INVOLUTORY AUTOMORPHISMS OF GROUPS OF ODD ORDER

J. N. WARD ${ }^{1}$
(Received 3 December 1965)

1. Introduction

Let G be a finite group of odd order with an automorphism ω of order 2. The Feit-Thompson theorem implies that G is soluble and this is assumed throughout the paper. Let G_{ω} denote the subgroup of G consisting of those elements fixed by ω. If $F(G)$ denotes the Fitting subgroup of G then the upper Fitting series of G is defined by $F_{1}(G)=F(G)$ and $F_{r+1}(G)=$ the inverse image in G of $F\left(G / F_{r}(G)\right) . G^{(r)}$ denotes the rth derived group of G. The principal result of this paper may now be stated as follows:

Theorem 1. Let G be a group of odd order with an automorphism ω of order 2. Suppose that G_{ω} is nilpotent, and that $G_{\omega}^{(r)}=1$. Then $G^{(r)}$ is nilpotent and $G=F_{3}(G)$.

Examples given in [7] show that there exist groups G satisfying the hypothesis of theorem 1 for which $G \neq F_{2}(G)$. If H is any nilpotent group of odd order and derived length r, we can construct a group G satisfying the hypothesis of the theorem such that $G_{\omega} \cong H$ and $G^{(r-1)}$ is not nilpotent. Indeed let q be an odd prime not dividing the order of H and construct the group algebra A of K, the direct product of H and the cyclic group of order 2, over $G F(q)$, the Galois field with q elements. The mappings

$$
x \rightarrow a x+b
$$

of A into itself, where a runs over K and b runs over A, form a group $\Gamma . \Gamma$ has a subgroup G of odd order and index 2. $G / F(G) \cong H$ and an inner automorphism of Γ of order 2 induces an automorphism ω of G with $G_{\omega} \cong H$.
L. Kovacs and G. E. Wall have constructed in [7] p groups of arbitrarily high derived length, each with an automorphism ω of order 2 such that the fixed point group of ω is cyclic. Taking K to be the splitting extension of a suitable one of these groups by its automorphism and applying the above construction we can show that given any integer n there exists a group G of odd

[^0]order with an automorphism ω of order 2 such that G_{ω} is metabelian and $G^{(n)}$ is not nilpotent. Thus the assumption that G_{ω} is nilpotent in theorem 1 is essential.

If the group G has several automorphisms of order 2 satisfying the condition that each of the fixed point groups is nilpotent, then stronger assertions can be made. We have

Theorem 2. Let G be a group of odd order with a group of automorphisms A of order 4 and exponent 2 such that for each $\omega \in A, \omega \neq 1, G_{\omega}$ is nilpotent. Then G^{\prime} is nilpotent.

Under these conditions G need not be nilpotent but with even stronger hypotheses the nilpotence of G can be asserted:

Theorem 3. Let G be a group of odd order with a group of automorphisms A of order 8 and exponent 2 such that for each $\omega \in A, \omega \neq 1, G_{\omega}$ is nilpotent. Then G is nilpotent.

A very much more elementary result is
Theorem 4. Let G be a group of odd order with an automorphism ω of order 2. If G_{ω} is a Hall-subgroup of G then there exists a normal abelian complement of G_{ω} in G.

For further discussion of theorems of this kind we refer to [7].
I wish to express my thanks to G. E. Wall for his guidance in this work.
Notation. The notation is standard and agrees with that mentioned in [7]. By a proper subgroup is means a subgroup not equal to the whole group. A non-trivial subgroup is one containing more than one element. If G is a group, $|G|$ denotes the order of $G, Z(G)$ the centre of G and $\Phi(G)$ the Frattini subgroup of G. For subgroups H and K of $G,|G: H|$ is the index of H in $G, C_{H}(K)$ the centralizer of K in H and $N_{H}(K)$ the normalizer of K in H.
\mathscr{F} always denotes the algebraic closure of $G F(p)$, the Galois field with p-elements. If \mathscr{L} is a field $\mathscr{L}(G)$ denotes the group algebra of G over \mathscr{L}. If V is an $\mathscr{L}(G)$-module, we write scalars as left operators on V and elements of $\mathscr{L}(G)$ as right operators on V.

If p is a prime, a p^{\prime} group is a group of order prime to p. A Hall p^{\prime} subgroup of a group is a Hall subgroup, whose index is a power of p.

A frequently used property of a soluble group G is that $C_{G}(F(G)) \leqq F(G)$ ([1], p. 646).

2. Preliminary lemmas

Lemma 1. Let P be a p-group and H a proper subgroup of P. Then $|P: H|>\left|P^{\prime}: H \cap P^{\prime}\right|$.

Proof. Since $P^{\prime} \leqq \Phi(P),\left|P: P^{\prime}\right|>\left|P^{\prime} H: P^{\prime}\right|$. The result follows.
Lemma 2. Let G be a soluble group operated on by a group A of automorphisms. Suppose that for some pair of integers (m, n), $\left.(n>0), G^{(m)} \$ F_{n} G\right)$ but if H / K is any A-section ${ }^{2}$ of $G, H / K \neq G / \mathbf{1}$, then $(H / K)^{(m)} \leqq F_{n}(H / K)$.

Then it H is a non trivial normal A-subgroup of $G, F(G) \leqq H . F(G)$ is an elementary abelian p-group for some prime p.

Proof. It follows from the hypothesis that if $\mathbf{1} \neq H, K \neq \mathbf{l}$ are normal A-subgroups of G then $\mathrm{I} \neq H \cap K$. Thus G has a unique minimal normal A. subgroup M. Since G is soluble, M is an elementary abelian p-group. Now from [1] p. 647, $F(G / \Phi(G))=F(G) / \Phi(G)$ so $F_{n}(G / \Phi(G))=F_{n}(G) / \Phi(G)$. Thus $\Phi(G)=1$. Since $\Phi(N) \leqq \Phi(G)$ if $N \triangleleft G([3], \mathrm{p} .162), F(G)$ is ar elementary abelian p-group.

Write $H / M=F(G / M)$. Then $F(G)$ is the Sylow p-subgroup of H Since $(G / M)^{(m)} \leqq F_{n}(G / M)$ whilst $G^{(m)} \leqq F_{n}(G), H$ properly contains $F(G)$.

