
SINGULAR PLEATED SURFACES AND CP'-STRUCTURES
by SER PEOW TAN

(Received 26 October, 1993)

1. Introduction. Let Fgbe a closed orientable surface of genus g > 1 and let STg be
the Teichmuller space of Fg, i.e., the space of marked hyperbolic structures on Fg. We
shall also denote by STgA the space of marked hyperbolic structures on Fs with one
distinguished point; by this, we mean a distinguished point on the universal cover Fg of Fg.
This space is isomorphic to the space of marked complete hyperbolic structures on a
genus g surface with 1 cusp which is the usual interpretation of STgiX. Choose a
decomposition of Fg into pairs of pants by a collection of non-intersecting, totally geodesic
simple closed curves. The Fenchel-Nielsen coordinates for STg relative to this decomposi-
tion are given by the lengths of the curves as well as twist parameters defined on each
curve. Varying the length and twist parameters gives deformations of the marked
hyperbolic structures.

To obtain deformations of the CP1-structure such that the holonomy group cannot be
conjugated to lie in PSL(2, R), one can bend along any set of non-intersecting, totally
geodesic curves. These deformations, called the bending deformations were first used by
Thurston [18] in his "Mickey mouse" examples, they have since been studied and
generalized by many authors, see for example [2], [9], [10] and [12]. More generally, a
hyperbolic structure on Fg together with a measured geodesic lamination gives rise to a
CP1-structure on Fg by bending the hyperbolic structure along the lamination by the
measure of the lamination. Conversely, every CP1-structure can be obtained in this way.
This was proved by Thurston around 1976 (unpublished, see [6] and [10] for ideas of
proof) which gives the following theorem:

THEOREM 1. (Thurston)

= 3~g x MLg

where

'tog is the space of marked CP1 -structures on Fg,
MLg = 3~g is the measured lamination space of Fg.

The proof of the theorem above is based on the maximal disc approach which has
been generalized to higher dimensions in [1], [2], [10] and [13] where the space studied is
the deformation space of flat conformal structures. We note that the proof of Thurston's
theorem does not actually shed any light on the structure of MLg, the structure of this
space however is well-known from the use of other techniques like train-tracks, see [18].
The first examples of non-bending deformation in higher dimensions were discovered by
Apanasov in [2], he called these "stamping" deformations, these were subsequently
generalized by the author in [16] where the connection between these deformations, the
bending deformations and the maximal ball approach was clarified. Roughly speaking,
these deformations correspond to bending along totally geodesic hypersurfaces that
intersect in a (possibly disconnected) codimension 2 totally geodesic submanifold. The
underlying structure however may now have cone singularities at the codimension 2
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submanifold and the bending parameters now have to satisfy some spherical polygonal
conditions.

The main problem with the maximal disc approach is that it does not at the present
provide us with good knowledge of the local structure of the deformation space for a
hyperbolic manifold M of dimension greater than 2. This is because it is not clear what the
analogue of STg and MLg should be in higher dimensions. Indeed, in dimension 3, apart
from some examples of Kapovich [11] where he showed that infinitely many 3-manifolds
obtained by Dehn surgery on a two bridge knot have locally trivial deformation spaces of
flat conformal structures, very little is known about the local structure of these
deformation spaces. In dimensions > 4, Johnson and Millson [9] have shown that there
are examples of manifolds where the deformation space is singular.

The main aim of this paper is to give an approach which when generalized to higher
dimensions may give us a better understanding of the local picture of the deformation
space of flat conformal structures. We concentrate in this paper on the dimension 2 case
where the manifold is a surface. Here the picture is much nicer since we have a simple
classification of surfaces by the genus and the deformation space of CP1-structures is a
contractible manifold with dimension depending only on the genus by Thurston's
theorem. The dimension 3 case will be dealt with in a forthcoming paper [17].

