+ U) 

are equal whenever T is trivial or U is trivial. Suppose further that the obvious 
map 

I(R--+ Rt)--+ I(R--+ 1} x !(1--+ R1/7J(R)) 

is injective. Then a is equal to {3. 

First we note that the maps 

a,f3: H(R--+ Rt)--+ I(R--+ R1} 

are equal. Indeed, this follows immediately from the hypotheses of the lemma 
(apply the first hypothesis to both R --+ 1 and 1 --+ R1jry(R}). It follows that the 
maps 

a, f3 : H(T--+ U) --+ I(T--+ U) (11.4.1) 

are equal on all elements of H(T --+ U) that arise as the image of an element in 
H ( R --+ R 1) for some morphism from R --+ R 1 to T --+ U. 

There is an obvious exact sequence 

--+ H(l --+ T} --+ H(1 --+ U} --+ H(T--+ U) 

--+ Xr --+ Yr --+ · · · (11.4.2) 

Let x E H(T --+ U}. We want to show that a(x} = f3(x). It follows from the 
discussion in 11.3 that there is a morphism ~ from R --+ R, to T --+ U and 
an element y E H(R --+ Rt) such that x and ~(y) have the same image in 
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ker[Xr-+ Yr]. Since we have already seen that a, /3 have the same value on ~(y), 
we are reduced to the case in which x lies in the image of H(1 -+ U). Therefore 
the first hypothesis of the lemma, applied to 1 -+ U, implies that a(x) = f3(x). 

11.5. Now we use the lemma to prove that the isomorphism (11.2.2) is independent 
of the choice of K. As in [KS, A.3] the only nontrivial fact that we need is the 
commutativity of 

(11.5.1) 

Here K' is a finite Galois extension ofF in F containing K, and the map p* is 
induced by the canonical surjection 

p: WK'/F-+ WK/F· 

The horizontal maps are of type (10.4.1). 
Note that the map p* is an isomorphism (use the exact sequence (11.4.2)). 

Therefore (11.5.1) gives us two natural transformations a, f3 from H to I, where I 
denotes the functor on CK that sends T-+ U to B(T-+ U). We claim that a, {3, I 
satisfy the hypotheses of Lemma 11.4. The first point to check is that 

H,(WK'/F,X)--- T(F) 

j (11.5.2) 

H,(WK/F,X)- T(F) 

commutes. This is standard (and also follows from the commutativity of (A.3.11) 
in [KS]). The second point to check is that 

Xr B(T) 

Xr B(T) 

commutes. This follows from the fact, proved in 10.3, that both horizontal maps 
agree with the canonical map 

Xr-+ B(T) 
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defined in [K]. The third point to check is that the natural map 

B(R--+ Rl)--+ B(R--+ I) x B(1--+ R1/TJ(R)) 

is injective. 
More generally let us find a sufficient condition for the injectivity of 

B(T __!__ U) --+ B(T--+ 1) x B(1--+ W), (11.5.3) 

where W = U / f (T). It follows from (9 .1.1) that the kernel of ( 11.5.3) is equal to 
the kernel of 

cok[T(F) --+ U(F)] --+ W(F), 

which is equal to V(F)/ f(T(F)), where Vis the subtorus f(T) ofU. Let C denote 
the kernel ofT --+ U. Then T(F) --+ V(F) is surjective if H 1 (F, C) is trivial. 
Therefore we conclude that (11.5.3) is injective whenever H 1 (F, C) is trivial. This 
condition is satisfied by 'fJ: R--+ Rt, since Cis Gm in this case. 

12. A valuation map on B(T--+ U) 

We let f: T --+ U, f*: X --+ Y and K/ F be as in Section 10. In this section we 
are going to define a surjection 

B(T--+ U) --+ H 1 ((a), X1 --+ Y1) 

and study its properties. 

12.1. We need to review group cohomology and homology for the infinite cyclic 
group (a). Let Z[(a)] denote the integral group ring of (a). There is an exact 
sequence 

u-1 a 
0--+ Z[(a)]- Z[(a)]- Z--+ 0, 

where a - I denotes multiplication by a - 1 and a is defined by 

a(l:mjaj) = l:mj. 
J J 

Thus we get a projective resolution 

u-1 
Z[(a)]- Z[(a)] 

of the trivial (a)-module Z. 
Let A be an abelian group on which (a) acts. Then H•( (a), A) is the cohomol­

ogy of the complex 

A~A 
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and H.( (a), A) is the homology ofthe same complex. Therefore Hm( (a), A) and 
Hm( (a), A) vanish form:;::: 2 and 

H 0 ((a),A) = A(a) = H1((a),A), 

H 1((a),A) = A(a) = Ho((a),A), 

(as usual the superscript (a) indicates invariants and the subscript (a) indicates 
coinvariants). 

Now let¢: A --+ B be a map of (a)-modules. From¢ we get a double complex 

a-1 A----A 

a-1 B----B, 

which in tum gives rise to a complex 

A (a- I,¢) A EEl B ¢-(a- 1) B. 