As $F(G)$ is an elementary abelian normal Sylow p-subgroup of $H, F(G$. is a completely reducible $H / F(G)$ module. Thus $F(G)=M \times N$ whert $N \triangleleft H$. Since H / M is nilpotent and $F(G)$ is abelian, $N \leqq Z(H)$. Suppost $Z(H)>1$. Then $Z(H)$ is characteristic in the normal A-subgroup H of G so $Z(H)$ is a normal A-subgroup of G. Hence $Z(H) \geqq F(G)$ so $H \leqq C_{G}(F(G)$. $=F(G)$, a contradiction. Thus $N \leqq Z(H)=1$ and $F(G)=M$, proving the lemma.

We apply lemma 2 in the following way. Each of theorems 1, 2 and : is to be proved by induction on the order of G and by way of contradiction For theorem 1 take A to be the group $\{1, \omega\}$. Let G be a group of minima order not satisfying the hypothesis of the theorem in question. For theorem we take $(m, n)=(0,3)$ or $(r, 1)$; for theorem $2,(m, n)=(1,1)$ and for theoren 3, $(m, n)=(0,1)$. Now if $H / K \neq G / 1$ is an A-section of G, either A is rep resented faithfully as a group of automorphisms of H / K in which cas by induction $(H \mid K)^{(m)} \leqq F_{n}(H / K)$ or for some automorphism $\omega \in A$ $(H \mid K)_{\omega}=H / K$ so H / K is nilpotent being isomorphic to a section of G_{ω} Thus in either case since $|G|$ is odd the hypothesis of the lemma is satisfie and we conclude that $F(G)$ is the unique minimal normal A-subgroup of G.

The following lemma and its corollaries are stated for convenience. Th method of proof is well known, see for example [7].

Lemma 3. Let G be a group of odd order with an automorphism ω c order 2. Then there exists precisely one element of G which is inverted by c in each left (right) coset of G_{ω}.

[^1]Corollary 1. Let G be a group of odd order with an automorphism ω of order 2. Every element of G may be expressed as the product of an element fixed by ω and an element inverted by ω.

Corollary 2. Let G be a group of odd order with an automorphism ω of order 2 . Let H be a subgroup of G containing G_{ω}. Then $H^{\omega}=H$.

Corollary 3. Let G be an abelian group of odd order with an automorphism ω of order 2. Then if N is the set of elements of G which are inverted by ω, N is a subgroup of G and $G=N \times G_{\omega}$.

Theorem 4 follows from lemma 3:
The Hall-subgroups of G which complement G_{ω} form a characteristic system of subgroups. Since G is of odd order one of these is fixed by ω; this subgroup consists of those elements of G inverted by ω and so is normalized by G_{ω}. Thus it is a normal abelian complement of G_{ω} in G.

3. Proof of theorem 1

The theorem is proved by induction on $|G|$ and by way of contradiction. Suppose therefore that G is a group of minimal order satisfying the hypothesis of the theorem but not the conclusion. It follows from [7] that the theorem is true for $r=1$ so we may assume $r>1$. Since $|G|$ is odd, G is soluble. We have already proved.

Lemma 1. $F(G)$ is the unique minimal normal ω-subgroup of G. Therefore $F(G)$ is an elementary abelian p-group for some prime p.

Notation. For each positive integer n, set $F_{n}=F_{n}(G)$. Let Γ denote the splitting extension of G by ω and p the unique prime dividing $\left|F_{1}\right|$.

Lemma 2. (i) $\left(G / F_{1}\right)_{\omega} \neq G / F_{1}$,
(ii) F_{1} is a faithful irreducible Γ / F_{1}-module,
(iii) $\left(F_{1}\right)_{\omega}>1$. Therefore $p \| G_{\omega} \mid$.

Proof. (i) If $\left(G / F_{1}\right)_{\omega}=G / F_{1}$, then G / F_{1} is isomorphic to a section of G_{ω} and therefore is nilpotent of derived length less than or equal to r. It follows that G satisfies the conclusion of the theorem. Hence $\left(G / F_{1}\right)_{\omega} \neq$ G / F_{1}.
(ii) Lemma 1 implies that F_{1} is an irreducible Γ / F_{1}-module. To prove that F_{1} is a faithful Γ / F_{1}-module we need to prove that $C_{r}\left(F_{1}\right)=F_{1}$. Since F_{1} is the Fitting subgroup of G, and since G is soluble, $C_{G}\left(F_{1}\right)=F_{1}$. Hence if $C_{\Gamma}\left(F_{1}\right)>F_{1},\left|C_{\Gamma}\left(F_{1}\right): F_{1}\right|=2$. In this case Γ / F_{1} has a normal Sylow 2-subgroup so that $\Gamma / F_{1}=G / F_{1} \times g \phi\left\{\omega F_{1}\right\}$ from which it follows that $\left(G / F_{1}\right)_{\omega}=G / F_{1}$, contradicting (i). This proves (ii).
(iii) $\left(F_{1}\right)_{\omega}>1$ for if $\left(F_{1}\right)_{\omega}=1, \omega$ must invert all the elements of F_{1}. Then, since Γ / F_{1} is faithfully represented by its action on $F_{1}, \omega F_{1}$ lies in the centre of Γ / F_{1}. But this again implies that $\left(G / F_{1}\right)_{\omega}=G / F_{1}$, contradicting (i).

Lemma 3. F_{2} / F_{1} is a p^{\prime}-group. G/F F_{1} has no non-trivial normal p-subgroups.

Proof. Suppose that P / F_{1} is the Sylow p-subgroup of F_{2} / F_{1}. Then as F_{1} is a p-group, P is a normal p-subgroup of G. Hence $P \leqq F_{1}$. The second statement follows from the first.

Lemma 4. If G_{ω} is a p-group then $G=F_{2} G_{\omega}$ and $\left(G_{\omega}\right)^{(r-1)}$ is not contained in $F_{1} . F_{2} / F_{1}$ is abelian.

Proof. We know, by lemma 2, that F_{1} is a p-group and, by lemma 3, that F_{2} / F_{1} is a p^{\prime}-group. Since G / F_{1} is soluble and F_{2} / F_{1} is a normal subgroup of $G / F_{1}, F_{2} / F_{1}$ is contained in every Hall p^{\prime}-subgroup of G / F_{1}. Now the Hall p^{\prime}-subgroups of G / F_{1} are all conjugate and the order of G is odd so the number of Hall p^{\prime}-subgroups is odd. Clearly the automorphism ω permutes these Hall p^{\prime}-subgroups and since the number of them is odd, at least one is fixed by ω. Thus we can choose a Hall p^{\prime}-subgroup H / F_{1} such that $H^{\omega}=H$. Now $H_{\omega}=H \cap G_{\omega}$ is a p-group so that $H_{\omega} \leqq F_{1}$. Thus ω acts as a regular automorphism on H / F_{1} so that H / F_{1} is abelian. Since G / F_{1} is a soluble group, $C_{G / F_{1}}\left(F_{2} / F_{1}\right) \leqq F_{2} / F_{1}$. But $F_{2} / F_{1} \leqq H / F_{1}$ so that as H / F_{1} is abelian, $H / F_{1} \leqq C_{G / F_{1}}\left(F_{2} / F_{1}\right) \leqq F_{2} / F_{1} \leqq H / F_{1}$. Thus F_{2} / F_{1} is the unique Hall p 'subgroup of G / F_{1}. It follows that G / F_{2} is a p-group. Therefore $G=F_{3}$.

