
PRIME DUAL IDEALS IN BOOLEAN ALGEBRAS 

L. J. H E I D E R 

1. Introduction. Let 33 denote an arbitrary Boolean algebra. Let Latin 
letters a, b, . . . denote general elements of 33 while the symbols 0, 1 denote 
the special smallest and largest elements. Let Greek letters a, /3, . . . denote 
various prime dual ideals of elements of 33. It is recalled that a prime dual 
ideal of 33 is a proper subset of 33 closed under finite intersections of its elements 
and maximal with respect to those properties. Every prime dual ideal includes 
the element 1 and for each element a of 33 includes either a or â (complement 
of a in 33) but not both. Occasional reference will be made to principal dual 
ideals of 33. These are subsets of 33 composed of all elements of 33 majorizing 
some fixed non-zero element of 33. Finally, let X(33) denote the collection 
of all prime dual ideals of 33. Then, with the subsets X(a) = [a £ X(33) \a £ a], 
a Ç 33, being used as a basis for open sets, the collection X(33) becomes 
(homeomorphic to) the Stone representation space for 33. 

The collection X(33), with its field of open-and-closed subsets, is primarily 
representative of the Boolean algebra 33. Special field-related properties of 
particular algebras 33 as, for example, the ability of 33 to be represented as a 
quotient-field of sets, appear as special properties of the field X(33). However, 
the same collection X(33), with its compact, zero-dimensional, Hausdorff 
topology, may, with equal ease, be regarded as the Stone-Cech compactifi-
cation space fiY of a completely regular topological space F. In this case, 
the algebra 33 is provided by a basis of open-and-closed subsets of F, and 
special properties of F appear as special properties of X(33) and 33. 

In either case, it is the points of X(33) that matter. These points are not 
undefined terms, but complex structures, that is, prime dual ideals of a Boolean 
algebra 33. Any prime dual ideal a of 33 has the property that if a finite union 
element \A=in at of 33 is in a, then some component element at of this union 
is likewise in a. This universal property of prime dual ideals may obviously 
be generalized. Let SDÎ denote an infinite cardinal, and let / denote an index 
set of cardinality SDÎ. Assume that a union element a0 = VW#z exists in 33. 
In general, a prime dual ideal of 33 containing ao may or may not contain a 
component element of this union. 

This paper discusses the presence in X(33) of prime dual ideals that contain 
along with a union element ao = Wuidi also a component element at of that 
union. The first result of this discussion is a unified theory of the use of X(33) 
in the representation of Boolean algebras 33. Since the parts of this theory 
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have been developed by many authors, the present treatment is in outline 
form. The emphasis is on the unity of theory achieved by use of the above 
special property of prime dual ideals. The second result is a characterization 
of the Boolean algebras 93 for which the spaces X($b) may be regarded as 
the Stone-Cech compactification spaces /3 Y associated with three special types 
of completely regular spaces F, namely, the P- , Pr- and [/-spaces of (3, 4). 
These special spaces were introduced because of the interest of the algebraic 
features of their associated rings of real-valued continuous functions. Our 
interest arose from the fact that for each space F of any of these types the 
corresponding space f$Y is zero-dimensional and thus homeomorphic to the 
representation space X(93) of a Boolean algebra 93. In the cases of the P-
and P'-spaces, the points of j3Y = X(93) corresponding to points in F involve 
intriguing properties of prime dual ideals. 

2. Boolean algebras and fields of sets. Let 5DÎ denote an arbitrary 
cardinal number. Let the concepts of a field of sets, an 5D?-field of sets and 
an 9)?-complete Boolean algebra be understood in the usual sense. An 2ft-
complete Boolean algebra is called tyfl-representable if it is isomorphic to an 
SDt-field of sets modulo an ^-complete ideal of that field. An 9Jî-complete 
Boolean algebra 93 is called ^-distributive if 

V A atj = Vr A aiMi) 
iel j t j hej1 iej 

for each doubly-indexed family {a^}, i 6 Ifj£ J, of elements of 93 for which 
the cardinalities 7, J of the index sets do not exceed 9JÎ. Here J1 indicates 
the family of all maps h with domain / and range / . 

