INVOLUTORY AUTOMORPHISMS OF GROUPS OF ODD ORDER

J. N. WARD¹

(Received 3 December 1965)

1. Introduction

Let G be a finite group of odd order with an automorphism ω of order 2. The Feit-Thompson theorem implies that G is soluble and this is assumed throughout the paper. Let G_{ω} denote the subgroup of G consisting of those elements fixed by ω . If F(G) denotes the Fitting subgroup of G then the upper Fitting series of G is defined by $F_1(G) = F(G)$ and $F_{r+1}(G) =$ the inverse image in G of $F(G/F_r(G))$. $G^{(r)}$ denotes the rth derived group of G. The principal result of this paper may now be stated as follows:

THEOREM 1. Let G be a group of odd order with an automorphism ω of order 2. Suppose that G_{ω} is nilpotent, and that $G_{\omega}^{(r)} = 1$. Then $G^{(r)}$ is nilpotent and $G = F_3(G)$.

Examples given in [7] show that there exist groups G satisfying the hypothesis of theorem 1 for which $G \neq F_2(G)$. If H is any nilpotent group of odd order and derived length r, we can construct a group G satisfying the hypothesis of the theorem such that $G_{\omega} \cong H$ and $G^{(r-1)}$ is not nilpotent. Indeed let q be an odd prime not dividing the order of H and construct the group algebra A of K, the direct product of H and the cyclic group of order 2, over GF(q), the Galois field with q elements. The mappings

$$x \rightarrow ax + b$$

of A into itself, where a runs over K and b runs over A, form a group Γ . Γ has a subgroup G of odd order and index 2. $G/F(G) \cong H$ and an inner automorphism of Γ of order 2 induces an automorphism ω of G with $G_{\omega} \cong H$.

L. Kovacs and G. E. Wall have constructed in [7] p groups of arbitrarily high derived length, each with an automorphism ω of order 2 such that the fixed point group of ω is cyclic. Taking K to be the splitting extension of a suitable one of these groups by its automorphism and applying the above construction we can show that given any integer n there exists a group G of odd

¹ Work on this problem was partly completed whilst the author held a C.S.I.R.O. studentship.

481

order with an automorphism ω of order 2 such that G_{ω} is metabelian and $G^{(n)}$ is not nilpotent. Thus the assumption that G_{ω} is nilpotent in theorem 1 is essential.

If the group G has several automorphisms of order 2 satisfying the condition that each of the fixed point groups is nilpotent, then stronger assertions can be made. We have

THEOREM 2. Let G be a group of odd order with a group of automorphisms A of order 4 and exponent 2 such that for each $\omega \in A$, $\omega \neq 1$, G_{ω} is nilpotent. Then G' is nilpotent.

Under these conditions G need not be nilpotent but with even stronger hypotheses the nilpotence of G can be asserted:

THEOREM 3. Let G be a group of odd order with a group of automorphisms A of order 8 and exponent 2 such that for each $\omega \in A$, $\omega \neq 1$, G_{ω} is nilpotent. Then G is nilpotent.

A very much more elementary result is

THEOREM 4. Let G be a group of odd order with an automorphism ω of order 2. If G_{ω} is a Hall-subgroup of G then there exists a normal abelian complement of G_{ω} in G.

For further discussion of theorems of this kind we refer to [7].

I wish to express my thanks to G. E. Wall for his guidance in this work.

Notation. The notation is standard and agrees with that mentioned in [7]. By a proper subgroup is means a subgroup not equal to the whole group. A non-trivial subgroup is one containing more than one element. If G is a group, |G| denotes the order of G, Z(G) the centre of G and $\Phi(G)$ the Frattini subgroup of G. For subgroups H and K of G, |G:H| is the index of H in G, $C_H(K)$ the centralizer of K in H and $N_H(K)$ the normalizer of K in H.

 \mathscr{F} always denotes the algebraic closure of GF(p), the Galois field with p-elements. If \mathscr{L} is a field $\mathscr{L}(G)$ denotes the group algebra of G over \mathscr{L} . If V is an $\mathscr{L}(G)$ -module, we write scalars as left operators on V and elements of $\mathscr{L}(G)$ as right operators on V.

If p is a prime, a p' group is a group of order prime to p. A Hall p' subgroup of a group is a Hall subgroup, whose index is a power of p.

A frequently used property of a soluble group G is that $C_G(F(G)) \leq F(G)$ ([1], p. 646).

2. Preliminary lemmas

LEMMA 1. Let P be a p-group and H a proper subgroup of P. Then $|P:H| > |P':H \cap P'|$.

J. N. Ward

PROOF. Since $P' \leq \Phi(P)$, |P:P'| > |P'H:P'|. The result follows.

LEMMA 2. Let G be a soluble group operated on by a group A of automorphisms. Suppose that for some pair of integers (m, n), (n > 0), $G^{(m)} \leq F_n G$ but if H/K is any A-section² of G, $H/K \neq G/1$, then $(H/K)^{(m)} \leq F_n(H/K)$.

Then if H is a non trivial normal A-subgroup of G, $F(G) \leq H$. F(G) is an elementary abelian p-group for some prime p.

PROOF. It follows from the hypothesis that if $1 \neq H$, $K \neq 1$ are normal *A*-subgroups of *G* then $1 \neq H \cap K$. Thus *G* has a unique minimal normal *A*subgroup *M*. Since *G* is soluble, *M* is an elementary abelian p-group. Now from [1] p. 647, $F(G/\Phi(G)) = F(G)/\Phi(G)$ so $F_n(G/\Phi(G)) = F_n(G)/\Phi(G)$. Thus $\Phi(G) = 1$. Since $\Phi(N) \leq \Phi(G)$ if $N \triangleleft G$ ([3], p. 162), F(G) is an elementary abelian p-group.

Write H/M = F(G/M). Then F(G) is the Sylow *p*-subgroup of HSince $(G/M)^{(m)} \leq F_n(G/M)$ whilst $G^{(m)} \leq F_n(G)$, H properly contains F(G).

