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1. Introduction. A recent paper of Rhemtulla and Wilson [4] is concerned with
elliptically embedded subgroups of groups. A subgroup H of a group G is elliptically
embedded in G if, for each subgroup K of G, there is some integer m such that
{H, K) = (HK)m. Some sufficient conditions for elliptic embedding are given in Section 2
of [4], and some consequences of the presence of this property are to be found in
Theorems 1 and 2 of the same paper and in the main theorem of [5]. It is evident from all
of these results that the property of being elliptically embedded is closely related to the
nilpotency and subnormality of certain subgroups. One of the questions considered here
is the following.

If H, K are subnormal subgroups of the group G, when is the subgroup J = (H, K) of
the form J = (HK)m for some integer ml

Some further conditions are certainly necessary here, even if / is nilpotent (of class
two)—this is indicated by the example in Section 2 of [4]. One might expect that finiteness
of rank would be fairly decisive in this context, and Theorem 2.5 states, in effect, that
most of the conditions known to be sufficient for / to be subnormal in any group G in
which H and K are subnormally embedded also imply that / = (HK)m for some m.
However, there is one such condition, concerning the tensor product of H and K, which
does not carry this implication, and a suitable example is given in Section 3. It is clear that
/ = (HK)m+1 if [H, K] c (HK)m, and we shall see that if [H, K] has finite rank then there
does exist such an integer m.

Consideration of tensor products and the subgroup [H, K] leads one quite naturally
to examine "nilpotent products" of H and K. It is well known (see page 125, Vol. 1 of
[7]) that H/H' <8> K/K' is isomorphic to [H, K] in the second nilpotent product of H and
K, and in Section 4 it is shown that this result can be partially extended to higher
nilpotent products. Associated results on tensor products are also included in that section.
Perhaps the main results presented here can be summarized as follows.

Let H, K be groups such that H/H' <8> K/K' has finite rank. Then, in any nilpotent
product of H and K, the subgroup [H, K] also has finite rank. Further, if H and K are
subnormally embedded in any group G, then there exists an integer m such that
(H, K) = (HK)m.

2. Conditions for a union of subnormal subgroups to be an elliptic set. We begin
with a lemma which will reduce the proof of the subsequent theorem to that of the
"finitely generated case".

LEMMA 2.1. Let J be a finitely generated nilpotent group, generated by subgroups H
and K, and suppose [H, K] has rank r. Then [H, K] is generated by 2r elements of the form
[h, k], where heH, k e K.
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Proof. It suffices to prove that [H, K] can be thus generated modulo [H, K\, since
[H, K] is nilpotent. Since [H, K\ is normal in / , we may factor and thus assume that
[H, K] is abelian. Let The the torsion subgroup of [H, K]. Then, modulo T, [H, K] is free
abelian of rank at most r, and so there is a subgroup S of [H, K], generated by r elements
of the form [h, k], such that \[H, K]:ST\ is finite and hence \[H, K\:S\ is finite. Writing
50 for the core of 5 in / , we have that \[H, K] :50| is finite. Modulo So, we need to show
that [H, K] is generated by r elements [h, k]. So we assume that [H, K] is finite. Then,
since / is residually finite, there is a normal subgroup TV of finite index in / such that
TV D [H, K] = l, and we can make the further assumption that TV = 1. But J is then a finite
nilpotent group, and so [H, K] is the direct product of subgroups [Hp, Kp], where, for
each prime p dividing |/|, Hp and Kp are the Sylow p-subgroups of H and K respectively.
Now each [Hp, Kp] is a finite p-group of rank at most r and so, by Burnside's
Basis Theorem, can be generated by r commutators of the form [hp, kp]. Thus
[H, K] is generated by r subgroups, each of which is generated by elements
[hPi, kPl], . . . , [hPn, kPn], for different primes /?,. If III, H2 are disjoint sets of primes and
xt, yt are ^,-elements of / (/ = 1, 2) then \xxx2, y1y2] = [xlt yi][x2, y2], so by induction on
the number of primes dividing |/| we obtain the desired result.

