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Abstract

The characterization of the three-dimensional arrangement of dislocations is important for many analyses in materials science. Dislocation
tomography in transmission electron microscopy is conventionally accomplished through intensity-based reconstruction algorithms.
Although such methods work successfully, a disadvantage is that they require many images to be collected over a large tilt range. Here,
we present an alternative, semi-automated object-based approach that reduces the data collection requirements by drawing on the prior
knowledge that dislocations are line objects. Our approach consists of three steps: (1) initial extraction of dislocation line objects from
the individual frames, (2) alignment and matching of these objects across the frames in the tilt series, and (3) tomographic reconstruction
to determine the full three-dimensional configuration of the dislocations. Drawing on innovations in graph theory, we employ a node-line
segment representation for the dislocation lines and a novel arc-length mapping scheme to relate the dislocations to each other across the
images in the tilt series. We demonstrate the method for a dataset collected from a dislocation network imaged by diffraction-contrast scan-
ning transmission electron microscopy. Based on these results and a detailed uncertainty analysis for the algorithm, we discuss opportu-
nities for optimizing data collection and further automating the method.
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Introduction One widely employed approach, which was pioneered by
Barnard and co-workers (Barnard et al., 2006a, 2006b), is to
apply intensity-based reconstruction algorithms, such as weighted
back projection (WBP) or the sequential iterated reconstruction
technique (SIRT), to diffraction contrast images collected over a
wide tilt range but with finely spaced tilt increments. Since strain
contrast is extremely sensitive to the diffracting conditions, images
are usually obtained by tilting along a specific Kikuchi line, main-
taining the diffracting vectors within the systemic row at fixed
deviation parameters (Barnard et al., 20064, 2006b; Liu et al.,
2014), although this constraint has been relaxed in some analyses
(Kacher & Robertson, 2012). Intensity-based tomographic recon-
struction approaches have been applied to a number of analyses of
dislocations including dislocation networks in epitaxial films
(Barnard et al., 20064, 2006b, 2010), dislocations near indentation
crack-tips (Sharp et al., 2008; Tanaka et al., 2008), grain-boundary/
dislocation interactions in metals (Kacher et al., 2011; Kacher &
Robertson, 2012, 2014; Chen & Yu, 2019), and dislocation configu-
rations in geological materials (Mussi et al., 2014, 2017).
Although they have been applied to a number of cases, use of
intensity-based reconstruction techniques for dislocation tomog-
raphy does pose some challenges. First, since dynamical diffrac-
tion contrast associated with dislocations and other specimen
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The characterization of the three-dimensional configurations of
dislocations is important to understand their influence on many
important materials processes. Examples include the interaction
and slip processes between individual dislocations and how
these impact development of deformation microstructures, the
interactions between dislocations and interfaces, and defect miti-
gation in epitaxial thin film growth. Moreover, the development
of mesoscale dislocation simulation approaches, such as discrete
dislocation dynamics (DDD), is driving a need for experimental
approaches to validate these techniques (Bertin et al., 2020).

Although complex arrangements of dislocations are well-
resolved by diffraction contrast techniques in transmission elec-
tron microscopy (TEM), particularly under weak-beam imaging
conditions (Cockayne et al., 1969), information regarding feature
height position is mostly lost in any single image since TEM is a
projection technique. This challenge has motivated much interest
in developing diffraction-contrast tomographic techniques suit-
able for dislocation imaging, as has been the subject of several
recent reviews (Liu et al, 2014; Feng et al, 2020; Hata et al,
2020a, 2020b).
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& Dunin-Borkowski, 2009)], intensity-based reconstructions of
diffraction-contrast images can suffer from imaging artifacts.
Additionally, since many images are required to minimize errors
in the intensity-based reconstructions, the acquisition of data can
be tedious [e.g., requiring on the order of 50-100 images (Liu
et al, 2014)], particularly given the constraint of maintaining
constant diffracting conditions throughout the entire tilt series.
More recently, it has been shown that intensity-based reconstruc-
tions can be performed using fewer images (e.g., 4 to 10) if the
images are binarized into black and white pixels prior to
tomographic reconstruction (Mussi et al., 2021a, 2021b).

An alternative approach, which we consider in this paper, is to
draw on the prior knowledge that the observed curvilinear fea-
tures are line objects, namely dislocations. With this knowledge,
the problem can be simplified to measuring the projected two-
dimensional dislocation line positions on the individual frames
of the tilt series and then solving for the three-dimensional con-
figurations of the dislocations based on the tilt geometry. Such an
approach is similar in spirit to other object-based tomographic
approaches, such as recent work reconstructing 3D distribution
of precipitates and cavities through a simplified spherical repre-
sentation (Field et al., 2020). A key advantage of such an object-
based tomographic approach is that fewer images are required
compared to intensity-based tomographic methods. Indeed, as
has been demonstrated by application of the “stereo-pair” method
to dislocation analyses (Basinski, 1964; Modéer, 1974; McCabe
et al., 2003; Eftink et al., 2017; Jacome et al.,, 2018; Oveisi et al.,
2018), height information can be determined by measuring the
image parallax from as few as two images collected at different
tilts. In principle, however, one would expect improved precision
and greater robustness to imaging ambiguities, such as those
resulting from dislocation overlap, from analyses with datasets
sampling more than two orientations.