As F(G) is an elementary abelian normal Sylow p-subgroup of H, F(G) is a completely reducible H/F(G) module. Thus $F(G) = M \times N$ where $N \triangleleft H$. Since H/M is nilpotent and F(G) is abelian, $N \leq Z(H)$. Suppose Z(H) > 1. Then Z(H) is characteristic in the normal A-subgroup H of G so Z(H) is a normal A-subgroup of G. Hence $Z(H) \geq F(G)$ so $H \leq C_G(F(G)) = F(G)$, a contradiction. Thus $N \leq Z(H) = 1$ and F(G) = M, proving the lemma.

We apply lemma 2 in the following way. Each of theorems 1, 2 and : is to be proved by induction on the order of G and by way of contradiction For theorem 1 take A to be the group $\{1, \omega\}$. Let G be a group of minima order not satisfying the hypothesis of the theorem in question. For theorem we take (m, n) = (0, 3) or (r, 1); for theorem 2, (m, n) = (1, 1) and for theorem 3, (m, n) = (0, 1). Now if $H/K \neq G/1$ is an A-section of G, either A is rep resented faithfully as a group of automorphisms of H/K in which cas by induction $(H/K)^{(m)} \leq F_n(H/K)$ or for some automorphism $\omega \in A$ $(H/K)_{\omega} = H/K$ so H/K is nilpotent being isomorphic to a section of G_{ω} Thus in either case since |G| is odd the hypothesis of the lemma is satisfier and we conclude that F(G) is the unique minimal normal A-subgroup of G.

The following lemma and its corollaries are stated for convenience. Th method of proof is well known, see for example [7].

LEMMA 3. Let G be a group of odd order with an automorphism ω c order 2. Then there exists precisely one element of G which is inverted by c in each left (right) coset of G_{ω} .

⁸ An A-section of G is a factor group H/K where $K \triangleleft H$ and H and K are A-subgroup of G.

COROLLARY 1. Let G be a group of odd order with an automorphism ω of order 2. Every element of G may be expressed as the product of an element fixed by ω and an element inverted by ω .

COROLLARY 2. Let G be a group of odd order with an automorphism ω of order 2. Let H be a subgroup of G containing G_{ω} . Then $H^{\omega} = H$.

COROLLARY 3. Let G be an abelian group of odd order with an automorphism ω of order 2. Then if N is the set of elements of G which are inverted by ω , N is a subgroup of G and $G = N \times G_{\omega}$.

Theorem 4 follows from lemma 3:

The Hall-subgroups of G which complement G_{ω} form a characteristic system of subgroups. Since G is of odd order one of these is fixed by ω ; this subgroup consists of those elements of G inverted by ω and so is normalized by G_{ω} . Thus it is a normal abelian complement of G_{ω} in G.

3. Proof of theorem 1

The theorem is proved by induction on |G| and by way of contradiction. Suppose therefore that G is a group of minimal order satisfying the hypothesis of the theorem but not the conclusion. It follows from [7] that the theorem is true for r = 1 so we may assume r > 1. Since |G| is odd, G is soluble. We have already proved.

LEMMA 1. F(G) is the unique minimal normal ω -subgroup of G. Therefore F(G) is an elementary abelian p-group for some prime p.

Notation. For each positive integer n, set $F_n = F_n(G)$. Let Γ denote the splitting extension of G by ω and p the unique prime dividing $|F_1|$.

LEMMA 2. (i) $(G/F_1)_{\omega} \neq G/F_1$, (ii) F_1 is a faithful irreducible Γ/F_1 -module, (iii) $(F_1)_{\omega} > 1$. Therefore $p||G_{\omega}|$.

PROOF. (i) If $(G/F_1)_{\omega} = G/F_1$, then G/F_1 is isomorphic to a section of G_{ω} and therefore is nilpotent of derived length less than or equal to r. It follows that G satisfies the conclusion of the theorem. Hence $(G/F_1)_{\omega} \neq G/F_1$.

(ii) Lemma 1 implies that F_1 is an irreducible Γ/F_1 -module. To prove that F_1 is a faithful Γ/F_1 -module we need to prove that $C_{\Gamma}(F_1) = F_1$. Since F_1 is the Fitting subgroup of G, and since G is soluble, $C_G(F_1) = F_1$. Hence if $C_{\Gamma}(F_1) > F_1$, $|C_{\Gamma}(F_1) : F_1| = 2$. In this case Γ/F_1 has a normal Sylow 2-subgroup so that $\Gamma/F_1 = G/F_1 \times gp\{\omega F_1\}$ from which it follows that $(G/F_1)_{\omega} = G/F_1$, contradicting (i). This proves (ii). (iii) $(F_1)_{\omega} > 1$ for if $(F_1)_{\omega} = 1$, ω must invert all the elements of F_1 . Then, since Γ/F_1 is faithfully represented by its action on F_1 , ωF_1 lies in the centre of Γ/F_1 . But this again implies that $(G/F_1)_{\omega} = G/F_1$, contradicting (i).

LEMMA 3. F_2/F_1 is a p'-group. G/F_1 has no non-trivial normal p-subgroups.

PROOF. Suppose that P/F_1 is the Sylow p-subgroup of F_2/F_1 . Then as F_1 is a p-group, P is a normal p-subgroup of G. Hence $P \leq F_1$. The second statement follows from the first.

LEMMA 4. If G_{ω} is a p-group then $G = F_2 G_{\omega}$ and $(G_{\omega})^{(r-1)}$ is not contained in F_1 . F_2/F_1 is abelian.

