
CONTRIBUTIONS TO THE CELL GROWTH PROBLEM 

R. C. READ 

Introduction. The cell growth problem is a combinatorial problem which 
may be stated as follows: A plane animal is made up of cells, each of which 
is a square of unit area. It starts as a single cell, and grows by adding cells 
one at a time in such a way that the new cell has at least one side in contact 
with a side of a cell already present in the animal. The problem is to find 
the number of different animals of area n, it being understood that animals 
which can be transformed into each other by reflections or rotations of the 
plane will be regarded as the same animal. An account of the history of this 
problem, including the information displayed in Table I, has been given by 
Harary (2).* Examples of animals are given by the shaded portions of Figures 
1, 2, 3, and 4. 

FIGURE 1 FIGURE 2 

FIGURE 3 FIGURE 4 

By definition these animals are connected. In enumerating them we may 
or may not include animals which are multiply connected as in Figures 3 
and 4; in this paper we shall, unless otherwise stated, include them. The 
present state of knowledge concerning the numbers of animals is shown by 
Table I. The values for n = 7, 8 were computed by the MANIAC II computer 
at Los Alamos in 1959 (see Harary (2)). 

Received November 23, 1960. 
* Another name for these "animals" is polyotninoes (being a generalization of dominoes— 

see, for example, Golomb (1)). 
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TABLE I 

Area n 1 2 3 4 5 6 7 8 

No. of simply-connected animals 
No. of multiply-connected animals 

1 
0 

1 
0 

2 
0 

5 
0 

12 
0 

35 
0 

107 
1 

363 
6 

In this paper shall attack the problem indirectly, considering first some 
related topics rather more amenable to study, and then returning to the 
original cell growth problem. 

1. Nomenclature and notation. If an animal can be drawn inside a 
p X q rectangle, that is, a rectangle having p rows and q columns of unit 
squares, in such a way that every column contains at least one cell of the 
animal, then it will be called a " (p X #)-animal." If, in addition, every row 
of the p X q rectangle contains at least one cell of the animal we shall say 
that the animal is a "proper (p X #)-animal." A p X q rectangle is thus the 
smallest rectangle inside which a proper (p X q)-animal can be drawn. A 
(p X q)-animal which is not proper will be called "improper." Figure 5 shows 
an improper (4 X 5)-animal. 

FIGURE 5 F IGURE 6 

The first problem that we shall consider is that of finding, for given p 
and q, the number of proper (p X q) -animals having a given number, n, of 
cells. In doing this we shall regard the rectangle as being fixed in the plane, 
so that the animals of Figures 1 and 6 will be regarded as different animals. 
Animals counted in this way will be called "fixed animals." Our second 
problem will be the same, except that we shall not regard the rectangle as 
fixed. Consequently, any two animals that can be transformed into each 
other by rotation or reflection, such as those in Figures 1 and 6, will now 
be regarded as the same. Animals counted in this way will be called "free 
animals." 

We shall sometimes need to consider figures that resemble animals but 
which are not connected. We shall use the term "configuration" in place of 
"animal" whenever there is a possibility that the condition of connectedness 
is not satisfied. 
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We shall need to use rather a lot of symbols of various kinds, so that 
uniformity in their use is desirable. The letters A, B, C, D, and E will be 
associated with the values 1, 2, 3, 4, and 5 of p. Gothic letters will be used 
for the columns from which the animals will be built up. Capital letters 
(Latin or Greek) will refer to fixed animals; lower case letters will refer to 
free animals. An asterisk will denote that we are dealing with both proper 
and improper animals, while its absence will denote that we are dealing only 
with proper animals. 

2. A general theorem. We now state and prove a theorem which will be 
used several times in what follows. We shall state it in very general terms, 
because it has relevance to problems other than those we are now considering. 

Suppose we are given a certain finite number, say k, of objects, and that 
associated with each object is a positive integer, which we may call its 
"content." We are interested in constructing finite sequences of these objects, 
repetitions allowed, subject to certain rules concerning the manner in which 
the objects may follow each other in the sequence. These rules will be of 
three kinds. 

(i) those that specify which objects may be chosen to start a sequence ; 
(ii) those that specify which objects may be chosen to finish a sequence, 

and 
(iii) those which specify, for each object, the objects which may follow it. 

Thus the set of objects which may occupy a given position in the sequence 
will depend on which object occupies the previous position. A sequence con­
structed according to the above rules will be called a l'permissible sequence." 

The problem is then to determine, for given integers q and n, the number of 
permissible sequences of length q and content n, where the length of a sequence 
is defined as the number of objects it contains, and the content of a sequence 
is the sum of the contents of its constituent objects. 

Let the objects be denoted by 3Dîi, 9Jt2, . . . , $1*, and let cr* be the content 
of 2Jij. The * 'start vector" is defined as the column vector S = {si, s2, • . . , sk} 
where Sj = yaj if Mj may start a sequence, and = 0 if it may not, y 
being an indeterminate. The "stop vector" is defined as the row vector 
P = [pi, Pz> • • • » Pk] where pi = 1 if SO?* may end a sequence, and = 0 if it 
may not. 

