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DICKSON POLYNOMIALS OF THE SECOND KIND
THAT ARE PERMUTATIONS

STEPHEN D. COHEN

ABSTRACT. It is known that the Dickson polynomial of the second kind
21[14)21 (";i)(—l)ix” "2 permutes the elements of the finite prime field F,, (p odd) when
n+1 = +£2 to each of the moduli p, %(p —1)and %(p + 1). Based on numerical evi-
dence it has been conjectured that these congruences are necessary for the polynomial

to permute F,. The conjecture is established here by a new method.

1. Introduction. Let F, denote the finite field of order a prime power ¢ = pF.
For any positive integer n we shall consider the Dickson polynomial of the second kind

(DPSK) f(x), defined by
n/21 /, _ o
(1.1) fl=3 <”i ’)(—1)'%‘2',
i=0

as a polynomial in [ ,[x]. For properties of DPSK (and a slight generalisation of these)
see [2], [3], [4], [6] and [7]. In particular, in his thesis Matthews [6] observed that, if g
is odd and n satisfies the system of congruences

n+1 =42 (modp),
(1.2) n+1 =42 (mod(qg— 1)),
n+1 =22 (modi(g+1)),

then f;, is a permutation polynomial (PP) of [, i.e. induces a permutation of ;. Indeed
(1.2) implies that f,(—x) = —f,(x) (nis odd) and f,,(x) = d=x for all x in [,.

Actually, when p = 3 or 5 and g is composite (k > 2) there are examples of DPSK
f» known which are PP for which (1.2) does not hold; see [3] and [7]. On the other
hand, when g = p, an odd prime, it has been conjectured in these papers and featured as
problem P4 in the list [4] of outstanding unsolved problems that, if f;, is a PP of [, then
necessarily (1.2) holds. The evidence had been almost entirely numerical because DPSK
are awkward to treat. But now we are able to prove the conjecture by a new method.

THEOREM 1. Suppose that f, is a PP of ), where p is an odd prime. Then
n+1 =42 (modp),

(1.3) n+1= 12 (modi(p— 1)),
n+1= 42 (mod 3(p +1)).
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The proof of Theorem 1 is theoretical. Nevertheless, in order to complete the argu-
ment, it was necessary to compute the resultants of various pairs of polynomials and pay
special attention to those primes p (> 5) for which these were zero, i.e., the polynomi-
als have a common root in F,. For this purpose, the number-theoretical package PARI
(developed by C. Batut, D. Bernardi, H. Cohen and M. Olivier) was most useful and the
awkward prime values eliminated without the need to make a direct check that f,, is not
a PP of [, for any pair (p, n) not satisfying (1.3).

Whilst it is a sensible and unanswered question to ask when f,, can be a PP of [, when
q is even, we shall assume from now on that g is odd. Further, because a PP f;, of [, is
also a PP of [, our results and methods have preliminary consequences for composite
odd g. But, in the main, we shall suppose g = p, an odd prime.

2. Basicresults. Asiswell-known, in studying DPSK it is illuminating to substitute
x = u+u "inf,(x). Thus, identically,

1
2.1) Ja (l/l + —) T N e SE T () B
u
un+l _ 1“
(2.2) :ﬁ, u# +1,
while
(2.3) fn(z) =n+1, fu(=2)= (—=D"(n+1).

In the above connection we partition |, into three sets Sy, S7, So comprising those x € [,
for which the quadratic character of 2 —4in F, is +1, —1 and O, respectively. Thus

1
2.4) s,:{x:u+-, whereuG[Fq\{O,il}},

u
2.5) Sy, = {x:u+é, where u (# :l:l)e[qu and u?' = 1},
(2.6) Sy = {£2}.

In the subsequent treatment, for x € S| US», u will be as described in (2.4) or (2.5) while,
if x € S3, we take u = 1, respectively. Note that 0 € S or S, accordingly as ¢ = | or
—1 (mod 4), respectively, and that f,,(0) = 0.