Since $G=F_{3}$ and G does not satisfy the conclusion of the theorem, $G^{(r)}$ is not nilpotent.

Suppose by way of contradiction that $G_{\omega}^{(r-1)} \leqq F_{1}$. Then $\left(G / F_{1}\right)_{\omega}$ has derived length at most $r-1$, so by the minimality of $G,\left(G / F_{1}\right)^{(r-1)}$ is nilpotent. Thus $G^{(r-1)} \leqq F_{2}$ and since, as we have already seen, F_{2} / F_{1} is abelian, $G^{(r)} \leqq F_{\mathbf{1}}$. This contradiction proves that $G_{\omega}^{(r-1)}$ is not contained in F_{1}.

Finally we show that if $G_{\omega} F_{2}<G, G_{\omega}^{(r-1)}$ is contained in F_{1}. It then follows from the conclusion of the previous paragraph that $G_{\omega} F_{2}=G$. Suppose then that $G_{\omega} F_{2}<G$, and let K be a maximal subgroup of G containing $G_{\omega} F_{2}$. Since K is a maximal subgroup of G containing F_{2} anc since G / F_{2} is nilpotent, K is a normal subgroup of G. By §2, lemma 3 corollary 2, as $G_{\omega} \leqq G_{\omega} F_{2} \leqq K, K$ is a ω-subgroup of G. Therefore, by tht minimality of $G, K^{(r)}$ is nilpotent. But $K^{(r)}$ is a characteristic subgroup o K, a normal subgroup of G, and therefore $K^{(r)}$ is a normal subgroup of G Hence $K^{(r)} \leqq F_{1}$ so that $K^{(r-1)} \leqq F_{2}$. Now $G_{\omega}^{(r-1)} \leqq K^{(r-1)} \leqq F_{2}$. But G_{ω} i:
a p-group and F_{1} is the Sylow p-subgroup of F_{2} so $G_{\omega}^{(r-1)} \leqq F_{1}$. This completes the proof of the lemma.

We have shown that F_{1} is the unique minimal normal ω-subgroup of G. Since G is a normal subgroup of $\Gamma, F(G) \leqq F(\Gamma)$. If $F(\Gamma) \neq F(G)$ then $|F(\Gamma): F(G)|=\mathbf{2}$ so that $\omega \in F(\Gamma)$. But in this case, since $F(\Gamma)$ is nilpotent, $\left(F_{1}\right)_{\omega}=F_{1}$ contradicting lemma $2(i i)$. Thus $F_{1}=F(\Gamma)$ is the unique minimal normal subgroup of $\Gamma \cdot|\Gamma: G|=2$ so the solubility of Γ follows from that of G. Therefore ($[1], \mathrm{p} .651$) there exists a complement N of F_{1} in Γ. By Sylow's theorem we can suppose, by taking a suitable conjugate of N if necessary, that $\omega \in N$. Let $M=G \cap N$. Then M is a complement of F_{1} in G.

Since the elements of N form a complete set of coset representatives of F_{1} in Γ, we may consider F_{1} as a $G F(p)(N)$-module. We now summarize the results obtained so far in module notation.
(1) F_{1} is a faithful irreducible N-module over $G F(p)$.
(2) $\left(F_{1}\right)_{\omega}>0$.
(3) If $t \in\left(F_{1}\right)_{\omega}$ and $x_{i} \in\left(M_{\omega}\right)^{(i)} \quad(i=0, \cdots, r-1)$
then $f\left(1-x_{0}\right)\left(1-x_{1}\right) \cdots\left(1-x_{r-1}\right)=0$.
(4) If $f \in\left(F_{1}\right)_{\omega}$ and $x \in M_{\omega}$ is of order prime to p, then since G_{ω} is nilpotent, $f x=t$.

It also follows from lemma 2 that $M_{\omega} \neq M$.
If we extend the field of scalars from the prime field $G F(p)$ to its algebraic closure \mathscr{F}, F_{1} splits into a direct sum of absolutely irreducible $\mathscr{F}(N)$ modules, which are algebraically conjugate. ([2], section 70). Taking V as one of these irreducible $\mathscr{F}(N)$-modules, we obtain an $\mathscr{F}(N)$ module with the following properties:
(1) V_{1} is a faithful irreducible N-module over \mathscr{F},
(2) $V_{\omega}=\{v \in V \mid v \omega=v\}>0$,
(3) If $v \in V_{\omega}$ and $x_{i} \in\left(M_{\omega}\right)^{(i)} \quad(i=0,1, \cdots, r-1)$
then $v\left(1-x_{0}\right)\left(1-x_{1}\right) \cdots\left(1-x_{r+1}\right)=0$,
(4) If $v \in V_{\omega}$ and $x \in M_{\omega}$ is of order prime to p, then $v x=v$.

Notation. $\quad Q=F(M)$.
Lemma 5. $\quad V$ is an irreducible $\mathscr{F}(M)$-module.
Proof. By way of contradiction suppose that there exists an irreducible $\mathscr{F}(M)$-submodule W of V such that $0<W<V$. Since $W \omega$ is also an irreducible $\mathscr{F}(M)$-submodule of V and since $W+W \omega$ is an $\mathscr{F}(N)$-module we have $V=W+W \omega$ and so as an $\mathscr{F}(M)$-module

$$
V=W+W \omega
$$

Suppose that G_{ω} is not a p-group. Then there exist an element $x \neq 1$ in M_{ω} of order prime to p. Let $w \in W$ be arbitrary. Then $w+w \omega \in V_{\omega}$ so by property (4) of V, $(w+w \omega) x=w+w \omega$. Equating the W and $W \omega$ components of both sides we deduce that x acts trivially on both W and $W \omega$ and so on V. But this contradicts property (1) of V. Hence we may assume that G_{ω} is a p-group.