The cohomology (respectively, homology) of this complex is the hypercohomology 
(respectively, hyperhomology) of A--+ B. Therefore 

(12.1.1) 

for all m E Z. Moreover Hm ((a), A --+ B) vanishes unless m = 0, 1, 2, and 

H 0 ( (a), A--+ B) = ker[A(a) --+ B(a)], 

H 1 ((a), A--+ B) = ker(¢- (a- 1))/im(a- 1, ¢), (12.1.2) 

H 2 ( (a), A--+ B) = cok[A(a) --+ B(a)l· 

We refer to elements of ker( ¢- (a- 1)) as simplified 1-hypercocycles (and also as 
simplified 0-hypercycles), and we refer to elements of im(a- 1, ¢) as simplified 
1-hypercoboundaries (and also as simplified 0-hyperboundaries). 

There is an exact sequence 

--+ cok[A(a)--+ B(a)]-+ H 1((a),A--+ B) 

--+ ker[A(a) --+ B(a)] --+ 1 (12.1.3) 

generalizing (9.1.1 ), and there is an exact sequence 

--+ (ker[A--+ B])(a)--+ H 1((a),A--+ B) 

--+ ( cok[ A --+ B]) (a) --+ 1 (12.1.4) 
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analogous to (9.1.2) (it generalizes (9.1.2) in case Cis connected). 

12.2. We define B(T -t U) to be the hypercohomology group 

B(T -t U) := H 1((0'),T(L) -t U(L)). 

The inflation map for the surjection W F -t (0') yields an isomorphism 

B(T -t U) ~ B(T -t U). 

Recall the canonical surjection (7 .2.1) 

wr: T(L) -t X 1 . 

319 

(12.2.1) 

(12.2.2) 

Together the maps wr and wu induce a map of complexes from [T(L) -t U(L)] 
to [X I -t Y1], and this in turn induces a map 

(12.2.3) 

We claim that the map (12.2.3) is surjective. Since wr, wu are surjective, it 
suffices to show that 

is trivial, where T(L) 1 denotes the kernel of wr. But (12.2.4) is equal to 

cok[(T(L)I)(a) -t (U(L)I)(a)], 

which is indeed trivial (see (7 .6.1 )). 

(12.2.4) 

12.3. Consider the canonical surjection q: W K/F -t (0'). There is a natural map 
(analogous to inflation for hypercohomology) 

Ho(WK/F•X -t Y) -t Ho((O'),XI -t Y1) 

obtained as the composition of 

and 

12.4. Consider the diagram 

Ho(WK/F,X -t Y) 
(10.4.1) 

B(T -t U) 

1(1231) 1(1223) 

Ho((O'),XI -t Y1) 
( 12.1. I) 

H 1((0'),XI -t YJ). 

(12.3.1) 

(12.4.1) 
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We are going to use Lemma 11.4 to prove that (12.4.1) commutes. We take I to be 
the functor sending T -t U to H 1 ((a), XI -t YI ), and we take a, {3 to be the two 
natural transformations from H to I given by the two paths in the diagram (12.4.1 ). 

Let V denote the image f (T) ofT in U, let W denote the quotient torus U jV, 
and let C denote the kernel off. We are interested in the kernel of the map 

(12.4.2) 

since we must check that (12.4.2) is injective for ry: R -t R 1• It is easy to see that 
the kernel of (12.4.2) is equal to 

(12.4.3) 

Now suppose that Cis connected. Then X*(T) -t X*(V) is surjective, as is the 
induced map on I-coinvariants, so that in this case (12.4.3) is equal to 

(12.4.4) 

The group (12.4.4) is trivial if 

(12.4.5) 

is torsion-free. 
Now suppose that f: T -t U is ry: R -t R1. Then Cis <Gm, so that the kernel 

of (12.4.2) is equal to (12.4.4). It is easy to see that the kernel of XI -t YI is Z 
(with trivial action of (a)). Therefore the group (12.4.5) is torsion-free (isomorphic 
to Z), and we conclude that (12.4.2) is injective for ry: R -t R 1, as desired. 

The next point to check is that 

X - __ ( t_o._4._I)_,. B(T) 
r 

(12.3.1) (12.2.3) 

commutes. We identify H 1 ((a), X 1 ) with Xr. Then we must show that the com­
posed map 

Xr~B(T)~Xr 

is the identity map on Xr. This follows from 7.5 and 10.3 (see the discussion of 
the map (I 0.3.1)). 
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The final point to check is that 

H, (WI</F, X) (I0.4.l) T(F) 

j (12.3.1) (7.6.2) (12.4.6) 

H,((u),XI) == (XI)(u) 

commutes. Let 

be the homomorphism obtained by going the long way around (12.4.6) (remember 
that ( 1 0.4.1) is an isomorphism). We want to show that e is equal to (7 .6.2). 

Observe that e is independent of the field K (use that the diagram (11.5.2) 
commutes). Of course e is functorial in T. Let E be a finite unramified extension 
ofF in F. Let RE denote the F-torus RE;F(TE), obtained by Weil's restriction 
of scalars from the torus TE over E. The map e for the torus RE can be thought of 
as a map 

(12.4.7) 

where O'E denotes the Frobenius automorphism of pun over E (we used that 
X*(RE)J is the (u)-module induced by the (uE)-module XI). 