The "transition matrix" is defined as the matrix 

W(y) = [mtjy
j} 

where wi;- = 1 if SDÎ* may follow 9W;- and = 0 if it may not. Clearly the start 
and stop vectors and the transition matrix embody the rules mentioned above, 
and suffice to determine which sequences are permissible. 

By the "qth transition vector" we shall mean the column vector whose 
jth element is the polynomial Y*nMj(q, n)yn, where Mj(q, n) is the number 
of sequences of length q and content n which end with the object Wlj. We 
shall denote this vector by M(q). We see that M(.l) = S. 
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If M(q, n) is the number of permissible sequences of length q and content 
n, the polynomial Y,nM(q, ri)yn will be called the "gth counting polynomial." 
The series Y*qÏLnM(qy n)xqyn, where x is an indeterminate, will be called the 
"sequence counting series." This series is a formal one, so that there is no 
question of convergence or divergence. 

We now state our general theorem. 

THEOREM 1. The qth counting polynomial is 

(2.1) P ^ ) ] * - ^ ; 

the sequence counting series is 

(2.2) xP[l - xWly)]-^, 

where I is the unit matrix the same size as *F (y). 

The proof of Theorem 1 is straightforward. From the definition of m a 
we have 

(2.3) Mt(q, n) = X) ni^M^q - 1, w - <r,) 
3 

so that 

E Mt(q, n)f = Z E Wi^Mjiq - l , n - * , )?" -" 
n j n 

= £"Ut>/' '£^(ff- l,n')yn'\ 
j V n' J 

where n' = n — <rj} since we may take Mj(q — 1, n') = 0 for n' < 1. Hence 

M(q) =W(y)M(q - 1) 
and thus 
(2.4) M(<?) = [ T ^ l ^ S . 

The total number of sequences is given by 

M(q,n) = T,piMi(q,n), 
i 

so that the qth counting polynomial is 
yZM(q,n)yn = PM(q) 

n 

The sequence counting series is 

£ £ M(q, »)*y = £ Ptirwr's*5 

q n q 

= ^p{£[x»T(3;)r1}s 
= xP[i - xï-wr's. 

This completes the proof of the theorem. 
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If the matrix W(y) is not too large, then the right-hand side of (2.2) can be 
found explicitly, and a complete answer to the problem is then available. 
When the inversion of the matrix I — xW(y) is impracticable, equation (2.1) 
may be used to find the counting polynomials, and hence to compile tables 
of values of M(q, n). 

It is sometimes possible to use a matrix smaller than*F(;y). Suppose that 
sa = sp for integers a, /3, and that rows a and /3 of W(y) have the same elements 
in all columns except columns a and (3. Suppose further that 

maa + tna0 = tnpa + m^ = 1. 

Then it is readily verified that Ma(q, n) = M$(q, n) for all values of q and 
n. Hence one of these functions, say M$(q} n) need not be introduced at 
all. The effect of this will be that the element sp of S can be deleted; that 
the element pp of P can be deleted and pa replaced by pa + pp\ and that 
column /? of W(y) can be deleted, and column a replaced by the sum of 
columns a and fi. 

We shall then have smaller vectors S and P, and a smaller matrix W (y), 
for which formulae (2.1) and (2.2) will yield the same result as before. This 
process can be continued until no further reduction in size is possible. The 
resulting vectors and matrices will be said to be ''reduced." 

Theorem 1 and equation (2.4) hold equally well for the reduced vectors 
and matrices as for the original ones. 

3. The enumeration of fixed animals; p = 1,2. There is clearly only 
one (1 X q)-animal, and it has q cells. To conform to our general notation 
we shall let A (g, n) be the number of proper (1 X q)-animals having n cells. 
Thus 

(3.1) A(q, n) = 1 if n = q 
and = 0 \i n 7e q. 

We now consider a typical (2 X q)-animal. We can imagine it being built 
up column by column starting with the left-hand column. These columns are 
of three kinds, as shown below, where the shading indicates those squares 

« 1 « 2 ®3 

that are cells of the animal. Since the animal is to be connected we see that 

23i may follow 33i and 333 only, 
(3.2) $2 may follow S32 and «3 only, 

$3 may follow S3i, 252, and 333. 
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Thus our problem is a special case of the general problem of the previous 
section. The ''objects" are the columns, the content of a column being the 
number of cells it contains. From (3.2) the transition matrix is 

"" 2" 
y • y 

2 

. y y 
-y y y2-

and, since any column may start or end the sequence, the start and stop 
vectors are {y, y, y2} and [1, 1, 1], These may be reduced, since the first two 
rows of the transition matrix have the property described at the end of § 2, 
and the first two elements of the start vector are the same. We therefore 
write 

™ - U- A 
2) 

_2y y-

S 2 = {yyy<\ and P2 = [2,1]. 