In this article, we present a semi-automated approach for
object-based tomography of dislocation structures and demon-
strate this approach for dislocations observed in a deformed speci-
men of stainless steel. As we discuss, our approach can be broken
into three stages: the initial extraction of dislocation line objects
from the individual frames, the alignment and matching of
these objects across the frames in the tilt series, and finally, the
tomographic reconstruction to determine the full three-
dimensional configuration of the dislocations. We demonstrate
the method for a dataset collected from a dislocation network
imaged by diffraction contrast scanning transmission electron
microscopy (DC-STEM). Drawing on our theoretical basis for
these reconstructions, we investigate the relative influence of dif-
ferent sources of uncertainty on the positional determinations.

Materials and Methods
Tomography Algorithm

Our object-based tomography approach is enabled by two innova-
tions in data representation drawing on graph theory: (1) we
employ a dislocation line segment-node representation for the
dislocation network, using a data structure commonly employed
in DDD simulations to represent our segmented image data,
and (2) we employ an arc-length mapping scheme to relate the
discretized lines to one another across the images.

Our tomography algorithm is broken down into three inde-
pendent steps, as illustrated in Figure 1. First, the dislocation
lines are extracted from each image of the tilt series and converted
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Fig. 1. Schematic representation of our tomography algorithm.

into a discrete representation composed of a set of straight line
segments connected at nodes. For subsequent analysis, only this
discrete representation is employed (i.e., we do not analyze the
TEM images any further), and it is for this reason that we refer to
our algorithm as being “object-based.” This contrasts with the
intensity-based tomography approaches discussed above, which
use a pixelized representation of the observed image intensities to
perform the reconstruction. Next, the images and dislocation net-
works are aligned and matched with each other so that the origin
and coordinate axes are consistent from image-to-image, and so
that we are able to identify the same dislocation line across each
of the images. Lastly, we perform the tomographic reconstruction
to estimate the z-position at each point along the dislocation lines.
We now discuss in detail each step of the semi-automated approach.

Our approach is implemented in MATLAB as the ObDiTo
code (Object-based Dislocation Tomography). This code is
available for use via the author’s website (Sills).

Line Extraction
During the line extraction step, the pixelized dislocation images
are converted to a discrete set of line segments and nodes. The
example in Figure 2 illustrates the approach for dislocations in
304L austenitic stainless steel observed using DC-STEM, as
discussed in more detail below, but the approach can equally be
applied to images collected using conventional or weak-beam
dark-field transmission electron microscopy. There are two
major phases to this line extraction step. In the first phase, we
segment the image to identify a set of pixels associated with the
observed dislocations. In our implementation, we accomplish
this segmentation by first thresholding the image and then apply-
ing a “thinning” procedure, employing standard image processing
procedures. We make use of several functions, denoted below by
italics, that are available through the Image Processing Toolbox in
MATLAB (R2020b). Unless otherwise stated, we use default
parameters and settings for these functions. Other segmentation
approaches optimized for curvilinear features, such as curvature-
based ridge finding (Steger, 1998) or convolutional neural net-
works trained on dislocation objects (Roberts et al., 2019; Holm
et al, 2020), could also be employed. In the second phase of
the line extraction, the skeletonized pixel representation is con-
verted to an object structure defined by nodes and line segments.
In the procedures below, the only place where manual input is
necessary is when the skeleton is manually edited to correct errors
in the pixel-based segmentation (Phase 1, Step 6).

The detailed steps for these initial two phases, as depicted in
Figure 2, are as follows:

Phase 1: Pixel-based segmentation

1. The image is de-noised by applying nonlocal means filtering via
the imnlmfilt function.

2. The image is thresholded so that only pixels associated with dis-
location lines remain. We use the local adaptive thresholding
approach of Bradley and Roth (Bradley & Roth, 2007) via
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Fig. 2. Dislocation line extraction algorithm. (a) Raw DC-STEM image of dislocations. (b) Step 2: Thresholded after denoising. (c) Step 4: De-fuzzed and cleaned up
thresholded image. (d) Step 5: Line skeleton obtained by thinning the thresholded image. (e) Step 6: Skeleton after manually adding/removing lines. (f) Step 8:

Final line objects with nodes and segments.

the adaptthresh function. The approach is quite simple: given a
local neighborhood size around each pixel, a mean intensity
within that neighborhood is computed and the pixel is thresh-
olded as a foreground pixel if it is above some fraction a of this
mean intensity.

3. The thresholded image is “de-fuzzed” by repeatedly applying a
majority filter using the bwmorph function. This smooths
out the edges of the thresholded regions. The filter is applied
repeatedly until no pixels are changed.

4. The thresholded image is further “cleaned up” by removing “blobs”
which are clearly not associated with dislocations, that is, are not
long and thin. Specifically, our procedure removes a blob if its
area is below a user-specified minimum value (using the bwarea-
filt function) or if the blob fills more than half of its bounding
box (using the bwpropfilt function with the “extent” attribute).

5. The thresholded image is converted to a “skeleton” structure
comprising a single row of pixels centered on each dislocation
line. This is accomplished with a “thinning” algorithm (Lam
et al., 1992) via the bwmorph function (with the “thin” option).
The thinning process may result in some minor imperfections
in the skeleton, that is, pixel-sized holes. To remove these
imperfections, we dilate the skeleton by buffering all fore-
ground pixels with one pixel on all sides, and then thinning
once more. This process produces the final skeleton.