Suppose that E' is a finite unramified extension ofF in F containing E. Then 
there is a canonical embedding 

and the functoriality of e implies that the diagram 

T(E) - (XI )(uE) 

j 
T(E')- (XI)( 11E') 

commutes. Thus these maps fit together to give a functorial map 

WT: T(Fun) --7 XI. 

We must show that wr is the restriction to T(Fu") of the map 

WT: T(L) --7 XI 

defined in 7 .2. 
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Choose an induced torus R over F and a surjection 

of r-modules. Then there is an exact sequence 

1 ---+ C---+ R---+ T---+ 1, 

where Cis a torus. Since H 1 (Fun, C) is trivial, the map 

is surjective. Therefore it is enough to prove that wr restricts to wr in the case that 
Tis an induced torus. Then X 1 is torsion-free, and by using elements of xr we 
reduce to the case in which T is <Gm . 

Thus we must show that forT= <Gm the map (12.4.7) 

Ex---+ Z 

is the usual valuation map on E. Using the norm map RE;F<Gm ---+ <Gm. we see 
that it is enough to show that the map 

~: px---+ Z 

for <Gm is the usual valuation map on F. 
Thus it is enough to show that the diagram 

H 1(Fx,z)-Fx 

q. val (12.4.8) 

commutes, where q is the canonical surjection px ---+ (a) (uniformizing elements 
in px map to a). Let x be an element in H 1 (Fx, Z). Choose a 1-cycle a t--t Xa 

of px in Z representing x. Then (see (10.1.3)) the top horizontal arrow maps x to 
the element 

and the valuation of this element is 

L -val(a) · Xa· 

aEFX 

The map q* sends x to the class of the 1-cycle 

ant--+ L Xa 

val(a)=n 

(12.4.9) 

(12.4.10) 
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of (a) in Z (the sum is taken over all a E px satisfying the stated condition). 
Let A be any abelian group on which (a) acts. Let Cm(A) be the group of 

standard m-chains of (a) in A, so that H.( (a), A) is the homology of the complex 

8 8 
... -t C2(A) - C1 (A) - Co(A). 

The diagram 

a a 
C2(A) - C1 (A) - Co(A) 

a-1 0 ----A---- A 

commutes, where the vertical arrow C1 (A) -t A sends a 1-chain an t---t an to the 
element 

where 'Yn denotes the unique element in the integral group ring of (a) satisfying 
the equation 

'Yn · (a - 1 ) = a-n - 1. 

Therefore the bottom horizontal arrow in ( 12.4.8) maps the 1-cycle ( 12.4.1 0) to the 
integer 

L'Yn L Xa· (12.4.11) 
nEZ val(a)=n 

The element 'Yn acts by multiplication by -n on Z. Therefore ( 12.4.11) is equal to 
( 12.4.9), and we are done. 

12.5. We return for a moment to the cohomology of the group (a). Let X 1, X 2 

be finitely generated abelian groups on which (a) acts and let h: X 1 -t X 2 be a 
homomorphism. Dual to XI' x2 are diagonalizable e-groups 

Di :=Hom( Xi, ex) (i = I, 2) 

on which (a) acts. Of course Xi is equal to X*(Di). There is a map h: D2 -t D1 
dual to h. Since ex is an injective abelian group, there is a canonical isomorphism 

Hom(Ho((a),XI -t X2),ex) ~ H 1((a),D2 -t DI), 

analogous to [KS, (A.3.8)]. This gives us a ex -valued pairing between 

Ho( (a), X1 -t X2) 

(12.5.1) 
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and 

As in [KS] we have the following explicit formula for this pairing in terms 
of standard chains and cochains. Consider a 0-hypercycle (x1,x2(w)) and a 1-
hypercocycle (d2(w), dt). Thus x 1 E X 1, and x2 is a 1-chain of (a) in X 2 such 
that 

h(xt) = L (w- 1x2(w)- x2(w)); 
wE(u} 

similarly d1 E D1, and d2 is a 1-cocycle of (a) in D2 such that 

~ I 
h(d2(w)) = d! w(dt) 

for all w E (a). Then the value of the pairing on the classes of these two elements 
is given by 

(xi, d1) IT (x2(w), d2(w))- 1. 
wE(u} 

(12.5.2) 

In 12.4 we saw how to convert from standard 1-chains for (a) to the simplified 
)-chains we used in 12.1. Of course it is obvious how to convert a standard 1-
cocycle of (a) to a simplified 1-cocycle: take the value of the 1-cocycle at a E (a). 
Converting ( 12.5 .2) into the language of simplified chains and cochains, we find the 
following alternative description of our pairing. Consider a simplified 0-hypercycle 
(x1, x2) and a simplified 1-hypercocycle (d2, dJ). Thus x 1 E X 1 and x2 E X 2 
satisfy 

similarly d1 E D1 and d2 E D2 satisfy 

h(d2) = (a- 1 )(dt). 

Then the value of the pairing on the classes of these two elements is given by 

Recall the canonical isomorphism (12. I.l) 

Ho( (a), X1 --+ X2) ~ H 1 ((a), X1 --+ X2). 

