
Can. J. Math., Vol. XL, No. 2, 1988, pp. 487-501 

LARGE DEVIATIONS FOR GAUSSIAN STOCHASTIC 
PROCESSES WITH SAMPLE PATHS IN ORLICZ 

SPACES 

ANNA T. LAWNICZAK 

1. Introduction. Let X be a complete, separable metric space, and 
{JU€:C \ 0} a family of probability measures on the Borel subsets of X. We 
say that {ju£:e \ 0} obeys the large deviation principle (LDP) with a rate 
function / ( • ) if there exists a function / ( • ) from X into [0, oo] 
satisfying: 

(i) 0 ^ I(x) ^ co for all x e X, 
(ii) / ( • ) is lower semicontinuous, 

(iii) for each 1 < co the set {x:I(x) ^ 1} is compact set in X, 
(iv) for each closed set C c X 

limsup e log ju€(C) ^ — inf I(x), 
€->0 ' x<EC 

(v) for each open set U c X 

liminf e log JU£(£/) = — inf I(x). 
€~^0 X G U 

It is easy to see that if A is a Borel set such that 

inf I(x) = inf I(x) = inf I(x) 
x e / xeA x<=A 

then 

lim e log JU,6(/1) = —inf I(x) 
c—>0 • x&A 

where A0 and A are respectively the interior and the closure of the Borel 
set A. 

Let R denote the real line and for N < co let (R*, B(R^) ) be N-
dimensional vector space with Borel a-algebra B ^ ^ ) . Let /i be a 
mean-zero, Gaussian measure on (R*, BCR^) ) such that the covanance 
S is a positive definite matrix. Let fx€ = \i o c (i.e., iit{A ) = ju(e A ) 
for any measurable set A) then by Cramer's Theorem [5] {JU€:€ \ 0} 
satisfies the large deviation principle with the rate function 

I(x) = 2~ l(x, S - 1 JC>, x G R^. 
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In the case that ft is a mean-zero Gaussian measure defined on a separable, 
real Banach space {fie:e \ 0} satisfies the LDP. This follows from a 
result of Donsker, Varadhan [6] in 1976. The above result for locally 
convex, Hausdorff real vector spaces was discussed by Bahadur, Zabell in 
1979 [1]. 

In this paper we are going to prove the large deviation principle for 

{fi£:/ie = Moc~ l / 2 , e \ 0} 

where ju is a mean-zero, non-degenerate Gaussian measure defined on a 
separable, real Orlicz space L^ which is not necessarily locally-convex 
vector space. The proof of the main result utilizes Cramer's Theorem for 
finite dimensional vector spaces and it bases on the series representation 
of Gaussian random elements with values in L^ spaces as well as on its 
exponential integrability. 

The importance of studying the LDP for the sequence {JU€:€ \ 0} 
defined on some Orlicz space L^ lies in the fact that the Orlicz space L^ 
can be considered as a space of sample paths of measurable stochastic 
processes. Necessary and sufficient conditions for a measurable Gaussian 
stochastic process to have almost all its sample paths in some Orlicz space 
L^ were established in [2], in terms of the covariance function of the 
process. 

As an application of the LDP for Orlicz spaces we get an extension of 
Kallianpur's and Oodaira's (1978), Marlow's (1973) results concerning 
some asymptotic estimates of the probabilities of high level occupation 
times for Gaussian stochastic processes with sample paths in Orlicz 
spaces. 

2. Preliminaries. Let (T7, F, m) be an arbitrary a-finite measure space 
with a-algebra F and a separable measure m. Let S be the space of 
equivalence classes in measure m of all real valued F measurable func­
tions. By <£ let us denote a continuous, non-negative, non-decreasing 
function defined for u ^ 0 such that: 

(i) (j>(u) = 0 if and only if u = 0, 
(ii) satisfies the so-called A2 condition, i.e., there is a positive constant k 

such that for any w, (j>(2u) ^ k(f>(u). 
For x e S let us define 

**(*) = JT4>(\x(t)\)m(dt) 

and let L^ be the set of all x e S such that R^(x) < oo. The set L^ is a 
linear space under the usual addition and scalar multiplication. Moreover 
it becomes a complete, separable metric space under the (usually non-
homogeneous) seminorm || • ||.. 

IWI^ = i n f { c : c > 0 , / ^ ( ( T , x ) ^ c}. 
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The space (L^, || • ||^) is called an Orlicz space. In the case that $ is a 
convex function L^ is a Banach space [11]. The best known examples of 
the Orlicz spaces are Lp(T, F, m) spaces for 0 ^ p < oo [11]. 

For convenience let us recall some necessary facts concerning probabil­
ity measures on Orlicz spaces (L^, B(L^) ), where B(L^) denotes Borel 
a-algebra of subsets of L^. 

A. For each probability measure /x on (L^, B(L^) ) one can construct a 
measurable stochastic process 

t = {«/):/ e T) on (B, 2, />) = (L^, B(L^), M), 

with sample paths in L^ such that £(x) = x /x a.e.; induced measure iî  is 
equal to JU, and for every pair (s, u) or real numbers 

£(f, JX zb wy) = s£(t, x) ± w£(/, y) m X 11 X JU a.e. 