PROOF. We know, by lemma 2, that F_1 is a p-group and, by lemma 3, that F_2/F_1 is a p'-group. Since G/F_1 is soluble and F_2/F_1 is a normal subgroup of G/F_1 , F_2/F_1 is contained in every Hall p'-subgroup of G/F_1 . Now the Hall p'-subgroups of G/F_1 are all conjugate and the order of G is odd so the number of Hall p'-subgroups is odd. Clearly the automorphism ω permutes these Hall p'-subgroups and since the number of them is odd, at least one is fixed by ω . Thus we can choose a Hall p'-subgroup H/F_1 such that $H^{\omega} = H$. Now $H_{\omega} = H \cap G_{\omega}$ is a p-group so that $H_{\omega} \leq F_1$. Thus ω acts as a regular automorphism on H/F_1 so that H/F_1 is abelian. Since G/F_1 is a soluble group, $C_{G/F_1}(F_2/F_1) \leq F_2/F_1$. But $F_2/F_1 \leq H/F_1$ so that as H/F_1 is abelian, $H/F_1 \leq C_{G/F_1}(F_2/F_1) \leq F_2/F_1 \leq H/F_1$. Thus F_2/F_1 is the unique Hall p'-subgroup of G/F_1 . It follows that G/F_2 is a p-group. Therefore $G = F_3$.

Since $G = F_3$ and G does not satisfy the conclusion of the theorem, $G^{(r)}$ is not nilpotent.

Suppose by way of contradiction that $G_{\omega}^{(r-1)} \leq F_1$. Then $(G/F_1)_{\omega}$ has derived length at most r-1, so by the minimality of G, $(G/F_1)^{(r-1)}$ is nilpotent. Thus $G^{(r-1)} \leq F_2$ and since, as we have already seen, F_2/F_1 is abelian, $G^{(r)} \leq F_1$. This contradiction proves that $G_{\omega}^{(r-1)}$ is not contained in F_1 .

Finally we show that if $G_{\omega}F_2 < G$, $G_{\omega}^{(r-1)}$ is contained in F_1 . It then follows from the conclusion of the previous paragraph that $G_{\omega}F_2 = G$. Suppose then that $G_{\omega}F_2 < G$, and let K be a maximal subgroup of G containing $G_{\omega}F_2$. Since K is a maximal subgroup of G containing F_2 and since G/F_2 is nilpotent, K is a normal subgroup of G. By §2, lemma 3 corollary 2, as $G_{\omega} \leq G_{\omega}F_2 \leq K$, K is a ω -subgroup of G. Therefore, by the minimality of G, $K^{(r)}$ is nilpotent. But $K^{(r)}$ is a characteristic subgroup of K, a normal subgroup of G, and therefore $K^{(r)}$ is a normal subgroup of G Hence $K^{(r)} \leq F_1$ so that $K^{(r-1)} \leq F_2$. Now $G_{\omega}^{(r-1)} \leq K^{(r-1)} \leq F_2$. But G_{ω} is a *p*-group and F_1 is the Sylow *p*-subgroup of F_2 so $G_{\omega}^{(r-1)} \leq F_1$. This completes the proof of the lemma.

We have shown that F_1 is the unique minimal normal ω -subgroup of G. Since G is a normal subgroup of Γ , $F(G) \leq F(\Gamma)$. If $F(\Gamma) \neq F(G)$ then $|F(\Gamma):F(G)| = 2$ so that $\omega \in F(\Gamma)$. But in this case, since $F(\Gamma)$ is nilpotent, $(F_1)_{\omega} = F_1$ contradicting lemma 2(ii). Thus $F_1 = F(\Gamma)$ is the unique minimal normal subgroup of Γ . $|\Gamma:G| = 2$ so the solubility of Γ follows from that of G. Therefore ([1], p. 651) there exists a complement N of F_1 in Γ . By Sylow's theorem we can suppose, by taking a suitable conjugate of N if necessary, that $\omega \in N$. Let $M = G \cap N$. Then M is a complement of F_1 in G.

Since the elements of N form a complete set of coset representatives of F_1 in Γ , we may consider F_1 as a GF(p)(N)-module. We now summarize the results obtained so far in module notation.

(1) F_1 is a faithful irreducible N-module over GF(p).

(2) $(F_1)_{\omega} > 0.$

(3) If $f \in (F_1)_{\omega}$ and $x_i \in (M_{\omega})^{(i)}$ $(i = 0, \dots, r-1)$

then $f(1-x_0)(1-x_1)\cdots(1-x_{r-1})=0.$

(4) If $f \in (F_1)_{\omega}$ and $x \in M_{\omega}$ is of order prime to p, then since G_{ω} is nilpotent, fx = f.

It also follows from lemma 2 that $M_{\omega} \neq M$.

If we extend the field of scalars from the prime field $GF(\phi)$ to its algebraic closure \mathscr{F} , F_1 splits into a direct sum of absolutely irreducible $\mathscr{F}(N)$ -modules, which are algebraically conjugate. ([2], section 70). Taking V as one of these irreducible $\mathscr{F}(N)$ -modules, we obtain an $\mathscr{F}(N)$ module with the following properties:

(1) V_1 is a faithful irreducible N-module over \mathcal{F} ,

(2) $V_{\omega} = \{v \in V | v\omega = v\} > 0,$

(3) If $v \in V_{\omega}$ and $x_i \in (M_{\omega})^{(i)}$ $(i = 0, 1, \dots, r-1)$

then $v(1-x_0)(1-x_1)\cdots(1-x_{r+1})=0$,

(4) If $v \in V_{\omega}$ and $x \in M_{\omega}$ is of order prime to p, then vx = v.

Notation. Q = F(M).

LEMMA 5. V is an irreducible $\mathcal{F}(M)$ -module.

PROOF. By way of contradiction suppose that there exists an irreducible $\mathscr{F}(M)$ -submodule W of V such that 0 < W < V. Since $W\omega$ is also an irreducible $\mathscr{F}(M)$ -submodule of V and since $W+W\omega$ is an $\mathscr{F}(N)$ -module we have $V = W+W\omega$ and so as an $\mathscr{F}(M)$ -module

$$V = W + W\omega.$$

[7]

Suppose that G_{ω} is not a p-group. Then there exist an element $x \neq 1$ in M_{ω} of order prime to p. Let $w \in W$ be arbitrary. Then $w + w\omega \in V_{\omega}$ so by property (4) of V, $(w+w\omega)x = w+w\omega$. Equating the W and $W\omega$ components of both sides we deduce that x acts trivially on both W and $W\omega$ and so on V. But this contradicts property (1) of V. Hence we may assume that G_{ω} is a p-group.