If Bj*(q,n) is the number of fixed (2 X q)-animals having n cells, and 
ending in 33j, then (2.4) gives 

B*(2) = 
*i*(2,»)/l 
l*(q,n)yni l_Zs3 

[ y y2Y \y\ 
_2y y J \_y 

while if B*(q, n) is the total number of fixed (2 X g)-animals having n cells, 
Theorem I gives 

(3.3) 

and 

z>c..w - P. « [£;.]*"• [A 

(3.4) D £ B*(q, n)xY = [2, l]x[/ - x ^ W ] " 1 \ y , 
q n \~y -J 

-*ytY \y?i 
— xy J Ly J 

which reduces to 

(3.5) 

= [2, 1]*| 

1+xy 

1 — xy — 
. — 2x;y 

2 3 

x y 1 — xy — xy' 

By omitting the multiplication on the left by [2, 1] in (3.4) we find that 

(3.6) 

(3.7) 

J2 X) B\*(q_, n)xQyn = -r-^-
a n -*-

xy 
2 2 3 

xy — xy — x y 

E T,Bf(q,n)xY 
xy (1 + xy) 

xy — xy 
2 3 

x y 
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The numbers B*(q,n) and B*(q,n) include some improper ( 2 X 2 ) " 
animals. These are readily excluded and we find that 

(3.8) Bdq, n) = B2(q, n) = Bi*(q, n) - A (<?, n) 

B*{q,n) =Bd*(q,n) 

B(q,n) =B*(q,n) -2A(q,n) 

where the Bj(q, n), etc., are the corresponding numbers of proper animals. 
We note without proof the following explicit formula for B*(q, n) (and 

hence for B (q, n) provided n > q)\ 

(s* ^.»)-ç(2;:r:)(*;!r) 
which may be deduced from (3.5). 

4. Fixed animals; p = 3. When we consider the enumeration of fixed 
(3 X g)-animals we encounter a new difficulty. This is seen if we consider 
the process of building up the animal of Figure 6. When the third column is 
added the resulting configuration is not connected. This remains true when 
the fourth column is added, but the addition of the fifth column restores 
the connectedness. Had the fifth column been the same as the third, for 
example, the final configuration would have remained disconnected. Thus we 
must devise a method whereby animals such as Figure 6 are counted, while 
ensuring that disconnected configurations are not counted. 

To do this we take as our possible columns those shown in the diagram 

lu 
a 

u 
u 
u 

u 

u 

u 

V 

u 
u 

ul 
u 
t l 

Si S2 S3 S4 £5 S6 ST S8 

where the squares containing a "tt" or a ' V are the cells of the animal. It 
will be seen that S5 and SO represent the same column. The difference lies 
in the way they are used. In building up a (3 X g)-animal column by column 
we allow SO to follow columns Si, S3, S4, and S7 even though the con­
figuration resulting at that stage is not connected. SO may be followed either 
by another SO, which leaves the configuration disconnected, or by Ss, which 
connects it up again. Thus when all q columns have been chosen, the resulting 
configuration will be connected if and only if it does not end in SO. We shall 
therefore put p& = 0 in our stop vector. 

The column S5 is used whenever the preceding column is such that the 
resulting configuration is connected. This will happen if and only if the 
preceding column is S5 or Ss. By way of illustration, the animal of Figure 1 
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would be built up as the sequence S8S5S5S1S7; whereas that of Figure 6 
would be given by S4 S3 Se ©6 Ss. 

We cannot start a sequence of columns with S5 so we put 55 = 0 in our 
start vector. 

Note that the labels "w" and ' V simply indicate that the two cells belong 
to different components of the configuration. Thus it is immaterial which cell 
is labelled "u" and which ' V 

We readily verify that 

Si may follow Si, S5, S7, Ss 
(S2 may follow 62, 64, 67, Ss 
53 may follow S3, ©4, S5, Es 
54 may follow 62, S3, S4, S5, Se, Ss 

(4.1) S5 may follow S5, Ss 
5 6 may follow Si, S3, S4, S7 
57 may follow Si, S2, S4, S5, S7, Ss 
5 8 may follow Si, S2, S3, S4, S5, Se, S7, Ss-

We then have a straightforward problem of the type considered in § 3. 
If C*(q, n) is the number of (3 X q)-animals having n cells and ending 

with Sy, then, by symmetry (or by inspection of the transition matrix), we 
see that 

Ci*(q,n) = C3*(g, w), 
C4*(g, w) = C7*(g, n). 