In view of the fact that the nilpotency class of J plays no part in the proof of the
lemma above, we have the following easy consequence.

COROLLARY 2.2. Let J be a locally nilpotent group, generated by subgroups H and K,
such that [H, K] has finite rank r. Then, for each finitely generated subgroup F of [H, K],
there exist 2r commutators of the form [h, k] which generate a subgroup containing F.

We use Lemma 2.1 to prove the following result.

THEOREM 2.3. Let J be a nilpotent group of class c, generated by subgroups H and K,
and suppose [H, K] has (finite) rank r. Then there is an integer m, depending only on c and
r, such that J = (HK)m.

Proof. Since every element of / is contained in some finitely generated subgroup of
the form (Ho, Ko), where [Ho, Ko] has rank at most r, we may suppose that / is finitely
generated. Let d be the least integer such that [H, K, dJ] = 1. Then d<c — 1. If d = 0,
then / = HK, so suppose rf^l. By Lemma 2.1, [H, K] is generated by elements [ht, ki\,
i = 1, . . . , 2r, and so, for each element o of [H, K], there are integers aly . . . , a2r such
that, modulo [H, K, J],

If d = l, then J = HK[H, K] = (HK)4r+l and we are done. Otherwise, we note that,
modulo [H, K, 2J], [H, K, J] is generated by [H, K, H] and [H, K, K], and we apply
Lemma 2.1 again to deduce that [H, K, H] is generated by 2r elements [o,, g,], where
ot € [H, K] and g, € H for each i. Then, again modulo [H, K, 2J], any element A of
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[H, K, H] is of the form

= l°l> gf'] • • • Wir, gfr]

and each [o,, gf'] is congruent to a product of 2r elements [hiJt kiyi, gf'} (J = 1, . . . , 2r),
each of which belongs to {HKf. Thus there is an element A' of (HK)24'2 such that A = A'.
A similar argument applies to the subgroup [H, K, K].

Then, modulo [H, K, 2J], we have [H, K, J] c (HK)<**. If d = 2, we are done,
otherwise we continue to consider subgroups of the /-central factors of [H, K] in this
manner and thus obtain the result required.

COROLLARY 2.4. Let G be a nilpotent group of class c and let H be a subgroup of G
such that [H, G] has rank r. Then H is elliptically embedded in G. In fact, there is an
integer m = m{r, c) such that, given any subgroup K of G, (H, K) = (HK)m.

Now Proposition 3 of [4] states that if G is any group and H is a subgroup with the
property that HG is nilpotent minimax, then H is elliptically embedded in G. An obvious
question is whether "minimax" could be replaced by "finite rank" here. An (unpub-
lished) example due to Brian Hartley shows that this is not the case (see Example 3.1
below). Next, we establish some sufficient conditions for the union of two subnormal
subgroups to constitute an "elliptic set", that is, we prove the following result.

THEOREM 2.5. Let H, K be subnormal subgroups of the group J = (H, K). Then there
is an integer m such that J — (HK)m if any one of the following conditions is satisfied.

(i) J'ly?,(J) has finite rank.
(ii) [H, K] has finite rank modulo each term of the lower central series of J.
(Hi) H/H' ® K/K' has finite rank (where H/H' <8> K/K' denotes the tensor product of

H/H' and K/K' viewed as abstract groups).

Proof. Each of the three conditions stated in the theorem above suffices to ensure
that some term of the lower central series of J is contained in the product HK (see [10],
[8] and [11] respectively). Hence, factoring, we may assume / is nilpotent. But then
[H, K] has finite rank—in case (i) this follows from [9] and in case (iii) from Proposition
4.1 below. The result now follows from Theorem 2.3.

REMARK. It is easily seen (by referring to the results quoted) that the integer m is in
each case bounded by the subnormal defects of H and K and the ranks involved.