Let $x \in Q$ and suppose that for all $w \in W$, wx = w. Since $x \in Q$ and G_{ω} is a p-group, $x^{\omega} = x^{-1}$. Thus if $w \in W$, $w\omega x = wx^{-1}\omega = w\omega$ so x also acts trivially on $W\omega$. Hence x acts trivially on $W + W\omega = V$ so x = 1. Therefore W is a faithful Q-module. Since Q = F(M) and M is soluble, any normal subgroup of M has non-trivial intersection with Q. Hence if W were not a faithful M-module, W would not be a faithful Q-module. It follows that Wis a faithful M-module.

Let $w \in W$. Then $w + w\omega \in V_{\omega}$ so if $x_i \in (M_{\omega})^{(i)}$ $(i = 0, 1, \dots, r-1)$ it follows from property (3) of V that

$$(w+w\omega)(1-x_0)(1-x_1)\cdots(1-x_{r-1})=0$$

and hence equating the W-components we have

$$w(1-x_0)(1-x_1)\cdots(1-x_{r-1})=0.$$

Consider W as an $\mathcal{F}(Q)$ -module. Since W is an irreducible $\mathcal{F}(M)$ -module it follows that

$$W = W_1 + \cdots W_n$$

where W_1, W_2, \dots, W_n are the homogeneous components of W as an $\mathscr{F}(Q)$ -module. ([2], section 49). Since M_{ω} is a *p*-group, Q is an abelian p'-group by lemma 4. Thus as \mathscr{F} is of characteristic p and algebraically closed, the irreducible $\mathscr{F}(Q)$ -submodules of W are one-dimensional. Thus the action of $x \in Q$ on $w \in W_i$ may be described by

$$wx = \chi_i(x)w.$$

M|Q is a transitive permutation group on the W_i . Since, by lemma 4, M_{ω} is a complement of Q in M, we may consider M_{ω} as a transitive permutation group on the W_i . Set $H_i = \{x \in M_{\omega} | W_i x = W_i\}$.

We now prove that if $K \leq H_1$ and $K \leq M_{\omega}$ then K = 1. For all the H_i are conjugate in M_{ω} so $K \leq H_i$ for all *i*. Now let $y \in K$, $x \in Q$. Then if $w \in W_i$, $wy^{-1} \in W_i$ so

$$w(y^{-1}xy) = ((wy^{-1})x)y = \chi_i(x)wy^{-1}y = wx$$

Hence $w(y^{-1}xy) = wx$ for all $w \in W_i$ and $x \in Q$. But since *i* was arbitrary and *W* is a direct sum of the W_i , $y^{-1}xy$ acts on *W* in the same way as *x*. But *W* is a faithful *M*-module so $y^{-1}xy = x$, or as *x* was arbitrary in $Q, y \in C_M(Q)$. But as Q = F(M) and M is soluble, $C_M(Q) \leq Q$ so $y \in Q \cap M_\omega = 1$. This proves the statement made at the beginning of the paragraph.

Let $x \in (M_{\omega})^{(r)}$ and $w \in W_1$. Since M_{ω} is a p-group and H_1 is a subgroup of M_{ω} containing no non-trivial normal subgroup of M_{ω} , it follows from §2, lemma 1, that

$$(*) \qquad |(M_{\omega})^{(i)}: M_{\omega}^{(i)} \cap H_{1}| > |(M_{\omega})^{(i+1)}: (M_{\omega})^{(i+1)} \cap H_{1}|$$

for all *i* such that $(M_{\omega})^{(i)} \neq 1$. By lemma 4, $(M_{\omega})^{(r-1)} \neq 1$, so that (*) is true for $0 \leq i \leq r-1$. But $|(M_{\omega})^{(i)} : (M_{\omega})^{(i)} \cap H_1|$ is the number of W_i in the same system of transitivity as W_1 under $(M_{\omega})^{(i)}$. Hence for each $(0 \leq i \leq r-1)$ we can choose $x_i \in (M_{\omega})^{(i)}$ such that $W_1 x_i$ is not in the same system of transitivity as W_1 under $(M_{\omega})^{(i+1)}$. Now

$$w(1-x_0)(1-x_1)\cdots(1-x_{r-1})(1-x)=0.$$

Since $W_1 x_0$ is not in the same system of transitivity as W_1 under $(M_{\omega})'$ we can conclude that

$$w(1-x_1)\cdots(1-x_{r-1})(1-x)=0$$

and finally w(1-x) = 0. Hence $x \in H_1$ since w was arbitrary in W_1 . But x was arbitrary in $(M_{\omega})^{(r)}$ so that $(M_{\omega})^{(r)} \leq H_1$. But $(M_{\omega})^{(r)} \triangleleft M_{\omega}$ so $(M_{\omega})^{(r)} = 1$ contradicting lemma 4. This completes the proof of lemma 5.

LEMMA 6. If $L \neq 1$ is a normal ω -subgroup of M, then L_{ω} is a non-trivial proper subgroup of L.

PROOF. Since M is soluble and every soluble group contains a characteristic subgroup which is abelian, it is sufficient to prove the lemma for abelian L. Therefore L is supposed to be a normal abelian subgroup of M. Now L is contained in F(M) = Q. It follows from lemma 3 that L is a p'-group. Write

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_s$$

where V is considered as an $\mathcal{F}(L)$ -module and the V_i are the homogeneous components. Since L is an abelian p'-group whilst \mathcal{F} is algebraically closed of characteristic p, the action of $x \in L$ on $v \in V_i$ may be described by

$$vx = \chi_i(x)v.$$

The characters χ_i are all conjugate and the number, s, of homogeneous components divides the order of M ([2], section 49). Thus none of the characters χ_i $(i = 1, 2, \dots, s)$ is the trivial character since V is a faithful module. Also s is odd.