We give a brief outline of our approach. Given a closed orientable surface Fg, g > 1
with a hyperbolic structure, we can triangulate Fg by 6g - 3 geodesic curves based at some
point x0 on Fg. The structure on Fg together with the position of xa is determined by the
lengths of the curves which form the sides of the triangulation, let us denote the
parameters by 70. Conversely, if we vary the lengths of the curves slightly, using new
parameters 7, we obtain a hyperbolic structure on Fg with possibly a cone singularity at x0.
There is exactly one positive scalar A such that A/ gives a smooth hyperbolic structure on
Fg, thus we can think of the lengths of the curves as local projective coordinates for the
space of hyperbolic structures on Fg with one distinguished point x0.

Now consider singular pleated surfaces with fixed cone singularity built up from totally
geodesic triangular pieces in the same combinatorial manner as above. Together with the
length parameters, we now have bending or pleating parameters along the edges of the
triangles. If we allow the pleating measures to vary independently, the resulting holonomy
representation lies in PSL(2, C) and may have non-trivial holonomy about the vertex of
the triangles. This means that when we are developing the pleated surface to H3, the
pieces do not necessarily close up around the vertex. The link of the vertex inherits a
spherical structure (in the case when the singularity has positive cone angle) and the
holonomy is trivial about the vertex precisely when the link of the vertex forms a
spherical polygon. The sides of the polygons are parametrised by the interior angles of the
triangles and the exterior angles of the polygon are parametrised by the bending
parameters. The set of length and bending parameters on the edges of the triangulation
satisfying this spherical polygonal condition gives local coordinates for an open subset of
%_i which includes the CP'-structures uniformised by quasi-fuchsian groups. We prove
this by showing that given

(i) a CP'-structure on Fg uniformised by a quasi-fuchsian group,
(ii) a distinguished point x0 on Fg and a suitable choice of a set of curves on Fs based

at x0 and triangulating Fg, and
(iii) a fixed choice of a small cone angle 6, then

https://doi.org/10.1017/S0017089500031086 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500031086


SINGULAR PLEATED SURFACES 181

there is a unique singular pleated structure on Fg with cone angle 8 and comprising of
totally geodesic triangles corresponding to the triangulation in (ii) such that the cone
point corresponds to x0.

Of particular interest is the limiting case when the cone point of the singular pleated
structure is a cusp (i.e., has cone angle zero), in this case the link of the cusp inherits a
Euclidean structure and the condition is now a euclidean polygonal condition, the sides of
the polygon are now parametrised by lengths of horocyclic segments.

The basic idea that one can imbed a singular pleated surface into H3 corresponding to
a quasi-fuchsian group can be found in [18]. Our construction also bears some similarity
to that used in [8]. The idea that the pleated hypersurface may be singular and that
pleating can occur in both directions for higher dimensions can be found in [2], [3] and
[16]. The main difference between our paper and [2] and [16] is that we are now allowing
singularities of codimension n. This results in the introduction of distinguished points in
the spaces under consideration but on the other hand, in the dimension two case, it allows
us to do away with the twisting parameters and consideration of general measured
geodesic laminations. In the case of dimension n = 3, we can show ([17]) that the
deformation space of flat conformal structures with a distinguished point can be identified
to the deformation space of Euclidean polyhedra satisfying certain conditions, this gives
an intriguing connection with the results of [19].

ACKNOWLEDGMENTS. I would like to thank John Millson and Bill Goldman for their
encouragement and many helpful conversations during the course of this work.