For any element a0 of a given Boolean algebra 93 let ao = \/uiau I < 5DÎ, 
be called an W-representation of the element ao. Let 

a0 = v aij} ie I,I <m,Ji< m, 

be called an SDî-family of ^-representations of a0. With this terminology and 
these concepts at hand, the principal parts of the theory may be presented 
in three statements. 

(A) The Boolean algebras that are isomorphic to 9ft-fields of sets are the 
9K-complete algebras that have for every non-zero element a prime dual ideal 
that contains a component of each ^-representation of that element. 

(B) The 9ft-complete and ^-distributive Boolean algebras are exactly those 
9D?-complete algebras that have for each non-zero element and for each 5DÎ-
family of ^-representations of that element a principal dual ideal containing 
a component of each member of that family. 

(C) The 2)?-complete and 9J?-representable Boolean algebras are exactly 
those 9D?-complete algebras that have for each non-zero element and for each 
9J?-family of ^-representations of that element a prime dual ideal containing 
a component of each member of that family. 
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These statements are made without proof. Their intended value lies in the 
unified treatment of diverse subjects that they provide. Statement (A) is an 
observation of Sikorski (10) in dual form. Enomoto's theorems (2) regarding 
SJt-fields of sets in the wider sense involve but slight rephrasing of this state
ment. Statement (B) is well known (9, 11), but attention is here called to 
the position of 9K-distributive algebras midway between SOî-fields of sets and 
quotients of such fields by 9Jf-complete ideals. Statement (C) was suggested 
by work of Chang (1), but is new at least in its simplicity. 

An apparent addition to the existing literature on the subject matter of 
statement (C) may well be made here. Let 93 be an 9ft-complete Boolean 
algebra with representation space X(93). Let 5(33) denote the 9Dî-field of sub
sets of X(93) generated by the subsets of X(93) of the type X(a) = [a Ç X(93) 
\a e a], a Ç 93. Let an element of g(35) of the form C\jeJX{a^ with J < 9ft 
and Ajej aj = 0 in 93 be called an SDî-nowhere dense subset of X(93). Let 9(93) 
denote the 9Jt-complete ideal in 5(33) generated by these 3Jt-nowhere dense 
subsets. Attention is now called to the fact that, for each 9)?-complete and 
9tt-representable Boolean algebra 93, the quotient g (93)/3> (93) is a specific 
example of an isomorphic representation of 93 as the quotient of a 2)î-field 
of sets modulo an 9K-complete ideal. 

3. Fields of sets and topological spaces. The concept of a field of sets 
stands midway between that of a Boolean algebra and that of a topological 
space with a basis of open-and-closed subsets. Let 50Î denote an arbitrary 
cardinal number. Let %(X) be an 9JJ-field of subsets of a set X. It will be 
assumed that %(X) is reduced, that is, for p ^ q in X there is an element 
O of g(X) with p 6 0 and q iO. Let (X, X) denote the set X as under the 
topology X obtained by using the subsets of X in %(X) as a basis for open 
sets. Any subset of X in %(X) is open-and-closed in (X, X). However, there 
might be subsets of X not in %(X) that are open-and-closed in (X, X). Tney 
would be of the form 

A = U Oi = O Oj 
it J jeJ 

where the index sets / , / are arbitrary and each 0* and Oj is an element of 
%(X). This introduction of alien open-and-closed subsets will be undesirable 
for our purpose. Hence, a reduced SDî-field of sets %(X) will be called union-
intersection closed if every subset A of X as described above is an element 
of %(X). With each reduced, 9Ji-field there is associated a minimal, reduced, 
union-intersection closed, 9Jt-field including the given field. It consists of all 
subsets A as described above. 

We now turn to the very special topological spaces described in (3, 4, 8). 
As usual, for any topological space F, C(Y) will denote the collection of all 
real-valued functions, defined and continuous on F. For each element / of 
C(Y), let P(f) = \pe Y\f(p) > 0] and Z(f) = [p £Y\f{p) = 0]. Let pY 
and vY denote, respectively, the Stone-Cech compactification space and the 
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Hewitt Q-space associated with a completely regular space F. The first 
special completely regular spaces to be considered are the P-spaces. 