Let $x \in Q$ and suppose that for all $w \in W, w x=w$. Since $x \in Q$ and G_{ω} is a p-group, $x^{\omega}=x^{-1}$. Thus if $w \in W$, $w \omega x=w^{-1} \omega=w \omega$ so x also acts trivially on $W \omega$. Hence x acts trivially on $W+W \omega=V$ so $x=1$. Therefore W is a faithful Q-module. Since $Q=F(M)$ and M is soluble, any normal subgroup of M has non-trivial intersection with Q. Hence if W were not a faithful M-module, W would not be a faithful Q-module. It follows that W is a faithful M-module.

Let $w \in W$. Then $w+w \omega \in V_{\omega}$ so if $x_{i} \in\left(M_{\omega}\right)^{(i)}(i=0,1, \cdots, r-1)$ it follows from property (3) of V that

$$
(w+w \omega)\left(1-x_{0}\right)\left(1-x_{1}\right) \cdots\left(1-x_{r-1}\right)=0
$$

and hence equating the W-components we have

$$
w\left(1-x_{0}\right)\left(1-x_{1}\right) \cdots\left(1-x_{r-1}\right)=0 .
$$

Consider W as an $\mathscr{F}(Q)$-module. Since W is an irreducible $\mathscr{F}(M)$-module it follows that

$$
W=W_{1}+\cdots W_{n}
$$

where $W_{1}, W_{2}, \cdots, W_{n}$ are the homogeneous components of W as an $\mathscr{F}(Q)$-module. ([2], section 49). Since M_{ω} is a p-group, Q is an abelian p^{\prime} group by lemma 4 . Thus as \mathscr{F} is of characteristic p and algebraically closed, the irreducible $\mathscr{F}(Q)$-submodules of W are one-dimensional. Thus the action of $x \in Q$ on $w \in W_{i}$ may be described by

$$
w x=\chi_{i}(x) w .
$$

M / Q is a transitive permutation group on the W_{i}. Since, by lemma 4, M_{ω} is a complement of Q in M, we may consider M_{ω} as a transitive permutation group on the W_{i}. Set $H_{i}=\left\{x \in M_{\omega} \mid W_{i} x=W_{i}\right\}$.

We now prove that if $K \leqq H_{1}$ and $K \triangleleft M_{\omega}$ then $K=1$. For all the H_{i} are conjugate in M_{ω} so $K \leqq H_{i}$ for all i. Now let $y \in K, x \in Q$. Then if $w \in W_{i}, w y^{-1} \in W_{i}$ so

$$
w\left(y^{-1} x y\right)=\left(\left(w y^{-1}\right) x\right) y=\chi_{i}(x) w y^{-1} y=w x
$$

Hence $w\left(y^{-1} x y\right)=w x$ for all $w \in W_{i}$ and $x \in Q$. But since i was arbitrary and W is a direct sum of the $W_{i}, y^{-1} x y$ acts on W in the same way as x. But W is a faithful M-module so $y^{-1} x y=x$, or as x was arbitrary in $Q, y \in C_{M}(Q)$.

But as $Q=F(M)$ and M is soluble, $C_{M}(Q) \leqq Q$ so $y \in Q \cap M_{\omega}=1$. This proves the statement made at the beginning of the paragraph.

Let $x \in\left(M_{\omega}\right)^{(r)}$ and $w \in W_{1}$. Since M_{ω} is a p-group and H_{1} is a subgroup of M_{ω} containing no non-trivial normal subgroup of M_{ω}, it follows from §2, lemma 1, that

$$
\begin{equation*}
\left|\left(M_{\omega}\right)^{(i)}: M_{\omega}^{(i)} \cap H_{1}\right|>\left|\left(M_{\omega}\right)^{(i+1)}:\left(M_{\omega}\right)^{(i+1)} \cap H_{1}\right| \tag{*}
\end{equation*}
$$

for all i such that $\left(M_{\omega}\right)^{(i)} \neq 1$. By lemma 4, $\left(M_{\omega}\right)^{(r-1)} \neq 1$, so that $\left(^{*}\right)$ is true for $0 \leqq i \leqq r-1$. But $\left|\left(M_{\omega}\right)^{(i)}:\left(M_{\omega}\right)^{(i)} \cap H_{1}\right|$ is the number of W_{i} in the same system of transitivity as W_{1} under $\left(M_{\omega}\right)^{(i)}$. Hence for each $(0 \leqq i \leqq r-1)$ we can choose $x_{i} \in\left(M_{\omega}\right)^{(i)}$ such that $W_{1} x_{i}$ is not in the same system of transitivity as W_{1} under $\left(M_{\omega}\right)^{(i+1)}$. Now

$$
w\left(1-x_{0}\right)\left(1-x_{1}\right) \cdots\left(1-x_{r-1}\right)(1-x)=0 .
$$

Since $W_{1} x_{0}$ is not in the same system of transitivity as W_{1} under $\left(M_{\omega}\right)^{\prime}$ we can conclude that

$$
w\left(1-x_{1}\right) \cdots\left(1-x_{r-1}\right)(1-x)=0
$$

and finally $w(1-x)=0$. Hence $x \in H_{1}$ since w was arbitrary in W_{1}. But x was arbitrary in $\left(M_{\omega}\right)^{(r)}$ so that $\left(M_{\omega}\right)^{(r)} \leqq H_{1}$. But $\left(M_{\omega}\right)^{(r)} \triangleleft M_{\omega}$ so $\left(M_{\omega}\right)^{(r)}=1$ contradicting lemma 4. This completes the proof of lemma 5.

Lemma 6. If $L \neq 1$ is a normal ω-subgroup of M, then L_{ω} is a nontrivial proper subgroup of L.

Proof. Since M is soluble and every soluble group contains a characteristic subgroup which is abelian, it is sufficient to prove the lemma for abelian L. Therefore L is supposed to be a normal abelian subgroup of M. Now L is contained in $F(M)=Q$. It follows from lemma 3 that L is a $p^{\prime}-$ group. Write

$$
V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{s}
$$

where V is considered as an $\mathscr{F}(L)$-module and the V_{i} are the homogeneous components. Since L is an abelian p^{\prime}-group whilst \mathscr{F} is algebraically closed of characteristic p, the action of $x \in L$ on $v \in V_{i}$ may be described by

$$
v x=\chi_{i}(x) v
$$

The characters χ_{i} are all conjugate and the number, s, of homogeneous zomponents divides the order of M ([2], section 49). Thus none of the characters $\chi_{i}(i=1,2, \cdots, s)$ is the trivial character since V is a faithful module. Also s is odd.