2. Preliminaries. In this section, we establish the notation and some basic facts.
Let Fg be a closed orientable surface of genus g > 1, Fg its universal cover and n its

fundamental group. Let x0 be a point on Fg. We can find a set of 6g - 3 curves based at x0

that triangulate (topologically) Fg. This set of curves can be obtained as follows:
First take a standard set of curves {a,, j8; | l < / , ; < g } based at x0 cutting Fg into a

4g-gon (see Figure 1) and then triangulate the 4g-gon by a set of 4g - 3 curves

Figure 1
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{yk \ 1 < k ^ 4g - 3}. If Fg has a hyperbolic structure then the triangulation can be made
geometric, i.e., we can find a set of curves based at x0 that cuts Fg into hyperbolic
triangles. If yx is a curve on Fg starting at x0 and ending at some point x, we can get a
triangulation of Fg based at x by conjugating the original curves by yx. We shall denote
these curves by {ax, /3X, yx

k | 1 < / , ; < g , 1 <&<4g -3} . In the case when Fg has a
hyperbolic structure, shifting the base point may change the geometric invariants of the
triangulation even if the underlying hyperbolic structure on Fg remains the same, thus, the
geometric invariants should be thought of as determining both the underlying structure
and the base point. Note that if the base point is continuously deformed back to the same
point on Fg by following a non-trivial loop, the resulting deformation of the geometric
invariants may not return to the original invariants so that the base point should really be
thought of as a point in Fg.

We now turn our attention to hyperbolic polygons. Let P(su.. . ,sn;0x,... ,Qn)
denote a hyperbolic n-gon with side lengths s, and interior angles 0, all numbered
cyclically (anti-clockwise) from a fixed vertex i»j. The parameters {sh 8,) are not
independent, for example when n = 3, we have a triangle and the angles are determined
by the lengths and conversely. We denote this special case by T(sus2,s3). We next define
a generalized notion of similarity for hyperbolic triangles which will prove useful later.

DEFINITION. TWO hyperbolic triangles T and T are length similar if the ratio of their
sides is the same, we denote it by T ~ T'.

Clearly, length similarity is an equivalence relation.

PROPOSITION 1. Let T(s1,s2,s3) be a non-degenerate hyperbolic triangle. Then
(i) The equivalence class of T(su s2, s3), [T(su s2, s3)] = {T(\su \s2, As3) | A > 0}.
(ii) The interior angles of T(\su \s2, \s3) are decreasing functions of A, each

approaching zero as A approaches °°.
(iii) Area (T(\si, \s2, \s3)) is an increasing function of A and approaches n as A

approaches oo.

Proof (i) is obvious. The first part of (ii) follows easily from Toponogov's theorem
in the non-positive case, see [4]. That the angles approach zero as r approaches infinity
follows from the hyperbolic cosine rule, see [5]. (iii) now follows from the fact that the
area of a triangle is equal to the angle defect.

REMARK. We can define other notions of similarity for hyperbolic triangles, for
example two hyperbolic triangles are angle similar if the ratio of the interior angles is the
same. Note that length similarity and angle similarity are different equivalence relations.

Instead of trying to extend the notion of length similarity directly to arbitrary
polygons, we shall use triangulations of the polygons and apply length similarity to the
triangulation instead.

DEFINITION. A hyperbolic polygon is marked if we distinguish one of the vertices, we
shall denote it by (P, Vj). Two marked hyperbolic polygons are equivalent if there is an
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orientation-preserving isometry taking one polygon to the other that matches the marked
vertices.

DEFINITION. Let (P, Uj) and (P',v{) be two marked hyperbolic rc-gons and let A and
A' be homeomorphic triangulations of P and P' relative to the marked vertices, i.e., there
is a homeomorphism from P to P' mapping v to v' and A to A'. (P, v^) is said to be length
similar to (P',v[) relative to the triangulation A if the triangles of A are length similar to
the corresponding triangles of A'. We denote this by (/", v[)~A(P, v{).

Clearly, for a fixed triangulation A, the above is an equivalence relation, we shall
denote the equivalence class of P relative to A by [P]^ Note that a polygon in [P]A may
have some interior angles greater than 2n. If P has side lengths (su ... , sn), and P' e [P]A,
then P' has side lengths \ks\,... ,\sn) for some A>0. The converse is not true when
n > 3 as can be seen by a simple dimension count. [P]A is a one-dimensional family
parametrised by A, also, by Proposition 1, it is clear that the sum of the interior angles is a
decreasing function of A, taking values in the range (0, nn). From this, we obtain the
following lemma:

LEMMA 1. Let P be a hyperbolic n-gon and A a triangulation of P. For each 0<6<nn
there exists exactly one polygon in [P]A such that the sum of the interior angles is equal to 6.

