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1. Introduction

Let G be a finite group of odd order with an automorphism w of order 2.
The Feit-Thompson theorem implies that G is soluble and this is assumed
throughout the paper. Let G, denote the subgroup of G consisting of those
elements fixed by w. If F(G) denotes the Fitting subgroup of G then the
upper Fitting series of G is defined by F,(G) = F(G) and F,,,(G) = the
inverse image in G of F(G/F,(G)). G denotes the rth derived group of G.
The principal result of this paper may now be stated as follows:

THEOREM 1. Let G be a group of odd order with an automorphism w of
order 2. Suppose that G, is wilpotent, and that G = 1. Then G is
nilpotent and G = Fy4(G).

Examples given in [7] show that there exist groups G satisfying the
hypothesis of theorem 1 for which G # Fy(G). If H is any nilpotent group of
odd order and derived length 7, we can construct a group G satisfying the
hypothesis of the theorem such that G, ~ H and G- is not nilpotent. In-
deed let ¢ be an odd prime not dividing the order of H and construct the
group algebra 4 of K, the direct product of H and the cyclic group of order
2, over GF (g), the Galois field with ¢ elements. The mappings

x> axr-+b

of 4 into #self, where a runs over K and & runs over 4, form a group I" . I
has a subgroup G of odd order and index 2. G/F(G) ~ H and an inner auto-
morphism of I" of ordér 2 induces an automorphism w of G with G, ~ H.

L. Kovacs and G. E. Wall have constructed in [7] $ groups of arbitrarily
high derived length, each with an automorphism w of order 2 such that the
fixed point group of w is cyclic. Taking K to be the splitting extension of a
suitable one of these groups by its automorphism and applying the above con-
struction we can show that given any integer » there exists a group G of odd

1 Work on this problem was partly completed whilst the author held a C.S.I.R.O.
studentship.
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order with an automorphism w of order 2 such that G, is metabelian and
G™ is not nilpotent. Thus the assumption that G, is nilpotent in theorem 1
is essential.

If the group G has several automorphisms of order 2 satisfying the con-
dition that each of the fixed point groups is nilpotent, then stronger asser-
tions can be made. We have

THEOREM 2. Let G be a group of odd order with a group of automorphisms
A of order 4 and exponent 2 such that for each w € A, w # 1, G, is nilpotent.
Then G’ is milpotent.

Under these conditions G need not be nilpotent but with even stronger
hypotheses the nilpotence of G can be asserted:

THEOREM 3. Let G be a group of odd order with a group of automorphisms
A of order 8 and exponent 2 such that for each w € A, w # 1, G, 1s nilpotent.
Then G is nilpotent.

A very much more elementary result is

THEOREM 4. Let G be a group of odd order with an automorphism
o of order 2. If G, is a Hall-subgroup of G then there exists a normal abelian
complement of G, in G.

For further discussion of theorems of this kind we refer to [7].

I wish to express my thanks to G. E. Wall for his guidance in this work.

Notation. The notation is standard and agrees with that mentioned

in [7]. By a proper subgroup is means a subgroup not equal to the whole
group. A non-trivial subgroup is one containing more than one element.
If G is a group, |G| denotes the order of G, Z(G) the centre of G and @(G)
the Frattini subgroup of G. For subgroups H and K of G, |G : H|is the index
of H in G, Cx(K) the centralizer of K in H and Ng(K) the normalizer of
K in H. :
& always denotes the algebraic closure of GF(p), the Galois field with
p-elements. If Z is a field £ (G) denotes the group algebra of G over #. If
V is an #(G)-module, we write scalars as left operators on ¥V and elements
of #(G) as right operators on V.

If p is a prime, a p’ group is a group of order prime to p. A Hall 4’ sub-
group of a group is a Hall subgroup, whose index is a power of 2.

A frequently used property of a soluble group G is that Co( F (G)) = F(G)

((1], p. 646).

2. Preliminary lemmas

LeMMA 1. Let P be a p-group and H a proper subgroup of P. Then
\P:H|>|P'":Hn P'|.
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Proor. Since P’ < @(P),|P: P'| > |P'H: P’|. The result follows.

LeMMA 2. Let G be a soluble group operated on by a group A of auto-
morphisms. Suppose that for some pair of integers (m, n), (n > 0), G™ £ F G)
but if H|K is any A-section® of G, H|K # G/1, then (HIK)™ < F (H|K).

Then it H is a non trivial normal A-subgroup of G, F(G) < H. F(G) s
an elementary abelian p-group for some prime p.