The P-spaces may be characterized in a number of different ways (3, 
Theorem 5.3). For one thing, a completely regular space F is a P-space if, 
and only if, every countable intersection of open sets of F is itself open in 
F. From this it follows that each P-space F is a zero-dimensional Hausdorff 
space in which each countable intersection of open-and-closed subsets is 
open-and-closed. Hence, dually, in a P-space any countable union of open-
and-closed subsets is likewise open-and-closed. Thus, if F is a P-space and 
g (F ) is the field of open-and-closed subsets of F, then 5 ( F ) is a reduced, 
union-intersection closed, cr-field of sets in the sense explained above. 

Conversely, let 5 (F ) be a reduced, union-intersection closed, cr-field of 
sets. Use the subsets of F in 5 ( F ) as the basis of a topology X on F, and let 
( F, X) denote F with this topology. 

THEOREM 3.1. If 5 ( F ) is a reduced, union-intersection closed, a-field of sets, 
then ( F, X) is a P-space and every P-space may be thus described. 

Proof. With 5 ( F ) and (F, X) as described, it is obvious that (F, X) is a 
zero-dimensional Hausdorff space and thus completely regular. Consider, 
moreover, the intersection C\Un of a countable family { Un] of sets open in 
(F, X). If po is a point of Y in this intersection, then there exists a family 
{On) of sets in 5 ( F ) with p0 G On < Un for each n. Hence, with 5 ( F ) a cr-field, 
there exists an element O0 of 5 ( F ) with p0 G 0Q Ç JJn for each n. Thus any 
countable intersection of open subsets of (F, X) is open, so that (F, X) is 
a P-space. 

If, conversely, one begins with a P-space F and then forms 5 ( F ) and 
(F, X) as described, clearly (F, X) is homeomorphic to F. 

With the P-spaces thus firmly linked to reduced, union-intersection closed, 
cr-fields of sets, attention is turned elsewhere for the moment. First, two 
additional facts (3, Theorem 5.3, (2) and (3)) concerning P-spaces are needed: 
if F is a P-space, so likewise is vY; if F is a P-space, then the zero-set Z(J) is 
open-and-closed in F for each e lement / of C(Y). 

Now, for any completely regular space F and for any point p0 in F, let po 
be called a P-point of F if for each element / of C(Y) there exists a neigh
bourhood U of po in F such that f(p) = f(po) for each point p in U. Then, 
from the facts cited just above, it follows that for any P-space F each point 
of v Y is a P-point of vY. Next consider ft Y = /3(vY). It is rather obvious 
that each P-point of vY as imbedded in /3Y becomes a P-point of fiY. On 
the other hand, no point p of /3F — vY as in /3F is a P-point of /3F.|Thus, 
for each point p of this type, there is an e lement / of C(l3Y) with f(p) = 0 
while f(p) > 0 for all points p of vY (5, Example 2.3). This, of course, excludes 
the local constancy of/ at p since the points of vY are dense in (3Y. Thus, for 
any P-space F, the points of vY as imbedded in (3Y are identified with the 
P-points of PY. 
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T h e fact t h a t each zero-set Z(f) associated with a P-space Y is open-and-
closed in Y indicates t ha t for such spaces the sets P(f) are likewise open-
and-closed in F. Thence it follows (4, Theorem 8.3) t h a t for any P-space Y 
the lattice C(Y) is conditionally countably complete, so t h a t fiY = X($8) 
where S3 is a ©--complete Boolean algebra (12). This algebra may, of course, 
be identified with the Boolean algebra of all open-and-closed subsets of ft Y 
or, equivalently, of vY or even of Y itself. 

4. P - s p a c e s a n d B o o l e a n a lgebras . Interest now turns to the P-points 
of a space X($8) where S3 is a a-complete Boolean algebra. Each point of 
X($8) is a prime dual ideal of 93. Let a be such an ideal while 9JÎ is a cardinal 
number and I is an index set with J < 2)1. We introduce two conditions: 

(I — 9JÎ) If Vieidi exists and is in a, I < 9DÎ, then some a* is in a. 

(II — W) If {au i Ç 1} C a, I < 2)t, then Aui&i exists and is non-zero. 

For 9ft-complete Boolean algebras the two conditions are equivalent. For 
any Boolean algebra, if condition II — Sft is satisfied with respect to a part i
cular prime dual ideal, then condition / — 9J? is satisfied also. 