3. Local projective coordinates for 3~gJ. In this section, we construct local
projective coordinates for 3~gl by relating the space STgA to the space of hyperbolic
polygons satisfying certain conditions. The relation between 3~gA and the space of
hyperbolic polygons seems to be fairly well-known, but we do not know of any exact
statement in the literature. We state this in the form of the following theorem:

THEOREM 2. Let ^(In) be the space of marked Ag-gons up to equivalence satisfying
the following conditions:

(1) s4k+i = s4k+3 and s4k+2 = s4k+4 for Q^k<g, and

( 2 ) | | a, = 2n.

where {s,}, {a,}, 1 < i < Ag are the side lengths and interior angles numbered cyclically from
the marked vertex.
Then &g(27t) is homeomorphic to STg^.

Proof. Using the standard set of curves [a], fi* | 1 s ij-^g} on Fg and making them
geodesic, we get a continuous, surjective map from 5Tg<l to SPg(2n) by cutting Fg along the
curves. To see that the map is injective, we first note that if two marked hyperbolic
structures on Fg have the same fundamental polygons relative to the same set of
homotopic curves, then they must be isometric relative to the marking, i.e. correspond to
the same point in £Tg. It therefore reduces to showing that if we fix the hyperbolic
structure on Fg and choose two different base points for the same set of standard curves,
we obtain different marked polygons. Let p be the holonomy representation and let xQ

and x be two distinct base points. Suppose the two fundamental polygons obtained from
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the two sets of curves {a,, /3,-11 < / < g} and {ax, j3| 11 < / < g] are the same. Since the
angle subtended by a x at x0 must be the same as the angle subtended by a x at x, x must
lie on the same invariant curve of p(«i) as x0. The same argument holds for the other
curves a, and Bj, which implies that xo = x, a contradiction.

Combining Theorem 2 and Lemma 1, we obtain the following theorem:

THEOREM 3. Let Fg be a closed hyperbolic surface of genus g>l and let x e Fg. If
{ax

t, B
x, yx

k\l<i,j<g, 1 < k ^ 4g - s} is a set of geodesic curves on Fg based at x and
triangulating Fg, then the lengths of the curves \AU... ,Ag, Bu .. . , Bg, Ct,... , C4g-3] e
RP6g~3 gives local projectwe coordinates for STgl.

If we are looking at the space of marked singular hyperbolic structures on Fg with one
cone point of positive variable curvature (equivalently, cone angle 0 < 6 < In), denoted
by 9~£iU we have the following theorem:

THEOREM 4. Let £Pg be the space of marked Ag-gons up to equivalence satisfying the
following conditions:

(1) s4k+1 = s4k+3 and s4k+2 = s4k+4 forO<k<4g, and

(2) 5a,.e(0,24

where {s,}, {a,}, 1 < / < 4g are the side lengths and interior angles numbered cyclically from
the marked vertex.
Then &g is isomorphic to STgtl.

Thus the lengths of the curves {a?, /3y, yx
k \ 1 < / , ; < g , 1 < £ <4g -3} gives local

coordinates (Au... ,Ag,Bu... ,Bg, Cu... ,C4g_3) £ R6g~3 for °T^V Note that ^ s
xjgt\ X K.

In the limiting case when the cone angle is zero, we have a complete hyperbolic
structure on Fg with a cusp, the lengths of the edges of the triangulation are all infinite and
we need to construct a different set of coordinates for the space. There are various ways
to construct coordinates for these structures, we describe two different sets.

