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1. Introduction

Let G be a finite group of odd order with an automorphism co of order 2.
The Feit-Thompson theorem implies that G is soluble and this is assumed
throughout the paper. Let Gu denote the subgroup of G consisting of those
elements fixed by co. If F(G) denotes the Fitting subgroup of G then the
upper Fitting series of G is defined by F^G) = F(G) and FT+1(G) = the
inverse image in G of F(G/Fr(G)). G(r) denotes the rth derived group of G.
The principal result of this paper may now be stated as follows:

THEOREM 1. Let G be a group of odd order with an automorphism co of
order 2. Suppose that Ga is nilpotent, and that G{? = 1. Then G(r) is
nilpotent and G = F3(G).

Examples given in [7] show that there exist groups G satisfying the
hypothesis of theorem 1 for which G ̂  F^G). If H is any nilpotent group of
odd order and derived length r, we can construct a group G satisfying the
hypothesis of the theorem such that Ga^H and Gir~x) is not nilpotent. In-
deed let q be an odd prime not dividing the order of H and construct the
group algebra A of K, the direct product of H and the cyclic group of order
2, over GF(q), the Galois field with q elements. The mappings

x -> ax-\-b

of A into itself, where a runs over K and b runs over A, form a group F. F
has a subgroup G of odd order and index 2. G/F(G) s H and an inner auto-
morphism of F of order 2 induces an automorphism co of G with Gu s H.

L. Kovacs and G. E. Wall have constructed in [7] p groups of arbitrarily
high derived length, each with an automorphism a> of order 2 such that the
fixed point group of co is cyclic. Taking K to be the splitting extension of a
suitable one of these groups by its automorphism and applying the above con-
struction we can show that given any integer n there exists a group G of odd

1 Work on this problem was partly completed whilst the author held a C.S.I.R.O.
studentship.
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order with an automorphism a> of order 2 such that Go is metabelian and
Gin) is not nilpotent. Thus the assumption that Ga is nilpotent in theorem 1
is essential.

If the group G has several automorphisms of order 2 satisfying the con-
dition that each of the fixed point groups is nilpotent, then stronger asser-
tions can be made. We have

THEOREM 2. Let Gbe a group of odd order with a group of automorphisms
A of order 4 and exponent 2 such that for each co e A, to # 1, Ga is nilpotent.
Then G' is nilpotent.

Under these conditions G need not be nilpotent but with even stronger
hypotheses the nilpotence of G can be asserted:

THEOREM 3. Let Gbe a group of odd order with a group of automorphisms
A of order 8 and exponent 2 such that for each co e A, to^ l,Gais nilpotent.
Then G is nilpotent.

A very much more elementary result is

THEOREM 4. Let G be a group of odd order with an automorphism
co of order 2. If Ga is a Hall-subgroup of G then there exists a normal abelian
complement of Ga in G.

For further discussion of theorems of this kind we refer to [7].

I wish to express my thanks to G. E.Wall for his guidance in this work.

Notation. The notation is standard and agrees with that mentioned
in [7]. By a proper subgroup is means a subgroup not equal to the whole
group. A non-trivial subgroup is one containing more than one element.
If G is a group, |G| denotes the order of G, Z(G) the centre of G and 0(G)
the Frattini subgroup of G. For subgroups H and if of G, \G : H\ is the index
of H in G, CH(K) the centralizer of K in H and NH(K) the normalizer of
K in H.

&> always denotes the algebraic closure of GF(p), the Galois field with
^-elements. If JS? is a field J?(G) denotes the group algebra of G over JiC It
V is an ^f(G)-module, we write scalars as left operators on V and elements
of J?(G) as right operators on V.

If p is a prime, a p' group is a group of order prime to p. A Hall p' sub-
group of a group is a Hall subgroup, whose index is a power of p.

A frequently used property of a soluble group G is that CG(F(G)) ^F(G)
([1], P- 646).

2. Preliminary lemmas

LEMMA 1. Let P be a p-group and H a proper subgroup of P. Then
\P:H\> \P' :HnP'\.
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PROOF. Since P' g 0{P), \P : P'\ > \P'H : P'\. The result follows.

LEMMA 2. Let G be a soluble group operated on by a group A of auto-
morphisms. Suppose thai for some pair of integers (m, n), (n > 0), G(m) ?g FnG)
but if H\K is any A-section% of G, HjK^Gjl, then {HjK)™ g Fn(HjK).

Then if H is a non trivial normal A-subgroup of G, F(G) ts= H. F(G) is
an elementary abelian p-group for some prime p.

PROOF. It follows from the hypothesis that if 1 ^ H, K =£ 1 are normal
A -subgroups of G then 1 ^ H nK. Thus G has a unique minimal normal A-
subgroup M. Since G is soluble, M is an elementary abelian />-group. Now
from [1] p. 647, F(G/<Z>(G)) = F{G)/0(G) so JPn(G/<Z>(G)) = Fn(G)/#(G),
Thus 0{G) = 1. Since 0(N) ^ 0(G) if N < G ([3], p. 162), F{G) is ar
elementary abelian p-growp.