The transition matrix may therefore be reduced from an 8 X 8 matrix to 
a 6 X 6 matrix, the start and stop vectors being similarly reduced. The 
reduced transition matrix is 

(4.2) 

(4.3) Wz(y) = 

y - y y • y 
• y 2y 

2 2 o 2 

y y Zy 

- y 
2 2 

y • y 
2 2 

y - y 
2y2 • 2y2 

2y y 2y 
• y -

3 3 3 
y y y 

and the reduced start and stop vectors are 

(4.4) S 8 = {y,y,y\0,y*,y3}, 
P 3 = [ 2 , 1 , 2 , 1 , 0 , 1 ] . 

The gth transition vector 

C*(q) = { E C%, n)yn\ where j = 1, 2, 4, 5, 6, 8 

is given by (2.4), that is, by 

(4.5) C*(q) = i F t ' S , 
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from which the polynomials Z]C/(g, n)yn and hence the values of C/(g , n) 
may be calculated. The total number C*(q, n) of (3 X g)-animals having n 
cells can be calculated from 

(4.6) £ C^g, « ) / = P s ^ S a 

which follows from (2.1). 
We could, in theory, use (2.2) to obtain a generating function for C*(q, n). 

It would be a rational function of x and y, but its denominator would not 
easily be expressible as a power series, so that it would not be of much use 
for finding the values of C*(#, n), even ignoring the tedium of inverting the 
matrix I — xW3(y). The numerical results quoted later were obtained using 
(4.5) which is quite convenient for this purpose. 

We are really interested in the numbers Cj(q, n) and C(q, n) of proper 
animals of the above kinds.* By examining the way in which improper animals 
may occur we see that 

Cx(q, n) = Cz(q, n) = Ci*(q, n) — Bi(q, n) — A(q, n) 

C2(q, n) = C2*(g, n) - 2Bt(q, n) - A (ç, n) 

C4(g, n) = C7(q, n) = C±*(q, n) — Bz(q, n) 

Ch{q,n) = C**(q,n)\ C8(q, n) = C%*(q,n) 

C(q, n) = C*(q, n) - 2B(q, n) - 3A(q, n). 

5. Fixed animals; p = 4, 5. For p = 4 the method is essentially the same 
as in the last section. The same device is used to ensure the counting of 
animals which, though ultimately connected are disconnected at some stage 
in their construction, and we take, as possible columns, those shown in the 
diagram. 

nr Lit iu [ÎT Lit H Lit Lit St nr u H 
fui Et Lit E E u. iÛ" u u |ÏÏl 

u E ItT Ë E \VL\ S U u \û\ 
[Û] 3 |tl| jt S \\L\ U u \VL\ 3 'U\ V 

©i 3)2 S)3 3)4 SDB 3)6 3)7 3)8 3)9 SDio S)n 3) i2 3) i3 3) i4 ©IB SDW 3)17 3 ) I 8 3)I 9 3)20 

With the usual notation we note that D*j+n(q, n) = D*(q, n) for j = 1, 
2, . . . , 8. Hence our transition matrix may be reduced to a 12 X 12 matrix. 
This matrix, and the reduced start and stop vectors are readily constructed 
from the list of columns above, but we shall not take space to give them 
here. Despite the size of the matrix, equation (2.4) still gives a practical method 
of calculating the values of D*(q, n), even by hand, and it is, moreover, a 
method well suited to machine computation. The numbers Dj(q> n) of proper 

The numbers Cj(q, n) will be needed later when we consider the enumeration of free animals. 
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animals are expressible in terms of the D*(q, n) and other functions obtained 
in the previous sections. We shall not list these results, but we note the 
following: 

(5.1) D(q, n) = D*(q, n) - 2C(q, n) - 3B(q, n) -
= D*(q,n) - 2C*(q,n) +B*(q9n). 

4.4 (q, n) 

Very little need be said about the case p = 5 except that it is now possible 
for a configuration resulting during the construction of an animal to have 
three components. This is allowed for by an obvious extension of the previous 
method; the column consisting of three separated cells will give rise to five 
different "objects," as shown in the diagram. 

[u" 

|u" 

|u" 

ul 

u 

V 

V 

[7 
1 

"ÏÏ 

V 

ÏÛ 

u| 

"v"| 

w| 

The transition matrix is 50 X 50, but can be reduced to a 31 X 31 matrix. 
Equation (2.4) can still be used to find the numbers E* (g, n) (defined in the 
obvious way) for q < 6 without excessive effort. From these the numbers 
E*(QJ

 n)y a n d Ej(q, n) can be found. We note that 

(5.2) E(q, n) = £*(3> n) - 2D*(qy n) + C*(q, n). 

The problems for p > 6 are probably beyond the range of convenient hand 
calculation, and will not be considered. 

6. Some numerical results. We give below the results of the calculations 
described above for the functions B(q, n), C(q, n), D(q, n), and E(q, n) for 
n < 10. 