6. The skeleton is manually edited to fix any incorrect features,
such as missing lines and incorrectly identified lines. This is
accomplished with a custom graphical editing tool we wrote
in MATLAB.

At this point, we have a pixelized representation of the dislo-
cation network, where each dislocation line is composed of a
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skeleton with the width of a single pixel. In the next phase, we
convert from a pixel representation to an object representation
composed of line segments connected at nodes. An important fea-
ture of the object representation is the distinction between physi-
cal nodes and non-physical nodes. Physical nodes are nodes that
terminate dislocation lines where they meet a free surface and
nodes where multiple dislocation lines meet, as shown in
Figure 3. These nodes are physically meaningful in terms of the
topology and spatial arrangement of the dislocation network.
On the other hand, non-physical nodes, which are simply the dis-
crete points along the dislocation line-object, are not topologically
significant (adding and removing them does not change the net-
work topology) and are arbitrarily located along the line. In our
approach, we leverage the significance of physical nodes for object
matching and image alignment.
Phase 2: Conversion to object representation.

1. The pixelized skeleton is converted to a line segment representa-
tion. First, we identify the “branch points” in the skeleton
where more than one dislocation intersects via the bwmorph
function. We then loop over branch points and hop from
one pixel to another pixel until we encounter another branch
point. During hopping, if we encounter more than I, pixels,
a node and dislocation segment is inserted.

2. The line segment representation is cleaned up by removing all
dislocation objects below a minimum length L., Here, we
define a “dislocation object” as a section of line connecting
two physical nodes. If one of the physical nodes on a line
with length L < L,,;,, only has one connection (i.e., it intersects
a free surface), then we simply delete that line. If both physical
nodes have more than one connection and L < L,,;,, then to
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Fig. 3. Schematic showing the basic features of our object-based tomography approach. “Top view” is the view as seen in the TEM. The dislocation network is
decomposed into dislocation objects that terminate at physical nodes, with different objects denoted by different colors. In some cases, “fake” physical nodes

may appear where lines cross in the TEM image.

delete the line we must merge the nodes together (i.e., we can-
not simply delete the line) in order to conserve the network

topology.

At the end of this process, the image has been converted to a
structure characterized by a set of nodes with coordinates r and an
array of segments S containing pairs of nodes. Line extraction
must be performed on each image to be used for the tomographic
reconstruction.

Object Matching

Before we can perform a reconstruction using the dislocation net-
work line objects obtained using the procedure in the section
“Line extraction,” we must match the dislocation objects identi-
fied in the individual frames to their corresponding objects across
the full data series, a process we call object matching. In other
words, we must identify the same dislocation object across each
image. This procedure is not trivial to accomplish for several rea-
sons. First, as the sample is tilted, the dislocation lines move, mak-
ing their position from image-to-image slightly different. Second,
as the sample is tilted, lines that are separate from each other in
one image may overlap in another image. This introduces spuri-
ous physical nodes where it appears that two dislocations intersect
each other, but in reality they do not (see Figure 3); we call these
features “fake” physical nodes. Fake physical nodes change the
apparent topology of the dislocation network, making it difficult
to relate networks from different images to each other.

While, in principle, it should be possible to develop an auto-
mated procedure for object matching, given the above complica-
tions it is difficult. We chose instead to develop a graphical tool
to allow a user to manually match physical nodes across images.
To this end, we require that each dislocation line is uniquely iden-
tified by the pair of physical nodes that bound it. In other words,
we require that two physical nodes that bound a dislocation object
are never connected by more than one dislocation line. This
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approach is akin to viewing the dislocation network as a simple
graph (no multiple edges, ie., edges that connect the same
nodes), comprising a set of edges connected at nodes. Each dislo-
cation object is an edge of the graph, and its bounding physical
nodes are the graph nodes. The requirement that there are no
multiple edges in the graph seems restrictive, but since there is
a high degree of flexibility in how each dislocation object is
defined it should not be difficult to satisfy this requirement in
practice. See Figure 3 for an example of how a network can be
decomposed into dislocation objects. Using the manual object
matching tool, physical node pairs are matched up across the
images. The dislocation objects (edges) connecting those physical
nodes are then extracted from the overall network. The user may
match as many or as few physical node pairs as desired (i.e., the
whole network does not have to be matched). Also, an edge does
not have to be identified in every image from a tilt series (e.g.,
reconstruction is possible using as few as two images worth of
information for a dislocation object).

Tomographic Reconstruction

In our tomographic reconstruction, we define an imaging coordi-
nate system with the tilt axis in the y-direction, the z-direction
opposite the electron beam direction, and the x-direction implied
by the right-hand rule. The imaging plane is the x-y plane, so
rotation about the tilt axis induces motion in the x-direction in
the imaging coordinate system (see Appendix A).
Determination of the z-height out of the imaging plane of each
point on the dislocation lines is the fundamental goal. We assign
one image as our reference image, which is used to define the con-
figuration in which we will perform the reconstruction. For exam-
ple, the coordinate of node i in the reference image with tilt angle
0™ is (xref, yref, zi°f), and we seek to determine z'. On the other
hand, for image j the tilt angle is @’ # ©™, so the x-coordinate of
node i in image j is x, # x'. Our basic approach for tomo-

i
graphic reconstruction leverages the relationship between
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z-position and x-position in the imaging coordinate system as the
specimen is tilted. Specifically, basic geometry reveals (see
Appendix A) for the same point on a dislocation line the z and
x-coordinates are related as

f = 2sin(of — o), (1)
where f/ = x] — cos(&/ — @*")x'*{. Hence, the change in
x-position as the tilt angle is varied is linearly related to the
z-position in the reference image. If we extract the set of
x-coordinates from all images, we can determine the z-coordinate

2 through a linear regression of f versus sin(e’ — ™).