Using this isomorphism, we get a pairing between 

H 1((a),X1--+ X2) 

and 

(12.5.3) 
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It is also given by the formula (12.5.3) (recall that a simplified 0-hypercycle is the 
same as a simplified 1-hypercocycle). 

12.6. We return to f: T-+ U and the canonical surjection (12.2.3) 

B(T-+ U)-+ H 1((u),X1-+ YJ). 

There is an injective inflation map 

H 1 ( (u),fJI-+ T1 ) '-+ H 1(Wp, fJ-+ T). 
There is a ex -valued pairing (see ( 11.2.2)) between 

B(T-+ U) 

and 
I ~ ~ 

H (Wp, U-+ T), 

and by applying 12.5 to XI -+ YI we get a ex -valued pairing between 

H 1((u),XI-+ Y1) 

and 

We claim that these two pairings are compatible, in the sense that 

(b, x') = (b', x) 

(12.6.1) 

(12.6.2) 

for any bE B(T-+ U) and x E H 1 ( (u), U1 -+ T1 ), where b' denotes the image of 
b under ( 12.6.1) and x' denotes the image of x under ( 12.6.2). The only nontrivial 
fact needed to prove this claim is the commutativity of the diagram ( 12.4.1 ), which 
we have already established. 

13. Canonical splittings 

Let E be a finite unramified extension ofF in F and put r = [E : F]. Thus ur is 
the Frobenius automorphism of Fun over E. 

13.1. We return once again to the cohomology of the group (u). Let A be an 
abelian group on which (u) acts. Restricting A to the subgroup (ur) of (u) and 
then inducing back up to (u), we obtain a (u)-module 

I(A) := Ind~;~) (A). 

We can identify I(A) with the r-fold product A x ... x A (as an abelian group). 
The action of u on an r-tuple (a 1, ... , ar) E I (A) is given by 

(13.1.1) 
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There is a canonical automorphism(} of the (a)-module I(A), given by 

(13.1.2) 

There is an obvious injective (a)-map i: A-+ I(A), defined by 

i(a) =(a, ... ,a) (13.1.3) 

and an obvious surjective (a)-map m: I(A) -+A defined by 

(13.1.4) 

The sequence 

i I-8 m 
1 -+ A - I(A) - I(A) - A -+ 1 

I-8 
is exact, and therefore the exact sequence (12.1.4) for the complex I(A) - I(A) 
becomes 

(13.1.5) 

We claim that there is a canonical splitting of the exact sequence (13.1.5). We 
write J (A) for the subgroup 

A(a") X ... X A(u) 

of I(A). On the subgroup J(A) the automorphisms a and(} of I( A) are inverse to 
one another. Recall from 12.1 that a simplified 1-hypercocycle of (a) in 

I(A) ~ I(A) 

is a pair (x, y) E I(A) x I(A) satisfying 

(1- e)(x) =(a- l)(y). 

For any x E J(A) the pair (a(x), x) is a simplified 1-hypercocycle of (a) in 

I(A) ~ I(A). 

We denote by 

H 1 ( (a),I(A) ~ I(A)) J 

the subgroup of H 1 ((a), I(A) ~ I(A)) consisting of the classes of all simplified 
1-hypercocycles of this special form. We claim that the surjection 

(13.1.6) 

https://doi.org/10.1023/A:1000102604688 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000102604688


ISOCRYSTALS WITH ADDITIONAL STRUCTURE. II 327 

induces an isomorphism 

(13.1.7) 

This will provide the desired splitting. Let x E J(A). The map (13.1.7) sends the 
class of (a(x ), x) to m(x ). Since m maps J(A) onto A (u), we see that (13.1.7) is 
surjective. Suppose that the class of (a( x), x) maps to the identity element of A (u). 

Then there exists y E J(A) such that x = (I - O)(y); therefore (a(x), x) is equal 
to the simplified I-hypercoboundary 

((a- l)(y), (I- O)(y)), 

and we see that (I3.1.7) is injective as well. 
We also need the following variant of the discussion above. Now we consider 

the complex 

I(A) ~ I(A). 

The sequence 

i 1-0- 1 m 
1 --t A - I(A) -- I(A) - A --t I 

is exact, so that we get an exact sequence 

1 o- 1 ) 
1 --t A(u) --t H 1((a),I(A)--=-- I(A)) --t A(u --t 1. (I3.1.8) 

This exact sequence also has a canonical splitting. As the complementary subgroup 

we now take all classes that can be represented by simplified 1-hypercocycles of 
the form (x- 1 ,x) for some x E J(A). 

13.2. We continue to use the notation of I3.I. We now let X be a finitely generated 
abelian group on which (a) acts, and let D x = Hom(X, ex) be the diagonalizable 
C-group dual to X. There is a canonical isomorphism of (a)-modules 

D 1(x) ::= I(Dx ), (13.2.1) 

where I denotes the induction functor Ind~~~), as in 13.1. We denote the automor­
phism 0 of 13.1 for the group I(X) (respectively, I(Dx)) by Ox (respectively, 
OD). Dual to 

Ox: J(X) --t I(X) 

is the automorphism 

1ix: DI(X) --t DI(X)· 
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Since the functor X 1--7 Dx is contravariant, the isomorphism (13.2.1) identifies 
fix with the inverse of Ov. 