Write H/M = F{GjM). Then F(G) is the Sylow ^-subgroup of H
Since (G/M)<m> ^ Fn(GjM) whilst G(m) ^ Fn(G), H properly contain:
F(G).

As F(G) is an elementary abelian normal Sylow /(-subgroup of H, F(G
is a completely reducible HjF{G) module. Thus F(G) = MxN when
N <] H. Since i7/Af is nilpotent and F(G) is abelian, N ^ Z(H). Suppos<
Z(H) > 1. Then Z(ff) is characteristic in the normal ^4-subgroup H of G
so Z(#) is a normal ^4-subgroup of G. Hence Z(#) ^ F(G) so H ?S, CG{F(G)'
= F(G), a contradiction. Thus N fg Z(/f) = 1 and F(G) = M, proving
the lemma.

We apply lemma 2 in the following way. Each of theorems 1, 2 and !
is to be proved by induction on the order of G and by way of contradiction
For theorem 1 take A to be the group {1, co}. Let G be a group of minima
order not satisfying the hypothesis of the theorem in question. For theorem :
we take (m, n) = (0, 3) or (r, 1); for theorem 2, (m, n) — (1,1) and for theoren
3, (m,n) = (0,1). Now if H/K^G/l is an ,4-section of G, either A is rep
resented faithfully as a group of automorphisms of HjK in which cas
by induction (H\K){m) ^ Fn(HjK) or for some automorphism <a eA
(HIK)^ = HjK so HjK is nilpotent being isomorphic to a section of Gw

Thus in either case since \G\ is odd the hypothesis of the lemma is satisfiei
and we conclude that F(G) is the unique minimal normal A -subgroup of G.

The following lemma and its corollaries are stated for convenience. Th
method of proof is well known, see for example [7].

LEMMA 3. Let G be a group of odd order with an automorphism w c
order 2. Then there exists precisely one element of G which is inverted by t
in each left {right) coset of Gw.

1 An A -section of G is a factor group HjK where K <] H and H and K are A -subgroup
of G.
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COROLLARY 1. Let G be a group of odd order with an automorphism
co of order 2. Every element of G may be expressed as the product of an element
fixed by co and an element inverted by co.

COROLLARY 2. Let G be a group of odd order with an automorphism
co of order 2. Let Hbea subgroup of G containing Ga. Then H" = H.

COROLLARY 3. Let G be an abelian group of odd order with an auto-
morphism co of order 2. Then if N is the set of elements of G which are inverted
by co, N is a subgroup of G and G = NxGa.

Theorem 4 follows from lemma 3:
The Hall-subgroups of G which complement Ga form a characteristic

system of subgroups. Since G is of odd order one of these is fixed by co; this
subgroup consists of those elements of G inverted by co and so is normalized
by Gu. Thus it is a normal abelian complement of Ga in G.

3. Proof of theorem 1

The theorem is proved by induction on \G\ and by way of contradiction.
Suppose therefore that G is a group of minimal order satisfying the hypo-
thesis of the theorem but not the conclusion. It follows from [7] that the
theorem is true for r = 1 so we may assume r > 1. Since \G\ is odd, G is
soluble. We have already proved.

LEMMA 1. F(G) is the unique minimal normal co-subgroup of G. There-
fore F{G) is an elementary abelian p-group for some prime p.

Notation. For each positive integer n, set Fn = Fn(G). Let F denote
the splitting extension of G by co and p the unique prime dividing \F-y\.

LEMMA 2. (i)

(ii) Fx is a faithful irreducible r\Fx-module,
(iii) (FJ. > 1. Therefore p\\GJ.

PROOF, (i) If (GIFj)^ = GjFlt then GJF, is isomorphic to a section of
Gu and therefore is nilpotent of derived length less than or equal to r. It
follows that G satisfies the conclusion of the theorem. Hence (GIFX)W ^
GIF,.

(ii) Lemma 1 implies that Ft is an irreducible r/F^modvle. To prove
that Fi is a faithful rjF^module we need to prove that Cr(F1) = i?

1.
Since Ft is the Fitting subgroup of G, and since G is soluble, CG{Fl) = Fx.
Hence if Cr{F1) > Fv \CriFj) : Ft\ = 2. In this case /"/Fj has a normal
Sylow 2-subgroup so that FfF, = GjF1 X gp{(oFx} from which it follows
that (G/F1)a — G/Flt contradicting (i). This proves (ii).
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(iii) (Fj)^ > 1 for if {FJ^ = 1, co must invert all the elements of
Fj_. Then, since FjF1 is faithfully represented by its action on Ft, co-Fj
lies in the centre of FjF^. But this again implies that {GJF^)a = GjFlt

contradicting (i).

LEMMA 3. F^FX is a p'-group. G/F1 has no non-trivial normal p-sub-
groups.