Before we can proceed with obtaining z*f however, three chal-
lenges remain: (1) the images must be aligned so that their tilt
axes are coincident, (2) we must orient the images so that the
tilt axis is along the y-axis (since the tilt axis may be arbitrarily
oriented in the x-y plane), and (3) we must determine how to
find “equivalent” points on the same dislocation line from
image-to-image. Challenge 1 is easily solved by noting that the
centroid of the dislocation structure does not move as the sample
is tilted. We can estimate the centroid of each image by comput-
ing the mean position among the set of physical nodes which have
been matched across all images (recall that physical nodes do not
have to be matched in all images). Let the set of physical nodes
which have been matched across all images be M. The resulting
mean position for image j is then

Z(xl’yl’ i ’ (2)

Miem

&, 5,7) =

where Ny is the number of nodes in M. We then align the
images by subtracting the mean position of each image from all
nodal coordinates within that image. To solve challenge 2, we
must determine the orientation of the tilt axis relative to the ver-
tical (y) axis of the images (we assume that the tilt axis is always
in the plane of the image and that its orientation is the same in
every image). The tilt axis will form an angle o with the vertical
axis of the images. We estimate a by performing a linear regres-
sion of x] versus y/ for the matched nodes in M, the slope of
which is related to a via the inverse tangent operator.

Resolving challenge 3 is the most difficult aspect of object-
based tomography. The basic issue is that, in general, the non-
physical nodes obtained in each image are not directly related
to each other, because they are the result of an arbitrary extraction
process. For example, it is highly unlikely that nodes will be placed
at the exact same spot on a given dislocation line across all images.
But in order to utilize equation (1), we must collect the
x-coordinate from each image at the exact same spot. To accom-
plish this, we need a mapping that relates all points on each dis-
location line from one image to another. We establish such a
mapping using the graph description of the dislocation network;
within the graph for each image, we know that two dislocation
objects correspond to the same dislocation if they share physical
nodes. This reduces our mapping problem to relating the points
within a given pair of objects (from different images) with the
same (matched) physical nodes. To accomplish mapping within
a single object, we introduce the notion of a relative y-arc length
mapping. We define the y-arc length as the total absolute change
in y-position over some trajectory through the x-y plane. We can
state this mathematically by defining the y-position of the disloca-
tion object parametrically as y(t), where t varies from 0 to 1 from
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the beginning to the end of the dislocation object. Accordingly,
the y-arc length from t=0 up to some position ¢ on the object is

[ [
Y(t) = L 7‘dt 3)
The relative y-arc length is then defined as
(4 — Y(t/)
Y(t) = YO “)

that is, the y-arc length at ¢ divided by the total y-arc length for
the edge. In practice, we compute the y-arc length using the dis-
crete segments in our networks by summing the absolute value of
the difference in y-coordinates between the nodes bounding each
segment (or interpolating between the nodes to obtain the y-arc
length in the middle of a segment). In our mapping framework,
we assume that two points of equivalent relative y-arc length on
the same object are identical points in space. Because of the fact
that all lengths in the y-dimension (parallel to the tilt axis) are
conserved as the specimen is tilted, this mapping is exact as
long as the dislocation line extraction is exact. Obviously, line
extraction is inexact, so there is error in the y-arc length mapping.
In Section “Uncertainty analysis,” we perform an uncertainty
analysis to explore how sensitive the accuracy of the reconstruc-
tion is to error in the line extraction.

To summarize the above discussion, the steps of the tomo-
graphic reconstruction are as follows:

1. Shift all datasets so that their tilt axes are coincident. This is
accomplished by computing for each image the mean position
of all physical nodes which have been matched across all
images, and then subtracting the respective mean position
from each image.

2. Rotate datasets so that the tilt axis is coincident with the vertical
(y) axis. The orientation of the tilt axis is determined through a
linear regression of the (x,y) coordinates of the physical nodes
which have been matched across all images.

3. Compute the relative y-arc length of each dislocation object in
the aligned dislocation networks. This is done by summing the
difference in y-coordinates of all segments in each edge.

4. For each node i in the reference image, determine x; for each
image j using the relative y-arc length mapping. Thls means
we determine Y, , the relative y-arc length for node iin the
reference image, and then determine x, = x(Y; ) where
x(Y) is the x-position of the same edge in image j at relative
y-arc length Y obtained by interpolating the nodal data.

5. Determine the z-position of each node using equation (1).

This concludes the reconstruction algorithm. We emphasize
that the essential ingredients of the reconstruction algorithm
are: (1) the graph representation of the dislocation networks
which enables us to relate the images together on the basis of
physical nodes by matching edges of the graph (dislocation
objects) up with each other and (2) the relative y-arc length map-
ping which allows us to unambiguously map between any point
on a pair of matched objects.