From 13.1 we get an exact sequence 

(13.2.2) 

and a subgroup 

H 1((a),J(X) ~ I(X))J (13.2.3) 

complementary to X(u). We also get an exact sequence 

I---+ (Dx)(u)---+ H 1((a),Dr(x) ~ Dr(x))---+ (Dx)(u)---+ 1 (13.2.4) 

and a subgroup 

'( l-Ox ) H (a), Dr(X) - Dr(X) J (13.2.5) 

complementary to (Dx )(u) (since ?ix = O'iJ 1, we are using the variant discussed at 
the end of 13.1). 

Recall from 12.5 the canonical pairing(·,·) between the groups 

H 1 ( (a),I(X) ~ I(X)) 

and 

'( l-Ox ) H (a), Dr(X) - Dr(X) · 

The pairing is given by the formula (12.5.3). We claim that the subgroups (13.2.3) 
and ( 13.2.5) annihilate each other under this pairing. In other words we claim that 

((a(x), x), (d- 1, d)) = 1 (13.2.6) 

for any x E J(X) and any dE J(Dx). By (12.5.3) the left-hand side of(13.2.6) 
is equal to 

(a (X) , d) (a ( x) , d-l ) = I , 

which proves the claim. 

13.3. Now letT be a torus over F, and put X := X* (T). Let R denote the F -torus 
RE;F(TE) obtained from TE by Weil's restriction of scalars. The Galois group 
Gai(E /F) acts naturally (on the left of) R by F -automorphisms, and we denote by 
()the F-automorphism of R by which the Frobenius element aE/F in Gal(E/F) 
acts. Under the canonical isomorphism 

R(F) = T(E), 
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the action of() on R(F) goes over to the action of aE/ F on T(E). 
There is a canonical isomorphism of (a)-modules 

R(L) = I(T(L)), 

obtained as follows. We have 

R(L) = T(E ®F L), 

I(T(L)) = T(L) x ... x T(L) 

= T(L X ... XL), 

and with these identifications (13.3.1) becomes the map 

T(E ®p L) --7 T(L X ... XL) 

induced by the £-algebra isomorphism 

E ®p L --7 LX ... XL 

sending e ® l to the r-tuple 

(ar(e)l, ... , a2(e)l, a(e)l). 

329 

(13.3.1) 

Note that (13.3.1) carries the automorphism of R(L) induced by() E Autp(R) 
over to the automorphism of I(T(L)) denoted by() in 13.1. 

Consider the exact sequence 

1-6 
I --7 B(T) --7 B(R- R) --7 T(F) --7 1 (13.3.2) 

(a special case of both (13.1.5) and (9.1.2)). From 13.1 we get a canonical subgroup 

B(R ~ R)J 

l-6 
of B ( R - R), complementary to the subgroup B(T). 

Consider the Langlands dual complex 

- l-6 -
R-R. 

There is an obvious identification (ofC-groups) of R with the r-fold product 

- -Tx ... xT. 

Let T E r and suppose that the restriction ofT to pun is equal to a. Then 

T (tl, ... .ir) = ( T(tz), ... , T(tr), T(tJ)). 

Moreover the action of() is given by 

B(tJ, ... ,ir) = (tz, ... Jr.t't)· 
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The sequence 

~ i ~ 1-8 ~ m ~ 

1-tT-R-R-T-+1 (13.3.3) 

is exact, where i is defined by 

t f-t (i, 0 0 • ' t) 

and m is defined by 

(tl , ... Jr) f-t t1 · · · tr. 
Let f : T -+ U be a map of F -tori, let C be the kernel of f, let W be the 

co kernel off, and let V be the image off. Assume that C is connected. There is 
an exact sequence 

1 -+ [T -+ V] -+ [T -+ U] -+ [1 -+ W] -+ 1 (13.3.4) 

and the obvious map from [ C -+ 1 J to [T -+ V] is a quasi-isomorphism. Applying 
B to (13.3.4) we get the exact sequence (9.1.2) 

1 -t B(C) -+ B(T-+ U) -+ W(F)-+ 1. (13.3.5) 

Dual to (13.3.4) is the exact sequence 

1 -+ [W -+ 1 J -+ [U -+ TJ -+ [if -+ TJ -+ 1. (13.3.6) 

Since C is connected, tEe m~ V -+ Tis injective with cokemel C, and hence 
the obvious map from [V -+ T] to [1 -+ CJ is a quasi-isomorphism. Applying the 
functor H• (W F, ·) of [KS, A.3] to (13.3.6), we get an exact sequence 

l-+ H 1(WF, W)-+ H 1(WF, u-+ T)-+ cr-+ 1 (13.3.7) 

(use that H 2 (W F, W) vanishes), and this exact sequence is obtained from (13.3.5) 
by applying the functor Homcont( ·,ex) (see Section 11). 

f l-8 
Taking T- U to be R- R, the exact sequence (13.3.7) becomes 

1 -+ H 1 (WF, T) -+ H 1 (WF, R-=! R) -+ Tr-+ 1, (13.3.8) 

and this sequence is obtained by applying Homcont( ·,ex) to (13.3.2). 
There is a commutative diagram with exact rows 

(13.3.9) 
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in which the vertical maps are inflation maps for the canonical surjection W F -+ 
(a). Note that 

fi = Hom(XI,cx), 

and hence that the top row in (13.3.9) is the exact sequence (13.2.4) for the finitely 
generated abelian group XI. Therefore 13.2 gives us a subgroup 

of 

H 1 ((a), iF~ R/) 

complementary to the subgroup H 1 ((a), fi). By inflation we identify 

H 1((a),fif ~ R/) 1 

with a subgroup of 

H 1 (Wp,R~R); 

obviously this subgroup is complementary to H 1 (W F, T), so that we have produced 
a canonical splitting ofthe exact sequence occurring as the bottom row in (13.3.9). 