The first set of coordinates are related to the coordinates of R. Penner's decorated
Teichmuller space, see [15]. Fixing the triangulation above, choose a small horocycle
about the cusp and remove a neighbourhood of the cusp up to the horocycle, we obtain a
compact hyperbolic manifold with horocyclic boundary. Now the edges of the original
triangulation become finite geodesies and the 6g - 3 lengths provide coordinates for the
point in the decorated Teichmuller space which is the hyperbolic structure together with
the choice of the horocycle. Changing the horocycle used adds or subtracts the same
number to each coordinate so there are really only 6g - 4 independent coordinates for the
hyperbolic structure with cusp if we "forget" the horocycle. Note that this makes sense
even when some of the coordinates are negative which occurs when the horocycle chosen
is large.

Alternatively, fixing the triangulation and the horocycle as above, the horocycle is
divided into 12g - 6 segments by the edges of the triangulation and the lengths .of the
segments determine the hyperbolic structure as well as the horocycle chosen. It is not

https://doi.org/10.1017/S0017089500031086 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500031086


SINGULAR PLEATED SURFACES 185

difficult to see by tracing through the link of the cusp that in fact there are only 6g - 3
independent length coordinates for the horocyclic segments so that the point in the
decorated Teichmuller space is actually determined by these 6g - 3 parameters (which are
all positive). Changing the horocycle used corresponds to multiplying the lengths of the
horocyclic segments by a fixed positive real constant. The 6g - 3 parameters therefore
gives local projective coordinates for the space of hyperbolic structures on FB with one
cusp.

4. Coordinates for CP'-structures. In this section, we show the relation between an
open subset of the space of marked fiat conformal structures with a distinguished point
and the space of singular pleated structures with pleating along the sides of a triangulation
of Fg. We first show how to obtain a singular pleated structure on Fg from a CP1-structure
uniformised by a quasi-fuchsian group by fixing a base point, a standard set of
triangulating curves and a constant e > 0.

Fix a CP1-structure on Fg uniformised by a quasi-Fuchsian group F<=PSL(2, C), i.e.
p{n) = Y and ^ S O Q / F where Q Q C C P 1 is one of the components of the domain of
discontinuity of F acting on CP1. Let Q] be the other component of the domain of
discontinuity and let Ar be the limit set of F, we have CP1 = QQ U Ar U Q]. CP1 under the
action of PSL(2, C) can be thought of as the ideal boundary of hyperbolic 3-space H3. Let
^(Ar) be the convex hull of Ar in H3, ^(Ar) has two boundary components Bo and B,
which are complete pleated hyperbolic surfaces in H3 invariant under the action of F.
Because of convexity, there are canonical "nearest point" maps

Thurston's parameters for QQ/T are obtained by taking Bo/T which is a pleated hyperbolic
structure on Fg and thus gives a point in SFg X MLg.

Now fix a point x0 e /̂ , = Q0/F and a standard set of curves {ahPj,yk | 1 < I , / <
g, 1 < k :£ 4g - 3} based at *0 which triangulate the surface, as in the previous section. For
e > 0, let Be be the hypersurface in H3 between Qo and Bo which is e-distant from Bo. The
triangulation of Fg lifts to a triangulation of Fg and hence also QQ, BO and Be. The vertices
of the triangulations are fixed for a fixed choice of x0 as are the homotopy classes of the
edges of the triangulations relative to the vertices. (Note that each vertex on Be lies on a
geodesic joining a vertex on QQ and a vertex on Bo.) We can straighten the edges of the
triangulation on Bc so that they are all geodesic in H3. The vertices of the triangulation
still lie on Be but the edges do not necessarily lie on Bf anymore. This gives a geodesic
graph in H3 which spans a singular pleated surface B'€ in H3 invariant under the action of
F. B'JT is the required singular pleated hyperbolic structure on Fg.

REMARKS:

1. For a fixed CP'-structure on Fg uniformised by a quasi-fuchsian group, the actual
singular pleated structure obtained depends on the choice of the base point, triangulation
and the constant e.