From now on we assume that f, is a PP of F,, where ¢ = p* is odd. Hence n is odd
and f,(—2) = —(n + 1) in (2.3). For any divisor d of q2 — 1 we write (; for a primitive
d-th root of unity (in F ).

LEMMA 2. p does does not divide n + 1.

PROOF. If p | n+ 1, then, by (2.3), £,(2) = f,(—2) = 0 which means f cannot be a
permutation.
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LEMMA 3. Let g be the highest common factor of n + 1 and g* — 1. Then

{2, if g = £1 (mod 8),
§7 1 25,5>1, ifg=+3(mod8).

PROOE.  Suppose thatd (> 1) is an odd divisoreither of (n+1, g— 1) or of (n+1, g+1).
Then x = {; + ;' € S; or S, respectively, and, in either case, f(x) = 0 butx # 0, by
(2.2), a contradiction. Similarly, if g = £1 (mod8), x = (g + (8"(75 0) € §US; and
4| n+1,then Qg('”” = 1 and f,(x) = 0, a contradiction.

LEMMA 4. Let h be the highest common factor of n(n +2) and q* — 1. Then

h— 1, ifp=3
T3, otherwise.

PROOF.  Suppose d (> 3) is a divisor either of (n,q — 1) or (n, g + 1). (In particular,
d is odd). Put x; = ((’1 +gi, i = 1,2. Then x; and x; both belong to S; or 7, respectively,
and are unequal since d > 3. Moreover, by (2.2), f,(x1) = f,(x2) = 1, a contradiction.
Similarly, if d (> 3) is adivisorof (n+2,q — 1) or (n + 2,q + 1) then
filx) =fulr)) = =1, x1 # x.

We conclude that & | 3. On the other hand, if p # 3,then 3 | g*>—1 and hence 3 }f n+1
by Lemma 3; thus 3 | n(n + 2) and h = 3. The result follows.

From now on we assume that ¢ = p is an odd prime. In fact, if p = 3, then 3 f n+1
by Lemma 2 and consequently (1.3) holds. We therefore suppose that p > 5.

3. Proof of first congruence. As noted above, assume that p (> 5) is prime. Define
€ = G—1, 7 = (1. Then, by (2.4) and (2.5)

. . 1
3.1) si={g+ei1<i<sp-3),
. . 1
(3.2) Sy = {n’+n”,1§j§—2-(p—l)}.
In particular, if p = 1(mod4), then 0 is the member of S; withi = (p — 1)/4in (3.1),
while, if p = 3(mod4), then 0 is the member of S, withj = (p+1)/4in (3.2).

LEMMA S. n+ 1 =42 (modp).
PROOF.  Since f, is a PP of [, with f,,(0) = 0,

I ful) = —1,
x€f},
by Wilson’s theorem. Hence, if A is defined to be the product
A= H Julx)

xe8,US,

x#0
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over non-zero members of S| U Sy, then, by (2.3),

1 1
T f(=2) T (n+1)2

(which, of course, is consistent with Lemma 2). Now, write

(3.3) A

&i(n+l) _ {—i(n+l)

A = —
1 Hl gi— ¢
where []; signifies a product H(”_3l.):/f over all i from 1 to (p — 3)/2 but excluding
HFp—D/4)

i=(p—1)/4if p =1 (mod4). Similarly, set
j(n+1) _ . —j(n+l)
A= L
w—n

where T[], signifies a product H(p_lj):/f over all j from 1 to (p — 1)/2 but excluding

G#P+D /4
j=(+1)/4if p=3 (mod4). Then evidently A = A,A,.
We have
gD _ g
(3.4) A=1]

Let/={i=1,...,5(p —3),i # (p — 1)/4}. As i ranges through /, £?' takes all square
values (# 0, 1) in[,. Further, by Lemma 3, the odd part of %(n+ 1)is primetop—1 and
indeed (%(n +1),p— 1) = 1 when p = 1 (mod 8). It follows that, when p = 1 (mod 4),
as i ranges through 7, £4(*1)/2 takes all 4-th power values (# 0, 1) in F,, twice over. On
the other hand, when p = 3 (mod4), for i € I, £/ takes all 4-th power values
(# 0,1) in F,, (which is, incidentally, the same as saying that £*(**1)/2) takes all square
values (# 0,1) in Fp). In every case