A Boolean algebra 93 will be called a $8(11 — 93?, D) algebra if the prime 
dual ideals of 93 satisfying condition PT — 99? are dense in X(93) or, equiva
lently, each element of 93 is contained in a prime dual ideal of 93 satisfying 
this condition. For each 93 (PT — 9JÎ, D) algebra 93, let D also denote the 
subspace of -X"(93) consisting of all points (prime dual ideals) satisfying con
dition PT — $)?. A similar definition and notation can be used for 93(7 — 90?, D) 
algebras. Although reference is made to an arbi t rary cardinal number 90?, 
interest centers on the first infinite cardinal number Xo = or. Two lemmas 
are now in order. 

LEMMA 4.2. Every $8(11 — tyfl, D) Boolean algebra is Wl-complete. 

LEMMA 4.3. For any $8(11 — a,D) Boolean algebra $8, the P-points of the 
space X($8) are the prime dual ideals satisfying condition I — a = II — a. 

The proof of Lemma 4.2 is brief. Let {au i G / } , / < 3K, be a subset of 
elements of a 93(1 / — 9JÎ, D) algebra $8. If Vieidi 9e 1, there exists element 
ao of 93, a0 T^ 0, with a0 < ai for all i in P However, for each non-zero element 
a0 of a 93(7/ — 9W, D) algebra, there exists a prime dual ideal a0 of t ha t 
algebra containing a0 and in which condition II — Wt is verified. Then \âi} 

i £ 1} £ «o, so t ha t /\UIai and thus Vuidi exists and the lemma is proved. 
Referring to s ta tement (A) of the second section, it is now clear t h a t the 
Boolean algebras isomorphic to 9K-fields of sets are exactly the $8(11 — $SJl, D) 
algebras and tha t , for each such algebra, the associated 2J?-field of sets may 
be taken as the field of open-and-closed subsets of the subspace D of X($8). 

Lemma 4.3 is a particular instance of a more general s ta tement (3, Theorem 
4.2 (3)) and returns us to the subject of P-spaces. From it one sees t h a t for 
each P-space Y the Boolean algebra 93 of all open-and-closed subsets of Y 
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is a 53(7/ — o-, D) algebra with 0 7 = X(33) and that the space vY may be 
identified with the subspace D of the representation space of this algebra. 
However, such $5(11 — <r, D) algebras 33 are still of a special character in 
that 02) = X(33). This may be cared for in the following way. 

Henceforth, a F*-Boolean algebra will be understood as any $8(11 — o-, D) 
algebra 3} in which the following completeness condition obtains: every 
collection {au i Ç 1} of elements of 33 such that each prime dual ideal in D 
either contains an element of that collection or contains an element of 33 
disjoint from every element of the collection has a least upper bound VieIai 
in 33. 

The significance of this completeness condition is explained in two steps. 
Let 5(2?) denote the field of open-and-closed subsets of the subspace D of 
the representation space X($8) of a 33(2/ — o-, D) algebra 33. As noted in 
reference to Lemma 4.3, %(D) is a reduced, d-complete field of sets isomorphic 
to the algebra 3Î. As the first step, it is shown that \§(D) is union-intersection 
closed exactly when the given 33(7/ — a, D) algebra satisfies the stated 
completeness condition. Recall that elements a of 33 are in 1 — 1 order 
preserving correspondence with elements 0 of %(D) through the relationship 
X(a) C\D = 0. Then, for any subset A = U < 6 / 0 * = C\jU 03 of 2), the 
elements a* of 33 corresponding to the elements 0t in \JUI0t are such that 
each prime dual ideal of D in A contains one of the au while each prime dual 
ideal of D in D — A contains an element bj of 33 disjoint from each of the au 

namely, an element bj of 33 corresponding to the complement in D of some Oj 
in r\j€j0j. Then, with a = Wui^i existing in 33, it is clear that X(a) C\ D = A, 
so that 5(2?) is union-intersection closed. Conversely, if the set %(D) is 
union-intersection closed and {au i Ç 1} is a family of elements of 33 such 
that each prime dual ideal in D either contains an element at of this family 
or an element bj of 33 disjoint from every member of the family, then, 
with A = Um[X(ai) r\D], one has D - A = \JjeJ[X(bj) H D]. Then 
A = \JUI[X(a%) C\D] = r\jeJ[X(bj) r\D]. Finally, with a0 in 33 such that 
X(ao) C\D = Ay it easily follows that a0 = Vui^i in 33, so that the 
completeness condition follows. 