Proor. It follows from the hypothesis that if 1 52 H, K 5 1 are normal
A-subgroups of G then 1~ H n K. Thus G has a unique minimal normal A4-
subgroup M. Since G is soluble, M is an elementary abelian $-group. Now
from [1] p. 647, F(G/®(G)) = F(G)/®(G) so F,(G/P(G)) = F,(G)/®(G).
Thus @(G) = 1. Since &(N) < P(G) if N QG ([3], p. 162), F(G) is ar
elementary abelian $-group.

Write H/M = F(G/M). Then F(G) is the Sylow p-subgroup of H
Since (G/M)™ < F, (G/M) whilst G™ = F_(G), H properly contains
F(G). '

As F(G) is an elementary abelian normal Sylow p-subgroup of H, F (G
is a completely reducible H/F(G) module. Thus F(G) = M XN where
N < H. Since H[M is nilpotent and F(G) is abelian, N < Z(H). Suppost
Z(H) > 1. Then Z(H) is characteristic in the normal A-subgroup H of G
so Z(H) is a normal A-subgroup of G. Hence Z(H) = F(G) so H < C¢( F(G)
= F(G), a contradiction. Thus N < Z(H) =1 and F(G) = M, proving
the lemma.

We apply lemma 2 in the following way. Each of theorems 1, 2 and !
is to be proved by induction on the order of G and by way of contradiction
For theorem 1 take A to be the group {1, w}. Let G be a group of minima
order not satisfying the hypothesis of the theorem in question. For theorem .
we take (m, n) = (0, 3) or (7, 1); for theorem 2, {(m, n) = (1, 1) and for theoren
3, (m,n) = (0,1). Now if H/K #G/1 is an A-section of G, either 4 is rep
resented faithfully as a group of automorphisms of H/K in which cas
by induction (H/K)™ < F, (H|K) or for some automorphism we 4
(H/K), = H|K so H/K is nilpotent being isomorphic to a section of G,
Thus in either case since |G| is odd the hypothesis of the lemma is satisfie
and we conclude that F(G) is the unique minimal normal 4-subgroup of G.

The following lemma and its corollaries are stated for convenience. Th
method of proof is well known, see for example [7].

LEMMA 3. Let G be a group of odd order with an automorphism w ¢
order 2. Then there exists precisely one element of G which is tnverted by «
in each left (right) coset of G,.

* An A-section of G is a factor group H/K where K <| H and H and K are A-subgroug
of G.
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COROLLARY 1. Let G be a group of odd order with an automorphism
w of order 2. Every element of G may be expressed as the product of an element
fixed by w and an element inverted by w.

COROLLARY 2. Let G be a group of odd order with an automorphism
w of order 2. Let H be a subgroup of G containing G,. Then H* = H.

COROLLARY 3. Let G be an abelian group of odd order with an auto-
morphism w of order 2. Then if N is the set of elements of G which are inverted
by w, N s a subgroup of G and G = N XG,,.

Theorem 4 follows from lemma 3:

The Hall-subgroups of G which complement G, form a characteristic
system of subgroups. Since G is of odd order one of these is fixed by w; this
subgroup consists of those elements of G inverted by w and so is normalized
by G,. Thus it is a normal abelian complement of G, in G.

3. Proof of theorem 1

The theorem is proved by induction on |G| and by way of contradiction.
Suppose therefore that G is a group of minimal order satisfying the hypo-
thesis of the theorem but not the conclusion. It follows from [7] that the
theorem is true for » = 1 so we may assume 7 > 1. Since |G| is odd, G is
soluble. We have already proved.

LeEMMA 1. F(G) is the unique minimal normal w-subgroup of G. There-
fore F(G) is an elementary abelian p-group for some prime p.

Notation. For each positive integer #, set F, = F, (G). Let I' denote
the splitting extension of G by w and ¢ the unique prime dividing |F,[.

LemMMmaA 2. (i) (G/F,),+# G/Fy,
(ii) F, ¢s a faithful irreducible I'|F-module,
(iii) (Fy), > 1. Therefore p||G,]|.

Proor. (i) If (G/F,), = G/F,, then G/F, is isomorphic to a section of
G, and therefore is nilpotent of derived length less than or equal to 7. It
follows that G satisfies the conclusion of the theorem. Hence (G/F,),#
G/F,.

(i) Lemma 1 implies that F, is an irreducible I'/F;-module. To prove
that F, is a faithful I'/F;-module we need to prove that C(F,) = F,.
Since F, is the Fitting subgroup of G, and since G is soluble, C¢(F,) = F,.
Hence if Cp(F,) > F,, |Cp(F,): F,] = 2. In this case I'/F, has a normal
Sylow 2-subgroup so that I'|F, = G/F,xgp{wF,} from which it follows
that (G/F,), = G[F,, contradicting (i). This proves (ii).

https://doi.org/10.1017/51446788700004961 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700004961

484 J. N. Ward (5]

(iii) (Fy), > 1 for if (F,), = 1, o must invert all the elements of
F,. Then, since I'|/F, is faithfully represented by its action on F;, oF,
lies in the centre of I'/F,. But this again implies that (G/F,), = G/F,,
contradicting (i).