H1(§4i((n+l)/2) _ 1) — Hl(§4i _ 1)
and, consequently, by (3.4),

(3.5) Av=TLE + D/em =TT +€H /e,
Similarly,
D/ |
Py -1
SetJ={j=1,...,3(p—1),j # (p+ 1)/4}. By comparing the set of squares and 4-th

powers (# 0,21) of the set of (p + 1)-st roots of unity (in F,») with {n%,j € J} and
{n¥+D/2) ] j € J} and using Lemma 3 as before, we deduce analogously to (3.5) that

G.7 Ay = [LG +07) /0.

(3.6) A =11
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Combining (3.5) and (3.7), we obtain
(3.8) A=Ay = I *II, & PTLn7" "

x€8,US,
x#0

Suppose p = 1 (mod 4). Then

j(n—1) (b-D/2 i(n—1) el (=Dp-D)
L7 "= 11 " V=) "+ =1,
j=1

since n — 1 is even and = (4. Further,

—3)

[T, €Y = {(pH/zgi(n—l)}gA(n—l)(p-—l)/ét

i=1

= £@=DE=3=D/B~(=Dip-1/4 _ @zﬂ%@ -1

since { = @,—1and 8 | (n — I)(p — 5).
A similar calculation is valid when p = 3 (mod 4). For then

. (r-3)/2 . 1 (ni=D)p=3)
H] é—t(n~l) — H é-z(n*l) — (5%)+ -1
i=1
and

(n—1)p-3)
8 =

[ = 0Py = 1

From (3.8) it follows that in every case

1
(3.9) A= Jlx =-,
x€8,US, 4

x#0

by Wilson’s theorem again. Comparing (3.3) and (3.9) we conclude that, in [,
(n+1)* =4

which is equivalent to n + 1 = £2 (mod p), as required. This completes the proof.
Finally in this section we remark that when p = 5 or 7, Theorem 1 follows from
Lemmas 3 and 5. Hence from now on we assume p > 11.

4. Normalisation. We continue to assume that f, is a PP of [,. The motivation for
the sequel is the following simple observation (related to the work of Brison [1]).

LEMMA 6. Let F,, be a function from [, into itself such that

.1 Fo(x) = £f,(x) Vx €F,.

Then, ifp > 5,

4.2) S (F@) =0, r= L tp—3).
x€F, 2
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PROOF. Sincef, is a PP, forany s = 1,...,p — 2, by Lemma 7.3 of 5],
4.3) (@) =Y ¥ =0

xef, x€F,

In particular, taking s = 2r, r = 1,..., %(p — 3) in (4.3), we see that (4.2) holds with

F, = f,. But for any F, satisfying the hypothesis, (F,,(x))zr = (f,,(x))zr and the result
follows.

Now set N = n + 1. The restriction that p > 11 comes into play in the next result.

LEMMA 7. Supposep > 11. Then
1
N #0,+1 (mod E(p — 1)),
1
N #0,+£1 (mod §(p+ 1)).

In fact, if p = 1 (mod 4), then (p — 1)/4 does not divide N, and, if p = 3 (mod4), then
(p+1)/4 does not divide N.

PROOF. If p = 1 (mod4), then, by Lemma 3, ((p — 1)/4,N) divides 2 and
(3(p+ 1,N) = 1. Thus, since p # 50r 9, (p —1)/4 f Nand 5(p+ 1) f N. Sim-
ilarly, if p = 3 (mod4), then (3(p — 1),N) = 1 and ((p + 1)/4,N) divides 2; thus
Jp—1) f Nand(p+1)/4 J N because p # 3,7.

Suppose N = £1 (mod (p — 1)). Then $(p — 1) | n(n + 2) and hence, by Lemma 4,
%(p — 1) | 3. This is impossible because p # 3,7. Similarly, N = +1 (mod %(p +1))
implies %(p + 1) | 3 which fails because p # 1,5. This completes the proof.