We complete the proof of the lemma by showing that if $L_{\omega} = 1$ or $L_{\omega} = L$ then we can choose an *i* such that χ_i is the trivial character.

Since ω has order 2 and V is an $\mathscr{F}(N)$ -module, for each $i \ (i = 1, 2, \dots, s)$

there exists j such that $V_i \omega = V_j$ and $V_j \omega = V_i$. Since s is odd there exists at least one i for which $V_i \omega = V_i$. Suppose $v \in V_i$ and $x \in L$. Then $\chi_i(x)v_i\omega = v_i\omega x = v_ix^{\omega}\omega = \chi_i(x^{\omega})v_i\omega$ so that $\chi_i(x) = \chi_i(x^{\omega})$, for all $x \in L$. Now if $L_{\omega} = 1$, then for all $x \in L$, $x^{\omega} = x^{-1}$ so that $\chi_i(x) = \chi_i(x^{-1})$ or $\chi_i(x^2) = 1$. Since L has odd order, it follows that χ_i is the trivial character. Thus $L_{\omega} > 1$.

Now suppose that $L_{\omega} = L$. By the second property of $V, V_{\omega} > 0$ so that there exists $0 \neq v = v\omega \in V$. Since $L = L_{\omega}$ is a p'-group, it follows from property (4) of V that v = vx for all $x \in L$. Thus $\{kv | k \in \mathscr{F}\}$ is a trivial $\mathscr{F}(L)$ -submodule of V and therefore is contained in some V_j . For this $V_j, \chi_j = 1$ clearly. This contradiction proves the lemma.

Remark. In lemma 6, L_{ω} cannot be a normal subgroup of M, for if it were we would obtain a contradiction by applying lemma 6 to L_{ω} . But $(Z(M))_{\omega}$ is a normal subgroup of M so Z(M) = 1. Therefore we can now assume that Q = F(M) is a proper subgroup of M.

LEMMA 7. Q is abelian.

PROOF. We consider V as a $\mathcal{F}(Q)$ -module and write

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_s$$

where the V_i are the homogeneous components of V. Let Q_i be the kernel of the representation of Q obtained on V_i for each $i = 1, \ldots, s$. Then the Q_i are all conjugate, ([2], section 49), so that if $Q' \leq Q_i$ for some i then $Q' \leq Q_i$ for all i. Therefore in this case Q' is contained in the kernel of $V_1 + V_2 + \cdots + V_s = V$. But V is a faithful M-module so that this implies that Q' = 1, and proves the lemma.

Now suppose that Q_{ω} is contained in one of the groups Q_i (i = 1, ..., s), say Q_j . Then by §2, lemma 3, corollary 2, $Q_j^{\omega} = Q_j$. Therefore ω induces a regular automorphism on Q/Q_j so that Q/Q_j is abelian. Consequently $Q' \leq Q_j$. Thus it is sufficient to prove that for some i, Q_{ω} is contained in Q_i .

Suppose that there exists an *i* such that $V_i \omega \neq V_i$. Let $v \in V_i$. Then $v+v\omega \in V_{\omega}$ so that as Q_{ω} is a p'-group if $x \in Q_{\omega}$, by the fourth property of V, $(v+v\omega)x = v+v\omega$. Equating the V_i components of both sides, we see that vx = v so that Q_{ω} is contained in Q_i .

Finally suppose by way of contradiction that $V_i \omega = V_i$ for all *i* and fix *i*. Considering V_i as a Z(Q)-module, we may write

$$V_i = W_{i1} \oplus W_{i2} \oplus \cdots \oplus W_{iu}$$

where for each j, W_{ij} is a homogeneous component of V_i . Since $V_i \omega = V_i$ we find, as we have done previously in similar circumstances, that there exists a j such that

$$W_{ij}\omega = W_{ij}.$$

Since Z(Q) is an abelian p'-group, the elements of Z(Q) act as scalar multipliers on the W_{ij} . Suppose that if $x \in Z(Q)$ and $w \in W_{ij}$, $wx = \chi_{ij}(x)w$. Then $\chi_{ij}(x)ww = wwx = wx^ww = \chi_{ij}(x^w)ww$ so that $\chi_{ij}(x) = \chi_{ij}(x^w)$. Since Z(Q) is a non-trivial normal abelian subgroup of M, $(Z(Q))_w < Z(Q)$ by lemma 6. Therefore the set H of elements of Z(Q) inverted by w forms a nontrivial subgroup of Z(Q) (§ 2, lemma 3, corollary 3). Since H is a subgroup of Z(Q), H is normal in Q. Now if $x \in H$, $\chi_{ij}(x) = \chi_{ij}(x^w) = \chi_{ij}(x^{-1})$. Since His of odd order, for all $x \in H$, $\chi_{ij}(x) = 1$. Thus H is contained in the kernel of the representation of Z(Q) given by W_{ij} . Since for $k \neq j$, the kernel of W_{ik} is conjugate to that of W_{ij} in Q and since H is a normal subgroup of Q, H is contained in the kernel of W_{ik} for all k. Thus H is contained in the kernel of $W_{i1} + \cdots + W_{iu} = V_i$. But this is true for all i so that H is contained in the kernel of $V_1 + V_2 + \cdots + V_i = V$. Since V is a faithful M-module, this implies that H = 1 and this contradiction, to the fact that H is a non-trivial subgroup of Z(Q), completes the proof of the lemma.

LEMMA 8. $G = F_3(G)$.

PROOF. Suppose by way of contradiction that $G > F_3(G)$. It follows from [8] that $G_{\omega} \leq F_3(G)$. Therefore ω induces a regular automorphism on G/F_3 so that G/F_3 is abelian. If H is any subgroup of G containing F_3 then by §2 lemma 3, corollary 2, since $G_{\omega} < F_3 \leq H$, $H^{\omega} = H$. Since G/F_3 is abelian, H is a normal subgroup of G. Suppose that $H \neq G$. Then H satisfies the hypothesis of the theorem and therefore, by the minimality of G, $H = F_3(H)$. Since H is normal in G, $F_3(H) \leq F_3$ so $F_3 = F_3(H) = H$. It follows that G/F_3 is cyclic of prime order.