1-9 1-9 
PROPOSITION 13.4. The~subgroup B(R- R) 1~of B(R- R) and the 

~ 1-9 ~I ~ 1-9 ~ 
subgroup H 1((a),RI- R )1 of H 1(Wp,R- R) annihilate each ;:ther 

under the ex -valued pairing between B(R ~ R) and H 1 (Wp, R ~ R) 
obtained from (11.2.2). 

We have the following commutative diagram with exact rows 

--- B(T) B(R~R) T(F) --- 1 

l j 
--- (XI)(a)- H 1 ((a),YI~YI)- (XI)(a) ---- 1, 

(13.4.1) 

where Y denotes the cocharacter group X*(R). The vertical maps are of type 
(12.2.3), and the bottom row is of type (13.2.2) (for the finitely generated abelian 
group XI); of course we are using the obvious identification 

YI = Ind~:~)(XI)· 
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In 12.6 we proved the compatibility of two pairings. This compatibility implies 
that the diagram (13.3.9) is obtained by applying Homcont(·, ex) to the diagram 
(13.4.1). 

Since H 1 ((<J),iif ~ ill) J is a subgroup of H 1 ( (CY), RJ ~ iF) it is 

1 .-..1 1-B ~1 1-11 
enoughtoshowthatH ((CY),R -- R )JannihilatestheimageofB(R-- R)J 
111 

1 1-11 
H ((CY), YI- YI)· (13.4.2) 

But this image is contained in the canonical subgroup of (13.4.2) complementary 
to (XI )(u). Therefore the desired annihilation was proved in 13.2 (apply 13.2 to 
the finitely generated abelian group X I). 

Appendix 

A. Automorphism groups of ®-functors 

A. I. Let k be a commutative ring with 1. Let G = Spec(A), X = Spec(B) be 
affine schemes over k, and suppose that we are given a morphism 

a:GxX-+X 

of schemes over k (the product is taken over Spec(k)). We think of G, X as set­
valued functors on the category of k-algebras and define a subfunctor XG of X as 
follows: for any k-algebra R the set xc(R) consists of all elements x E X(R) 
such that 

a(g,xs)=xs 

for every R-algebra Sand every g E G(S) (we use xs to denote the image of x 
in X(S)). If G is a group scheme and a is an action of G on X, then we refer to 
points in xc (R) as G wfixed points in X(R) (G R denotes the group scheme over 
R obtained from G by extension of scalars). 

Now assume that k is a field. Then we claim that xc is represented by a closed 
subscheme of X. Let 

a*: B-+ A ®k B 

be the k-algebra map induced by a. The set XG(R) can be identified with the set 
of k-algebra homomorphisms f : B -+ R such that the map 

vanishes on the subset M of A ®k B consisting of all elements of the form 
a*(b) - 1A ® b for some b E B. Pick a basis {aihEI for A ask-vector space. 
Any element x E A ®k B can be written uniquely as l::iEI ai ® bi(x) and idA® f 
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vanishes on x if and only if f(bi(x)) = 0 for every i E J. It follows that idA® f 
vanishes on M if and only iff vanishes on the set N of elements in B of the form 
bi(x) for some x EM and some i E J. Therefore xa is represented by the closed 
subscheme of X defined by the ideal in B generated by N. 

A.2. Let k be a field, and let /, U be Tannakian categories over k (see [D], [Sa]). 
Let ,d: T ~ U be an exact ®-functor. For any k-algebra R we define an R-linear 
®-category uR as in 3.3. Recall that uR has the same objects as U, and that for 
objects X, Y in U one has 

HomuR (X, Y) = Homu(X, Y) ®k R. 

As in 3.3 there is an obvious ®-functor 

Composing this functor with (3, we get a ®-functor 

f3R: r ~ uR. 

We then let J13(R) denote the group of ®-automorphisms of (3R. 
We claim that the functor J13 is representable by an affine group scheme over 

k. Suppose that U has a fiber functor wu over a nonzero k-algebra S. We define a 
fiber functor WT on J by 

WT := WU o (3. 