The main results of [11] are concerned with a property of abelian groups which is
rather weaker than finiteness of rank, namely that of being a direct product of a group of
finite rank and a periodic divisible group. Thus if H/H' <g>K/K' is "FRD", then the
"lower central series property" (etc.) holds for /. However, there is no companion result
for elliptic embedding, as Example 3.2 indicates. A result that we shall need to refer to in
the description of this example is a consequence of the following simple observation.
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LEMMA 2.6. Suppose H, K are subgroups of the group G and let m be a positive
integer. Then each element a of {HK)m can be expressed in the form

O=OXXXT2O2. • • omrmhk,

where h e H, k e K and, for each i = 1, . . . , m, a, = \ax, bt\ and T, = [ch d(\, for some
ah dj € H and bh c, e K.

Proof. If m = 1 there is nothing to prove. Suppose m > 1 and that
o = hlk1. . .hmkm. Then

o = [hT\ kT'][kT\ (hxh2y
l](hxh2)(kxk2)(h^ . . . hmkm),

which is of the form axxx\, where A e {HK)m~l. The result follows by induction on m.

If, to the hypotheses of the lemma above, we add that G = (HK)m and that
HnK" = l = KD HK, then it is clear that every element of [H, K] is a product of at most
2m commutators of the type indicated. In particular we note the following result.

COROLLARY 2.7. If a nilpotent product of the groups H and K equals (HK)m, for some
integer m, then every element o of [H, K] can be expressed as a product of (at most) 2m
elements of the form [h, k] or [k, h\.

We recall here that, for each positive integer r, the r-th nilpotent product of the
groups H and K is the image of F = H*K obtained by factoring by the subgroup
[H, K, r_ tF].

3. Examples. The first example in this section is of a subgroup H of a group G such
that HG is nilpotent (in fact abelian) of finite rank yet H is not elliptically embedded in G.
This is in contrast to Proposition 3 of [4] (where Ha is nilpotent minimax) and Corollary
2.4 above (where G itself is nilpotent).

EXAMPLE 3.1 (Hartley). Let A: be a given positive integer and let V = Vk be a
maximum length (n, k) code over GF(2), so that n =2k — 1. (See [1, p. 48] for details.)
Then all the codewords have weight d = 2k~K We claim that if vu . . . , i^. , € V, then for
some value of i, all of vu . . . , vk_x have i-th component zero. To see this, write S* for a
set with 2k — 1 elements. We can identify each codeword with a subset of Sk. Let 2*. be
the set of subsets so obtained. Then:

(i) Ax, A2 e 2fc implies Ax *A2 e 2.k, where * is the symmetric difference, and
(ii) A eHk implies \A\ = 2k~l or zero.

LEMMA. Conditions (i) and (ii) imply that if Ax, . . . , Ar e Hk and A{ U . . . U Ar = Sk,
then r^k.

Proof. If k = 2 then d — 2, n = 3 and this is clear. Assume k > 2 and that the result
holds for smaller values and that A,U . . .L)Ar = Sk. Let T be the complement of Au so
that | r | = 2* - 1 - 2k~x = 2*"1 - 1. Consider

Now if Ae~Ek, then either A=AX and AC\ T = 0 or Ai^Ax and |A*v4,| =2*"'.
2. 2k~1- 2 \AHAl\= 2k~\ so that 2\AnAl\=2k~i and |,4 n ,4,| = 2*"2. Hence
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\AnT\ = 2k~1-2k-2 = 2k-2. Hence D e Z ' implies \D\ = 2k~2 or 0; if D1,D2e2' then
either Dx = D2 and D1*D2 = <&, or Dx i= D2 and D, = A( D T. Then

A * D2 = (Ai * A2) n r e 2 ' .

Thus 2 ' satisfies the hypotheses with k - 1 for /fc. Clearly T = (A2DT)U . . .U(ArDT)
so that r - 1 s* fc - 1 and the lemma is proved.