As the second step, it is now shown that the demand that %(D) be union-
intersection closed is equivalent to the demand that )3D = X(33). First assume 
that %(D) is union-intersection closed. The space (2), X) consisting of the 
set D and the topology X derived from the field % (D) is homeomorphic to 
the space D as a subspace of X(33). Hence 0(2), X) = I3D. However, (2), X) 
is a P-space so that 0(2), X) is the representation space of the algebra of all 
open-and-closed subsets of (2), X). With $(D) union-intersection closed, this 
latter algebra is isomorphic to the algebra $(D) and thus to the given 
33(7/ - (7,2)) algebra 33. Hence 0(2), X) = Z(33). Thus, if g(2)) is union-
intersection closed, then 02) = Z(33). Conversely, if 02) = X(33) so that 
each open-and-closed subset of D in its relative topology is of the form 
X(a)C\Dy then %(D) is obviously union-intersection closed. 
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The preceding observations are now summarized. 

THEOREM 4.4. The class of all P-Boolean algebras is identical with the class 
of all algebras of the open-and-closed subsets of the P-spaces. For any P-space Y, 
the spaces $Y and vY are homeomorphic to the spaces X(33) and D associated 
with the P-Boolean algebra of all op en-and-closed subsets of Y. Two P-spaces 
Y and Z correspond to the same P-Boolean algebra if, and only if,(3Y = fiZ. 

With P-spaces characterized as completely regular spaces in which countable 
intersections of open sets are open, it seems proper to ask concerning completely 
regular spaces in which any ^-intersection of open sets is open, 90? being a 
cardinal number presumably larger than No = 0". Such spaces may be referred 
to as P-9ft-spaces. Let a 33(7/ — $Jl, D) algebra satisfying the additional 
completeness condition cited above for P-Boolean algebras be called a 
P-3)?-Boolean algebra. An exact analogue of Theorem 4.4. may then be stated 
concerning the relationship of P-99?-spaces and P-9J£-Boolean algebras. 

5, The P'-spaces. The P'-spaces form the second class of completely 
regular spaces to be discussed here. Their characterization embodied a slight 
weakening of that of the P-spaces. However, the most enlightening charac
teristic of the P'-spaces is the following: for each element/ of C(Y) and for 
each point po of Z{f), if there is no neighbourhood U of po in Y such that 
f(p) = 0 throughout U, then there is a deleted neighbourhood Ur of po such 
that f(p) > 0 throughout U' or f(p) < 0 throughout U'. It is this feature 
of P'-spaces that guides the next procedures. Use is also made of the fact 
(4, Theorem 8.4) that, for each P'-space Y, (3Y = X(33) where 53 is a c-com-
plete Boolean algebra. 

Let a point p0 of an arbitrary completely regular space Y be termed a 
P'-point of Y if it has the property cited just above. 

LEMMA 5.1. Let Y be a completely regular space such that fiY — X($&) where 
33 is a à-complète Boolean algebra. Let each point p of Y as in X($b) be con
sidered as a prime dual ideal av of 33. Then a point p of Y is a P'-point of Y 
ify and only if, the corresponding prime dual ideal ap satisfies the following con
dition: for each countable union 1 = \/an in $8 of which no component element 
an is in a$, there exists a non-zero element a0 of 33 with a0 in a$ and such that all 
other av containing a0 contain likewise some component of the given union. 

Proof. Assume first that p is a P'-point of Y. Let 1 = \J an be a disjoint 
countable union of elements of 33 of which no component an is in a$. Then, 
because of the ^-completeness of 33, there exists an element / of C(X[$8]) 
with f(a) = 1/n for each prime dual ideal (point) a containing an. Now let a0 

be any element of 33 in a$. Then a 0 A a „ ^ 0 for at least one element an of 
the union 1 = Van and, since av contains no element of this union, actually 
ao A an 7± 0 for infinitely many subscripts n. From this it follows that/(a^) = 0. 
However, with p a P'-point of F, there exists a deleted neighbourhood U' 
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of p in F and thus a part icular element a0 of 33 in ap such t h a t f(ap) > 0 for 
all ap containing a0, ap ^ ap. However, f(ap) > 0 m e a n s / ( a j = 1/n for s o m e n . 
This , in turn , is easily seen to mean t h a t an G ap. T h u s there exists an element 
a0 of 93 in ap such t ha t every ap containing ao, ap 9^ ap, contains likewise some 
element an of the given countable union. 