2. When the CP1-structure on Fg is actually uniformised by a fuchsian group and we
choose e = 0, we are back to the regular hyperbolic structure. If the CP1-structure on Fg is
obtained by bending along a totally geodesic curve and x0 is chosen to lie on the curve
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and e = 0, the pleated singular structure obtained is just the usual pleated structure
obtained by bending along the curve. Again in this case, there are no singularities.

. 3. Bending may occur in both positive and. negative directions relative to a fixed
orientation of the surface.

4. As e increases, the curvature of the singular point increases (equivalently, the
cone angle decreases). There is a well-defined limit when e = °°, when we obtain a
singular hyperbolic structure where the base hyperbolic structure on Fg has a cusp and the
triangles of the triangulation are all ideal triangles.

5. Given a singular pleated structure on Fg such that the pleating occurs only in one
direction (note that this implies that any singular point must have non-negative
curvature), Fg develops to a locally convex surface in H3 and by considering the map p~l

which is the inverse of the nearest point map, we obtain a corresponding CP'-structure
which decomposes into three types of pieces, hyperbolic pieces which are the inverse
images of the flat parts, H1 x S1 pieces which are the inverse images of the pleating edges
and S2 pieces which are inverse images of the singular vertices. Note that the
corresponding CP1-structure need not necessarily be uniformised by a quasi-fuchsian
group.

We now count the dimension of the space of such singular pleated surfaces where
pleating occurs on the edges of a triangulation of the surface with one vertex x0. From the
previous section, we see that the space of singular hyperbolic structures on Fg with cone
singularity at x0 with positive curvature has local coordinates given by the lengths of the
edges. This gives 6g - 3 real parameters for the underlying singular hyperbolic structure.
For the pleating coordinates, there are also 6g - 3 coordinates corresponding to the
pleating measures on the edges of the triangulation but they are not independent, there
are some relations. We can see what happens by taking an e-sphere (e sufficiently small)
about a singular point of the developing image in H3 and looking at the intersection of the
developing image with the sphere. For the holonomy representation to be trivial about a
small loop about the singular point, the developing map has to close up, i.e., the
intersection of the developing image with the sphere is a closed spherical polygon (not
necessarily convex). The lengths of the sides of the polygons are proportional to the
angles at the corresponding vertices of the triangles and the exterior angles are the
pleating measures. There are three independent equations, two to ensure that the
spherical polygon closes up and one to ensure that the angle condition is satisfied. There
are therefore only 6g - 6 independent pleating coordinates for each fixed singular
hyperbolic structure.

From this, we obtain Ylg - 9 degrees of freedom for the space of singular pleated
hyperbolic structures on Fg with one singular point where the cone angle at the singular
point is not fixed. This corresponds to an open subset of %s^ x R+. If we fix the cone
angle, (this is equivalent to fixing the perimeter of the spherical polygon) there are
Ylg -10 degrees of freedom and we obtain local coordinates for %g_, in terms of the
lengths and pleating coordinate relative to the triangulation. As observed in Remark 3
above, fixing the cone angle is equivalent to removing the dependence on e. This can be
done by considering the length coordinates as projective coordinates.

Let us examine again the limiting case when e = ». We have now a pleated, cusped
hyperbolic structure on Fg since all the triangles in the corresponding singular pleated
structure are now ideal triangles so that the cone angle at the singular point is zero.
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Recall from the previous section that a horocyclic link of the cusp is divided into 12g - 6
segments by the edges of the triangulation and that the lengths of 6g - 4 of these
segments determine the lengths of the other segments, up to multiplication by a positive
constant. To obtain a non-singular CP1-structure on Fg, we need to bend along the edges
of the triangulation in such a way that when we consider a horosphere about the cusp in
H3, the intersection of the edges of the triangulation with the horosphere forms the
vertices of a euclidean polygon with 12g - 6 sides. The sides of the polygons are given by
the lengths of the geodesic segments above, the exterior angle at each vertex is given by
the bending angle of the corresponding edge of the original triangulation of Fg. Since
there are 6g — 3 edges, there are 6g - 3 bending coordinates but they are not
independent, the requirement that the polygon closes up and that the sum of the exterior
angles is In gives three independent equations so that there are only 6g - 6 independent
bending coordinates. Together with the independent side coordinates, we again get
Ylg - 10 independent coordinates as expected.