Since $G_{\omega} < F_3 < G$, $M_{\omega} \leq F_2(M) < M$ and by §2, lemma 3, we can choose an element $x \in M$ such that $M = \{x, F_2(M)\}$ and $x^{\omega} = x^{-1}$. Now consider the ω -subgroup of G, $K = \{x, Q, F_1\}$. Since $x^{\omega} = x^{-1}$, whilst $F_2 = QF_1$ is a normal subgroup of K, $K_{\omega} \leq (QF_1)_{\omega}$. But Q is an abelian p'-group, F_1 is an abelian p-group, and G_{ω} is nilpotent; therefore K_{ω} is abelian. Thus, as the theorem is true for r = 1, K' is nilpotent.

Write $K' = A \times B$ where A is a Sylow p-subgroup of K'. Then B is a normal p'-subgroup of K and since F_1 is a p-group, $B \cap F_1 = 1$. Since F_1 is also a normal subgroup of K and G is soluble,

$$B \leq C_{\mathcal{K}}(F_1) \leq C_{\mathcal{G}}(F_1) \leq F_1.$$

Thus B = 1 and therefore $K' \leq QF_1$ is a p-group. Therefore $K' \leq F_1$. Let $L = \{x, Q\}$. Then L is a subgroup of M and $K = F_1L$. Now $L \simeq K/F_1$ is abelian so that $x \in C_M(Q)$. But Q = F(M) and M is soluble, so this implies that $x \in Q$. This contradiction to the choice of x proves the lemma.

COROLLARY. Since $G = F_3(G)$ by lemma 8, whilst G does not satisfy the conclusion of theorem 1, it follows that $G^{(r)}$ is not nilpotent. Thus $M^{(r)} > 1$.

LEMMA 9. There exists an ω -complement D of Q in M. Q is a q-group for some prime $q \neq p$ and M/Q is a q'-group.

PROOF. To construct an ω -complement of Q in M we use properties of Sylow systems of a soluble group (see [5] and [6]).

Since M is soluble there exists a Sylow system of M. Since all such Sylow systems are conjugate in M and since the order of M is odd, there is an odd number of Sylow systems of M. The automorphism ω maps any given Sylow system of M onto another and since ω has order 2, at least one Sylow system of M is fixed by ω . Form the system normalizer D of this system. Clearly D is an ω -group and by the covering theorem, since $M = F_2(M)$, M = DQ. Suppose that $D \cap Q > 1$. Then since Q is a normal subgroup of M, $D \cap Q$ is a normal subgroup of D. Also Q is abelian, so that $D \cap Q$ is a normal subgroup of DQ = M. Let K be a minimal normal subgroup of M contained in $D \cap Q$. Then by the covering theorem, since $K \leq D$, K is centralized by M. But by the remark at the end of the proof of lemma 6, Z(M) = 1. Hence K = 1 and therefore $D \cap Q = 1$. Thus D is an ω -complement of Qin M.

We next show that if K is a proper ω -subgroup of M, $K^{(r)} = 1$. For if K is a proper ω -subgroup of M, F_1K is a proper ω -subgroup of G. Since $(G_{\omega})^{(r)} = 1$, $((F_1K)_{\omega})^{(r)} = 1$, and therefore the minimality of G implies that $(F_1K)^{(r)}$ is nilpotent. Thus we may write $(F_1K)^{(r)} = A \times B$ where A is a p-group and B is a p'-group. By the minimality of G, $M^{(r)} \leq Q$ so $(F_1K)^{(r)} \leq F_1Q$. Thus $A \leq F$. Also $B \triangleleft F_1K$, $F_1 \triangleleft F_1K$ and as their orders are relatively prime, $B \cap F_1 = 1$. Hence $B \leq C_G(F_1) = F_1$ so B = 1. Now $(F_1K)^{(r)} = A \leq F_1$ so $K^{(r)} \leq F_1 \cap M = 1$ as required.

Now suppose that Q is not a q-group for any prime q. Then we may write $Q = Q_1 Q_2$ where Q_1 and Q_2 are Hall subgroups of Q of relatively prime orders. Since Q = F(M), the Q_i are normal ω -subgroups of M. Thus for each i, DQ_i is a proper ω -subgroup of M and so $(DQ_i)^{(r)} = 1$. Since Q_i is abelian, it follows that

$$(Q_i, D, D', \cdots, D^{(r-1)}) = 1$$
 $(i = 1, 2).$

Also D is a proper ω -subgroup of G so that $D^{(r)} = 1$. Now

$$M^{(r)} = (DQ_1Q_2)^{(r)}$$

= $D^{(r)}(Q_1, D, D', \dots, D^{(r-1)})(Q_2, D, D', \dots, D^{(r-1)})$
= 1,

using, in addition to the above results, the fact that $Q = Q_1 Q_2$ is an abelian group. But this contradicts the corollary to lemma 8. Thus Q is a q-group for some prime $q \neq p$.

Since M/Q is nilpotent, Q is a q-group and Q = F(M) it follows that $D \cong M/Q$ is a q'-group.

Lemma 10. $D_{\omega} = D$.

PROOF. Suppose that $D_{\omega} < D$. Then, since $D \cong M/Q$ is nilpotent by lemma, 8, there exists a proper normal subgroup K of D containing D_{ω} . Form KQF_1 , a proper normal subgroup of G. Since $G_{\omega} = (F_1)_{\omega}Q_{\omega}D_{\omega}$ is contained in KQF_1 , KQF_1 is an ω -subgroup of G by §2, lemma 3, corollary 2. Hence by the minimality of G, $(KQF_1)^{(r)} \leq F_1$ and therefore $(KQF_1)^{(r-1)}$ $\leq F_2 = F_1Q$. Thus $D_{\omega}^{(r-1)} \leq K^{(r-1)} \leq D \cap F_1Q = 1$. Since r > 1, G_{ω} is nilpotent and D is a q'-group whilst Q is a q-group, $M_{\omega} = D_{\omega}Q_{\omega}$ has derived length at most r-1. Thus $M^{(r-1)} \leq F(M) = Q$ and since Q is abelian $M^{(r)} = 1$. But this contradicts the corollary to lemma 8. Thus $D_{\omega} = D$.