B(q, n) 

<ln 1 2 3 4 5 6 7 8 9 10 

1 1 
2 4 1 
3 8 6 1 
4 12 18 8 1 
5 16 38 32 10 1 
6 20 66 88 50 
7 24 102 192 
8 28 146 

1 9 32 
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C(q, n) 

<ln 1 2 3 4 5 6 7 8 9 10 

1 1 
2 8 6 1 
3 25 44 32 9 1 
4 50 154 212 158 62 
5 83 376 784 987 
6 124 750 2133 
7 173 1316 
8 230 

D(q, n) 

<Ln 1 2 3 4 5 6 7 8 9 10 

1 1 

10 

2 12 18 8 1 
3 50 154 212 158 62 
4 120 584 1396 2038 
5 230 1526 5154 
6 388 3276 
7 602 

E(q, n) 

4n 1 2 3 4 5 6 7 8 9 10 

1 1 
2 16 38 32 10 1 
3 83 376 784 987 
4 230 1526 5154 
5 497 2668 
6 932 

7. The enumeration of free animals. General remarks. If p ^ g, 
there are five types of symmetry that an animal may possess (or lack). They 
are as follows: 

(i) The animal may have no symmetry, that is, no rotation or reflection 
of the rectangle leaves the animal invariant. We shall use the symbol a when 
referring to free animals of this kind. 

(ii) The animal may be invariant under reflection about the "horizontal" 
line (that is, parallel to the rows) which bisects the rectangle. We shall use 
the symbol B when referring to fixed animals having at least this type of sym­
metry,* and the symbol fi when referring to free animals having only this 
type of symmetry. 
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(iii) The animal may be invariant under reflection about the "vertical" 
line (parallel to the columns) which bisects the rectangle. We shall use the 
symbol T when referring to fixed animals having at least this type of sym­
metry, and the symbol 7 when referring to free animals having only this type 
of symmetry. 

(iv) The animal may be invariant under rotation through 180° about the 
centre of the rectangle. We shall use the symbol A when referring to fixed 
animals having at least this type of symmetry, and the symbol 8 when referring 
to free animals having only this type of symmetry. 

(v) The animal may be invariant under each of the reflections given in 
(ii) and (iii). It is then also invariant under the rotation given in (iv). We 
shall use the symbol e when referring to animals having this type of sym­
metry. The numbers of fixed and free animals of this kind are the same. 

Examples of animals having these five types of symmetry are given by 
Figures 1, 4, 2, 7, and 8 respectively. 

We note that if p = q then other types of symmetry are possible. These 
will be considered later. Until then, any results obtained by putting a = p 
in the general formulae are to be ignored. 

For a given value of p let F(g, n) be the number of fixed proper (p X q)-
animals having n cells, and let YB(q, n), F r(g, n) and YA(q, n) be the numbers 
of these that possess symmetry of types B, T, and A respectively. Let y(q, n) 
be the number of free proper (p X q)-animals having n cells, and let ya(qy n), 
y?(q,n)> yy(a>n)> y^n), and y€(q,n) be the numbers of these possessing 
symmetry of types a, 0, 7, 5, and e respectively. We may now state a theorem 
which will be used several times in the following sections. 

THEOREM 2. ±y(q, n) = F(g, n) + YB(q, n) + Yv{g, n) + YA(q, n). 

Proof. The number of fixed animals corresponding to a given free animal 
will depend on its symmetry type, and is 4 for a-symmetry, 2 for 0-, 7-, and 
5-symmetry, and 1 for €-symmetry. Hence 

(7.1) Y(q, n) = 4;ya(g, n) + 2yfi(g, n) + 2yy(q, n) + 2y8(q, n) + yt(q, n). 

But 

(7.2) y(q, n) = ya(q, n) + yfi(qt n) + yy(q, n) + y*(q, n) + ye(q, n). 
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Eliminating ya(q, n) we find that 

(7.3) éy(q, n) = Y(q, n) + 2yfi(a, n) + 2yy(q, n) + 2y8(q, n) + 3y€(q, n). 

If we consider the set of B-symmetric fixed proper animals we see that it 
will include every ^-symmetric free proper animal twice, and every e-sym-
metric free proper animal once. Hence 

(7.4) YB(q, n) = 2y^(q, n) + ye(q, n). 

Similarly 

(7.5) Yr(q, n) = 2yy(q, n) + yt(q, n) 

and 

(7.6) YA(q, n) = 2y5(q, n) + y€(q, n). 

Theorem 2 then follows at once from (7.3), (7.4), (7.5), and (7.6). 
In the following sections Y will be replaced by B, C, D, or E according 

as p = 2, 3, 4, or 5. This statement will serve to define all functions (for 
example, CA(#, n)) thus obtained. 

The method of determining YB(q, n) will vary according to the value of 
p. To determine Yr(q, n) we note that if q is even then so is n, and a T-sym-
metric animal will be determined by the "subanimal" formed by its first 
\q columns. The complete animal is proper if and only if the subanimal is 
proper. If g is odd, then the centre column has odd or even content according 
as n is odd or even, and the animal is determined by the subanimal con­
sisting of the first %(q + 1) columns. 