We complete the proof of the lemma by showing that if $L_{\omega}=1$ or $L_{\omega}=L$ then we can choose an i such that χ_{i} is the trivial character.

Since ω has order 2 and V is an $\mathscr{F}(N)$-module, for each $i(i=1,2, \cdots, s)$
there exists j such that $V_{i} \omega=V_{j}$ and $V_{i} \omega=V_{i}$. Since s is odd there exists at least one i for which $V_{i} \omega=V_{i}$. Suppose $v \in V_{i}$ and $x \in L$. Then $\chi_{i}(x) v_{i} \omega=v_{i} \omega x=v_{i} x^{\omega} \omega=\chi_{i}\left(x^{\omega}\right) v_{i} \omega$ so that $\chi_{i}(x)=\chi_{i}\left(x^{\omega}\right)$, for all $x \in L$, Now if $L_{\omega}=1$, then for all $x \in L, x^{\omega}=x^{-1}$ so that $\chi_{i}(x)=\chi_{i}\left(x^{-1}\right)$ or $\chi_{i}\left(x^{2}\right)=1$. Since L has odd order, it follows that χ_{i} is the trivial character. Thus $L_{\omega}>1$.

Now suppose that $L_{\omega}=L$. By the second property of $V, V_{\omega}>0$ so that there exists $0 \neq v=v \omega \in V$. Since $L=L_{\omega}$ is a p^{\prime}-group, it follows from property (4) of V that $v=v x$ for all $x \in L$. Thus $\{k v \mid k \in \mathscr{F}\}$ is a trivial $\mathscr{F}(L)$ submodule of V and therefore is contained in some V_{j}. For this $V_{j}, \chi_{j}=1$ clearly. This contradiction proves the lemma.

Remark. In lemma 6, L_{ω} cannot be a normal subgroup of M, for if it were we would obtain a contradiction by applying lemma 6 to L_{ω}. But $(Z(M))_{\omega}$ is a normal subgroup of M so $Z(M)=1$. Therefore we can now assume that $Q=F(M)$ is a proper subgroup of M.

Lemma 7. Q is abelian.
Proof. We consider V as a $\mathscr{F}(Q)$-module and write

$$
V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{s}
$$

where the V_{i} are the homogeneous components of V. Let Q_{i} be the kernel of the representation of Q obtained on V_{i} for each $i=1, \ldots$, s. Then the Q_{i} are all conjugate, ([2], section 49), so that if $Q^{\prime} \leqq Q_{i}$ for some i then $Q^{\prime} \leqq Q_{i}$ for all i. Therefore in this case Q^{\prime} is contained in the kernel of $V_{1}+V_{2}+\cdots$ $+V_{s}=V$. But V is a faithful M-module so that this implies that $Q^{\prime}=1$, and proves the lemma.

Now suppose that Q_{ω} is contained in one of the groups $Q_{i}(i=1, \ldots, s)$, say Q_{j}. Then by $\S 2$, lemma 3, corollary $2, Q_{j}^{\omega}=Q_{j}$. Therefore ω induces a regular automorphism on Q / Q_{j}, so that Q / Q_{j} is abelian. Consequently $Q^{\prime} \leqq Q_{j}$. Thus it is sufficient to prove that for some i, Q_{ω} is contained in Q_{i}.

Suppose that there exists an i such that $V_{i} \omega \neq V_{i}$. Let $v \in V_{i}$. Then $v+v \omega \in V_{\omega}$ so that as Q_{ω} is a p^{\prime}-group if $x \in Q_{\omega}$, by the fourth property of $V,(v+v \omega) x=v+v \omega$. Equating the V_{i} components of both sides, we see that $v x=v$ so that Q_{ω} is contained in Q_{i}.

Finally suppose by way of contradiction that $V_{i} \omega=V_{i}$ for all i and fix i. Considering V_{i} as a $Z(Q)$-module, we may write

$$
V_{i}=W_{i 1} \oplus W_{i 2} \oplus \cdots \oplus W_{i u}
$$

where for each $j, W_{i j}$ is a homogeneous component of V_{i}. Since $V_{i} \omega=V_{i}$ we find, as we have done previously in similar circumstances, that there exists a j such that

$$
W_{i j} \omega=W_{i j} .
$$

Since $Z(Q)$ is an abelian p^{\prime}-group, the elements of $Z(Q)$ act as scalar multipliers on the $W_{i j}$. Suppose that if $x \in Z(Q)$ and $w \in W_{i j}, w x=\chi_{i j}(x) w$. Then $\chi_{i j}(x) w \omega=w \omega x=w x^{\omega} \omega=\chi_{i j}\left(x^{\omega}\right) w \omega$ so that $\chi_{i j}(x)=\chi_{i j}\left(x^{\omega}\right)$. Since $Z(Q)$ is a non-trivial normal abelian subgroup of $M,(Z(Q))_{\omega}<Z(Q)$ by lemma 6. Therefore the set H of elements of $Z(Q)$ inverted by ω forms a nontrivial subgroup of $Z(Q)$ ($\S 2$, lemma 3, corollary 3). Since H is a subgroup of $Z(Q), H$ is normal in Q. Now if $x \in H, \chi_{i j}(x)=\chi_{i j}\left(x^{\omega}\right)=\chi_{i j}\left(x^{-1}\right)$. Since H is of odd order, for all $x \in H, \chi_{i j}(x)=1$. Thus H is contained in the kernel of the representation of $Z(Q)$ given by $W_{i j}$. Since for $k \neq j$, the kernel of $W_{i k}$ is conjugate to that of $W_{i j}$ in Q and since H is a normal subgroup of Q, H is contained in the kernel of $W_{i k}$ for all k. Thus H is contained in the kernel of $W_{i 1}+\cdots+W_{i u}=V_{i}$. But this is true for all i so that H is contained in the kernel of $V_{1}+V_{2}+\cdots+V_{s}=V$. Since V is a faithful M-module, this implies that $H=1$ and this contradiction, to the fact that H is a non-trivial subgroup of $Z(Q)$, completes the proof of the lemma.

Lemma 8. $G=F_{3}(G)$.

Proof. Suppose by way of contradiction that $G>F_{3}(G)$. It follows from [8] that $G_{\omega} \leqq F_{3}(G)$. Therefore ω induces a regular automorphism on G / F_{3} so that G / F_{3} is abelian. If H is any subgroup of G containing F_{3} then by $\S 2$ lemma 3, corollary 2 , since $G_{\omega}<F_{3} \leqq H, H^{\omega}=H$. Since G / F_{3} is abelian, H is a normal subgroup of G. Suppose that $H \neq G$. Then H satisfies the hypothesis of the theorem and therefore, by the minimality of G, $H=F_{3}(H)$. Since H is normal in $G, F_{3}(H) \leqq F_{3}$ so $F_{3}=F_{3}(H)=H$. It follows that G / F_{3} is cyclic of prime order.