Next, for p > 11, by Lemma 7, we may define unique integers M, L by

4.4) NEiM(mod%(p*l)), 2<M<(p-3)/4,

1
(4.5) N = £L (mod S(p + 1)), 2<L<(p—1)/4,
Granted Lemma 5, it is evident that Theorem 1 is equivalent to the assertion that
4.6) M=L=2.

We now relate these last definitions to Lemma 6.
Setm=M—1,where ] <m <(p—7)/4,and/ = L—1,where 1 </ < (p—5)/4.
(Note that m and ¢ may be even or odd). Define a mapping F, from [, into itself by

fm®), x €S8,
4.7) Fp(x) = {fr(X), X €9,
X, x € Sp.

LEMMA 8. For F, defined by (4.7), (4.1) holds.

PrROOF. By Lemma S,

Fo(x) = Hfu(0), x € So.
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Suppose x = u+u' €S, where w’' = 1. From “4.4)
= —5(p— 1)+ M (mod(p — 1)), 6=0orl.

Then
N -N +M M 9

Ao= (25 = (£ 25) =,

u! u—u!

since u??~1/2 = ;=0¢=D/2 — 41 Thus
F() = fu(0), x€Si.
Similarly, if x = u + u~! € §,, where #?*' = 1, we see from (4.5) that
N = Ee(p— )+ L(mod(p+1)), e=0orl,

and hence
+L FL

utt —u
R = (00 = s
Uu—u
since uf®*D/2 = y=<+D/2 = 41 Thus
Fo(x) = f7(x), x €S,
and the result follows.

LEMMA9. Let £ = (1, 7 = Gps1. Then, foreachr =1,..., %(p —3),

(48) Z[fm(g +£ ')]2r+Z[f€(TIl +n7])]2r 22r+2 2(M2r L2r)

PROOE.

p=2 . . p=2 . ,,

DU+ = 3 Un(€ + €D+ U1 + (=21
0 #p1))2

2 57 [fu0)) +2M7".

X€S,

Similarly,

Z[fz(ﬂ' +0 D =2 3 (i) + 217,

X€S,
On the other hand, by Lemmas 6 and 8 and the definition (4.7) we have
Sl + 0 +22* =0
X€ES, - XES,

and the result follows.

The virtue of (4.8) is that we may expand [f,(z + 2 ")]*" (t = m or £), by means of
(2.1), in powers of z (positive and negative) and use the facts that £ and 1 generate cyclic
groups in the following form (as in Lemma 7.3 of [5]).
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LEMMA 10. For any integer s

pij’zgi_\'{o’ lf(p'wl)/kS,

< —1, if(p—1) s
L s __ Ov if(p+l)/}/s,
J;)TT’ “{+1, if(p+1)]s.

5. First deductions. Let D be the difference D = M — L and P the product P = ML.
To prove (4.6) (and hence Theorem 1) it suffices to show that D = 0 and P = 4 as
members of F,. (Note that M # —2in [, since otherwisep — 2 < (p — 3)/4, by (4.4)).
In this section we shall study the consequences of selecting r = 1 or 2 in Lemma 9.

First suppose r = 1. Then (4.8) can be written

p=2 ) ) P . )
(5.1) STLAE+EN IR ) +16 = 2M* + LY.
i=0 Jj=0
Expand f2(z+2z"") (t = m, {) by (2.1) to obtain
(5.2) e+ )= +22 0 h P+ D+

Since2m < (p—T7)/2<p—1land 2l < (p—5)/2 <p+1, it follows from Lemma 10
that when (5.2) is substituted in (5.1) (witht = mand z = £ and witht = £ and z = 7)
only the constant term yields a non-zero contribution to the sums on the left side of (5.1).
Specifically, we obtain, as an equation in [,

~M+L+16 =2M*+ L%

which may be written

(5.3) M2+L2+%(M—L):8

or
(4M + 1)> + (4L — 1)* = 130,

or, as arelation in [, between P and D,

D D?
5.4 P=4_ -
G- 4 2
Now take r = 2 in (4.8): this produces
p=2 A R A ,
(5.5) S AE N FA )+ 64 = 2M* + LY.
i=0 j=0
Square (5.2) to obtain
(5.6 flavz H=2"+4"24 v+ + 7Y
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where
c=212+2%+- -+ )+ 1+ 1)
TQT? +1
- (—3—) T=t+1.