LeMMA 3. F,/F, is a p'-group. G|F, has no non-trivial normal p-sub-
groups.

PRoOF. Suppose that P[F; is the Sylow p-subgroup of F,/F,. Then as
F, is a p-group, P is a normal p-subgroup of G. Hence P < F,. The second
statement follows from the first,

LemMmaA 4. If G, is a p-group then G = F,G, and (G,)"V is not con-
tained in F,. F,|F, is abelian.

Proor. We know, by lemma 2, that F, is a p-group and, by lemma 3,
that F,/F, is a p'-group. Since G[F, is soluble and F,/F, is a normal sub-
group of G/F,, F,[F, is contained in every Hall p’-subgroup of G/F,. Now
the Hall p’-subgroups of G/F, are all conjugate and the order of G is odd so
the number of Hall $’-subgroups is odd. Clearly the automorphism w per-
mutes these Hall $’-subgroups and since the number of them is odd, at least
one is fixed by w. Thus we can choose a Hall $’-subgroup H/F, such that
H¢ =H. Now H,= Hn G, is a p-group so that H, < F,. Thus o acts
as a regular automorphism on H/F,; so that H/F, is abelian. Since G/F;
is a soluble group, Cgp (FofF,) = FyfF,. But F,/F, < H|F, so that as
H[F, is abelian, H|F, = Cgp (Fo/Fy) < F,o/Fy, < H|F,. Thus F,/F, is
the unique Hall p’subgroup of G/F,. It follows that G/F, is a p-group.
Therefore G = F,.

Since G = F3 and G does not satisfy the conclusion of the theorem,
G is not nilpotent.

Suppose by way of contradiction that G'") < F,. Then (G/F,), has
derived length at most »—1, so by the minimality of G, (G/F)" is
nilpotent. Thus G-% < F, and since, as we have already seen, F,/F, is
abelian, G < F,. This contradiction proves that G is not contained
in F,.

Finally we show that if G, F, < G, G!"™ is contained in F;. It then
follows from the conclusion of the previous paragraph that G,F, = G.
Suppose then that G,F, < G, and let K be a maximal subgroup of G
containing G, F,. Since K is a maximal subgroup of G containing F, anc
since G/F, is nilpotent, K is a normal subgroup of G. By §2, lemma 3
corollary 2, as G, =< G,F, < K, K is a w-subgroup of G. Therefore, by the
minimality of G, K is nilpotent. But K is a characteristic subgroup o
K, a normal subgroup of G, and therefore K™ is a normal subgroup of G
Hence K™ < F, so that K1 < F,. Now GV < K- < F,. But G, i
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a p-group and F; is the Sylow p-subgroup of F, so G~V < F,. This com-
pletes the proof of the lemma.

We have shown that F, is the unique minimal normal w-subgroup of
G. Since G is a normal subgroup of I', F(G) = F(I'). If F(I') # F(G) then
|F(I') : F(G)| = 2 so that w € F(I'). But in this case, since F (I') is nilpotent,
(F1)e = F, contradicting lemma 2(7%). Thus F, = F(I') is the unique mini-
mal normal subgroup of I'. |[I": G| = 2 so the solubility of I" follows from
that of G. Therefore ([1], p. 651) there exists a complement N of F, in I
By Sylow’s theorem we can suppose, by taking a suitable conjugate of N
if necessary, that w e N. Let M = Gn N. Then M is a complement of F,
in G.

Since the elements of N form a complete set of coset representatives of
F, in I', we may consider F, as a GF (p)(V)-module. We now summarize the
results obtained so far in module notation.

(1) F, is a faithful irreducible N-module over GF(p).

(2) (F1)w > 0.

(8) If fe (Fy)o and 2, € (M) (i =0,---,7r—1)
then f(1—z,)(1—x,) - - (1—2,_,) = 0.

(4) If fe (Fy)» and x € M, is of order prime to p, then since G, is
nilpotent, fx = f.

It also follows from lemma 2 that M, # M.

If we extend the field of scalars from the prime field GF () to its alge-
braic closure &, F, splits into a direct sum of absolutely irreducible & (N)-
modules, which are algebraically conjugate. ([2], section 70). Taking V as
one of these irreducible & (N)-modules, we obtain an & (V) module with the
following properties:

(1) V, is a faithful irreducible N-module over &,

@) V,={veV|jpw = v} > 0,

B) If veV,and z;e (M, ) (t=0,1,:---,7r—1)
then v(1—ay)(1—xy) - - (1—2,,4) = O,

(4) IfveV,and z € M, is of order prime to p, then v = v.