Now writing n =2k — 1, choose n distinct primes p1} . . . ,p n . Let Hit L, be cyclic
groups of order ph Mi = Htx L,, and at an automorphism of order 2 such that Hf = L,.
Set ty = Mi(at), Gn = ty X . . . x Nn = M(alt . . . , <*„}, where M = M , x . . . x M n , and
H= (Hlt..., Hn). Let K be the subgroup of (alt. . ., an) corresponding to Vk. Now,
given / ss i« n, there exists v eV with ith component =£0; this means HG = Af. But if we
take any k — 1 elements JCI, . . . , xk^x e K, then there exists i such that all of xly... , xt_1

have ith component 0, so (Hx\ . . . , H*"-1) D Af, = Ht. Thus Lx x . . . x Ln is not contained
in the product of any k — 1 conjugates of H; hence neither is its generator, and so

Now write Gk for the group above and form Glx.G2x . . . = G, where these are
constructed from pairwise disjoint sets of primes. This contains a locally cyclic subgroup
H and a subgroup K such that HG is of rank 2, K is elementary abelian 2-group and
G = (H, K) * (HK)1 for all /.

Our second example concerns a (nilpotent) group G, generated by abelian subgroups
H and K such that H <8> K is periodic divisible (or, rather, radicable since G is written
multiplicatively) but G¥=(HK)m for any integer m. This shows that the hypothesis of
having finite rank in Theorem 2.5 (iii) cannot be weakened to that of being FRD (that is,
a direct sum of a group of finite rank and a periodic divisible group), thus dispensing with
an obvious conjecture that arises from Theorem 2.5(iii) and the main results of [11].

EXAMPLE 3.2. Letp be a prime. For each integer i = 1, 2, . . . , let At be a group with
presentation

A = (an, ai2, ...:an = 1, (ai(]+1))
p = aij3 j = 1, 2, . . . ) .

Thus A, is a quasicyclic group of type p". Denote by H the direct product of the groups At

and let AT be a free abelian group with basis {xi, x2, • • •}• Then our group G is defined to
be the second nilpotent product of H and K. We note that H <S> K is a divisible p -group
and, by considering the isomorphism determined by h ®k-*[h, k], it is clear that
[Aj, (Xj)] = [Ak, (xi)] if and only if i — k and ; = /. Also, [H, K] is the direct product of
the subgroups [Ah (x,-)], i,j = 1,2, . . . . Now let n be any positive integer, and let
o = [au,x1]. . . [a(n+1)1, xn+1].

Claim, a cannot be written as a product of fewer than n + 1 commutators of the
form [h, k], where h eH and k e K.

Before we establish this claim, let us note that it has as a consequence the fact that
G # (HK)m for any integer m. By Corollary 2.7, if G = (HK)m, then every element of
[H, K] can be expressed as a product of 2m commutators [h, k] or [k, h]. But, since G is
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nilpotent of class 2, [k, h] = [h, k]~l = [h~l, k] and so, putting n = 2m in the above gives a
contradiction.

Now assume that the claim is false and, with a as defined, write
B = (Ai:i = l, . . . ,n + l), C = (x(:i = 1, . . . , n + 1).

Then, in view of our remarks concerning the structure of [H, K], it follows that o can be
written as a product of (at most) n commutators of the form [b, c], where b eB, c eC.
Further, since each At is locally cyclic, it is not difficult to see that a can be expressed in
the form

a = [af'. . . a 'Sp, x?" . . . *?#•>•]. . . K>». . . a?n1)n, xTu. • . Of""],
where, for each i = 1, . . . , n +1, a, is an element of Ait and tty and m,y are integers
(/ = 1, . . . , «). Further, we may assume that the order of each a, is the same, say pk+l,
where )t > 0. So, again for i = 1, . . . , « + 1, there is an integer )8, (0 < )3, </?) such that
aPi

kPi = aa. (We could arrange for each /S, to equal 1 here, but it is convenient to be less
specific). From the two expressions for o, we deduce the following system of congruences
modulo pk+1:

n

So,t • E aumij - P>Pk> P \ Pi (' = l> • • • ' n + ! ) -

n
s r , i ' • 2 <Xo+r»mij = 0 , i = l, . . . , n + l , r = l, . . . , n ,

J = I

where (i + r) is in each case reduced modulo n + 1 if it is greater than n + 1.
We show, by induction on n, that this system of congruences has no solution (in

integers). Clearly (for a given n) we may assume that not every atj is divisible by p (else
we could divide through by p and replace k by k — 1). By relabelling if necessary, we
assume that p does not divide ar(w+1)n. If n = 1, we obtain the congruences

anmn = PiPk, a2lm2l = p2p
k, a21mu = 0, <xnm21 = 0.