Since4m <p—7 <p—1land4f <p—5 <p+1, we again need only take account of
the constant term in (5.6) when substituting in (5.5). Accordingly, by Lemma 10, in F,

we have
ML M-L
(5.7) MY+ —— = ¢ = = 3D
3 6
in terms of D and P this becomes
D3 D
(5.8) D*+4PD* +2P" + ==+ PD+ = = 32.

Eliminating P from (5.8) by means of (5.4) we deduce that
12D* + 16D — 189D? — 4D = 0.

Hence either D = 0 (so that, from (5.4), P = 4 and we are finished) or, as an equation in
Fp,

(5.9) 12D + 16D* — 189D — 4 = 0.

If (5.9) is insoluble in [, the proof is complete. Obviously, however, for infinitely
many primes p, (5.9) has a solutionin [,. Thus we require also to investigate (4.8) when
r = 3. The details follow in the next section.

6. Further working. Since p > 11 we may take r = 3 in Lemma 9. The algebraic
manipulation, however, becomes considerably greater. Moreover, the normalisation of
Section 4 no longer guarantees that we need only have regard for the constant term in
the expansion of f2; the coefficient of zP*!) may also be significant. Nevertheless, with
some effort, we are able to show that no further values of r are required to ensure that
D = 0. We proceed with the details.

When r = 3, (4.8) becomes

p—2 ) ) p ) )
6.1) ZO FEE+EN+ D f + ) +256 = 2(M° + L).
i= j=0

We require some facts on the expansion of f0(z +z71).

LEMMA 11.  For any non-negative even integer j < 6t let c; denote the coefficient of
& (or of z77) in the expansion of f(z+ 7~ '). Then

_ TAIT* +5T2 + 4)

6.2) co 20

T=t+1.
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Further, if j > 4tand J = %(6t —J), then

(6.3) o= +DU+2U+)T+HI+5) <J + 5>.

120 5

PROOE. Cube (5.2). The constant term arises from products
(a+ Db+ D20 (c+ 1), 0<a,b,c<t,

where 4t — 2(a+ b) — 2t + 2¢ = 0 (i.e. ¢ = a + b — 1) together with those obtained by
substituting z~! for z. This yields

t
=6 3 (a+ Db+ Da+b—t+1)—63 (a+ D(t+ D+ (t+1)
0<a,b<t a=0
a+b>t
and leads to (6.2) with some calculation. (The reader might care to verify a few cases by
means of computer algebra, for example).
For (6.3) the restriction that j > 47 means that all relevant terms are products

(a+ Db+ D)(c+ 1)a® 2@t 0 < g b c<t,
where j = 6t — 2(a+ b + ¢). Thus

= Yy, (a+Db+1D(c+1)
0<a,b,c<t
a+b+c=J
which leads to (6.3) after further calculation.

In a discussion of (6.1), if m < (p — 1)/6and £ < (p+1)/6 (lLe. M < (p+5)/6
and L < (p + 7)/6), only the constant terms in foz+z Y, t = m,(, matter. We
deal with this situation in case (i) below. When other values of M (< (p — 3)/4) or L
E@E-—-1D / 4) are involved (as permitted by (4.4) and (4.5)) we also need to take into
account the coefficients of z¥?~1) and/or of z-?*!), respectively. This occurs in cases (ii)
and (iii).

CASE(i). m<(p—1)/6,{<(p+1)/6.