Electron Microscopy

To illustrate the application of our approaches, we analyzed dislo-
cations observed in a specimen of forged austenitic stainless steel
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Fig. 4. Synthetic dataset from discrete dislocation dynamics simulation used for algorithm verification. (a) Top and (b) isometric views.

(304L). Details regarding this material and its overall microstruc-
ture have been discussed previously (Sabisch et al., 2021). The
TEM specimen for this work was prepared by electropolishing.
After initial mechanical thinning to a thickness of 150 um, the
specimen was jet polished (Struers, Tenupol-5) in a solution of
10% perchloric acid and 90% ethanol at a temperature of
—12°C, potential of 24.1 V, and current of 61 mA. The specimen
was observed using an FEI Titan TEM, operated at 200 keV.
Images were collected using the diffraction-contrast STEM
approach (Phillips et al., 2011), with a convergence angle of
4.03 mrad and collecting the selected diffracted intensity using
an annular dark-field (ADF) detector. We maintained a weak-
beam diffracting condition (approximately 2.5 g) using a {111}
systematic row. We employed an objective aperture to limit the
signal reaching the ADF detector to that from the 2 g reflection.
We have found that this condition gives a good balance of
image contrast and image localization. The tomographic tilt series
was conducted using a conventional two-axis double-tilt holder.
We tilted about the {111} systematic row over a range of angles,
making fine adjustments to the tilt to ensure that the diffracting
conditions remained constant through the series. The maximum
positive and negative tilt were limited by interference with the
microscope’s objective aperture.

Results
Reconstruction Algorithm Verification

To verify the details of our reconstruction algorithm—specifically
the graph-based alignment and y-arc length mapping—we con-
structed synthetic TEM datasets by producing three-dimensional
dislocation networks composed of straight line segments, and
then “imaging” these networks via two-dimensional projections
after tilting to various angles. This approach allows us to validate
that our algorithm and code are correct since we know the exact
z-coordinates of the synthetic datasets. It also allows us to assess
sensitivity to various sources of uncertainty in the imaging and
extraction processes. By analyzing synthetic datasets of varying
degrees of complexity, including a snapshot obtained from a
DDD simulation as shown in Figure 4, we have verified that
our tomography algorithm is “perfect” in the sense that the
exact solution is recovered in the absence of noise in the posi-
tional data. This result verifies that our algorithm is sound and
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that the y-arc length mapping is an appropriate approach for
relating images to each other.

Uncertainty Analysis

Using our synthetic data, we can analyze the uncertainty of the
reconstruction in the form of the amount of error in the recon-
structed z-position relative to the actual z-position. We consider
the error in reconstructing straight dislocation lines of length L.
Each line is oriented so that its angle from the tilt axis in the
plane x-y is 6 and its angle out of the x—y plane is ¢ (see
Fig. 5). Using this approach, we can assess how the uncertainty
varies as the line orientation (6, ¢) varies. In each synthetic data-
set, we insert 20 dislocation lines and introduce various types of
noise into the projected images used for reconstruction, as dis-
cussed below. Lines were inserted into an area of approximately
2L by 2 L. We repeat this process 1,000 times to fully populate
an average error surface in (6, ¢) space.

Below we consider three different types of error: uncorrelated
positional error, correlated shift error, and correlated rotational
error. Uncorrelated positional error is modeled by randomly shift-
ing each node within its respective image plane according to a zero-
mean normal distribution with standard deviation 8. This error
simulates uncorrelated noise in the dislocation lines and errors in
the line extraction procedures which may induce unphysical “fluc-
tuations” in the line profile. Correlated shift error is modeled by
randomly shifting each node on a dislocation object within the
x-y plane by the same amount prior to tilting and producing a syn-
thetic image. The shift vector for each line is obtained by sampling
a zero-mean normal distribution with standard deviation . This
error simulates shifting that may occur if the apparent positions of
the dislocation objects shift relative to each other during tilting as a
result of contrast variations. Finally, correlated rotational noise is
modeled by randomly rotating each object within the image
plane for each image. The amount of rotation is obtained by sam-
pling a zero-mean normal distribution with standard deviation &,.
Such errors could arise, for instance, in tomographic acquisitions
obtained using a tilt-rotate holder rather than a conventional
two-axis double-tilt holder.

To quantify the error induced by each type of noise, we com-
puted the average error in z-height E, of each dislocation line. We
then binned up (6, ¢) space into bins of width 4.5° and averaged


https://doi.org/10.1017/S1431927622000332

Microscopy and Microanalysis

@
=
(1]

=

=]

1
1
1
I
1
1
I
I
]
1

tilt axis

o

dislocation
line

7z X

Fig. 5. Line geometry used for error analysis.

over the error of all replica lines within each bin. The resulting
error surfaces are presented in Figure 6 with noise parameters
of /L =0.01, 8, = 2°, and J./L =0.01. Synthetic TEM images
were spaced apart by 3° tilt increments using tilt ranges of +3°
(3 total images) and +12° (9 total images). A segment length of
lieg/L=0.1 was used. The following conclusions can be drawn.