PROOF. Suppose that PjFx is the Sylow />-subgroup of F2/F1. Then as
Fx is a />-group, P is a normal />-subgroup of G. Hence P ^ F1. The second
statement follows from the first.

LEMMA 4. / / Ga is a p-group then G — F2Ga and (Gw)(r~1) is not con-
tained in F1. F2IFt is abelian.

PROOF. We know, by lemma 2, that Fx is a />-group and, by lemma 3,
that F2/F1 is a p'-group. Since G/Fj is soluble and F2jF1 is a normal sub-
group of GjF1, F2/F1 is contained in every Hall //-subgroup of G/Ft. Now
the Hall //-subgroups of G/Fx are all conjugate and the order of G is odd so
the number of Hall //-subgroups is odd. Clearly the automorphism eo per-
mutes these Hall //-subgroups and since the number of them is odd, at least
one is fixed by co. Thus we can choose a Hall //-subgroup H/F1 such that
H" = H. Now Ha = H n Gw is a jf>-group so that Hai=L Fx. Thus w acts
as a regular automorphism on HjF1 so that HjF-^ is abelian. Since GjF^
is a soluble group, CGjF {F2jFx) 5S F2IFX. But F2/F1 ^ HIFt so that as
HIF1 is abelian, HjF^ k CgiFi(FaIFj) ^ F2/F1 ^ tf/iv Thus F2jFx is
the unique Hall //subgroup of GjFx. It follows that GjF2 is a />-group.
Therefore G = F3.

Since G — F3 and G does not satisfy the conclusion of the theorem,
G(r) is not nilpotent.

Suppose by way of contradiction that G^~1] sS Fv Then {GIFj),^ has
derived length at most r— 1, so by the minimality of G, (G/Fj)'1"-1' is
nilpotent. Thus G""-1' 5S F 2 and since, as we have already seen, FJFj^ is
abelian, G(r) gj Fx. This contradiction proves that GjJ""1' is not contained
in F x .

Finally we show that if GaF2 < G, G(J~1} is contained in Ft. It then
follows from the conclusion of the previous paragraph that GU1F2 = G
Suppose then that GUF2 < G, and let K be a maximal subgroup of C
containing G0)F2. Since if is a maximal subgroup of G containing F2 anc
since GjF2 is nilpotent, /C is a normal subgroup of G. By §2, lemma 3
corollary 2, as Gu ̂  GUF2 5g if, K is a eu-subgroup of G. Therefore, by th<
minimality of G, if<r) is nilpotent. But K(r) is a characteristic subgroup o
if, a normal subgroup of G, and therefore if(r) is a normal subgroup of G
Hence if <r> ̂  Fx so that if(r-x> ^ F 2 . Now G^"11 ^ if (r-1> ^ -F2-

 B u t G* i:
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a p-gronp and Ft is the Sylow ^-subgroup of F2 so Gjj-1) 5S Fv This com-
pletes the proof of the lemma.

We have shown that Ft is the unique minimal normal <w-subgroup of
G. Since G is a normal subgroup of F, F(G) ^ F(JT). If F(r) ^ .F(G) then
\F(r) : F(G)\ = 2 so that w e F(r) . But in this case, since F(F) is nilpotent,
(•̂ i)<a — ̂ i contradicting lemma 2(M). Thus Ft = Ff/1) is the unique mini-
mal normal subgroup of F. \F: G\ = 2 so the solubility of F follows from
that of G. Therefore ([1], p. 651) there exists a complement N of Ft in /*.
By Sylow's theorem we can suppose, by taking a suitable conjugate of N
if necessary, that co eN. Let M = GnN. Then M is a complement of Fx

in G.
Since the elements of N form a complete set of coset representatives of

Ft in P, we may consider i7
1 as a GF{p) (N)-module. We now summarize the

results obtained so far in module notation.

(1) Ft is a faithful irreducible AT-module over GF(p).

(2) (FJ* > 0.
(3) If / e (FJ. and a, e (MaY» (i = 0, • • •, r - 1 )

then / ( l - a b ) ^ - ^ ) • • • (1-a?^) = 0.
(4) If / e (F^a and x e Mw is of order prime to p, then since Gu is

nilpotent, /a; = /.
It also follows from lemma 2 that Mm ^ M.

If we extend the field of scalars from the prime field GF{p) to its alge-
braic closure !F, Fx splits into a direct sum of absolutely irreducible 1F(N)-
modules, which are algebraically conjugate. ([2], section 70). Taking V as
one of these irreducible ^"(iV)-modules, we obtain an J^(iV) module with the
following properties:

(1) Vx is a faithful irreducible iV-module over IF,
(2) Vm = {ve V\vco = v}>0,
(3) If v e Va and x( e (MJ«> (* = 0, 1, • • •, r-1)

then v(l-xo)(l-x1) • • • (l-xr+1) = 0,

(4) If v e Va and x e Mm is of order prime to p, then vx = v.