In this case, by Lemma 10 and (6.2), (6.1) yields

MOIM* +5M> +4)  LOIL* +5L2 +4)

= 128.
20 20 28

6.4) M6+L(’+%

Plainly (6.4) can be written as a polynomial relation (of degree 6 in D). Eliminating
P by means of (5.4) we derive a polynomial in D of degree 6 and zero constant term.
Specifically, this shows that either D = 0 or

(6.5) 960D’ + 1564D% — 18560D° — 10435D% + 60220D + 2816 = 0
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(after multiplication by —640 to make the coefficients integral). (Again this could be
checked by computer algebra).

The proof is therefore complete in this case unless p is a prime for which the polyno-
mials in (5.9) and (6.5) have a common root D. In fact, by means of the package PARI,
we calculated this resultant to be

17,921,557,947,801,600 = 2'3.32.5%.5569. 1,745,927

(its prime decomposition). Thus there is a common root when p (> 11) = p; = 5569 or
p2 = 1,745,927.

Suppose p = p;. Again using PARI we found the common root to be D = 14 (or
—5555 if, as positive integers, M < L) so that (as a member of [,), P = 2687. Hence
D?+4P = (M +L)* = 5375 in F,,. But 5375 is a non-square in F,,, . Hence integers M, L
do not exist with (M + L)?> = 5375 (in F,). Thus no exceptional PP, arises in this way.

The possibility that p = p, can be discarded in similar fashion. In this case the com-
mon root is D = 94,134 which means that, in F,, P = 1,407, 182 and D? + 4P =
(M + L)? = 1,021,378, a non-square in F,,. This completes case (i).

Case(ii). (p—1)/6 <m<(p—=T)/4,(p+1)/6 < { < (p—5)/4.(Hence p > 17).

By Lemma 10, (4.8) with r = 3 now yields

(6.6) MO+ L0+ %(co(m) — co(0)) + cp1(m) — cpur (£) = 128,

where ¢;(?) is the coefficient of Z (and of z7) in f3(z + z!). In deriving (6.4) in case (i)
the term c¢,_1(m) — cp+1(£) was zero, but in this case, by (6.3) we have

(6.7) 120¢,1(m) = (3M - %)(3M— %) (3M+ %><3M+ %) (3M+ %)
and

6.8)  120cp,(0) = (3L— §)<3L~ %)<3L~ %)(3“ %)(3L+ %)

It follows that there is a polynomial G(x) (where 1920G has integral coefficients) such
that the difference ¢, ((m) — cp+1(£) has the form

5
3(MG(M?) — LG(Y)) + 5 (GM™) + G(LY)

and so can be expressed as a polynomial in D and P. When this is calculated explicitly,
multiplied by —640 and added to D times the left hand side of (6.5), we deduce from
(6.6) that D satisfies (over [,) the sextic

(6.9) 960D° + 1888D° — 18560D* — 11200D° + 72640D” + 92203D — 32175 = 0.

Note that, this time, since p > 17, (6.9) does not allow the conclusion D = 0. Indeed,
the proof is complete in this case unless p is a prime for which the polynomials in (5.9)
and (6.9) have a common root D. Their resultant is

40,096, 467,800,319, 150,683,136 (= 4.0--- x 10
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which has prime decomposition
210.32.29.4217.6709.5,302,787,933 = 2'°.32p, papspa,

say, where p| (= 29),...,p4 are the remaining primes (in increasing order). By further
use of PARI we calculate that the common root D in the four cases is

D =6inf,,
D =2333inF,,
D =1592inF,,

D = 4,295,621,420in[,.

(6.10)

When, for example, p = pj, this means that D = 6 if the integer M exceeds L and
D = —23 if M is less than L and similarly in the other cases. On the other hand, the
range of values assumed by m and { in this case implies that |m — ¢| = |M — L| =
|D| < p/12. Yet, in each case in (6.10), the positive integers D and p; — D both ex-
ceed pj/12,j = 1,...,4. We conclude that for no prime p does (5.9) and (6.9) have a
common root with the corresponding m, ¢ in the indicated ranges. Hence the proof in
this case is complete.