Conversely, assume t h a t prime dual ideal ap of ^-complete algebra 93 
corresponding to point p of F has the proper ty with respect to countable 
unions s tated in the theorem. Let element / of C( Y) be such t h a t f(p) = 0. 
Assume, for the moment , t h a t / is non-negative throughout F. L e t / o = / A 1 
in the usual sense of function lattices. Let / 0 or, for notat ional simplicity, 
simply / denote the extension of / 0 over (3 Y = X(93). Let On = [a G X(93) 
\f (a) < 1/n]. Then , by reason of the cr-completeness of 93, there exists element 
an of 93 such t h a t X(an) = On. T h e sequence {an} is obviously such t h a t 
an+i < an. Form the element a0 = Aan in 93. Finally, construct a new sequence 
{bn} in 93 wi th : bo = â0, ôi = 1 A ai, Ô2 = #i A â2, . . . . 

Now Vn=0
œbn = 1 and is a countable disjoint union. If some (non-zero) 

&w is in ap, clearly this bn is bo = a0 and one concludes t h a t f(ap) = 0 for all 
ap with a0 G aP. Then U' = [p Ç F | a0 G afP] is a neighbourhood of ^ in F 
such t h a t / ( £ ) = 0 throughout U. If no bn is in aP, then, by hypothesis , there 
is an element c0 of 93 in ap such t h a t every ap containing c0, ap ?£ a$, contains 
some (non-zero) bn. Since bQ is here assumed as not contained in ap, this first 
Co may be replaced by 60A c0. Denote this element also by the symbol CQ. Then 
each ap containing Co, ap 9e ap, contains also an element bn of the countable 
disjoint union and this bn is not the element bo. However, with bn = an-\ A ân 

in ap, n > 1, then 1/n < f{av) < l/(n — 1) so t h a t f(ap) is non-zero. One 
concludes from this t h a t Uf = [p Ç Y \ p 9^ p and c0 G ap] is a deleted 
neighbourhood of p in F such t h a t /(£>) > 0 th roughout Uf. 

Finally, for an arb i t rary e l e m e n t / of C(Y) with f(p) = 0, first apply the 
above analysis to the elements f+,f~ formed in the usual function-lattice 
sense. Note t h a t if f + (p) > 0 th roughout a deleted neighbourhood, then 
f~{p) ~ 0 throughout the same neighbourhood. Wi th this in mind, this 
converse par t of the theorem is easily seen to hold for all elements / of C( F) 
with f(p) = 0. 

T H E O R E M 5.2. Let X(93) be the Stone representation space of a a-complete 
Boolean algebra 93. Let Y be a subspace of X(93) such that fi Y = X($8) and 
also such that for every countable union \f an — 1 in S each point {prime dual 
ideal) a0 of Y either contains a component of this union or contains an element 
a0 of 93 such that every other point a of Y which contains ao contains an element 
of this union. Then Y is a Pf-space and every P'-space may be thus described. 

For the sake of brevi ty, a Boolean algebra of the type described in Theorem 
5.2 will be called a P ' -Boolean algebra. The description of such algebras is 
very awkward. However, with 93, X(93) and F as described in t h a t theorem, 
consider the field 5 ( F ) of open-and-closed subsets of F. Obviously g ( F ) is 
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reduced and union-intersection closed. In view of the (7-completeness of S3, 
also 5 (F ) is cr-complete in the sense that every countable set of elements of 
5 (F ) is contained in a smallest element of 5 ( F ) . Finally, from Theorem 5.2, 
5 (F ) is seen to have an additional property that may be called the near-er-
field property; if 0 is the smallest element of 5 (F ) including each of the 
elements {On} and if point p of Fis in O but in no On, then there exists element 
Oo of 5 ( F ) with p G OQ while p 6 O0, p 9^ p, implies p £ On for some n. Thus 
for any P'-Boolean algebra S3 as described in Theorem 5.2 the associated 
field 5 (F ) is a reduced, union-intersection closed, c-complete, near-o--field 
of sets which, as a Boolean algebra, is isomorphic to S3 while the space (F, X) 
derived from 5 (F ) is homeomorphic to the P'-space F. Note that fi(Y, £ ) , as 
homeomorphic to X(S3), is of dimension zero. 