5. Dual structures. When the pleats of the singular pleated hyperbolic structure all
occur in one direction relative to a fixed orientation of the surface, we have some kind of
local convexity property for the developing image of the singular pleated hyperbolic
structure and from this we can obtain some dual structures to the singular pleated
hyperbolic structures.

Fix a triangulation of Fg with one vertex; label the vertex v, the edges {e, 11 <;' <
6g-3} and the triangles \t)-,\ 1 <;" <4g -2} . Fix a locally convex singular pleated
hyperbolic structure on Fg relative to this triangulation, i.e., the structure is non-singular
on the interior of the triangles and pleating occurs only in one direction with respect to a
fixed orientation of the surface. Let {s, 11 £ i < 6g - 3} and {bt \l^i^6g -3} be the
length and bending measures at the edges {e, 11 < / < 6g - 3} and ayl, a;>2 and a; 3 be the
interior angles of the triangle r;, 1 ^ / ^ Ag - 2. The structure is determined by the s,'s and
£>,'s, it is also determined by the fe,'s and the a;^'s, where l ^ / ^ 6 g - 3 , l ^ ; ^ 4 g - 2 ,
and 1 < k < 3. Consider the decomposition of Fg dual to this triangulation. It has 4g — 2
vertices each of valence 3, 6g - 3 edges and 1 polygonal cell with 12g - 6 sides. Denote
the vertices of the dual decomposition by Vj, 1 < / < 4g - 2 where Vj is dual to tj, the edges
by Eh 1 ^ i ̂  6g - 3 where £, is dual to e, and the polygonal cell by P.

Using the singular pleated structure, develop Fg into H3 to obtain an immersed
singular pleated surface in H3. At a small e neighbourhood U of a cone point x of this
singular pleated surface, the surface separates U into a convex part Uc and a non-convex
part Un. Consider the subset of the tangent bundle at x consisting of vectors pointing away
from Uc whose perpendicular hyperplane is disjoint from Uc. This set has a spherical
structure and is a spherical polygon, it can be identified naturally to the polygon P of the
dual decomposition of Fg. This gives a dual singular spherical structure on Fg with
(generically) Ag - 3 singularities. If the bending measure is zero on some of the edges of
the original triangulation, then some singularities may coalesce so the dual spherical
structure may have less than Ag - 3 singularities.

PROPOSITION 2. Let ut be the length of the side £,, 1 < i < 6g - 3 and j3ŷ  be the interior
angle of P dual to the angle a;it of the original triangulation. We have the following:
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(i) M, = bifor 1 ^ i s 6g - 3 i.e., the length of an edge £, of the dual structure is equal
to the bending measure of the original structure at eh the edge dual to £,.

(ii) pjM = 7t-ajM.
(iii) / / Vj is a singularity of the dual singular spherical structure with cone angle 0,,

then 6j > In.
(iv) / / the singularity of the original singular pleated hyperbolic structure has cone

angle greater than zero, than the map from the structure to its dual is one-one.
(v) / / the singularity of the original pleated hyperbolic structure has cone angle a,

then the volume of the dual structure is equal to 2n — a.