Notation. Q = F(M).
LemMma 5. V is an drreducible F (M )-module.

Proor. By way of contradiction suppose that there exists an irredu-
cible & (M)-submodule W of V such that 0 < W < V. Since Ww is also an
irreducible % (M )-submodule of V and since W+ Ww is an & (N)-module
we have V = W+ Ww and so as an & (M)-module

V=W4+VWo.
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Suppose that G, is not a p-group. Then there exist an element z 5 1
in M, of order prime to p. Let w e W be arbitrary. Then w+ww eV, so
by property (4) of V, (w+ww)r = w+ww. Equating the W and We com-
ponents of both sides we deduce that x acts trivially on both W and We and
so on V. But this contradicts property (1) of V. Hence we may assume that
G, is a p-group.

Let z € Q and suppose that for all w e W, wx = w. Since 2 € Q and G,,
is a p-group, ¥ = z~1. Thus if w e W, wowz = wr'o = ww so z also acts
trivially on Ww. Hence z acts trivially on W+ Ww = V so = 1. Therefore
W is a faithful Q-module. Since Q = F (M) and M is soluble, any normal sub-
group of M has non-trivial intersection with Q. Hence if W were not a
faithful M-module, W would not be a faithful Q-module. It follows that W
is a faithful M-module.

Let we W. Then wtwweV, so if z,e (M) (#=0,1,---,7—1)
it follows from property (3) of V' that

(wtww)(l—z,) (1—2y) * * + (1—=,;) = 0
and hence equating the W-components we have
w(l—x)(1—2,) - - - (1—=,,4) = 0.

Consider W as an & (Q)-module. Since W is an irreducible # (M )-module
it follows that
W=W,+---W,

where W,, W,,-.+, W, are the homogeneous components of W as an
Z (Q)-module. ([2], section 49). Since M, is a p-group, Q is an abelian p'-
group by lemma 4. Thus as & is of characteristic p and algebraically closed,
the irreducible & (Q)-submodules of W are one-dimensional. Thus the action
of x € Q on w € W, may be described by

wx = y,(2)w.

M]|Q is a transitive permutation group on the W,. Since, by lemma 4,
M, is a complement of Q in M, we may consider M, as a transitive permuta-
tion group on the W,. Set H, = {xr e M W, 2 = W }.

We now prove that if K < H, and K Q M, then K = 1. For all the
H, are conjugate in M, so K < H, for all 7. Now let y e K, x € Q. Then if
weW,, wyteW, so

w(ytey) = ((wy)e)y = yu(z)wy'y = we

Hence w(y—xy) = wx for all w € W, and « € Q. But since ¢+ was arbitrary
and W is a direct sum of the W, y~'xy acts on W in the same way as z. But
W is a faithful M-module so y~Yry = , or as « was arbitrary in Q, y € C5(Q).
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But as Q = F(M) and M is soluble, Cp(Q) = Q@ so ye @n M, = 1. This
proves the statement made at the beginning of the paragraph.

Letx e (M,)" and w e W,. Since M, is a p-group and H, is a subgroup
of M, containing no non-trivial normal subgroup of M, it follows from §2,
Jemma 1, that

(*) WM MO o Hy| > (M) 2 (M) n Hy|

for all 7 such that (M ,)* s 1. By lemma 4, (M,)" V541, so that (*) is true
for 0 <7 < 7—1. But |[(M,)®: (M,)¥ ~ H,| is the number of W, in the
same system of transitivity as W; under (M,)). Hence for each
(0 £ ¢ < r—1) we can choose z; € (M,) such that Wz, is not in the same
system of transitivity as W, under (M,)¢+1. Now

w(l—25)(1—2,) - - (1—2z, ) (1—2) = 0.

Since W, z, is not in the same system of transitivity as W; under (M,)" we
can conclude that
w(l—zy)*+ (1—2,4)(1—2) = 0

and finally w(1—x) = 0. Hence = € H, since w was arbitrary in W,. But
¢ was arbitrary in (M,)" so that (M) < H,. But (M,)" < M, so
(M) = 1 contradicting lemma 4. This completes the proof of lemma 5.

LemmA 6. If L+ 1 is a normal w-subgroup of M, then L, is a non-
trivial proper subgroup of L.