Since $G_{\omega}<F_{3}<G, M_{\omega} \leqq F_{2}(M)<M$ and by $\S 2$, lemma 3, we can choose an element $x \in M$ such that $M=\left\{x, F_{2}(M)\right\}$ and $x^{\omega}=x^{-1}$. Now consider the ω-subgroup of $G, K=\left\{x, Q, F_{1}\right\}$. Since $x^{\omega}=x^{-1}$, whilst $F_{2}=Q F_{1}$ is a normal subgroup of $K, K_{\omega} \leqq\left(Q F_{1}\right)_{\omega}$. But Q is an abelian p^{\prime}-group, F_{1} is an abelian p-group, and G_{ω} is nilpotent; therefore K_{ω} is abelian. Thus, as the theorem is true for $r=1, K^{\prime}$ is nilpotent.

Write $K^{\prime}=A \times B$ where A is a Sylow p-subgroup of K^{\prime}. Then B is a normal p^{\prime}-subgroup of K and since F_{1} is a p-group, $B \cap F_{1}=1$. Since F_{1} is also a normal subgroup of K and G is soluble,

$$
B \leqq C_{K}\left(F_{1}\right) \leqq C_{G}\left(F_{1}\right) \leqq F_{1}
$$

Thus $B=1$ and therefore $K^{\prime} \leqq Q F_{1}$ is a p-group. Therefore $K^{\prime} \leqq F_{1}$. Let $L=\{x, Q\}$. Then L is a subgroup of M and $K=F_{1} L$. Now $L \cong K / F_{1}$ is abelian so that $x \in C_{M}(Q)$. But $Q=F(M)$ and M is soluble, so this implies that $x \in Q$. This contradiction to the choice of x proves the lemma.

Corollary. Since $G=F_{3}(G)$ by lemma 8 , whilst G does not satisfy the conclusion of theorem 1, it follows that $G^{(r)}$ is not nilpotent. Thus $M^{(r)}>1$.

Lemma 9. There exists an ω-complement D of Q in $M . Q$ is a q-group for some prime $q \neq p$ and M / Q is a $q^{\prime}-g r o u p$.

Proof. To construct an ω-complement of Q in M we use properties of Sylow systems of a soluble group (see [5] and [6]).

Since M is soluble there exists a Sylow system of M. Since all such Sylow systems are conjugate in M and since the order of M is odd, there is an odd number of Sylow systems of M. The automorphism ω maps any given Sylow system of M onto another and since ω has order 2, at least one Sylow system of M is fixed by ω. Form the system normalizer D of this system. Clearly D is an ω-group and by the covering theorem, since $M=F_{2}(M), M=D Q$. Suppose that $D \cap Q>1$. Then since Q is a normal subgroup of $M, D \cap Q$ is a normal subgroup of D. Also Q is abelian, so that $D \cap Q$ is a normal subgroup of $D Q=M$. Let K be a minimal normal subgroup of M contained in $D \cap Q$. Then by the covering theorem, since $K \leqq D, K$ is centralized by M. But by the remark at the end of the proof of lemma $6, Z(M)=1$. Hence $K=1$ and therefore $D \cap Q=1$. Thus D is an ω-complement of Q in M.

We next show that if K is a proper ω-subgroup of $M, K^{(r)}=1$. For if K is a proper ω-subgroup of $M, F_{1} K$ is a proper ω-subgroup of G. Since $\left(G_{\omega}\right)^{(r)}=1,\left(\left(F_{1} K\right)_{\omega}\right)^{(r)}=1$, and therefore the minimality of G implies that $\left(F_{1} K\right)^{(r)}$ is nilpotent. Thus we may write $\left(F_{1} K\right)^{(r)}=A \times B$ where A is a p-group and B is a p^{\prime}-group. By the minimality of $G, M^{(r)} \leqq Q$ so $\left(F_{1} K\right)^{(r)} \leqq F_{1} Q$. Thus $A \leqq F$. Also $B \triangleleft F_{1} K, F_{1} \triangleleft F_{1} K$ and as their orders are relatively prime, $B \cap F_{1}=1$. Hence $B \leqq C_{G}\left(F_{1}\right)=F_{1}$ so $B=1$. Now $\left(F_{1} K\right)^{(r)}=A \leqq F_{1}$ so $K^{(r)} \leqq F_{1} \cap M=1$ as required.

Now suppose that Q is not a q-group for any prime q. Then we may write $Q=Q_{1} Q_{2}$ where Q_{1} and Q_{2} are Hall subgroups of Q of relatively prime orders. Since $Q=F(M)$, the Q_{i} are normal ω-subgroups of M. Thus for each $i, D Q_{i}$ is a proper ω-subgroup of M and so $\left(D Q_{i}\right)^{(r)}=1$. Since Q_{i} is abelian, it follows that

$$
\left(Q_{i}, D, D^{\prime}, \cdots, D^{(r-1)}\right)=1 \quad(i=1,2)
$$

Also D is a proper ω-subgroup of G s q that $D^{(r)}=1$. Now

$$
\begin{aligned}
M^{(r)} & =\left(D Q_{1} Q_{2}\right)^{(r)} \\
& =D^{(r)}\left(Q_{1}, D, D^{\prime}, \cdots, D^{(r-1)}\right)\left(Q_{2}, D, D^{\prime}, \cdots, D^{(r-1)}\right) \\
& =1,
\end{aligned}
$$

using, in addition to the above results, the fact that $Q=Q_{1} Q_{2}$ is an abelian group. But this contradicts the corollary to lemma 8 . Thus Q is a q-group for some prime $q \neq p$.

Since M / Q is nilpotent, Q is a q-group and $Q=F(M)$ it follows that $D \cong M / Q$ is a q^{\prime}-group.