The proof is easy and left to the reader. By Proposition 2(v), above, fixing the cone
angle of the original pleated surface corresponds to fixing the volume of the dual singular
spherical structure on Fg, we therefore get a local homoeomorphism from the subset of
^Sil corresponding to locally convex singular pleated hyperbolic surfaces to the space of
singular spherical structures on S| with fixed volume and (generically) Ag - 3 cone
singularities all with negative curvature. In the limiting case when the cone angle of the
pleated hyperbolic structure is zero, the dual structure has as a fundamental domain a
polygon which is isometric to the hemisphere, the volume of the dual structure is 2n and
the singularities all have cone angles which are multiples of n. However, in this case, the
map from the space of cusped pleated hyperbolic structures to the space of dual singular
spherical structures is no longer one-one since different cusped pleated hyperbolic
structures with the same bending parameters give the same dual structure. The space of
singular spherical structures of this type has dimension 6g — 4. The fibre of the map is
6g — 6-dimensional. There are two fibrations of the total space of cusped pleated
hyperbolic structures on Fg, the first by considering the fibres of the map to the base
cusped hyperbolic structure (forgetting the pleating measures) and the second by
considering the fibres of the map to the dual structures. Both the fibrations have fibres of
dimension 6g - 6.

Finally, we conclude by discussing what happens when the singular pleated surface is
not locally convex, that is, pleating occurs in both positive and negative directions. A
good description of what can happen is given in [18]. In this case, if we look at a small
e-neighbourhood of the singular point in H3, the intersection of the e sphere with the
surface is a non-convex spherical polygon and most of the above discussion on the
dimension of the deformation space goes through. We still obtain deformations of
the representation of the fundamental group n of Fg into PSL(2, C) by varying the
parameters. However, because the resulting developing surface in H3 is not locally
convex, there is no canonical nearest point map from the sphere at infinity to the pleated
surface so we do not get a CP1-structure on Fg associated with the pleated hyperbolic
structure by considering the inverse of the nearest point map. However, if the holonomy
representation is quasi-fuchsian, the limit set of the holonomy group is a quasi-circle and
we still have a natural CP1-structure associated to the singular pleated surface.

6. Example. In this section we work out a specific example. Consider the
hyperbolic structure on a genus two surface obtained by identifying the sides of a regular
hyperbolic octagon with interior angles n/4 in the usual fashion. The sides of the polygon
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correspond to the standard curves au Bu a2 and B2 on Fg. Triangulate the surface by
introducing the geodesic curves yu y2, • •. , y5 as in Figure 2. We shall consider this as a
CP1-structure on Fg, so we shall think of H2 as a totally geodesic hypersurface in H3, the
limit set A of the holonomy group is a circle on the sphere at infinity and the
CP'-structure on Fg develops onto one of the components of 52 - A where S2 = CP1 is the
sphere at infinity of H3. The developing map of the CP'-structure is obtained by
composing the developing map of the hyperbolic structure with the inverse of the nearest
point map. Choose some e > 0 and consider the (constant curvature) hypersurface Bf in
H3 e-distant from H2. As described in § 4, this gives a singular pleated surface B'e in H3

invariant under the holonomy group thus giving us the singular pleated structure on Fg.
The cone angle 6e at the singularity is a decreasing function of e, where 90 — 2n, the
pleating measures on the y,'s are all equal to zero since the vertices of the corresponding
polygon on Bf all lie on the same totally geodesic hypersurface in H3. The pleating
measures on the curves au a2, P\ and B2 are equal by symmetry, we denote it by b. We
have

8b = In - 6e

Since the pleating measures are all non-negative in this case, we have a dual singular
spherical structure on Fg whose fundamental polygon is a regular spherical octagon of
volume 2n - 0€. In the limiting case when e = °°, the euclidean polygon corresponding to
the link of the cusp is a regular euclidean octagon. It is really more accurate to think of
this as an 18-gon since some of the sides of the octagon really consists of several sides
joined by vertices with exterior angle zero because the bending measures on the y/'s were
zero. Perturbing the point in \^ is equivalent to perturbing this polygon subject to the
constraints mentioned at the end of § 4, we see that it is possible that the perturbed
polygon is not convex, i.e. pleating may occur in both positive and negative directions in a
small neighbourhood of this structure.
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