Conversely, let 5 (F) be a reduced, union-intersection closed, o--complete, 
near-cr-field of sets and let (F, %) be formed as usual. Then, by methods 
similar to those used in Theorem 3.1, it may be proved that (F, Ï ) is a 
P'-space, provided one has assurance that fi( Y,X) is of dimension zero. Whether 
or not such assurance is contained in the stated assumptions regarding 5 ( F), 
the present writer does not know. However, he has indicated elsewhere (6) 
how to state such assurance regarding £( F, X) in purely set-theoretic language. 

These observations are now summarized. 

THEOREM 5.3. The P'-Boolean algebras are identical with the algebras formed 
under the inclusion relation by elements of reduced, union-intersection closed, 
<r~complete, near-a-fields of sets 5 (F ) with j3(Y,X) of dimension zero. Such 
fields, in turn, may be identified with the fields of open-and-closed subsets of the 
P'-spaces. 

6. The [/P-Boolean algebras. We turn now to the [/-spaces described 
in (4). A completely regular space X is a [/-space if, and only if, to each 
element / of C(X) there is associated a unit element u in C{X) such that 
/ = u • I/I- F ° r a n v completely regular space X, X is a [/-space if, and 
only if, I3X is a [/-space (4, Theorem 5.2). Finally, /3X is a [/-space if, and 
only if, it is zero-dimensional and for each element/ of C(fiX) the sets P(f) 
and N(f) are completely separated in /3X, The zero-dimensionality of such 
ftX links the [/-spaces to Boolean algebras. 

Let 33 again denote an arbitrary Boolean algebra. Let p = \an) denote a 
monotone, non-decreasing sequence of elements of S3. For the sake of brevity, 
refer to a sequence like p as a tower in S3. Two towers p = {an} and r = {bn} 
will be called disjoint if an A bn — 0 for each positive integer n. Finally, an 
element ao of S3 will be called a cap of a tower p if an < &o for each element 
an of p = {an}. 

Now define a Boolean algebra S3 to be a UF-Boolean algebra if, and only 
if, disjoint towers in S3 have disjoint caps in S3. The [/P-Boolean algebras 
have a close relationship to the [/-spaces (and P-spaces) of (3; 4). 
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THEOREM 6.1. The UF-Boolean algebras are exactly those Boolean algebras 
3d for which the sets P(f) and N(j) are completely separated in X(SS) for each 
element f of C[X{f6)\. 

Proof. Assume that 33 is a f/F-Boolean algebra and let / be an element of 
C[X(S&)1 Let Fn=[ae Xm \f(a) > 1/n] while On = [a £ X(%) \f(a) 
> l/(n + J)]. Then, using the compactness of Fn and the openness of On, one 
can conclude to the existence in 33 of an element an such that Fn Ç [a Ç X(33) 
I an G a] C On. Moreover, since Fn C On Ç Fn+i Ç On+1, one has aw < an+1 

and the sequence p = {an} is a tower in 33. Similarly, with Fn* = [a £ X(33) 
| / (a) < - 1/n] and 0* = [a € X(33) | / («) < - l / (n + | ) ] , let a second 
tower r = {&„} be constructed with Fn* Ç [a Ç X(33) | bn Ç a] Ç 0B*. The 
two towers thus formed are clearly disjoint and thus, by assumption, have 
disjoint caps a0 and bo. It is now but a small matter to verify that P(J) Ç 
[a e X(SS) \a0ea] and N(f) Ç [a G X(%) | 60 G a] so that the sets P( / ) and 
iV(/) are completely separated in -X"(S3). 