But the first and third of these relations imply that <x21fixpk = 0 and hence that p divides
tf2i, contrary to our hypothesis. Suppose then that n > 2 and that the non-existence of
solutions has been established for the case (n — 1). Viewing the system of congruences as
a system in the (integer) unknowns m,7 (for all i, j) we note that the congruences
50,i, . . . , SOn+1 may be represented by the (n + 1) x n coefficient matrix P = {atj)
(augmented by the column vector pk(Plt . . . , Pn+iY) and that, for each r = 1, . . . , n, the
system of congruences 5 r l , . . . , 5r w+1 is represented by a matrix Pr obtained from P by a
cyclic permutation of the rows. We replace the subsystem {So>1, . . . , 50w+1} by the set of
congruences T0l, . . . , TOn in the unknowns m,y (1 < i < n, 1 < / < n - 1) obtained from
the original system by setting T0J = a(B+1)n5^>(- - O/B5(n+1_0,-; that is,

n - l

7 1 - 1
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Writing Q for the n x (n — 1) coefficient matrix appearing here and recalling that p does
not divide fl(«+i)«j8, for any i, we see that the inductive hypothesis can be applied,
provided we can deduce (n — 1) "homogeneous" systems of congruences in the m,7
(l*£z's£rt, l « y ^ n - l ) whose coefficients matrices are (all) those matrices obtainable
from Q by cyclic permutation of the rows. But, with the aid of the following observations,
it is not difficult to see that such systems can in fact be obtained by applying appropriate
"row operations."

(1) For each i = 1, . . . , n, the (n + l)st row of P appears as the i-th row of some Pr

(1-=/•<«).
(2) For each pair of distinct integers i,V in the set {1, . . . , « } , the i-th row of P

appears as the i'-th row of some Pr (1 < r < n).
The inductive hypothesis leads to the required contradiction, so our earlier "Claim"

is established, and G # (HK)m for any m.

4. Tensor products and nilpotent products. The following result was utilized in the
proof of Theorem 2.5.

PROPOSITION 4.1. Suppose H and K are {nilpotent) groups such that the tensor product
H/H' <8> K/K' has finite rank, and let J be a nilpotent group generated by (isomorphic
copies of) H and K. Then [H, K] has finite rank in J.

We shall establish this proposition and some related results by considering the
"/-central factors" of [H, K] in the case where / is a nilpotent product of H and K. As
remarked in the introduction, it is well known that H/H' <8> K/K' is isomorphic to [H, K]
in the second nilpotent product. The proof of the following lemma is similar to that
presented in [6], and is omitted here. We denote by X the abelianisation of a group X,
and by x the element xX'.

LEMMA 4.2. Let J be the (k + 2)-nd nilpotent product of the groups Hx and H2, where
k is some non-negative integer. Then, for each k-tuple (Hh, . . . , Hik) of groups with
Hf. e {Hlt H2} for all j , there is a homomorphism 8 from Hx <8> H2 <8> Hh <8>. . . <8> Hik onto
the subgroup L = [Hu H2, Hh, . . . , Hik] ofJ.

Now, with the notation of the lemma above, the subgroup \Hlt H2kJ] is generated by
a finite number of subgroups having the form of L. We then have the following result.

PROPOSITION 4.3. Let £ be a class of groups such that
(i) X ® Y e £ implies that X®Y®Y e£ (for any groups X and Y).
(ii) Every homomorphic image of an H-group is in 3£.
(iii) / / G is an abelian group generated by the X-groups A and B, then G is in 3£.