Notation. Q = F(M).

LEMMA 5. V is an irreducible &r(M)-module.

PROOF. By way of contradiction suppose that there exists an irredu-
cible ^(M)-submodule W of V such that 0 < W < V. Since Wco is also an
irreducible ^"(M)-submodule of V and since W+Weo is an ^(N)-module
we have V = W+Wa> and so as an ^(M) -module

V = W+Wa>.
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Suppose that Go is not a ̂ -group. Then there exist an element x ̂  1
in Mu of order prime to p. Let w eW he. arbitrary. Then w-\-wa> e Va so
by property (4) of V, (w-\-wco)x = w-\-wo>. Equating the W and Woo com-
ponents of both sides we deduce that x acts trivially on both W and Wco and
so on V. But this contradicts property (1) of V. Hence we may assume that
Go, is a fi-gronp.

Let x e Q and suppose that for all w e W, wx = w. Since x e Q and Ga

is a /"-group, xw = x~x. Thus if w e W, wcox = wx~x(a — wco so x also acts
trivially on Wco. Hence x acts trivially on W-\-Woo = V so x = 1. Therefore
W is a faithful Q-module. Since Q = .F(M) and M is soluble, any normal sub-
group of M has non-trivial intersection with Q. Hence if W were not a
faithful M-module, W would not be a faithful ^-module. It follows that W
is a faithful M-module.

Let w e W. Then w+wco e Va so if xt e (MJ" 1 (i = 0, 1, • • •, r—1)
it follows from property (3) of V that

(w+wco)(l-x0)(l-z1) • • • (l-av_!) = 0

and hence equating the W-components we have

w(l-«b)(l-*i) • • • (l-*,-i) = 0.

Consider W as an ^"(^)-module. Since W is an irreducible ^"(M)-module
it follows that

where W1, W2, • • •, Wn are the homogeneous components of W as an
^(Q)-module. ([2], section 49). Since Ma is a p-group, Q is an abelian p'-
group by lemma 4. Thus as $F is of characteristic p and algebraically closed,
the irreducible ^"(^)-submodules of W are one-dimensional. Thus the action
of x e Q on w e Wt may be described by

wx = xt(x)w.

MjQ is a transitive permutation group on the Wt. Since, by lemma 4,
Ma is a complement of Q in iW, we may consider Mw as a transitive permuta-
tion group on the Wt. Set # , = {x e Af J W > = Wt).

We now prove that ii K ̂  Ht and i£ < Mtt then if = 1. For all the
Ht are conjugate in MM so K ̂ H( for all *\ Now let 2/ e if, a; e Q. Then if
w e Wf, ivy1 e W( so

Hence ^(i /"1^) = wx for all ze> e W,- and a; e Q. But since i was arbitrary
and TV is a direct sum of the Wit y~xxy acts on W in the same way as x. But
W is a faithful M-module so yxxy = x, or as x was arbitrary in (}, y e CM(Q).
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But as Q = F(M) and M is soluble, CM{Q) <^ Q so y e Q n Ma — 1. This
proves the statement made at the beginning of the paragraph.

Let x e {Ma)
{T) and w e W1. Since Ma is a ̂ >-group and H1 is a subgroup

of Ma containing no non-trivial normal subgroup of Mw, it follows from §2,
lemma 1, that

for all x such that (AfJ^^ 1. By lemma 4, (M^'-v^l, so that (*) is true
for 0 ̂  i ^ r - 1 . But KMJ"' : (Mffl)

(i> n # j | is the number of Wt in the
same system of transitivity as Wt under (Ma)

li). Hence for each
(0 ^ i ^ r—1) we can choose xt e (iWw)<0 such that WxXi is not in the same
system of transitivity as W1 under (Ma)

{i+1). Now

w(l-xo)(l-Xl) • • • ( l -av^Ml-s) = 0.

Since WJZQ is not in the same system of transitivity as Wt under (Mu)' we
can conclude that

w(l~x1)---(l-xr_1)(l-x) = 0

and finally w(i—x) = 0. Hence x eH1 since w was arbitrary in Wl. But
* was arbitrary in (MJ*'1 so that (M4,)<

r» ^ Ht. But (M"w)(f> <] Mu so
(Mw)(r) = 1 contradicting lemma 4. This completes the proof of lemma 5.

LEMMA 6. If L^l is a normal co-subgroup of M, then La is a non-
trivial proper subgroup of L.

PROOF. Since M is soluble and every soluble group contains a charac-
teristic subgroup which is abelian, it is sufficient to prove the lemma for
abelian L. Therefore L is supposed to be a normal abelian subgroup of M.
Now L is contained in F(M) = Q. It follows from lemma 3 that L is a p'-
group. Write

v = v1 © F2 e • • • © v.
where V is considered as an ^{L)-module and the Vf are the homogeneous
components. Since L is an abelian ^>'-group whilst 2F is algebraically closed
of characteristic p, the action of x e L on v e Vi may be described by

vx = %i(x)v.