Proor. Since M is soluble and every soluble group contains a charac-
teristic subgroup which is abelian, it is sufficient to prove the lemma for
abelian L. Therefore L is supposed to be a normal abelian subgroup of M.
Now L is contained in F (M) = Q. It follows from lemma 3 that L is a p'-
group. Write

V=V,eV,®---®V,

where V is considered as an & (L)-module and the V, are the homogeneous
components. Since L is an abelian p’-group whilst & is algebraically closed
of characteristic p, the action of z € L on v € ¥, may be described by

vx = y,(r)v.

The characters y, are all conjugate and the number, s, of homogeneous
components divides the order of M ([2], section 49). Thus none of the char-
acters y;, (1 =1,2, --,s) is the trivial character since V is a faithful
module. Also s is odd.

We complete the proof of the lemma by showing that if L, =1 or
L, = L then we can choose an 7 such that y, is the trivial character.

~ Since w has order 2 and V is an & (N)-module, for eachs (i=1,2,---,s)
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there exists § such that V,o =V, and V,w = V,. Since s is odd there
exists at least one ¢ for which V,w = V,. Suppose veV; and = € L. Then
2:(@)v,0 = v,02 = v, 2% = y,;(x*)v;0 so that y,(x) = yx,(x¢), forallz e L.
Now if L, =1, then for all zeL, 2* = 2! so that yx,(z) = x;(z!) or
2:(x?) = 1. Since L has odd order, it follows that y; is the trivial character,
Thus L, > 1.

Now suppose that L, = L. By the second property of ¥, ¥V, > 0 so
that there exists 0 £ v = vw € V. Since L = L, is a p’-group, it follows from
property (4) of V that v = vz for all zx € L. Thus {kv|k € #} is a trivial F (L)~
submodule of V and therefore is contained in some V. For this V,, y, = 1
clearly. This contradiction proves the lemma.

Remark. In lemma 6, L, cannot be a normal subgroup of M, for if it
were we would obtain a contradiction by applying lemma 6 to L,. But
(Z(M)),, is a normal subgroup of M so Z(M) = 1. Therefore we can now
assume that Q = F(M) is a proper subgroup of M.

LEMMA 7. Q is abelian.
Proor. We consider V as a & (Q)-module and write
V=V,eV,dd---0V,

where the V', are the homogeneous components of V. Let @, be the kernel of
the representation of Q obtained on V, foreach ¢ = 1, .. ., s. Then the Q; are
all conjugate, ([2], section 49), so that if @' < Q, for some ¢ then Q' < Q,
for all 7. Therefore in this case Q’ is contained in the kernel of V,+V,+ - - -
+ V,=7V. But V is a faithful M-module so that this implies that Q' =1,
and proves the lemma.

Now suppose that @, is contained in one of the groups Q; t =1, .. ., 5),
say @;. Then by §2, lemma 3, corollary 2, Q¥ = Q,. Therefore w induces a
regular automorphism on Q/Q, so that Q/Q, is abelian. Consequently Q" =< Q;.
Thus it is sufficient to prove that for some 7, Q,, is contained in Q,.

Suppose that there exists an 7 such that V,w # V,. Let v e V,. Then
v+vw eV, so that as Q, is a p’-group if z € Q,, by the fourth property of
V, (v+vw)r = v+vw. Equating the V,; components of both sides, we see
that vz = v so that Q, is contained in Q,.

Finally suppose by way of contradiction that V,w = V, for all 7 and
fix 7. Considering V, as a Z(Q)-module, we may write

Vi=Wi1€BW.'2®°"@Wiu

where for each 7, W,; is a homogeneous component of V,. Since Vo =V,
we find, as we have done previously in similar circumstances, that there
exists a 4 such that

W,o=W,.
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Since Z(Q) is an abelian p’-group, the elements of Z(Q) act as scalar mul-
tipliers on the W,;. Suppose that if xe Z(Q) and we W, wr = y,;(x)w.
Then y,(x)ww = wor = wr’o = y;(x*)we so that y,(r) = g, (x*). Since
Z(Q) is a non-trivial normal abelian subgroup of M, (Z(Q))., < Z(Q) by
lemma 6. Therefore the set H of elements of Z (@) inverted by w forms a non-
trivial subgroup of Z(Q) (§2, lemma 3, corollary 3). Since H is a subgroup of
Z(Q), H is normal in Q. Now if x € H, y,,(x) = x;;(x®) = xi(x™'). Since H
is of odd order, for all x € H, y,;(x) = 1. Thus H is contained in the kernel
of the representation of Z(Q) given by W,,. Since for % 3 4, the kernel of
W is conjugate to that of W, in Q and since H is a normal subgroup of Q,
H is contained in the kernel of W for all 2. Thus H is contained in the kernel
of Wy+ - -+ +W,, = V,. But this is true for all 7 so that H is contained in
the kernel of V,+V,+ --- +V,= V. Since V is a faithful M-module, this
implies that A = 1 and this contradiction, to the fact that H is a non-trivial
subgroup of Z(Q), completes the proof of the lemma.