Then wr. wu determine k-groupoids g, 1l acting transitively on Spec(S) (see [D]), 
and the pullbacks of g, 1l along the diagonal map 

Spec(S) ~ Spec(S) Xspec(k) Spec(S) 

are affine group schemes G, HoverS. The ®-functor (3 induces a homomorphism 

v: H ~ G 

overS, and we denote by Gv the centralizer of v in G, by which we mean the 
subfunctor of H -fixed points in G (see A. I) for the conjugation action of HonG. 
We claim further that there is a canonical isomorphism 

where ( J13 ) s is the group scheme overS obtained from J13 by extension of scalars. 
In fact the first claim follows from the second. Indeed, U has a fiber functor 

over some field S containing k. It is easy to see that J f3 is a sheaf for the faithfully 
flat topology (on the category of affine schemes over k). Therefore it is enough 
to prove that (J13 )s is representable by an affine group scheme overS, and this 
follows from A.l (assuming the truth of the second claim). 
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Now we prove the second claim. Let R be any S-algebra. From wr, wu we get 
fiber functors w¥, w{j on T, U over R, and the corresponding groupoids 9R, 1-lR 
(respectively, group schemes) GR, HR are obtained from Q, 1-l (respectively, G, 
H) by extending scalars from S ®k S to R ®k R (respectively, from S to R). 

Giving an element a E J!J(R) is the same as giving a compatible family of 
elements 

ax E (End1£R (w{j{3X) ®k R) x, 

one for each object X in T (compatible means functorial and compatible with all 
finite tensor products). But w{j{3X = w¥X and 

End1lR(w¥X) ®k R = EndHR(w¥X), 

since the action of the groupoid 1-lR on w¥X determines descent data (from R to 
k) on EndHR (wjX), and End1£R (w¥X) is equal to the k-vector space obtained 
from EndHR (w7 X) by descent. Moreover EndHR (w¥X) can be identified with 
the fixed points of the action of HR on the R-module EndR(w¥X). Therefore 
giving a E J/3 (R) is the same as giving an Hwfixed point in the set of compatible 
families of elements 

a:y E EndR(w¥X)x 

and this in turn is the same as giving an Hwfixed point in G(R). Therefore J!J(R) 
is equal to GH (R), where H acts on G by conjugation, which proves the second 
claim. 

B. The Galois gerbs 1J 8 

B. I. Let T be a Tannakian category over F (see [0], [Sa]). We suppose that T 
admits a fiber functor over F, and we fix such a fiber functor w. Then in the usual 
way w determines an affine group scheme Gover F. We assume further that G is 
of finite type over F, so that G is a linear algebraic group over F. Of course G (F) 
is equal to the group of ®-automorphisms of the fiber functor w. 

LetT E r. By aT-linear ®-automorphism of w we mean a family ofT-linear 
isomorphisms 

gx: c..:(X) --7 w(X), 

one for each object X in T, functorial in X and compatible with finite tensor 
products. Let 9r be the set of all T-linear ®-automorphisms of w, and let g be the 
disjoint union 

Then g is a group (under composition) and there is an exact sequence 

I --t G(F) --t g .!4 r --t 1, (B.l.l) 
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the fiber of q overT E r being Yr (to prove that the map g --+ r is surjective use 
that any two fiber functors forT over Fare isomorphic). 

The extension g of r by G(F) is called the Galois gerb associated toT and w 
(see [LR]). There is a natural topology on g making g into a topological group. 
The induced topology on the subgroup G(F) is discrete, and the induced topology 
on the quotient group r is the usual Krull topology. The topology is defined as 
follows. There exists a finite Galois extension K of F in F and a fiber functor 
wo on T over K. Choose a ®-isomorphism between w and the fiber functor w"'t 
obtained from wo by extension of scalars from K to F. Let r K denote the subgroup 
Gal ( F I K) of r. Our choices determine a section of g --+ r over the subgroup r K. 

of r (since each w(X) has acquired a K -structure and hence a canonical T-linear 
automorphism for each T E r K ). Any two sections of this type become conjugate 
under G(F) after restricting to a suitably small open subgroup of r. Using our 
chosen section we express q- 1 (r K) as the semidirect product 

I -
q- (rK) = G(F) x rK. 

We put the discrete topology on G(F), the Krull topology on r K, and the product 
topology on q- 1 (r K). We give g the unique topology for which it is a topological 
group and the inclusion 

is an open mapping. It is easy to see that this topology is independent of the choices 
we made. 

By a representation p of g we mean a discrete, semilinear, algebraic action of 
g on a finite dimensional F -vector space V (discrete means that the stabilizer in 
g of any vector in V is an open subgroup of g, semilinear means that elements in 
Yr act by T-linear automorphisms of V, and algebraic means that the restriction 
of p to G(F) is a representation of the algebraic group G). For any object X in 
T there is an obvious representation of g on w(X), and the resulting ®-functor 
X f--t w(X) from T to the ®-category of representations of g is a ®-equivalence 
of ®-categories. 

8.2. Let T be the Tannakian category a-L-spaces (see Section 2). Let s be a 
positive integer. We denote by Ts the full Tannakian subcategory ofT consisting 
of all a-£-spaces (V, <I>) whose slopes lie in the subgroup ±z of ij. 

Let F8 denote the fixed field of a 8 on pun; of course F8 is the unique unramified 
extension ofF in F having degrees. The Tannakian category Ts has fiber functors 
over F8 , and any two such fiber functors are isomorphic. We can single out one 
such fiber functor by choosing a uniformizing element 1r for F. Then the desired 
fiber functor W1r is given by 

(B.2.1) 
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together with the obvious isomorphism 

w7T (®Vi) = Q9 w7T(Vi). 
iEl iEl 

The group of automorphisms of w7T is Gm(F8 ) (an element x E Gm(Fs) acts on 
v7T-nq,s by xn). 