Uncorrelated shift noise

Correlated rotational noise

639

First, the error magnitude drops by about an order of magnitude
upon increasing the tilt range from +3° to +12°, demonstrating
the importance of a wide tilt range. Second, the trends in (6, ¢)
space are different for each type of error. Uncorrelated shift
error is most significant near 6 = 90° and, to a lesser extent,
near ¢ = 90°. In contrast, correlated rotation error is most signif-
icant when 6 < 60° and ¢ < 60°. Finally, correlated shift error
does not exhibit any sensitivity to 6 and ¢. In terms of error mag-
nitude, for the chosen error parameter values the reconstruction
error is in the range of 0.01 L to 0.05L when 6 < 70° and
¢ < 80°. When 60 > 70°, the error due to uncorrelated shift
noise increases precipitously, likely rendering an accurate recon-
struction impossible for lines in this angle range. This is because
it becomes incredibly difficult to clearly distinguish points on the
dislocation line from each other, which manifests by the relative
y-arc length mapping breaking down. We note that this problem
is not unique to our algorithm; any dislocation tomographic
reconstruction algorithm will suffer large errors when 0 is close
to 90°.

Figure 7 shows how the number of images taken over a +12°
tilt series influences the average error when all sources of noise
are applied simultaneously using the same noise parameters as
above. First, we note by comparing the “9 images” result with
the bottom row of Figure 6, obtained using the same conditions,
that the different error modes seem to combine in an additive

Correlated shift noise

Out-of-plane angle, ¢ (degrees)

g
Il
w025
o
02
0.15
0.1
0.05
= 0
g
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—
(X}
-]

Inclination angle from tilt axis, @(degrees)

Fig. 6. Results from uncertainty analysis showing average error in z position divided by the line length, E,/L, for different types of error with tilt series at 3° incre-
ments over tilt range [ — ||, + |w[]. First column: uncorrelated shift noise with §,s/L = 0.01; second column: rotational error noise with 8 = 2°; third column: cor-
related shift noise with §.s/L =0.01. Top row: tilt range |w| = 3°; bottom row: tilt range |w| = 12°. Each image series had 20 randomly oriented lines with segment

length [seg/L =0.1.
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Fig. 7. Error due to combined noise showing the influence of the number of images over a +12° tilt series. Noise parameter values: §,¢/L = 0.01, 8 = 2°, 8cs/L =0.01.

manner; the error surface obtained in Figure 7 is close to the sum of
all errors in the bottom row of Figure 6. Second, Figure 7 shows that
the error reduces at a slow rate as the number of images is increased.
For example, increasing the number of images by six results in about
a 1% reduction in average error. The region of large error near
6 = 90° also shrinks as the number of images is increased.

Finally, in Figure 8, we show how the reconstruction error
increases as the uncorrelated shift error increases, with values of
Sus/L =0.025, 0.5, and 0.1. Figure 8 shows that the average recon-
struction error increases sublinearly as d,,/L is increased (ie.,
doubling 6,s/L does not double the reconstruction error). When
Oys/L is largest, the reconstruction error is relatively insensitive
to the line orientation angles (a flat error distribution), but is
still largest near 6 = 90°. Based on these results and expected
positioning errors in dislocation line extraction, we estimate the
average reconstruction error to be about E,/L ~ 0.1.

Dislocation Network in Forged 304L Stainless Steel

To illustrate the use of our algorithm, we apply it to dislocations
observed in the forged 304 L stainless steel specimen. Figure 9
shows DC-STEM images of the specimen taken over a single-tilt
series at tilt angles of —11.87, —2.38, 2.38, 7.11, and 11.87 degrees
(an image was also taken at —7.11 degrees, but line extraction was
difficult with this image due to contrast effects resulting from the

8ys/L = 0.025

0 2.0 4-0

Out-of-plane angle, ¢(degrees)

Oys/L =

proximity of this tilt condition to the (110) zone axis). The dislo-
cation network in the sample is quite complex, as shown in
Figure 9a. Extended dislocations/nodes are visible in a number
of places owing to the low stacking fault energy of this stainless
steel alloy (Meric de Bellefon et al., 2017); this further complicates
the reconstruction, which assumes perfect (unextended) disloca-
tions. For simplicity, we consider a smaller portion of the image
for tomographic reconstruction, the boxed portion of the image.
We also mark in Figure 9 a few reference points A, B, and C
within each image to help relate images to one another; we will
continue marking these points in our analysis below.

After matching up the same dislocation objects across all
images, we used the physical nodes that were present in all images
to re-center the networks and determine the orientation of the tilt
axis. Note that one dislocation in the network (the “C” shaped
line in the top left) was only fully visible in three out of five
images, and so its physical nodes were not used during
re-centering. The re-centered dislocation networks are shown in
Figure 10. The dataset used to estimate the tilt axis inclination
is shown in Figure 11, with all points for each physical node
shifted by the mean x and y values and collected together. Note
that there is considerable scatter in the data, indicating the degree
of uncertainty in the line extraction.