The characters x< are all conjugate and the number, s, of homogeneous
:omponents divides the order of M ([2], section 49). Thus none of the char-
icters xt (* = !> 2>' " *> s) is the trivial character since V is a faithful
module. Also s is odd.

We complete the proof of the lemma by showing that if La = 1 or
La = L then we can choose an i such that Xi is the trivial character.

Since co has order 2 and V is an £F(N)-module, for each i (i = 1,2, • • •, s)
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there exists j such that F.w = Vt and Vto> = F, . Since s is odd there
exists at least one i for which F̂ oo = Vt. Suppose v e Vt and x e L- Then
Xi{x)vi<*> = ",<wa; = v^^cu = ^(a;")!;^ so that Xt(x) — tf*^"). f°r all x eZ-.
Now if Lu = 1, then for all x eL, x" = a;"1 so that Xi(x) = xM^) or
£t(a;2) = 1. Since L has odd order, it follows that Xi is the trivial character.
Thus Lm > 1.

Now suppose that La = Z-. By the second property of V, Vm > 0 so
that there exists 0 =£ v = vm e F. Since Z. = Lu is a ^'-group, it follows from
property (4) of V that v = vx for all x e L. Thus {&>\k e ̂ "} is a trivial ^{L)~
submodule of F and therefore is contained in some F, . For this V}, Xi = I
clearly. This contradiction proves the lemma.

Remark. In lemma 6, La cannot be a normal subgroup of M, for if it
were we would obtain a contradiction by applying lemma 6 to La. But
(Z(M))U is a normal subgroup of M so Z(M) = 1. Therefore we can now
assume that Q = F(M) is a proper subgroup of M.

LEMMA 7. Q is abelian.

PROOF. We consider F as a ^"(@)-module and write

V = V1®V2@---®V,

where the Vt are the homogeneous components of V. Let Qt be the kernel of
the representation of Q obtained on Vt for each i = 1, . . ., s. Then the Qt are
all conjugate, ([2], section 49), so that if Q' ^ Qt for some i then Q' 5S Qt

for all i. Therefore in this case Q' is contained in the kernel of Vx-\-V2-\- • • •
+ VS = V. But V is a faithful M-module so that this implies that Q' = 1,
and proves the lemma.

Now suppose that Qa is contained in one of the groups Qi (i = 1, . . ., s),
say Q}. Then by §2, lemma 3, corollary 2, Qf = Q)m Therefore co induces a
regular automorphism on QIQj so that QIQj is abelian. Consequently Q' f^Qj-
Thus it is sufficient to prove that for some i, Qa is contained in Q(.

Suppose that there exists an i such that V{w ^ Vt. Let v e Vt. Then
v-\-vco e Fw so that as Qa is a //-group if x e Qa, by the fourth property of
F, (fl+aa>)a; = v-\-vco. Equating the F4 components of both sides, we see
that vx = v so that Qa is contained in Qt.

Finally suppose by way of contradiction that VfW = Vt for all i and
fix i. Considering V{ as a Z(Q)-module, we may write

F,. = wa © wa © • • • e w<u

where for each /, WH is a homogeneous component of Vt. Since V{a> = Vt

we find, as we have done previously in similar circumstances, that there
exists a j such that

Wlta> = W4t.
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Since Z(Q) is an abelian p'-gro\xp, the elements of Z(Q) act as scalar mul-
tipliers on the Wu. Suppose that if xeZ{Q) and weWtj, wx = %ii{x)w.
Then Xu{x)w<t> = WOiX = w " w = Xu{x<a)w<o s o tha t Xa(x) = Xu(xa)- Since
Z(Q) is a non-trivial normal abelian subgroup of M, (Z(Q))a < Z{Q) by
lemma 6. Therefore the set H of elements of Z(Q) inverted by to forms a non-
trivial subgroup of Z(Q) (§2, lemma 3, corollary 3). Since H is a subgroup of
Z(Q), H is normal in Q. Now if x e H, Xui.x) = Xa(xa) — Xu{x~x)- Since H
is of odd order, for all x e H, %u{x) — 1- Thus H is contained in the kernel
of the representation of Z(Q) given by Wif. Since for k^j, the kernel of
Wik is conjugate to that of Wit in Q and since H is a normal subgroup of Q,
H is contained in the kernel of Wik for all k. Thus i? is contained in the kernel
of Wtl+ • • • -\-Wtu = Vf. But this is true for all i so that H is contained in
the kernel of V^V^ [-V, = V. Since V is a faithful M-module, this
implies that H = 1 and this contradiction, to the fact that H is a non-trivial
subgroup of Z(Q), completes the proof of the lemma.

LEMMA 8. G = F3(G).