LemMA 8. G = F4(G).

ProoF. Suppose by way of contradiction that G > F,(G). It follows
from [8] that G, = F4(G). Therefore w induces a regular automorphism on
G/F4 so that G/F, is abelian. If H is any subgroup of G containing F4 then
by §2 lemma 3, corollary 2, since G, < F; < H, H* = H. Since G/F; is
abelian, H is a normal subgroup of G. Suppose that H # G. Then H satisfies
the hypothesis of the theorem and therefore, by the minimality of G,
H = F4(H). Since H is normal in G, F,(H) < F; so F; = F4;(H) = H.
It follows that G/F, is cyclic of prime order.

Since G, < F3<G,M, < F,(M) <M and by §2, lemma 3, we
can choose an element x € M such that M = {z, F,(M)} and z* =z~
Now consider the w-subgroup of G, K = {z, Q, F,}. Since 2* = z~, whilst
F, = QF, is a normal subgroup of K, K, < (QF,),. But Q is an abelian
p’-group, F, is an abelian p-group, and G, is nilpotent; therefore K, is
abelian. Thus, as the theorem is true for » = 1, K’ is nilpotent.

Write K’ = A X B where A4 is a Sylow p-subgroup of K’. Then B is a
normal p’-subgroup of K and since F,; is a p-group, Bn F; = 1. Since
F, is also a normal subgroup of K and G is soluble,

B < Cx(Fy) < Co(Fy) < F,.
Thus B =1 and therefore K' < QF, is a p-group. Therefore K’ < F,.
Let L = {z, Q}. Then L is a subgroup of M and K = F,L. Now L x K/|F,

is abelian so that # € Cp(Q). But Q = F(M) and M is soluble, so this implies
that « € Q. This contradiction to the choice of « proves the lemma.

COROLLARY. Since G = F4(G) by lemma 8, whilst G does not satisfy the
conclusion of theorem 1, it follows that G is not wilpotent. Thus M™ > 1.
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LEMMA 9. There exists an w-complement D of Q in M. Q is a g-group
for some prime q # p and M|Q is a ¢'-group.

Proor. To construct an w-complement of Q in M we use properties
of Sylow systems of a soluble group (see [5] and [6]).

Since M is soluble there exists a Sylow system of M. Since all such Sylow
systems are conjugate in M and since the order of M is odd, there is an odd
number of Sylow systems of M. The automorphism « maps any given Sylow
system of M onto another and since w has order 2, at least one Sylow system
of M is fixed by w. Form the system normalizer D of this system. Clearly
D is an w-group and by the covering theorem, since M = F,(M), M = DQ.
Suppose that D n @ > 1. Then since Q is a normal subgroup of M, Dn Q
is a normal subgroup of D. Also Q is abelian, so that D n @ is a normal sub-
group of DQ = M. Let K be a minimal normal subgroup of M contained
in D n Q. Then by the covering theorem, since K < D, K is centralized by
M. But by the remark at the end of the proof of lemma 6, Z(M) = 1.
Hence K = 1 and therefore Dn Q = 1. Thus D is an w-complement of Q
in M.

We next show that if K is a proper w-subgroup of M, K = 1. For
if K is a proper w-subgroup of M, F,K is a proper w-subgroup of G. Since
(G,)" =1, ((F{K),)" =1, and therefore the minimality of G implies
that (F,K)" is nilpotent. Thus we may write (F,K)™ = 4 X B where 4
is a p-group and B is a p’-group. By the minimality of G, M™ < Q so
(F,K)" < F,Q. Thus 4 < F. Also B < F,K, F; < F,K and as their orders
are relatively prime, B n F; = 1. Hence B < Cy(F,) = F, so B=1. Now
(FiK)"=A £ Fys0 K" < F, n M =1 as required.

Now suppose that Q is not a ¢g-group for any prime g. Then we may
write Q = Q,Q, where Q, and Q, are Hall subgroups of Q of relatively prime
orders. Since Q = F(M), the Q, are normal w-subgroups of M. Thus for
each ¢, DQ, is a proper w-subgroup of M and so (DQ;) = 1. Since Q, is abe-
lian, it follows that

(@D, D'+ -, D) =1 (I=1,2)
Also D is a proper w-subgroup of G sq that D = 1. Now

M = (DQ,0,)"
= D"(Q,, D, D', -+, D*1)(Q,, D, D', - - -, Dr-1)
=1,

using, in addition to the above results, the fact that Q =Q,Q, is an abelian
group. But this contradicts the corollary to lemma 8. Thus Q is a g-group for
some prime g 3% p.
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Since M[Q is nilpotent, Q is a ¢g-group and Q = F(M) it follows that
D =~ M|Q is a ¢g’-group.