CASE (iii). (@ @p—1/6<m<(p-T7/4(<(p+1)/6 (p>19),0r

by m<(p-1/6 p+1)/6<L<(p—5)/4 (p>17).
This time, in addition to the cubic equation (5.9) satisfied by D over [, the condition
derived from (4.8) with r = 3 analogous to (6.5) or (6.9) naturally involves M or L as well
as D; it is not easy to eliminate explicitly M or L. Accordingly we define the non-zero
integer O by
M, if (a) bolds,
—L, if (b) holds.

Then certainly (since we can assume D # 0)

o-|

0<D<Q<p/4,  if(a) holds,
—p/4<Q<D<O0, if(b)holds.

In this case (4.8) with r = 3 implies that an equation like (6.6) is valid except that the
term —cp.1 (£) is omitted when (a) holds and the term ¢, (m) is omitted when (b) holds.
Further we see from (6.7) and (6.8) that the term ¢,,_ | (m) or —c4 (£) (respectively) which
remains takes the form

((30-3)(3e-3) b+ 5)(30+3) b0+ )} /120
in either case. Multiplying through by 1280, we derive (in analogy to (6.9)) the equation
(6.12) f(Q.D) =0,

over [, where

(0, D) = 25920° + 21600* — 7200° — 6000* + 180 + 15
— (1920D° + 3128D° — 37120D* — 20870D3 + 120440D? + 5632D).
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Moreover,
4Q* —4QD = 4P = 16 — D — 2D?

by (5.4). Hence in |,

(6.13) 8(Q,D) =0,

where
2(0,D) = 40> — 40D +2D* + D — 16.

For reference we also write the trinomial equation (5.9) as
h(D) = 0.

Suppose there are integers D = Dy, Q = Oy (subject to (6.11)) satisfying (5.9), (6.12)
and (6.13). Then f(Q, Do) and g(Q, Dy) have a common root in [, namely Q = Qy. Thus
the resultant of f and g as polynomials in Q with coefficients in F,[D] (which resultant
is a polynomial in D), itself has a root D = Dy. Now, very conveniently, PARI could
calculate the resultant of f and g as R(D), where

R(D) = 3774873600D'? + 13573816320D'" — 131528622080D'°
— 340313128960D° + 1704016117760D® + 2064134430720D’
— 9471958415360D° + 1591540812800D° + 21370601518080D*
— 22233526876160D° — 6079909376000D? + 2590552673280D
— 5045962521600.

Next, since the polynomials 4 and R have a common root D = Dy in[,, their resultant
must be zero in the field. Again PARI was sufficient to calculate this resultant (ignoring
its sign) as

13,117,496,913, 601,213, 844,923, 052,653,971, 935,231, 744, 566, 886, 400, 000,
a number with 53 digits and prime decomposition
2%3%511p1pops,
where
p1 =31, py = 424,928,167, p3 = 70,588, 464,402,288, 705, 233.

From the above, the proof is complete unless p = pi, p» or p3. We treat each of these
in turn beginning with a calculation of Dy. First, when p = p; = 31 then Dy = 9 and
neither possibility indicated in (6.11) can hold. Next, when p = p»

Dy = 380, 858,452 = —44,069, 715,
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which (by (6.11)) means that D < 0, i.e. (b) holds and Q = —L. Further, the roots L of
f(—=L,Dy) inF, are 124,277,976 and 424,928, 167 neither of which yields a value of L
compatible with (b). Finally, when p = ps,

Dy = 55,163,881,953, 837, 280, 929

which again is consistent with (6.11) only if (b) holds and Q = —L. In fact, the common
root of f(Q, Dy) and g(Q, Dy) was calculated to be

Q0 =—-L=1,763,423,151, 823,514,026,

which, of course, can only lead to a value of L outside the permitted range.

In summary, we see from the above that there are no “freak” values of p and n for
which (4.2) holds for r < 3. Had there been, while, in principle, it would have been pos-
sible to use (4.8) with r = 4, in practice it would have been a daunting task to accomplish
this even for a particular n and prime p (of the order of p3 above, say). Thus, with some
relief, we can say that the proof of the conjecture is complete.
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