To determine Y&(q, n) we note that if q is even then so is n, and a A-sym-
metric animal is determined by the subanimal formed by the first \q columns. 
This subanimal may or may not be proper. If q is odd then the centre column 
must be B-symmetric, its content is odd or even according as n is odd or 
even, and the animal is determined by the subanimal consisting of the first 
\{q + 1) columns. This animal may or may not be proper. 

In this way the numbers of animals having the various kinds of symmetry 
are made to depend on the numbers of certain animals of smaller size. This 
procedure will be realized for p — 2, 3, 4, and 5 in the following four sections. 

8. Free proper (2 X gj-animals. Clearly the number of free proper 
( I X q)-animals is 1 if n = q and 0 otherwise. 

A proper (2 X q)-animal has ^-symmetry if, and only if, it has 2q cells. 
Hence 
(8.1) BB(q,n)= 1 if n = 2q. ) 

and = 0 if n s* 2q ) ' 

Let us consider proper (2 X q)-animals having T-symmetry. If q is even, 
the subanimal is a proper (2 X Jg)-animal having \n cells. Hence, for q 
even, 
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(8.2) Br(q, n) = B(^q, \n) if n is even \ 
and = 0 if /z is odd. / ' 

If q is odd, the subanimal is a proper (2 X | ( g + l ) ) -animal which will 
end in 333, if n is even, and in 331 or $82 of n is odd and > q. Hence, for q odd 

(8.3) BT(g, n) = 5 8 ( è ( g + 1), \n + 1) if n is even \ 
and = 2B,\\{q + 1), \{n + 1)) if n is odd (" 

U n = q then 2?r(<Z, w) = 0, clearly. 
We now consider proper (2 X q)-animals having A-symmetry. These mus t 

have an even number of cells. If g is even the subanimal is a proper (2 X e x ­
aminai ending in 333- If q is odd it is a proper (2 X H ? + 1))-animal, also 
ending in 233. Hence 

(8.4) B&(q, n) = Bz(\q, \n) if q is even \ 

and = Bz(\q, \ n + 1) if q is odd f ' 

Theorem 2 then enables us to calculate the number b(q, n) of free proper 
(2 X q)-animals having n cells. 

In § 3 we were able to obtain generat ing functions for Bx*(q, n), B^(q, n) 
and B*(g, n), from which the generat ing functions for B1(qJ n), B%(q, n) and 
B(q, n) follow a t once. T h e results of the present section then enable us to 
derive a generating function for b(q, n). T h e derivat ion is qui te s t raight­
forward, and we shall not follow it through in detail , bu t merely quote the 
final result, which is t h a t 

(8.5) 1) 
a n -±\x. 

1 + xy 

xy 

+ 

xy — x'y' 

xy 

3 + xy 
1 — xy 

1 xy 

2(1 + xy + xy" + x y , 
1 1 ..2..2 „ 2 _ 4 ..4„.6 f * 

4 ) \ 
1 x y x y x y 

9. Free proper (3 X g j - a n i m a l s . T o find the number of 5 - symmet r i c 
(3 X g)-animals we use Theorem 1, as in § 4, bu t we consider only those columns 
which are themselves B-symmetric, viz. S2, 65, &6, and S8 . T h e t ransi t ion 
matr ix is 

<P = 
3 3 3 3 

y y y y 

and by (2.1) we find tha t , for n > g> CB(g, n) is given by 

(9.1) E C B ( Î , » ) / = [ l . l . O , ! ] * ^ 1 
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since if n > g the animals thus counted are automatically proper. Clearly 

CB(g, 2) = 0. 
For r-symmetric (3 X g)-animals the method already used will suffice. If 

g is even then 

(9.2) Cr(g, n) = C(\q, \ri) if n is even 
and = 0 if n is odd 

as before. If g is odd and n is even then the subanimal is a proper (3 X i(g + l))-
animal ending in S4, S5, or S7. If q and n are both odd, the subanimal ends 
in Si, S2, S3, or Sg. Hence, for q odd we obtain 

Cv(q ,n) = 2C4(|(<Z + 1), i » + 1) + C5(i(g + 1), \n + 1) 
if n is even 

(9.3) and = 2C1(è(<? + 1), W + 1)) + C,{\{q + 1), | ( n + 1)) 
+ C8(i((Z + 1), *(» + 3)) if n is odd. 

For A-symmetric animals we proceed similarly. If q is even so is n, and 
the subanimal is a (3 X |g)-animal. If this subanimal is proper, then it must 
not end in Si or S3. If it is improper then there is one proper (3 X q)-animal 
with A-symmetry corresponding to every fixed proper (2 X §q) -animal ending 
in SBi or S32 (see, for example, Figure 7); and there are two proper (3 X q)-
animals corresponding to every fixed proper (2 X eg)-animal ending in 333 

(as shown in Figures 9 and 10). 