Finally since Q is abelian, $Q \leq N_M(Q_\omega)$ and since $Q_\omega = Q \cap M_\omega$ and $D = D_\omega \leq M_\omega$, $D \leq N_M(Q_\omega)$. Thus $Q_\omega \triangleleft DQ = M$ contradicting lemma 6. This contradiction completes the proof of the theorem.

4. Proof of theorem 2

Suppose that the theorem is false and choose a counterexample G of minimal order. Then F(G) is the unique minimal normal A-subgroup of G. F(G) is an elementary abelian p-group for some prime p.

Let Γ denote the splitting extension of G by A and write F = F(G).

Suppose that $(G/F)_{\omega} = G/F$ for some $\omega \in A$, $\omega \neq 1$. Then since G_{ω} is nilpotent, G/F is nilpotent. It is now an easy consequence of the minimality of G that G/F is a q-group for some prime $q \neq p$. Therefore we can choose a Sylow q-subgroup Q to complement F in G. Since $N_{\Gamma}(Q)F = \Gamma$, by taking a suitable conjugate of Q if necessary, we may assume A normalizes Q. Since $(G/F)_{\omega} = G/F$, $Q_{\omega} = Q$. Now Z(G) = 1 for if Z(G) > 1. $Z(G) \geq F$ which is false since G is soluble. Since G_{ω} is nilpotent and $Q = Q_{\omega}$ is a group of order prime to p, whilst F is an abelian p-group,

$$F_{\omega} = G_{\omega} \cap F \leq Z(FQ) = Z(G) = 1.$$

Therefore $F_{\omega} = 1$. Now we may write $\omega = \omega_1 \omega_2$ where ω_1 and ω_2 are non-trivial elements of A. Since $Q_{\omega_1 \omega_2} = Q$, it follows that $Q_{\omega_1} = Q_{\omega_2}$. Now form F_{ω_1} and F_{ω_2} . Since $F_{\omega_1 \omega_2} = 1$, it follows from § 2, lemma 3, that $F = F_{\omega_1} F_{\omega_2}$. Now G_{ω_1} and G_{ω_2} are nilpotent so, as before, $Q_{\omega_1} = Q_{\omega_2}$ is centralized by F_{ω_1} and F_{ω_2} . Therefore $Q_{\omega_1} \leq C_G(F_{\omega_1} F_{\omega_2}) = C_G(F) = F$. Thus ω_1 induces a regular automorphism on Q, which implies that Q is abelian. Since G = FQ, we conclude that $G' \leq F$ contrary to the definition of G. Therefore for no $\omega \in A$, $\omega \neq 1$, is $(G/F)_{\omega} = G/F$. If $F_{\omega} = 1$ or F for some $\omega \in A$, $\omega \neq 1$, then, as in §3, lemma 2, ω either inverts or fixes all the elements of F so that $(G/F)_{\omega} = G/F$. Since we have already shown that this is false, we conclude that for each $\omega \in A$, $\omega \neq 1$, $F > F_{\omega} > 1$. Also, since $C_G(F) = F$, $C_F(F) = F$.

We have shown that $C_{\Gamma}(F) = F$ so it follows that $F = F(\Gamma)$ is the unique minimal normal subgroup of Γ . Therefore we may deduce (see [1]) that there exists a complement N of F in Γ . By Sylow's theorem we may suppose that $A \leq N$. Let $M = G \cap N$ and F(M) = Q. The modular law implies that M is a complement of F in G.

For convenience we now summarize the properties of F which we have obtained.

- (a) F is the unique minimal normal subgroup of Γ .
- (b) $C_{\Gamma}(F) = F$.

(c) If $\omega \in A$, $\omega \neq 1$ then $Q_{\omega} \leq C_G(F_{\omega})$. This follows since F is a p-group, $Q \simeq F_2(G)/F$ and G_{ω} is nilpotent.

(d) For each $\omega \in A$, $\omega \neq 1$, $F_{\omega} > 1$.

Properties (a) and (b) enable us to consider F as a faithful irreducible Γ/F -module over $GF(\phi)$. Applying the same method as in the proof of §3, theorem 1, we may deduce the existence of an $\mathscr{F}(N)$ -module V, where \mathscr{F} denotes the algebraic closure of $GF(\phi)$, with the following properties:

- (1) V is a faithful irreducible N-module over \mathcal{F} .
- (2) For each $\omega \in A$, $\omega \neq 1$, $V\omega = \{v \in V | v\omega = v\} > 0$.
- (3) For each $\omega \in A$, $\omega \neq 1$, if $v \in V_{\omega}$ and $x \in Q_{\omega}$ then vx = v.

We now show

(i) V is an irreducible $\mathcal{F}(M)$ -module.

Suppose, by way of contradiction, that V is not an irreducible $\mathscr{F}(M)$ module. Let W be an irreducible $\mathscr{F}(M)$ -submodule of V. Then for at least
two elements $\omega_1, \omega_2 \in A$, $(\omega_1, \omega_2 \neq 1)$ we have $W\omega_1 \neq W$ and $W\omega_2 \neq W$. Let $w \in W$ so that $w + w\omega_i \in V_{\omega_i}$ (i = 1, 2). Now if $y \in Q_{\omega_i}$ then by property (3)

$$(w+w\omega_i)y=w+w\omega_i.$$

Equating the W components of each side, we deduce that Q_{ω_i} acts trivially on W and so on V. But V is a faithful N-module over \mathscr{F} so it follows that $Q_{\omega_i} = 1$ for i = 1, 2. By §2, lemma 3, ω_1 and ω_2 both invert all the elements of Q so that $\omega_1 \omega_2$ fixes all the elements of Q. Now we have already shown that $F_{\omega_1 \omega_2} > 1$ so since F is an abelian p-group, Q is of order prime to p and $G_{\omega_1 \omega_2}$ is nilpotent, $F_{\omega_1 \omega_2} \leq Z(Q_{\omega_1 \omega_2}F) = Z(QF) = Z(F_2(G))$. Therefore $Z(G_2(G)) > 1$. But $Z(F_2(G))$ is a normal A-subgroup of G so as F is the unique minimal normal A-subgroup of $G, F \leq Z(F_2(G))$. This implies that $F_2(G)$ is nilpotent, a contradiction since G is soluble and non-nilpotent. This contradiction proves (i).