PROOF. Suppose by way of contradiction that G > F3(G). It follows
from [8] that Ga 5S F3(G). Therefore co induces a regular automorphism on
G/F3 so that G/F3 is abelian. If H is any subgroup of G containing F3 then
by §2 lemma 3, corollary 2, since Ga < Fs ^ H, H" = H. Since G/F3 is
abelian, H is a normal subgroup of G. Suppose that H # G. Then .ff satisfies
the hypothesis of the theorem and therefore, by the minimality of G,
H = F3{H). Since H is normal in G, F3{H) ^ Fs so F3 = F3(#) = # .
It follows that G/F3 is cyclic of prime order.

Since Gu < F3 < G, Mu ^ -F2(^) < -^ a n d bY § 2> lemma 3, we
can choose an element x e M such that M = {x, F2(M)} and a:" = a;"1.
Now consider the <o-subgroup of G, K = {x, Q, F^. Since a;" = x~x, whilst
^2 = QF1 is a normal subgroup of K, Ka ^ (^-Fi)w • But Q is an abelian
^'-group, Fx is an abelian />-group, and Gw is nilpotent; therefore Ka is
abelian. Thus, as the theorem is true for r — \,K' is nilpotent.

Write K' ^= A x B where A is a Sylow />-subgroup of K'. Then B is a
normal />'-subgroup of K and since Fl is a />-group, B r\ Fx= 1. Since
•Fj is also a normal subgroup of K and G is soluble,

Thus 5 = 1 and therefore K' ^ ^ F x is a />-group. Therefore K' ^ Ft.
Let L = {a;, ^ } . Then L is a subgroup of M and if = FXL. Now L ^ iiC/i7!
is abelian so that x e CM(Q). But (? = F(M) and M is soluble, so this implies
that x e Q. This contradiction to the choice of x proves the lemma.

COROLLARY. Since G = FZ(G) by lemma 8, whilst G does not satisfy the
conclusion of theorem 1, it follows that G(r) is not nilpotent. Thus Mir) > 1.
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LEMMA 9. There exists an ay-complement D of Q in M. Q is a q-group
for some prime q^p and M\Q is a q'-group.

PROOF. TO construct an co-complement of Q in M we use properties
of Sylow systems of a soluble group (see [5] and [6]).

Since M is soluble there exists a Sylow system of M. Since all such Sylow
systems are conjugate in M and since the order of M is odd, there is an odd
number of Sylow systems of M. The automorphism co maps any given Sylow
system of M onto another and since co has order 2, at least one Sylow system
of M is fixed by co. Form the system normalizer D of this system. Clearly
D is an co-group and by the covering theorem, since M = F2(M), M = DQ.
Suppose that Dn Q > 1. Then since Q is a normal subgroup of M, D n Q
is a normal subgroup of D. Also Q is abelian, so that D n Q is a normal sub-
group of DQ = M. Let K be a minimal normal subgroup of M contained
in D n Q. Then by the covering theorem, since K jS D, K is centralized by
M. But by the remark at the end of the proof of lemma 6, Z(M) = 1.
Hence K = 1 and therefore DnQ = 1. Thus D is an co-complement of Q
in M.

We next show that if K is a proper co-subgroup of M, Klr) = 1. For
if K is a proper co-subgroup of M, FXK is a proper co-subgroup of G. Since
{Go>Yr) — 1> ({FiK)u){r) — 1» a n d therefore the minimality of G implies
that {,FxKYr) is nilpotent. Thus we may write {F^K)^ = A xB where A
is a p-gronp and B is a ^>'-group. By the minimality of G, Mir) ^ Q so
(Fj^K)^ ^ FtQ. Thus A ^ F. Also B < FXK, FY < FXK and as their orders
are relatively prime, B n F x = 1. Hence B ^ CG(F1) = F1 so B = 1. Now
(.FVK)"1 = A ^ F x so if<r> ^ F i n M = l a s required.

Now suppose that Q is not a c/-group for any prime q. Then we may
write Q = Q1Q2 where Qt and Q2 are Hall subgroups of Q of relatively prime
orders. Since Q = F(M), the Qt are normal co-subgroups of M. Thus for
each *, DQf is a proper co-subgroup of M and so {DQtY

T) = 1. Since Qt is abe-
lian, it follows that

(&, A £>', • • -, Z)<'-i>) = 1 (,• = 1, 2).

Also D is a proper co-subgroup of G s(\ that Z)(r) = 1. Now

= 1,

using, in addition to the above results, the fact that Q = QxQ2 is an abelian
group. But this contradicts the corollary to lemma 8. Thus Q is a c/-group for
some prime q^p.
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Since MjQ is nilpotent, Q is a ^-group and Q = F(M) it follows that
D £ MjQ is a y'-group.

LEMMA 10. Da = D.