FIGURE 9 FIGURE 10 

Hence if q is even 

CA(g, n) = C (k , \n) - 2 d (eg, \n) 
(9.4) + 2Si(Jg, in) + 2£3( |g , \n) if n is even 

and = 0 if n is odd. 

If g is odd and n is even the centre column must be S5, and the subanimal 
is a proper ( 3 X | f e + 1))-animal ending in S5. If q and n are both odd, 
the centre column is either S2 or S5. If it is S2, then the subanimal may be 
proper, in which case it ends in S2; or it may be improper in which case 
there are two possibilities for every (2 X | (g + l))-animal ending in 33i. If 
the centre column is Ss the subanimal is proper and ends in Sg. Hence, for 
g odd, 
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CA(<7, n) = C${\{q + 1), \n + 1) if n is even 
(9.5) and = C2(i(q + 1), i ( n + 1)) + 25 1( i (g + 1), i ( n + 1)) 

+ Cs(Uq + 1), hin + 3)) if n is odd. 

The number c(g, n) of free proper (3 X g)-animals having « cells then 
follows from Theorem 2. 

10. Free proper (4 X q)-animals. A proper (4 X g)-animal having 
i?-symmetry will be determined by its first two rows. These will form a 
proper (2 X q)-animal. Hence we have 

(10.1) DB(q, n) = B(q, | n ) if n is even \ 
and = 0 if n is odd ) 

The formulae for Dv{q, n) and D&(q, n) are formed in much the same way 
as before. We shall merely quote the final results which are as follows: For 
q even, 

(10.2) Dr(q, n) = D(^q, \ri) if n is even \ 
and = 0 if n is odd / ' 

For q odd, 

Dv(q, n) = 2Ds(Uq + 1), \n + 1) + 2DA(Uq + 1), \n + 1) 
+ D9(Uq + 1), \n + 1) + D12(Hq + 1), \n + 2 

(10.3) if n is even 
and = 2D1(i(q + 1), \{n + 1)) + 2D2(Hq + 1), \{n + 1)) 

+ 2Z)6(|(g + 1), i ( n + 3)) + 2Ds(Hq + 1), i ( n + 3)) 
if n is odd. 

£>A(g, n) = 2£>6(ig, è») + ^ s ( k , in) + D9Qq, \n) 
(10.4) + D10Qq, è». + ^ i 2 ( k , \n) + 2C 4 (k , ^ ) 

+ 2C8(Jg, |n ) if g and n are even. 

DA(g, ») = A>(Kg + 1), en + 1) + D10(Hq + 1), \n + 1) 
(10.5) + Di2(Hq + 1), i n + 2) + 2C4(è(g + 1), \n + 1 

if g is odd and n is even 

while D&{q, n) = 0 if n is odd. 
The number d(q, n) of proper free (4 X g)-animals is then given by Theorem 

2. 

11. Free proper (5 X g)-animals. The calculation of EB(q, n) can be 
carried out using Theorem 1, as was done for CB(q, n). The calculation of 
Er(q, n) and Eà(q, n) can be performed by the same methods as used hitherto. 
We shall not consider these calculations in any detail. 

We shall need, later on, the value of e(6, 10) and this we shall find from 
first principles. A B-symmetric (5 X 6)-animal having 10 cells is determined 
by its top three rows, and the animal formed by them will have 6, 7, or 8 
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cells according as the third row has 2, 4, or 6 cells. But if the animal is proper 
the first two possibilities are ruled out. Thus the centre row of the animal 
must have 6 cells, and hence the remaining 4 cells are all in one column. Since 
we are counting fixed animals we have EB(6, 10) = 6. 

For a r-symmetric animal, the subanimal would be a proper ( 5 X 3 ) -
animal having 5 cells. This is clearly impossible, so that £ r (6 , 10) = 0. 

For a A-symmetric animal, the subanimal is a (5 X 3)-animal with 5 cells, 
which cannot be proper. The third column of this subanimal cannot have 
5 or 4 cells. If it has 3 they must be the top 3 or the bottom 3; if it has 2, 
one cell must be in the centre, the other adjacent to it; if it has one only, 
this cell must be in the centre. The numbers of subanimals in these three 
cases are found empirically to be 6, 6, and 10. Thus E A ( 6 , 10) = 22. 

From Theorem 2 we then have 

*(6,10) = ±{932 + 6 + 0 + 22} 

= 240. 

12. Numerical results. The methods of the preceding sections yield the 
following results. 

b(q, n) 

<Ln 1 2 3 4 5 6 7 8 9 10 

1 1 
2 1 1 
3 3 2 1 
4 3 6 2 1 
5 5 11 10 3 1 
6 5 19 22 15 
7 7 28 52 
8 7 40 
9 9 

c(q, n) 

<In 1 2 3 4 5 6 7 8 9 10 

1 1 
2 3 2 1 
3 9 12 12 4 1 
4 15 39 59 42 21 
5 25 96 210 255 
6 35 188 550 
7 49 332 
8 63 
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d(q, n) 

dn 1 2 3 4 5 6 7 8 9 10 

1 1 
2 3 6 2 1 
3 15 39 59 42 21 
4 30 148 349 518 
5 61 383 1304 
6 97 822 
7 155 

Note. The values for p = q have been included for completeness, although 
they are not significant for our purpose. 