Next, we perform the tomographic reconstruction on the
matched dislocation objects. Examples of fits to equation (1) for

0.05 6ys/L = 0.1
_ . _ . 025
T
J'J %<‘-’° 0<‘ 02
&
0.15

®

eo D ?m{ 0.1
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Fig. 8. Error due to combined noise showing the influence of magnitude of uncorrelated shift error, 5,s/L, with a £12° tilt series and 9 images. Other noise param-

eter values: 8, = 2°, 8.s/L =0.01.
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(d) M
Fig. 9. DC-STEM images of a forged stainless steel sample used for tomographic reconstruction. (a) Full field of view showing boxed portion used for tomography.
(b-f) Boxed portion at tilt angles (b) @ = —11.87, (c) —2.38, (d) 2.38, (e) 7.11, and (f) 11.87 degrees. The labels A, B, and C show reference points for comparison with
extracted lines (in Fig. 10) and tomographic reconstruction (in Fig. 13).
400 Fit line
40| _ Tilt axis |
300 . _-‘I = 51 '50
$ e
200 o : £
20|
= 100 = Le
g = s
= 9 = ol s
| /" .8
-100 = R N
-200 | 20+ ! -
-300 et
' : i -40 ¢
-600 -400 -200 0 200 400

z (nm)

Fig. 10. Re-centered dislocation networks with coincident tilt axes. Large markers
denote physical nodes. Labels A, B, and C refer to positions marked on the original
data in Figure 9.

two nodes are given in Figure 12, showing a node with (a) a good
fit and (b) a poor fit. The poor fit in (b) results from the disloca-
tion line being orthogonal to the tilt axis (i.e., 6 ~ 90°), resulting
in a large uncertainty as shown in the section “Uncertainty anal-
ysis”. As a result, the z height of the node cannot be determined
accurately. In general, when the dislocation line is not close to
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Fig. 11. Determination of the tilt axis inclination a. Each data point corresponds to a
physical node. If the dataset was perfect, all points should fall on a straight line.

being orthogonal to the tilt axis, the fit to equation (1) is reason-
ably good.

The final 3D reconstruction is presented in Figure 13 using the
image with @ = 7.7° as the reference image. Each dislocation object
is colored differently. Using the physical nodes connecting only
one object (e.g., at a free surface), we also estimate the position
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Fig. 12. Determination of the z coordinate for nodes via equation (1), showing examples with (a) a good fit with R*=0.998 and (b) a poor fit with R*=0.537. In
Figure 13, node (a) is marked with a O marker and node (b) is marked with a [] marker.

and orientation of the TEM foil surfaces as gray planes obtained
by linear regression. To differentiate nodes with a high degree of
uncertainty, we have set some line segments to be transparent. We
identify a node as being “uncertain” if any of the three following
criteria are met: (1) the segments connecting the node form an
inclination angle of 6>80° relative to the tilt axis (y-axis in
Fig. 13); (2) the R* value for the fit to equation (1) is less than
0.7 indicating a large degree of scatter in the extraction data; or
(3) the y-intercept from the fit to equation (1) is greater than
40 nm (according to equation (1), the y-intercept should be
zero). Criterion 1 accounts for the inherent uncertainty when 6
is close to 90°. Criteria 2 and 3 account for inconsistencies in the
data due to imaging or extraction uncertainties. We note that
some of the lines are found to be “outside” the estimated foil thick-
ness. This is a result of position error from the reconstruction.
Examining the three-dimensional reconstruction, we see that
the dislocation content is distributed through the thickness of
the TEM foil, a fact that is not obvious from individual images.
For example, based on a single image, the “box” structure in
the lower right corner may be interpreted as an interconnected
network feature. However, the reconstruction reveals that the far
right (orange) line forming the box is in an entirely different
plane. Another interesting feature is that the “hard corners” in
several of the dislocation lines (e.g., the dark blue line) are not
associated with significant changes in plane orientation.

Discussion

We have developed an object-based tomography algorithm with
the following advantages over existing approaches: (1) Fewer
images are required to attain the same level of positional accuracy
(our error analysis shows good accuracy with as few as 3 images);
(2) the technique is conceptually simpler than pixel-based
approaches since the reconstruction derives from simple geome-
try; and (3) the technique is inherently consistent with the line
nature of dislocations.

In its current implementation, our method is semi-automated
and still requires several manual operations. Two primary chal-
lenges, which we discuss next, remain to be resolved before the
approach can be fully automated.

One challenge is the automated extraction of dislocation line
objects from TEM images. Often the contrast of the dislocation
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lines varies, resulting in “low spots” in intensity in the middle
of lines. Also, it can be difficult to distinguish true dislocation
lines from unphysical noise. In some cases, it is not possible to
unambiguously identify dislocation lines by hand, let alone with
an automated subroutine. When applied to the stainless steel
dataset presented here, our extraction algorithm successfully
extracts ~80% of the true dislocation line content while also
extracting some unphysical “lines.” We employed a relatively sim-
ple, standard thresholding approach for segmenting the disloca-
tions (Bradley & Roth, 2007). Further improvements could be
made in the approach by employing segmentation algorithms
specialized for curvilinear features characteristic of dislocation
lines, such as curvature-based techniques (Steger, 1998) or
machine learning (Roberts et al., 2019; Holm et al., 2020). If the
image thresholding is accurate, the final “thinning” step and con-
version to segment-based representation is expected to be accurate
as well. Hence, improvements to the segmentation algorithm
should be a major focus going forward.