PROOF. Suppose that Du < D. Then, since D s MjQ is nilpotent
by lemma, 8, there exists a proper normal subgroup K of D containing
Da. Form KQFX, a proper normal subgroup of G. Since Gw — (F^^Q^D^,
is contained in KQFX, KQFX is an co-subgroup of G by § 2, lemma 3, corollary
2. Hence by the minimality of G, (KQFJ™ ^ Fx and therefore (KQF^-u
^ F 2 = F ^ . Thus -Dj;-1' ^ X<'-« ^ Z) n FXQ = 1. Since r > 1, Gm is
nilpotent and D is a ^'-group whilst Q is a g'-group, Ma = D^Q^ has derived
length at most r— 1. Thus Af*'""1' ^ ^(M) = Q and since @ is abelian
M{r) = 1. But this contradicts the corollary to lemma 8. Thus Da = D.

Finally since Q is abelian, Q 5S NM(Qa) and since Qa = Q n Afw and
D = D,, ^ M u , D ^ NM(QO). Thus Qa<]DQ = M contradicting lemma 6.
This contradiction completes the proof of the theorem.

4. Proof of theorem 2

Suppose that the theorem is false and choose a counterexample G
of minimal order. Then F(G) is the unique minimal normal A -subgroup of
G. F(G) is an elementary abelian p-group for some prime p.

Let F denote the splitting extension of G by A and write F = F(G).
Suppose that (GIF)U = GjF for some cue A, eo =£ 1. Then since Ga

is nilpotent, G/F is nilpotent. It is now an easy consequence of the minimali-
ty of G that GJF is a g-group for some prime q^p. Therefore we can choose
a Sylow ^-subgroup Q to complement F in G. Since Nr(Q)F = F, by taking
a suitable conjugate of Q if necessary, we may assume A normalizes Q. Since
(GfF)a = GjF, Qm = Q. Now Z{G) = 1 for if Z{G) > 1. Z(G) ^ F which
is false since G is soluble. Since Ga is nilpotent and Q = Qa is a group of
order prime to p, whilst F is an abelian ^-g

Therefore Fa = 1. Now we may write co = co1co2 where eî  and co2 are
non-trivial elements of A. Since ^« a i = Q, it follows that @Wi = Q^.
Now form Ft t and Fa . Since Fw a = 1, it follows from § 2, lemma 3, that
F = FaiFai. Now GMi and GWj are nilpotent .so, as before, QUi = Qa% is
centralized by F^ and. Fa%. Therefore Qmi ^ CG(F4,iF4,i) = C^F) =*F.
Thus co! induces a regular automorphism on Q, which implies that ^ is
abelian. Since G = FQ, we conclude that G' sS F contrary to the definition
of G. Therefore for no co e A, m =fi 1, is {GjF)a = GjF.
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If Fa — 1 or F for some co eA, co^ 1, then, as in §3, lemma 2, co either
inverts or fixes all the elements of F so that {GjF)m = GIF. Since we have
already shown that this is false, we conclude that for each co e A, co^ 1,
F > Fu > 1. Also, since CG{F) = F, Cr(F) = F.

We have shown that Cr{F) = F so it follows that F = F(F) is the
unique minimal normal subgroup of F. Therefore we may deduce (see [1])
that there exists a complement N of F in F. By Sylow's theorem we may
suppose that A ^N. Let M = G r\N and F(M) = Q. The modular law
implies that M is a complement of F in G.

For convenience we now summarize the properties of F which we have
obtained.

(a) F is the unique minimal normal subgroup of F.
(b) Cr(F) = F.
(c) If to e A, co ^ 1 then Qa ^ CG(Flt)). This follows since F is a/>-group,

Q ^ F2{G)jF and Gw is nilpotent.
(d) For each COB A, co^l, Fa > 1.

Properties (a) and (b) enable us to consider F as a faithful irreducible
/7-F-module over GF(f). Applying the same method as in the proof of
§3, theorem 1, we may deduce the existence of an ^"(iV)-module V, where
J2" denotes the algebraic closure of GF(p), with the following properties:

(1) V is a faithful irreducible iV-module over IF.
(2) For each co e A, co ^ 1, Vco = {v e V\vco = v} > 0.
(3) For each co e A, co # 1, if v e Vu and x e Qu then vx = v.

We now show

(i) V is an irreducible 3F(M)-module.
Suppose, by way of contradiction, that V is not an irreducible !F{M)-

module. Let W be an irreducible 1F{M)-submodule of V. Then for at least
two elements colt co2 e A, (colt co2=£ 1) we have Wco^W and Wco2^ W. Let
w e W so that w-l-zew,- e FWj (i = 1,2). Now if y e Qu>i then by property (3)

(w+wco^y =

Equating the W components of each side, we deduce that Qa acts trivially
on W and so on V. But V is a faithful iV-module over !F so it follows that
QWi = 1 for i = 1,2. By §2, lemma 3, co1 and eo2 both invert all the elements
of Q so that co^^ fixes all the elements of Q. Now we have already shown that
Fa w > 1 so since F is an abelian />-group, () is of order prime to p and
G^ is nilpotent, FWiWj ^ ZiQ^F) = Z((?F) = Z(F2(G)). Therefore
Z(G2(G)) > 1. But Z(F2(G)) is a normal yl-subgroup of G so as i7 is the
unique minimal normal A -subgroup of G, F :g Z(F2(G)). This implies that
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F2(G) is nilpotent, a contradiction since G is soluble and non-nilpotent.
This contradiction proves (i).