In the same way as we proved §3 lemma 6, we may now deduce

(ii) If $\omega \in A$, $\omega \neq 1$, and L is a non-trivial normal ω -subgroup of M, then $1 < L_{\omega} < L$.

It follows from (ii), as in the remark after the proof of §3, lemma 6, that

(iii) Z(M) = 1.

This last result implies that $F_2(G)$ is a proper subgroup of G, so by the minimality of G, $Q \cong F_2(G)/F$ is abelian. We may also deduce from the minimality of G that M/Q is characteristically simple. Therefore M/Q is an elementary abelian r-group for some prime r.

Suppose that r divides the order of Q. Let R be a Sylow r-subgroup of M. Since Q is a normal subgroup of M and r divides the order of Q, $Z(R) \cap Q > 1$. But $Z(R) \cap Q \leq Z(RQ) = Z(M)$ since Q is abelian. Thus Z(M) > 1 contradicting (iii). We conclude therefore that r does not divide the order of Q.

Let R be a Sylow r-subgroup of M. Since Q is of order prime to r, $R \cap Q = 1$. Clearly RQ = M. Now form $N_N(R)$. It is easily shown that $N_N(R)Q = N$ so, by taking a conjugate of R if necessary, we may suppose that A normalizes R.

If $\omega \in A$, $\omega \neq 1$ is such that $R_{\omega} = R$, then since $M_{\omega} \leq G_{\omega}$ is nilpotent, r does not divide the order of Q and Q is abelian, $Q_{\omega} \leq Z(RQ) = Z(M)$. Now on the one hand, (iii) implies that $Q_{\omega} = 1$ whilst on the other hand(ii) implies $Q_{\omega} > 1$, a contradiction. Thus for no $\omega \in A$, $\omega \neq 1$ is $R_{\omega} = R$.

It is an easy consequence of the minimality of G that the representation of A on R is irreducible. But an irreducible representation, over a field of characteristic not equal to two, of the non-cyclic group of order 4 is onedimensional. Therefore for at least one $\omega \in A$, $\omega \neq 1$, is $R_{\omega} = R$ contradicting the conclusion of the last paragraph.

This contradiction completes the proof of theorem 2.

5. Proof of theorem 3

PROOF. Suppose that the theorem is false and choose a counterexample G of minimal order. Then F = F(G) is the unique minimal normal A-subr group of G.

Let L be a proper normal A-subgroup of G. Then L is nilpotent. It follows that F is the unique maximal normal A-subgroup of G and that G/F is an elementary abelian r-group for some prime r, since G is soluble. Thus G/F is an irreducible A-module over GF(r). Now A is of exponent two, so any irreducible representation of A, over a field of characteristic not equal

https://doi.org/10.1017/S1446788700004961 Published online by Cambridge University Press

J. N. Ward

to two, is one-dimensional. Therefore the kernel of the representation of A on G/F must have order 4, at least. Let ω_1 , ω_2 be two distinct non-unit elements of A in the kernel. Then

$$G/F = (G/F)_{\omega_1} = (G/F)_{\omega_2} = (G/F)_{\omega_1\omega_2}$$

Suppose that $\omega \in A$, $\omega \neq 1$, and $(G/F)_{\omega} = G/F$. Since F is the unique minimal normal A-subgroup of the soluble group G, F is an elementary abelian p-group. By definition G is not nilpotent, so G/F is not a p-group. Therefore $r \neq p$. Now $(G/F)_{\omega} = G/F$ is isomorphic to a section of G_{ω} so the Sylow r-subgroup R of G_{ω} is a complement of F in G. Since G_{ω} is nilpotent and F is abelian, $F_{\omega} = F \cap G_{\omega}$ is centralized by RF = G. Now if Z(G) > 1, since F is the unique minimal normal A-subgroup of $G, Z(G) \ge F = F(G)$, a contradiction since G is soluble. Therefore $F_{\omega} \ge Z(G) = 1$. It follows that ω inverts all the elements of F.

Combining these results we have for $x \in F$,

$$x^{\omega_1} = x^{\omega_2} = x^{\omega_1 \omega_2} = x^{-1}.$$

Thus $x^{-1} = x^{\omega_1 \omega_2} = (x^{-1})^{\omega_2} = x$, a contradiction since the order of F is odd. This proves the theorem.

References

- R. Baer, 'Nilpotent Characteristic Subgroups of Finite Groups', American J. Math. 75 (1953), 633-664.
- [2] C. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience, 1962.
- [3] W. Gaschutz, 'Über die Φ-Untergruppe endlicher Gruppen', Math. Zeitschr., 58 (1953), 160-170.
- [4] M. Hall, Jr., The Theory of Groups, New York, 1959.
- [5] P. Hall, 'On the Sylow Systems of a Soluble Group', Proc. London Math. Soc., (2) 43 (1937), 316-323.
- [6] P. Hall, 'On the System Normalizers of a Soluble Group', Proc. London Math. Soc., (2) 43 (1937), 507-528.
- [7] L. Kovács and G. E. Wall, 'Involutory Automorphisms of Groups of Odd Order and Their Fixed Point Groups', (to appear). Nagoya Math. J.
- [8] J. Thompson, 'Automorphisms of Soluble Groups', J. Algebra 1 (1964), 259-267.

University of Sydney