Let F be the free product of the groups Hx and H2. If Ht <S> H2 belongs to 3c, then so does
[Hu Hz, kF]/[Hu H2, k+lF] for every k = 0,l,2....

Proof. In view of Lemma 4.2 and the subsequent remark, it need only be shown
that, with the hypotheses of the Proposition satisfied, //j <8> H2<3) Hh<8>. . . <8> Hik also
belongs to X (where, as before, Htj = HY or H2 for all j). But this is readily established by
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induction on k, owing to the commutativity of the tensor product operation and the
presence of hypothesis (i).

COROLLARY 4.4. //, in addition to the hypotheses of Proposition 4.3, we also have
(iv) X is closed with respect to forming extensions (that is, 3£ = P3£)

then [Hu H2]I[HX, H2, k+lF] is in X (k = 0,l,2, . . .).

Hypothesis (iii) is of course satisfied by every iV0-closed class of groups and is implied
by (ii) and (iv) above.

We now turn to the question of finding some classes £ which satisfy the conditions
above. This involves analysis of the structure of tensor products along the lines of that
carried out in Section 2 of [11]. In fact, we shall adopt the required notation from [11] as
follows (see Chapter XI of [2] and Chapter X of [3] for the relevant background).

For any abelian group A, denote by Ao the torsion subgroup of A. Let A^ = A/A0

and let r(Aao) be the rank of A». Also, for any prime p, let Ap denote the p-component of
Ao.

(1) Now let X, Y be (additive) abelian groups and T = X <g> Y, V = T ® Y. For each
p, let rp, sp, up be the ranks of (fixed) basic subgroups of Xp, Yp, Tp respectively, and let
X

P> yP> tP denote the ranks of XjpX^, YJpY^, TJpT^. (Each of the ranks here is
allowed to be infinite.)

With the notation as in (1), Williams [11] proves the following result.
(*) T is the direct sum of a group of finite rank and a periodic divisible group if and

only if there is an integer d such that r(X*) . r(Ym), rp . sp, rp . yp, xp . sp and xp . yp are all at
most d, for all primes p.

We use this to prove the next result.

LEMMA 4.5. IfT = X®Yis FRD, then so is T®Y.

Proof. By Lemma 2.3(ii) of [11], we have that up = rp . sp +xp . sp +yp . rp and so,
since T is FRD, up < 3d for some d as in (*). Further, r(7L) = r{XJ). r(Yj) < d, and so
tp <d also. Again by (*), we need only find an integer dx such that r(Tm). r(Ya), up . sp,
up . yp, tp . sp and tp . yp are all at most d1, for all primes p. We deal with each of these in
turn:

r ( r . ) . r(y.): If r(K.) = «, then r(r .) = 0 (since r(TJ) = r(XJ). r(Y») < d).
Otherwise, r(Yx) = kly say, and in either case r(Tx) . ^Y^) < dkx.

up . sp, Up.yy. If sp < d, then up . sp < 3d2, while if sp > d, then (by (*)) rp = 0, xp = 0
and so up = 0. Similarly for up . yp.

tp.sp: If sp < d, then tp.sp< d2. If sp > d, then xp = 0, that is X^ =pX«,. It follows
easily that Tao = pTx, and so tp = 0.

tp . yp: If yd < d, then tp.yp< d2, while if yp > d, then r ^ ) > d and so r(XJ) = 0,
r(Ta) = 0, and hence tp = 0.
Writing dx = max{dkly 3d2}, the proof of the lemma is complete.

Again, for each p, let mp, np be the ranks of the divisible components of Xp, Yp

respectively. If T has finite rank then there is an integer d such that, in addition to the
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inequalities indicated in (*), we also have yp . mp<d and xp . np<d, for all p. Indeed,
these inequalities together give a sufficient condition for T to have finite rank, and (with
the usual notation), we shall prove our next result.

LEMMA 4.6. IfT = X®Yhas finite rank, then T®Y has finite rank.