Lemma 10. D, = D.

ProoF. Suppose that D, << D. Then, since D x M/Q is nilpotent
by lemma, 8, there exists a proper normal subgroup K of D containing
D,. Form KQF,, a proper normal subgroup of G. Since G, = (F,),Q.,D
is contained in KQF,, KQF, is an w-subgroup of G by §2, lemma 3, corollary
2. Hence by the minimality of G, (KQF,)" =< F, and therefore (KQF,)-V
< F, = F,Q. Thus DUV < K- < DA F,Q=1. Since r > 1, G, is
nilpotent and D is a ¢’-group whilst Q is a ¢-group, M, = D, Q, has derived
length at most r—1. Thus M1 < F(M) = Q and since Q is abelian
M = 1. But this contradicts the corollary to lemma 8. Thus D, = D.

Finally since Q is abelian, Q < N, (Q,) and since Q, = Qn M, and
D=D,=<M,, D<Nyu@Q,). Thus @, <1 DQ = M contradicting lemma 6.
This contradiction completes the proof of the theorem.

4. Proof of theorem 2

Suppose that the theorem is false and choose a counterexample G
of minimal order. Then F(G) is the unique minimal normal A-subgroup of
G. F(G) is an elementary abelian p-group for some prime .

Let I' denote the splitting extension of G by 4 and write F = F(G).

Suppose that (G/F), = G/F for some w € A, w 5% 1. Then since G,
is nilpotent, G/F is nilpotent. It is now an easy consequence of the minimali-
ty of G that G/F is a g-group for some prime ¢ # p. Therefore we can choose
a Sylow g-subgroup Q to complement F in G. Since N »(Q)F = I', by taking
a suitable conjugate of Q if necessary, we may assume 4 normalizes Q. Since
(GIF), =G|F, Q,= Q. Now Z(G) = 1 for if Z(G) > 1. Z(G) = F which
is false since G is soluble. Since G, is nilpotent and Q = @, is a group of
order prime to p, whilst F is an abelian p-group,

Fo=6G,nF < Z(FQ)=Z(G) = L.

Therefore F, = 1. Now we may write w = w,w, where w; and w, are
non-trivial elements of 4. Since Q, ,, = @, it follows that Q, = Qu,-
Now form F, and F,, . Since F, ,, = 1, it follows from §2, lemma 3, that
F=F, Fo . Now G,,, and G, are mlpotent so, as before, @, = Q,,, is
centralized by Fo, and F, . Therefore Qu, = C¢(F,, Fo,) = CG( ) = 'F.
Thus w, induces a regular automorph1sm on Q, which 1mp11es that Q is
abelian. Since G = FQ, we conclude that G’ =< F contrary to the definition
of G. Therefore for no w e 4, w # 1, is (G/F), = G/F.
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If F,=1or F for some w € 4, w # 1, then, as in § 3, lemma 2, w either
inverts or fixes all the elements of F so that (G/F), = G/F. Since we have
already shown that this is false, we conclude that for each we 4, w %1,
F > F, > 1. Also, since Co(F) = F, Cp(F) = F.

We have shown that Cp(F) = F so it follows that F = F(I') is the
unique minimal normal subgroup of I'. Therefore we may deduce (see [1})
that there exists a complement N of F in I'. By Sylow’s theorem we may
suppose that A < N. Let M = G n N and F(M) = Q. The modular law
implies that M is a complement of F in G.

For convenience we now summarize the properties of F which we have
obtained.

(a) F is the unique minimal normal subgroup of I

(b) Cr(F) = F.

(c) f wed, w#1 then Q, < Cy(F,). This follows since F is a p-group,
Q ~ F,(G)/F and G, is nilpotent.

(d) For each wed, w#1, F, > 1.

Properties (a) and (b) enable us to consider F as a faithful irreducible
I'|F-module over GF(p). Applying the same method as in the proof of
§ 3, theorem 1, we may deduce the existence of an % (N)-module V, where
& denotes the algebraic closure of GF (p), with the following properties:

(1) V is a faithful irreducible N-module over #.
(2) Foreachwe d,w# 1, Vo = {veV|jvo = v} > 0.
(3) Foreachwe d, w#1,ifveV,and z € Q, then va = v.

We now show

(i) V is an irreducible & (M )-module.