13. Animals contained in a square. We have already remarked that 
when p = q the animal may possess types of symmetry other than those 
given in § 7. Thus the results already obtained will not hold for animals 
contained in a square. We could extend the scope of Theorem 2 —essentially 
a variation on the principal of inclusion and exclusion —to cover the new 
problem, but we would meet a new difficulty, namely, that whereas, for the 
types of symmetry so far considered, the corresponding subanimals were 
fixed animals contained in a rectangle, for the new types of symmetry the 
subanimals would be contained in a triangular arrangement of unit squares. 
For example, animals contained in a 7 X 7 square and possessing all possible 
symmetries (corresponding to the dihedral group of order 8) would be deter­
mined by subanimals contained in the arrangement shown in Figure 11. 

FIGURE 11 

Moreover, these subanimals would have to be chosen in such a way that 
the resulting animal would satisfy the requirement of connectedness. This 
is a different problem altogether from those we have been considering, and 
we shall make no attempt to tackle it in the general case. Our treatment of 
the cell growth problem thus remains incomplete in at least this respect. 

We shall consider four special cases, however, namely, those for p = q = 4 
and 5, and n = 9 and 10. Fortunately, for these low values, the animals can 
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be enumerated in extenso by a process of enlightened trial and error, using 
the information derivable from the requirements of connectedness, proper-
ness, and symmetry (if any). We shall give the results that have been found 
in this way. 

If p = 4 and n = 9, the only symmetry possible is about a single diagonal. 
There are 13 free animals with this kind of symmetry, each giving rise to 
4 fixed animals. All the other free animals give rise to 8 fixed animals each. 
Hence if zp{n) denotes the number of free proper (p X p)-animals having 
n cells, we have 

8{z4(9) - 13} + 52 = £>(4, 9) 
= 1396 

Hence 

24 (9) = 181. 

If p = 4 and n — 10, there are 6 /3- (or 7-) symmetric free animals; 3 
5-symmetric free animals; and 12 free animals symmetrical about one dia­
gonal. These each give rise to 4 fixed animals. There is also one free animal 
with symmetry about both diagonals, and this gives rise to 2 fixed animals. 
Thus 

8{s4(10) - 22} + 86 = £>(4, 10) 
= 2038 

Hence 

Z4(10) = 266. 

If p = 5, n = 9, there are 20 free animals possessing ^-symmetry, 5-symmetry, 
or symmetry about one diagonal, thus giving rise to 4 fixed animals each; 
and there is one animal with all possible symmetries, to which corresponds 
one fixed animal only. Thus 

8{z5(9) - 21} + 8 1 = £(5 ,9) 
= 497 

Hence 

sB(9) = 73. 

If p = 5, n = 10, there are 3 free animals with 0-symmetry, and 10 which 
are symmetrical about one diagonal. These each give rise to 4 fixed animals. 
Thus 

8{z5(10) - 12} + 52 = E(5, 10) 
= 2668 

Hence 

2B (10) = 340. 

14. The cell-growth problem for n = 9, 10. We are now in a position t o 
find the numbers of free animals of unrestricted shape having 9 and 10 
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cells. This is simply a matter of abstracting the relevant data from the 
previous sections. We may exhibit the results in tabular form, as follows. 

n = 9 n = 10 

Size of rectangle No. of animals Size of rectangle No. , of animals 

1 X 9 1 1 X 10 1 
2 X 8 7 2 X 9 9 
2 X 7 28 2 X 8 40 
2 X 6 22 2 X 7 52 
2 X 5 3 2 X 6 15 
3 X 7 49 2 X 5 1 
3 X 6 188 3 X 8 63 
3 X 5 210 3 X 7 332 
3 X 4 42 3 X 6 550 
3 X 3 1 3 X 5 255 
4 X 6 97 3 X 4 21 
4 X 5 383 4 X 7 155 
4 X 4 181 4 X 6 822 
5 X 5 73 4 X 5 1304 

4 X 4 266 4 X 4 266 
Total No. of animals 1285 5 X 6 240 

5 X 5 340 5 X 5 340 

Total No. of animals 4466 

These numbers will include animals that are multiply-connected. By an 
empirical process (that of adding cells in all possible ways to the animal of 
Figure 3, and to the unique multiply-connected (3 X 3)-animals having 7 
and 8 cells) I find that there are 37 multiply-connected animals having 9 
cells, and 195 which have 10 cells. Thus, as a final result, we may augment 
Table I in the following manner. 

TABLE II 

Area n 9 10 

No. of simply-connected animals 
No. of multiply-connected animals 

1248 
37 

4271 
195 
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