Proof. By the remarks above, it suffices to prove that tp . np and yp . (the rank of the
divisible component of Tp) are each bounded by some integer d2 (independent of/?). So
we must show that tp . np, yp . x

p . np and y2p . mp are bounded.
tp . np: If np < d, then tp.np< d2 (recall that tp < r(T^) < d). If np > d, then xp = 0

and (as before) tp = 0.
yp . xp . np, y2

p. mp: If yp ^ d, then each of these is bounded by d2, while if yp > d, we
have xp = 0 = mp. The lemma is thus proved.

We can deduce some further results of this nature.

LEMMA 4.7. Condition (i) of Proposition 4.3 is satisfied by each of the following
classes 36 of groups (in addition to groups which are FRD and those that have finite rank):

(a) torsion groups, n-groups (where it is any set of primes), groups of finite
exponent,

(b) groups with the maximal or minimal condition, and minimax groups,
(c) finite groups,
(d) the class of (abelian) groups having finite p-ranks for all p = 0 or a prime.

Proof, (a) is immediate, (c) is a consequence of (a) and Lemma 4.6, and (d) can be
proved by examining the proofs of the previous two lemmas and noting that the relevant
bounds need no longer apply for all primes at once. Abelian groups with the minimal
condition are precisely those that are jr-groups of finite rank for some finite set n of
primes and so (a) and Lemma 4.6 apply. If X® Y has the maximal condition then there
are finitely generated subgroups Xx and Yj of X and Y respectively such that
X ® Y = Xt ® Ylt and then

(X® Y) ® Y s (Xx ® Yj) ® Y = Yt ® (X, ®Y)sYl®X1® Yu

which is finitely generated.
Finally, suppose that X ® Y is a minimax. From the structure of abelian minimax

groups (see Lemma 10.31 of [7]), we infer that there are finitely generated subgroups Xx,
Yx of X, Y respectively such that, modulo U = (xt <8> yx:xx e Xx, y^eY^, X <8> Y satisfies
min, that is, X/Xi <8> Y/Yi satisfies min (see [2, p. 252]), as (therefore) does Z =
XI Xt ® Y/Yi <g> YIY^. But (similarly) Z = (X®Y®Y)IV, where V is generated by all
elements u ®y2 (ueU, y2e Yx). Since V is a homomorphic image of U <8> Yt and U is
an image of Xx <8> Ylr V satisfies max. The result is now immediate.

Now it is clear that all of the classes listed in Lemma 4.7 satisfy (ii) and (iii) of
Proposition 4.3 and that those given in (a), (b) and (c) are in addition p-closed. If we
denote by %* the class of groups whose abelian sections have finite p-ranks for all p = 0 or
a prime, then we have established the following result.
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LEMMA 4.8. The classes (a), (b), (c) of Lemma 4.7, as well as the classes $* and $ r

(of groups having finite rank) satisfy the hypotheses (i)-(iv) of Proposition 4.3 and
Corollary 4.4. The class FRD satisfies the first three of these hypotheses.

We remark that the class FRD is certainly not p-closed (unlike its intersection with
the class of abelian groups), as may be seen from the following easy example.

Let p be a fixed prime and, for each i = l,2, . . . , let A, be as defined in Example

3.2. Let Bt be defined similarly, and set A = DTAI, B = DrBh C = AxB. Define
1=1 ;=i

a e A u t C v i a t h e a s s i g n m e n t ati<—> a^by, by—tb^ f o r a l l /,/ = 1, 2 , . . . ( s o a ? " 1 m a p s atj t o
aijbTj1). Write G = C]{a).

Then C is of course divisible and G/C is infinite cyclic, but G is not FRD, for if
G = D x R, where D is periodic divisible and R has finite rank, we have D central in G,
and hence G/Z(G) of finite rank, contradicting the fact that A n Z(G) = 1.

The question as to whether the conclusion of Corollary 4.4 nevertheless holds for the
class FRD is not considered here.

Proof of Proposition 4.1. Let H, K be as defined. Then any nilpotent group
generated by H and AT is a homomorphic image of some nilpotent product of H and K.
The result follows from Lemma 4.8 and Corollary 4.4.
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