By considering semilinear ®-automorphisms of w7T as well, we get an extension 

(B.2.2) 

Extending scalars from F8 to F we get a fiber functor w'!; on Ts over F, and thus 
we also have the extension 

(B.2.3) 

where D 8 denotes the Galois gerb associated to T and w!'. Of course the extension 
(B.2.3) is obtained from the extension (B.2.2) by pulling back along the canonical 
surjection 

r-+ Gal(F8 / F) 

and then pushing out along the canonical injection 

For any a-L-space (V, 1>) the a-linear automorphism 1> preserves the subspace 
w7T (V, 1>) of V. Since the resulting a-linear automorphism of w7T (V, 1>) is functorial 
and compatible with tensor products, there is a canonical element <p8 E D~ lying 
over the Frobenius element in Gal(F8 / F), namely the unique element that acts by 
1> on w7T (V, 1>) for all (V, 1> ). Note thatthe s-th power of <p8 is equal to 1r E Gm (F8). 

The element <p8 E D~ determines a homomorphism 

(B.2.4) 

namely the unique one that sends the generator a of the infinite cyclic group (a) 
to the element <p 8 in D~. We now define a continuous homomorphism 

Wp-+ D8 (B.2.5) 

as follows. Let r 8 denote the group Gal(F8 / F). Then the fiber product 

is a subgroup of 'D 8 , and the homomorphism (B.2.5) factors through this subgroup, 
its first component being the map 
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obtained by composing the canonical surjection Wp -+ (a) with the map (B.2.4) 
from (a} to V~. and its second component being the canonical injection 

Wpc.......tr. 

It is clear that the map (B.2.5) is a section of 

'Ds-+ r 

over the subgroup Wp ofr. The pair consisting of the extension V 8 ofr by Gm (F) 
and the section (B.2.5) over Wp has no nontrivial automorphisms. 

Now suppose that t is a positive integer such that s divides t, say t = su. For 
any object (V, <I>) in Ts (which also can be regarded as an object in 7t) there is a 
canonical isomorphism 

Ft ®Fs ( EB v1T-nq,s) -+ EB v7r-mq,t 

nEZ mEZ 

(B.2.6) 

(to prove this use descent theory for Ft/ F8 ). The isomorphism (B.2.6) determines 
a map of extensions 

Gm(F) 'Dt r 

·! (B.2.7) 

Gm(F) 'Ds r 1' 

where the left vertical arrow is the map x r-+ xu. It is easy to see that the diagram 

Wp ----'Ds 

commutes, where the horizontal maps are of type (B.2.5). 

B.3. Now let K be any finite Galois extension ofF in F. Put s = [K : F). 
Let WK/F denote the Weil group of K/F. Recall that WK/F is the subgroup of 
Gal(Kab j F) consisting of elements that induce on pun an integral power of a 
(here Kab denotes the maximal abelian extension of K in F). Obviously W K; F is 
a quotient of Wp, and there is an exact sequence 

l---+ Kx---+ WK/F---+ Gal(K/F)---+ 1, (B.3.1) 

https://doi.org/10.1023/A:1000102604688 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000102604688


338 ROBERT E. KOTTWITZ 

in which we use the reciprocity isomorphism forK to identify Kx with a subgroup 
of Gal(Kab I K). We normalize the reciprocity isomorphism in the same way Serre 
does [S2], so that Frobenius elements in Gal(Kab I K) correspond to uniformizing 
elements in K x . 

Pulling back the extension (B.3.1) along the canonical surjection 

r-+ Gal(KI F) 

and then pushing it out along the canonical injection 

we get an extension £ K 1 F of r by Gm (F). The surjection £ K 1 F -+ r has a 
canonical section over the subgroup r K := Gal(F I K) of r. We use this section 
to topologize £KIF in the same way that we topologized gin B.l. The induced 

topology on the subgroup Gm(F) of £KIF is discrete, and the induced topology 
on the quotient group r is the Krull topology. 

The extensions £KIF and V 8 are isomorphic (both correspond to ± E Ql'll 

under the canonical isomorphism from H 2 (F, Gm) to Ql'll), and the isomorphism 
between them is unique up to an inner automorphism of £KIF coming from an 
element in Gm (F) (since H 1 (F, Gm) is trivial). Using one of these isomorphisms 

(B.3.2) 

the map (B.2.5) gives us a section 

(B.3.3) 

of 

over the subgroup W F of r, and if we make a different choice of isomorphism 
(B.3.2) the section (B.3.3) is replaced by a conjugate under some element of 
Gm (F). Suppose that we make a different choice of uniformizing element 7f. 

Then the section (B.3.3) is multiplied by a 1-cocycle of WF in Gm(F) that is 
cohomologous to one obtained by inflation from a 1-cocycle of (a) in the group of 
units in F'.sx. Note that the isomorphism (B.3.2) is an isomorphism of topological 
groups and hence that the map (B.3.3) is continuous. 
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