In the same way as we proved § 3 lemma 6, we may now deduce

(ii) If co e A, w # 1, and L is a non-trivial normal co-subgroup of M,
then 1 < La < L.

It follows from (ii), as in the remark after the proof of § 3, lemma 6, that

(iii) Z{M) = 1.
This last result implies that F2(G) is a proper subgroup of G, so by the

minimality of G, Q ^ F2{G)IF is abelian. We may also deduce from the
minimality of G that MjQ is characteristically simple. Therefore MJQ is an
elementary abelian r-group for some prime r.

Suppose that r divides the order of Q. Let R be a Sylow r-subgroup
of M. Since Q is a normal subgroup of M and r divides the order of Q,
Z(R) n Q > 1. But Z{R) nQ ^ Z(RQ) = Z(M) since Q is abelian. Thus
Z(M) > 1 contradicting (iii). We conclude therefore that r does not divide
the order of Q.

Let R be a Sylow r-subgroup of M. Since Q is of order prime to r,
R n Q = 1. Clearly RQ = M. Now form NN{R). It is easily shown that
NN{R)Q

 = N SO, by taking a conjugate of R if necessary, we may suppose
that A normalizes R.

If <o e A, co y£ 1 is such that Ra = R, then since Mu ^ Gm is nilpotent,
r does not divide the order of Q and Q is abelian, @m ̂  Z(RQ) — Z(M). Now
on the one hand, (iii) implies that Qu = 1 whilst on the other hand(ii) implies
Qa > 1, a contradiction. Thus for no w e A, a> ^ I is Ra = R.

It is an easy consequence of the minimality of G that the representa-
tion of A on R is irreducible. But an irreducible representation, over a field
of characteristic not equal to two, of the non-cyclic group of order 4 is one-
dimensional. Therefore for at least one co e A,OJ^ 1, is Rm = R contradicting
the conclusion of the last paragraph.

This contradiction completes the proof of theorem 2.

5. Proof of theorem 3

PROOF. Suppose that the theorem is false and choose a counterexample
G of minimal order. Then F = F(G) is the unique minimal normal ^4-subT

group of G.
Let L be a proper normal A -subgroup of G. Then L is nilpotent. It

follows that F is the unique maximal normal A -subgroup of G and that
GJF is an elementary abelian r-group for some prime r, since G is soluble.
Thus GJF is an irreducible A -module over GF(r). Now A is of exponent two,
so any irreducible representation of A, over a field of characteristic not equal
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to two, is one-dimensional. Therefore the kernel of the representation of A
on GIF must have order 4, at least. Let colt a>2 be two distinct non-unit ele-
ments of A in the kernel. Then

G/F = (GIF)mi = (G/F)mt = (GIF)W

Suppose that co e A, <D=£ 1, and (G/F)u = G/F. Since F is the unique
minimal normal ^4-subgroup of the soluble group G, F is an elementary
abelian />-group. By definition G is not nilpotent, so GjF is not a ^-group.
Therefore r ^ p. Now (GjF),,, = G/F is isomorphic to a section of Gu so the
Sylow r-subgroup R of Ga is a complement of F in G. Since Gu is nilpotent
and F is abelian, Fa — F n Ga is centralized by RF = G. Now if Z(G) > 1,
since F is the unique minimal normal A -subgroup of G, Z(G) 2s F = F{G),
a contradiction since G is soluble. Therefore Fa 2> Z(G) = 1. It follows that
(o inverts all the elements of F.

Combining these results we have for xe F,

Thus x~x = xUlU* = (ar"1)0*1 = x, a contradiction since the order of F
is odd. This proves the theorem.

References

[1] R. Baer, 'Nilpotent Characteristic Subgroups of Finite Groups', American J. Math.
75 (1953), 633-664.

[2] C. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras,
Interscience, 1962.

[3] W. Gaschutz, 'Uber die <Z>-Untergruppe endlicher Gruppen', Math. Zeitschr., 58 (1953),
160-170.

[4] M. Hall, Jr., The Theory of Groups, New York, 1959.
[5] P. Hall, 'On the Sylow Systems of a Soluble Group', Proc. London Math. Soc, (2) 43

(1937), 316-323.
[6] P. Hall, 'On the System Normalizers of a Soluble Group', Proc. London Math. Soc, (2)

43 (1937), 507-528.
[7] L. Kovacs and G. E. Wall, 'Involutory Automorphisms of Groups of Odd Order and Their

Fixed Point Groups', (to appear). Nagoya Math. J.
[8] J. Thompson, 'Automorphisms of Soluble Groups', / . Algebra 1 (1964), 259 — 267.

University of Sydney

https://doi.org/10.1017/S1446788700004961 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004961