A second challenge for automation is relating the dislocation
objects from one image to another. Because our approach utilizes
a graph representation of the network to relate dislocation lines
across images to each other, it requires that the dislocation net-
works from each image be topologically consistent. This means
that physical nodes must be the same from image to image so
that graph edges (dislocation objects) can be matched. Physical
nodes associated with points at which the dislocation lines exit
the foil are relatively easy to identify. On the other hand, physical
nodes at the intersection of dislocation lines are more challenging
to identify. This difficulty arises because the projection of two
overlapping dislocation lines, which pass above or below each
other but do not actually touch (e.g., the orange line in Fig. 13),
will erroneously appear in any single image as a physical node.
Distinguishing these “fake” physical nodes from true physical
nodes is challenging. For the dataset analyzed here, such fake
physical nodes were identified by hand and ignored. However,
in principle, the tomographic reconstruction can help to identify
fake physical nodes. Specifically, fake physical nodes are associ-
ated with multiple graph edges (dislocation objects). If they are
true physical nodes, the z-height determined from each edge
should be approximately the same. If instead the physical node
is fake and not connected to one or more of the graph edges,
the z-heights will differ significantly. Thus, it should be possible
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Fig. 13. Tomographic reconstruction of the dislocation network. (a) Isometric and (b)
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“unfolded” views. Each graph edge is colored with a unique color. Line seg-

ments with large uncertainty are semi-transparent (see text). Gray planes denote estimated surfaces based on physical node positions. Labels A, B, and C refer to
positions marked on the original data in Figure 9. Markers O and [] denote the nodes used for Figures 12a and 12b, respectively.

to iterate in the reconstruction, to systematically eliminate such
“fake” physical nodes.

Of all the steps in our tomography approach, the object match-
ing step is the most time-consuming because it requires manually
identifying identical graph edges across images. In principle, this
step could be (at least partially) automated using a graph network
alignment algorithm,; in graph theory, aligning (e.g., relating) graphs
to each other is a common problem and many algorithms have
been developed (Emmert-Streib et al., 2016; Trung et al., 2020).
However, graph network alignment is especially difficult when
graphs are not topologically identical, such as the case here where
fake physical nodes may pollute the topology of one image. Thus,
the extension of graph network alignment algorithms to work
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robustly for complicated topologies will be critical to fully automat-
ing object-based dislocation tomography. An alternative approach is
to use machine learning techniques. Altingdvde et al. (2022)
recently developed a convolutional neural network for matching
dislocations in a stereo image pair. This technique could be
extended to match dislocations across more than two images.

The error analysis we presented in the section “Uncertainty
analysis” was focused on quantifying the error in the recon-
structed z-positions for a straight dislocation line. This provides
a simple case study to clearly demonstrate how the error is sensi-
tive to the line orientation relative to the tilt axis. However, in
practice, many users may be more interested in quantifying fea-
tures of the dislocation network with curved lines, such as the
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dislocation density of each slip system, rather than the precise
z-positions of lines. Quantifying our method’s ability to extract
such features as slip system density in an arbitrary network is
more challenging and requires additional study. Based on the
results in the section “Uncertainty analysis,” we can nonetheless
conclude that when dislocation lines are nearly orthogonal to
the tilt axis it becomes quite difficult to accurately extract any
quantitative feature of the dislocation network.

Finally, we discuss the broader application of the object-based
tomography technique as we have constructed it. Fundamentally,
the technique presented above only works for 1D objects because
it relies on the relative y-arc length mapping [equation (4)] to
identify equivalent points on dislocation lines in each micrograph.
This mapping only works for line objects, but these line objects
could be features of multidimensional objects. For example, the
method could reconstruct edges of grain boundaries, stacking
faults, or stacking fault tetrahedra as long as the same edges are
identified in each image. The method cannot reconstruct points
away from the edges, however. Conceivably the method could
be extended to reconstruct 2D surfaces by including a relative
x-position mapping in addition to the y-position mapping, so
that points in between the edges could be mapped as well.
However, if the surface has a complex (e.g., nonsmooth) morphol-
ogy this may be difficult to accomplish.

Conclusion

We have demonstrated a semi-automated, object-based method
for dislocation tomography. This method draws on the prior
knowledge that dislocations are line objects and as such the
approach requires far fewer individual images in the tomographic
tilt series than conventional intensity-based tomographic recon-
struction methods. The method employs a dislocation node-line
segment representation and an arc-length mapping scheme to
relate the dislocation objects between individual frames. This
approach can be straightforwardly applied to tilt series of disloca-
tion images using any diffraction contrast technique. Key steps for
further automating the approach include improving the line
extraction processing and advancing graph network alignment
algorithms to be robust to apparent topological inconsistencies
resulting from the overlap of nonintersecting dislocations.
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Appendix A: Geometry of tomographic reconstruction

To establish the relationship between the tilt angle @ and the z-height, consider
the geometry in Figure A.l. In the reference “image,” a point on a given
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Fig. A.1. Geometry for performing the tomographic reconstruction.

dislocation line has unknown z-height z™ and x-position x™ relative to the
tilt axis and the plane normal to the electron beam direction (i.e., the imaging
coordinate system). The line connecting this point with the tilt axis has length [
and makes an angle y with the x-axis. This sample is then tilted by an angle @
about the tilt axis resulting in a new x-position ¥’ in the imaging coordinate
system. Our goal is to relate the change in x-position during tilting to the
z-height in the reference image. Using basic trigonometry, we can establish
the following relationships:

ref

tangy = —, (A1)
X
ref
cosyp = I (A.2)
J
cos (Y + w) = XT (A3)

Using the trigonometric identify cos(y + w) = cosycosw — sinysinw in con-
junction with equations (A.2) and (A.3) gives

j

R X
cosycosw — sinysinw = Fcostp. (A4)

Dividing by cosy, using equation (A.1), and rearranging leads to our final
result, equation (1).
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