Lemma 10. $\quad D_{\omega}=D$.
Proof. Suppose that $D_{\omega}<D$. Then, since $D \cong M / Q$ is nilpotent by lemma, 8, there exists a proper normal subgroup K of D containing D_{ω}. Form $K Q F_{1}$, a proper normal subgroup of G. Since $G_{\omega}=\left(F_{1}\right)_{\omega} Q_{\omega} D_{\omega}$ is contained in $K Q F_{1}, K Q F_{1}$ is an ω-subgroup of G by $\S 2$, lemma 3, corollary 2. Hence by the minimality of $G,\left(K Q F_{1}\right)^{(r)} \leqq F_{1}$ and therefore $\left(K Q F_{1}\right)^{(r-1)}$ $\leqq F_{2}=F_{1} Q$. Thus $D_{\omega}^{(r-1)} \leqq K^{(r-1)} \leqq D \cap F_{1} Q=1$. Since $r>1, G_{\omega}$ is nilpotent and D is a q^{\prime}-group whilst Q is a q-group, $M_{\omega}=D_{\omega} Q_{\omega}$ has derived length at most $r-1$. Thus $M^{(r-1)} \leqq F(M)=Q$ and since Q is abelian $M^{(r)}=1$. But this contradicts the corollary to lemma 8 . Thus $D_{\omega}=D$.

Finally since Q is abelian, $Q \leqq N_{M}\left(Q_{\omega}\right)$ and since $Q_{\omega}=Q \cap M_{\omega}$ and $D=D_{\omega} \leqq M_{\omega}, D \leqq N_{M}\left(Q_{\omega}\right)$. Thus $Q_{\omega} \triangleleft D Q=M$ contradicting lemma 6 . This contradiction completes the proof of the theorem.

4. Proof of theorem 2

Suppose that the theorem is false and choose a counterexample G of minimal order. Then $F(G)$ is the unique minimal normal A-subgroup of G. $F(G)$ is an elementary abelian p-group for some prime p.

Let Γ denote the splitting extension of G by A and write $F=F(G)$.
Suppose that $(G / F)_{\omega}=G / F$ for some $\omega \in A, \omega \neq 1$. Then since G_{ω} is nilpotent, G / F is nilpotent. It is now an easy consequence of the minimality of G that G / F is a q-group for some prime $q \neq p$. Therefore we can choose a Sylow q-subgroup Q to complement F in G. Since $N_{\Gamma}(Q) F=\Gamma$, by taking a suitable conjugate of Q if necessary, we may assume A normalizes Q. Since $(G / F)_{\omega}=G / F, Q_{\omega}=Q$. Now $Z(G)=1$ for if $Z(G)>1 . Z(G) \geqq F$ which is false since G is soluble. Since G_{ω} is nilpotent and $Q=Q_{\omega}$ is a group of order prime to p, whilst F is an abelian p-group,

$$
F_{\omega}=G_{\omega} \cap F \leqq Z(F Q)=Z(G)=1
$$

Therefore $F_{\omega}=1$. Now we may write $\omega=\omega_{1} \omega_{2}$ where ω_{1} and ω_{2} are non-trivial elements of A. Since $Q_{\omega_{1} \omega_{2}}=Q$, it follows that $Q_{\omega_{1}}=Q_{\omega_{2}}$. Now form $F_{\omega_{1}}$ and $F_{\omega_{2}}$. Since $F_{\omega_{1} \omega_{2}}=1$, it follows from §2, lemma 3, that $F=F_{\omega_{1}} F_{\omega_{2}}$. Now $G_{\omega_{1}}$ and $G_{\omega_{2}}$ are nilpotent so, as before, $Q_{\omega_{1}}=Q_{\omega_{2}}$ is centralized by $F_{\omega_{1}}$ and $F_{\omega_{2}}$. Therefore $Q_{\omega_{1}} \leqq C_{G}\left(F_{\omega_{1}} F_{\omega_{2}}\right)=C_{G}(F)=F$. Thus ω_{1} induces a regular automorphism on Q, which implies that Q is abelian. Since $G=F Q$, we conclude that $G^{\prime} \leqq F$ contrary to the definition of G. Therefore for no $\omega \in A, \omega \neq 1$, is $(G / F)_{\omega}=G / F$.

If $F_{\omega}=1$ or F for some $\omega \in A, \omega \neq 1$, then, as in $\S 3$, lemma $2, \omega$ either inverts or fixes all the elements of F so that $(G / F)_{\omega}=G / F$. Since we have already shown that this is false, we conclude that for each $\omega \in A, \omega \neq 1$, $F>F_{\omega}>1$. Also, since $C_{G}(F)=F, C_{\Gamma}(F)=F$.

We have shown that $C_{\Gamma}(F)=F$ so it follows that $F=F(\Gamma)$ is the unique minimal normal subgroup of Γ. Therefore we may deduce (see [1]) that there exists a complement N of F in Γ. By Sylow's theorem we may suppose that $A \leqq N$. Let $M=G \cap N$ and $F(M)=Q$. The modular law implies that M is a complement of F in G.

For convenience we now summarize the properties of F which we have obtained.
(a) F is the unique minimal normal subgroup of Γ.
(b) $C_{\Gamma}(F)=F$.
(c) If $\omega \in A, \omega \neq 1$ then $Q_{\omega} \leqq C_{G}\left(F_{\omega}\right)$. This follows since F is a p-group, $Q \cong F_{2}(G) / F$ and G_{ω} is nilpotent.
(d) For each $\omega \in A, \omega \neq 1, F_{\omega}>1$.

Properties (a) and (b) enable us to consider F as a faithful irreducible Γ / F-module over $G F(p)$. Applying the same method as in the proof of $\S 3$, theorem 1 , we may deduce the existence of an $\mathscr{F}(N)$-module V, where \mathscr{F} denotes the algebraic closure of $G F(p)$, with the following properties:
(1) V is a faithful irreducible N-module over \mathscr{F}.
(2) For each $\omega \in A, \omega \neq 1, V \omega=\{v \in V \mid v \omega=v\}>0$.
(3) For each $\omega \in A, \omega \neq 1$, if $v \in V_{\omega}$ and $x \in Q_{\omega}$ then $v x=v$.

We now show
(i) V is an irreducible $\mathscr{F}(M)$-module.