Suppose, by way of contradiction, that V is not an irreducible & (M)-
module. Let W be an irreducible # (M)-submodule of V. Then for at least
two elements w,, wy,€ 4, (w,, w,7% 1) we have Ww,# W and Waw,7# W. Let
we W so that wtww, eV, (¢ =1, 2). Nowif y € Q,, then by property (3)

(w+ww,)y = wtwo,.

Equating the W components of each side, we deduce that @, acts trivially
on W and so on V. But V is a faithful N-module over & so it follows that
Qw‘ = 1fori = 1, 2. By §2, lemma 3, w; and w, both invert all the elements
of @ so that w, w, fixes all the elements of Q. Now we have already shown that
F, o,>1 so since F is an abelian p-group, Q is of order prime to p and
Go,w, is nilpotent, F, , < Z(Qu,0,F) = Z(QF) = Z(Fy(G)). Therefore
Z(G4(G)) > 1. But Z(F,(G)) is a normal A-subgroup of G so as F is the
unique minimal normal 4-subgroup of G, F < Z(F,(G)). This implies that
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F,(G) is nilpotent, a contradiction since G is scluble and non-nilpotent.
This contradiction proves (i).
In the same way as we proved § 3 lemma 6, we may now deduce

(i) If we 4, w5 1, and L is a non-trivial normal w-subgroup of M,
thenl < L, < L.
It follows from (ii), as in the remark after the proof of § 3, lemma 6, that

(iil) Z(M) = 1.

This last result implies that F,(G) is a proper subgroup of G, so by the
minimality of G, Q ~ F,(G)/F is abelian. We may also deduce from the
minimality of G that M/Q is characteristically simple. Therefore M/Q is an
elementary abelian 7-group for some prime 7.

Suppose that » divides the order of Q. Let R be a Sylow 7-subgroup
of M. Since Q is a normal subgroup of M and r divides the order of Q,
Z(R)n Q> 1. But Z(R)n Q =< Z(RQ) = Z(M) since @ is abelian. Thus
Z(M) > 1 contradicting (iii). We conclude therefore that » does not divide
the order of Q.

Let R be a Sylow 7-subgroup of M. Since Q is of order prime to 7,
R~ Q =1. Clearly RQ = M. Now form Ny(R). It is easily shown that
Ny(R)Q = N so, by taking a conjugate of R if necessary, we may suppose
that A normalizes R.

If we A, o #1is such that R, = R, then since M, =< G,, is nilpotent,
r does not divide the order of Q and Q is abelian, @, =< Z(RQ) = Z(M). Now
on the one hand, (iii) implies that Q, = 1 whilst on the other hand (ii) implies
Q. > 1, a contradiction. Thus fornowe 4, w % 1is R, = R.

It is an easy consequence of the minimality of G that the representa-
tion of 4 on R is irreducible. But an irreducible representation, over a field
of characteristic not equal to two, of the non-cyclic group of order 4 is one-
dimensional. Therefore for at least one w € 4, w 7% 1, is R, = R contradicting
the conclusion of the last paragraph.

This contradiction completes the proof of theorem 2.

5. Proof of theorem 3

PRroOF. Suppose that the theorem is false and choose a counterexample
G of minimal order. Then F = F(G) is the unique minimal normal A4-subs
group of G.

Let L be a proper normal A-subgroup of G. Then L is nilpotent. It
follows that F is the unique maximal normal 4-subgroup of G and that
G/F is an elementary abelian r-group for some prime 7, since G is soluble.
Thus G/F is an irreducible A-module over GF(r). Now 4 is of exponent two,
so any irreducible representation of 4, over a field of characteristic not equal
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to two, is one-dimensional. Therefore the kernel of the representation of 4
on G/F must have order 4, at least. Let w;, w, be two distinct non-unit ele-
ments of 4 in the kernel. Then

GIF = (G|F)u, = (GIF)u, = (G/F),a,.

Suppose that w € 4, w # 1, and (G/F), = G/F. Since F is the unique
minimal normal A-subgroup of the soluble group G, F is an elementary
abelian p-group. By definition G is not nilpotent, so G/F is not a p-group.
Therefore 7 5= . Now (G/F), = G/F is isomorphic to a section of G, so the
Sylow 7-subgroup R of G, is a complement of F in G. Since G, is nilpotent
and F is abelian, F, = F n G, is centralized by RF = G. Now if Z(G) > 1,
since F is the unique minimal normal A-subgroup of G, Z(G) = F = F(G),
a contradiction since G is soluble. Therefore F,, = Z(G) = 1. It follows that
w inverts all the elements of F.

Combining these results we have for z € F,

291 = ¥ = g¥1¥1 — g1,

Thus 27! = a“12 = (z~1)¥s =g, a contradiction since the order of F
is odd. This proves the theorem.
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