Conversely, assume that for each element / of C[X(33)] the sets P(J) and 
N(f) are completely separated in X(33). Let p = {an) and r = {bn} be a pair 
of disjoint towers in S3. Let/n be the unique element of C[X($b)] with fn(a) = 1 
for all a with a„ Ç a, with/w (a) = — 1 for all a with bn ^ a and with/»(a) = 0 
for all a containing an A bn. Finally, form/0 = 2n=i°7w/2w. Then/ 0 is an element 
of C[X(93)] and, by assumption, the sets P(/o) and N(fo) are completely 
separated in X($8). In virtue of the zero-dimensionality of X(93), this implies 
that there exists elements a0 of 93 such that P(/o) Q [a Ç X($8) \ a0 Ç a], 
while N(Jo) £ [« £ X(93) | âo G a]. The element a0 is now seen to cap the 
tower p = {an} while its complement â0 caps the tower r = {6n}. Thus the 
theorem is proved. 

The observations of this section may now be summarized. 

THEOREM 6.2. Any UF-Boolean algebra is the algebra of all open-and-closed 
subsets of some U-space and any such algebra is a UF-Boolean algebra. Two 
U-spaces Y and Z correspond to the same UF-Boolean algebra if, and only 
if, 0Y = PZ. 

7. Comments. This section begins with an observation concerning F-
spaces (4). A completely regular space Y is an F-space if, and only if, for 
each element/of C(Y) the sets P(f) and N(f) are completely separated. Every 
F-space Y has the following property (4, Theorem 2.6) pertinent to our 
purpose: for each zero set Z of F each element/of C*(Y — Z) has a continuous 
extension/in C*(Y). Here C*(Y) indicates the collection of bounded elements 
of C(Y). 

LEMMA 7.1. Let Y be a completely regular F-space. Then 13 Y is without Gs-
points other than isolated points. Moreover, a point p of Y is a non-isolated 
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Gi-point in Y if, and only if, every element f of C*(Y — {p}) has a continuous 
extension at p while some element of C(Y — {p}) lacks such an extension. 

Proof. As regards the first assertion, assume that p is a GVpoint of (3Y. Up 
is not an imbedded point of F in /3F, then every element of C*(ftY — {p}) 
has a continuous extension at p by definition of f3Y. If p is an imbedded point 
of Y in /3F, then {p} is a zero set in F and, by the property of F-spaces cited 
above, one again concludes that every element of C*(ftY — {p}) has a con
tinuous extension at p. Hence /3(/3F — {p}) = fiY unless p is an isolated 
point of /3F. However, for any completely regular space X the cardinality 
of a zero set contained in fiX — X is at least exp (exp Ko) (7, Theorem 49). 
Thus the point p must be an isolated point in 13 Y. 

As to the second assertion, it is merely to be noted that if a point p of F 
has the extension properties listed in the theorem, then 0 ( F — {p}) = fiY 
while p$v(Y — {p}). From this it follows easily that such a point is a 
Ga-point (5, Example 2.3). 

Now the ^-spaces X such that @X is zero-dimensional and thus of present 
interest are identical with the [/-spaces (4, Theorem 5.5). With the ^/-spaces 
described in terms of Boolean algebras, attention may now be called to the 
following conclusion. 

THEOREM 7.2. The Stone representation spaces of Boolean o-algebras and, 
more generally, of UF-Boolean algebras are without Gs-points other than isolated 
points. 

This theorem cannot be extended to include all Boolean algebras. In a 
written communication, C. W. Kohls called the attention of the writer to 
the following example. 

Example. Let N denote the set of all positive integers. Let 93 (N) denote 
the class of all finite subsets of N along with their complements in N together 
with the empty set and the set N itself. As partially ordered by the inclusion 
relation, $i(N) is a Boolean algebra. In X(95[iVr]) there is only one prime dual 
ideal other than the point-principal dual ideals. That ideal consists of all the 
infinite subsets of N in 93(N). As a point of X(93[JV]) this ideal is obviously 
a non-isolated Gs-point. It is also easily seen that 93 (iV) is not a [/F-Boolean 
algebra. Thus let an = {1, 3, . . . , 2n — 1} and bn = {2, 4, . . . , 2n). Then, as 
elements of 83 (iV), an < an+i, bn < bn+i and anA bn = 0. However, it is im
possible to find in 93 (N) elements a0, b0 with a0 A &o = 0 and such that 
an < a0 and bn < bo for all positive integers n. 
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