Suppose, by way of contradiction, that V is not an irreducible $\mathscr{F}(M)$ module. Let W be an irreducible $\mathscr{F}(M)$-submodule of V. Then for at least two elements $\omega_{1}, \omega_{2} \in A,\left(\omega_{1}, \omega_{2} \neq 1\right)$ we have $W \omega_{1} \neq W$ and $W \omega_{2} \neq W$. Let $w \in W$ so that $w+w \omega_{i} \in V_{\omega_{i}}(i=1,2)$. Now if $y \in Q_{\omega_{i}}$ then by property (3)

$$
\left(w+w \omega_{i}\right) y=w+w \omega_{i} .
$$

Equating the W components of each side, we deduce that $Q_{\omega_{i}}$ acts trivially on W and so on V. But V is a faithful N-module over \mathscr{F} so it follows that $Q_{\omega_{i}}=1$ for $i=1,2$. By $\S 2$, lemma 3, ω_{1} and ω_{2} both invert all the elements of Q so that $\omega_{1} \omega_{2}$ fixes all the elements of Q. Now we have already shown that $F_{\omega_{1} \omega_{2}}>1$ so since F is an abelian p-group, Q is of order prime to p and $G_{\omega_{1} \omega_{2}}$ is nilpotent, $F_{\omega_{1} \omega_{2}} \leqq Z\left(Q_{\omega_{1} \omega_{2}} F\right)=Z(Q F)=Z\left(F_{2}(G)\right)$. Therefore $Z\left(G_{2}(G)\right)>1$. But $Z\left(F_{2}(G)\right)$ is a normal A-subgroup of G so as F is the unique minimal normal A-subgroup of $G, F \leqq Z\left(F_{2}(G)\right)$. This implies that
$F_{2}(G)$ is nilpotent, a contradiction since G is soluble and non-nilpotent. This contradiction proves (i).

In the same way as we proved $\S 3$ lemma 6 , we may now deduce
(ii) If $\omega \in A, \omega \neq 1$, and L is a non-trivial normal ω-subgroup of M, then $1<L_{\omega}<L$.

It follows from (ii), as in the remark after the proof of §3, lemma 6, that
(iii) $Z(M)=1$.

This last result implies that $F_{2}(G)$ is a proper subgroup of G, so by the minimality of $G, Q \cong F_{2}(G) / F$ is abelian. We may also deduce from the minimality of G that M / Q is characteristically simple. Therefore M / Q is an elementary abelian r-group for some prime r.

Suppose that r divides the order of Q. Let R be a Sylow r-subgroup of M. Since Q is a normal subgroup of M and r divides the order of Q, $Z(R) \cap Q>1$. But $Z(R) \cap Q \leqq Z(R Q)=Z(M)$ since Q is abelian. Thus $Z(M)>1$ contradicting (iii). We conclude therefore that r does not divide the order of Q.

Let R be a Sylow r-subgroup of M. Since Q is of order prime to r, $R \cap Q=1$. Clearly $R Q=M$. Now form $N_{N}(R)$. It is easily shown that $N_{N}(R) Q=N$ so, by taking a conjugate of R if necessary, we may suppose that A normalizes R.

If $\omega \in A, \omega \neq 1$ is such that $R_{\omega}=R$, then since $M_{\omega} \leqq G_{\omega}$ is nilpotent, r does not divide the order of Q and Q is abelian, $Q_{\omega} \leqq Z(R Q)=Z(M)$. Now on the one hand, (iii) implies that $Q_{\omega}=1$ whilst on the other hand(ii) implies $Q_{\omega}>1$, a contradiction. Thus for no $\omega \in A, \omega \neq 1$ is $R_{\omega}=R$.

It is an easy consequence of the minimality of G that the representation of A on R is irreducible. But an irreducible representation, over a field of characteristic not equal to two, of the non-cyclic group of order 4 is onedimensional. Therefore for at least one $\omega \in A, \omega \neq 1$, is $R_{\omega}=R$ contradicting the conclusion of the last paragraph.

This contradiction completes the proof of theorem 2.

5. Proof of theorem 3

Proof. Suppose that the theorem is false and choose a counterexample G of minimal order. Then $F=F(G)$ is the unique minimal normal A-sub group of G.

Let L be a proper normal A-subgroup of G. Then L is nilpotent. It follows that F is the unique maximal normal A-subgroup of G and that G / F is an elementary abelian r-group for some prime r, since G is soluble. Thus G / F is an irreducible A-module over $G F(r)$. Now A is of exponent two, so any irreducible representation of A, over a field of characteristic not equal
to two, is one-dimensional. Therefore the kernel of the representation of A on G / F must have order 4 , at least. Let ω_{1}, ω_{2} be two distinct non-unit elements of A in the kernel. Then

$$
G / F=(G / F)_{\omega_{1}}=(G / F)_{\omega_{2}}=(G / F)_{\omega_{1} \omega_{2}}
$$

Suppose that $\omega \in A, \omega \neq 1$, and $(G / F)_{\omega}=G / F$. Since F is the unique minimal normal A-subgroup of the soluble group G, F is an elementary abelian p-group. By definition G is not nilpotent, so G / F is not a p-group. Therefore $r \neq p$. Now $(G / F)_{\omega}=G / F$ is isomorphic to a section of G_{ω} so the Sylow r-subgroup R of G_{ω} is a complement of F in G. Since G_{ω} is nilpotent and F is abelian, $F_{\omega}=F \cap G_{\omega}$ is centralized by $R F=G$. Now if $Z(G)>1$, since F is the unique minimal normal A-subgroup of $G, Z(G) \geqq F=F(G)$, a contradiction since G is soluble. Therefore $F_{\omega} \geqq Z(G)=1$. It follows that ω inverts all the elements of F.

Combining these results we have for $x \in F$,

$$
x^{\omega_{1}}=x^{\omega_{\mathbf{2}}}=x^{\omega_{1} \omega_{\mathbf{1}}}=x^{-1}
$$

Thus $x^{-1}=x^{\omega_{1} \omega_{2}}=\left(x^{-1}\right)^{\omega_{8}}=x$, a contradiction since the order of F is odd. This proves the theorem.

References

[1] R. Baer, 'Nilpotent Characteristic Subgroups of Finite Groups', American J. Math. 75 (1953), 633-664.
[2] C. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience, 1962.
[3] W. Gaschutz, 'Uber die Φ-Untergruppe endlicher Gruppen', Math. Zeitschr., 58 (1953), 160-170.
[4] M. Hall, Jr., The Theory of Groups, New York, 1959.
[5] P. Hall, 'On the Sylow Systems of a Soluble Group', Proc. London Math. Soc., (2) 43 (1937), 316-323.
[6] P. Hall, 'On the System Normalizers of a Soluble Group', Proc. London Math. Soc., (2) 43 (1937), 507-528.
[7] L. Kovács and G. E. Wall, 'Involutory Automorphisms of Groups of Odd Order and Their Fixed Point Groups', (to appear). Nagoya Math. J.
[8] J. Thompson, 'Automorphisms of Soluble Groups', J. Algebra 1 (1964), 259-267.

University of Sydney

[^0]: ${ }^{1}$ Work on this problem was partly completed whilst the author held a C.S.I.R.O. studentship.

[^1]: : An A-section of G is a factor group H / K where $K \triangleleft H$ and H and K are A-subgroup of G.