Conversely, each jointly measurable stochastic process £{t, to) defined on 
T X Q with almost all its sample paths in L^ induces an L^(T, F, m) 
valued random element [2]. 

B. An L^-valued random element £ (or p.m. ju on (L^, B(L^) ) is 
Gaussian if for any pair of independent copies of £, Xx and X2 the random 
elements Xj -f X2 and Â  — X2 are independent; this is equivalent to: 
the process £ with sample paths in L^ is Gaussian if and only if there 
exists a measurable subset TQ, m(T0) = 0 such that for all finite sets 
{/], . . . , tk) c T\T0 the random vectors (£(/j), . . . , £(tk) ) are Gaus­
sian [2]. 

C. Let £ = {£(t):t e T} be a measurable Gaussian stochastic process 
and let 

0(t) = Eft), K(s9 t) = E(£(s) - 0(s) )(£(t) - 0(0 ). 

Then for almost every <o, £( • , <o) e L^ if and only if 0(r) G L^ and 
Kl/2(t, t) e L^. If almost all sample paths of the process £ belong to 
the space L^ then the measure tî  induced by £ on (L^, B(L^) ) is 
Gaussian [2]. 

D. Let it be a mean-zero, non-degenerate Gaussian measure on 
(L^, B(L^) ) and let £ = {£(t)\t e T} be a measurable stochastic process, 
such as in A, inducing the measure /x. By A there exists a measurable 
subset T09 m(T0) = 0 such that for any / e T \ r 0 

£(/, x ± y) = £(/, x) ± £(t, y) pX ii a.e. 

Let 

Hp = Un{«0:^ e 7 \ r 0 } L ^ . 

From [8] it follows that the space H^ does not depend on the version of the 
stochastic process inducing the measure ju, and consists of all quasi-
additive measurable functionals (q.m.f.) F defined on (L^, B(L^), ti) [8], 
i.e., 
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Hp = {F'.F'.LQ —> R, measurable, F(x ± y) 

= F(x) ± f (j>) f i X / i a.e.}. 

For each F e i/(l let 
r 

AF( • ) = [ / « ' , x)F{x)li{dx)]i = [A^F( • ) ] 

where [ • ] denotes the class of functions equivalent in m a.e. In [8] it was 
shown that A is a one-to-one map which embeds continuously the space 
H into L^, and this embedding does not depend on the version of the 
stochastic process inducing the measure JU. 

Let {Ej)Jlx be a C.O.N.S. in H^ and fy(0 = <£(0, £y>, where ( •, • > 
denotes the inner product in / / then by [3, 8] 

oo 

/ = i 

TTU ix a.e. in the L^-seminorm, implying that supp /x Q AH^ . 
For the remainder of this paper we assume that there exists for certain 

/?, 0 < p ^ 1, a/7-homogeneous F-norm || • || equivalent to the original one 
II • ||^. This class of spaces contains for example all L , 0 < p < oo, spaces 
or by [11] spaces L^ for which <f> satisfies additionally the condition 

inf inf{c > 0\2<j>(ct) â «KO } > 0. 
0 < / < o o 

PROPOSITION 2.1. Let {^„}^Li be a sequence of mean-zero, L^-valued 
Gaussian random elements such that Xn —> 0 in P {probability) as n —-> oo, 
then 

Vn3anVa< an E exp(a2||Xj|2//7) < oo, 

and an —> oo as n —> oo. 

Proof. Let { i ) - } ^ be a sequence of i.i.d. Af(0, 1) random variables 
and 

G = ]m{xj,j:x e L ^ J = 1, 2 , . . . }''n,> 

then G is a linear, separable, complete metric space which consists of 
mean-zero, L^-valued Gaussian random elements. From [3] it follows that 
for each Xn there exists an L^ valued random element Yn such that Yn e G 
and h(Xn) = h(Yn) (where L( • ) denotes the distribution of a random 
element). By [4] for each Y e G there exists a > 0 such that 

E exp(a2 | |y | |2 /0 < oo. 

Let g:G —> R be defined as follows 

g(Y) = exp||7| |2/^ - 1, 
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and for Y e G 

\\Y\\g = inf{c~ l > 0:£( ixp c2\\Y\\2/p - l ) S c ~ ' } , 

then (G, || • || ) becomes an Orlicz space i 
seminorm is equivalent to the convergence 

Let{Yn} c G a n d i ; - » O i n | H | g a s / ! - - > 
which follows from the fact that ||S^| ~ ] —* 

n which convergence in 
in probability. 
oo then Yn —» 0 in P as n 
oo and the inequality 

(1) P(\\Yn\\ > a) 

= exp{ -«^(liyji;1 - £)2}- JBexp{(| |y„| |g-1 -c)2 | |y„ | |2 /"} 

= exp{ -a2/H\\Yn\\-
{ - e)2} • {1 + (ii^ii;1 - o - 1 } . 

' OO, 

where a and € are arbitrary small positive constants. 
The inverse implication follows from the closed graph theorem. Since 

the convergence in probability is equivalent to the convergence in \\'\\K 

seminorm this implies that HJfJI"1 —> oo as n —» oo and for any 
a < \\xn\\;\ 

E exp a2\\Xn\\
2/p < oo 

which finishes the proof. 

For future purposes let us recall the following fact: 

PROPOSITION 2.2 [13]. Let X be a complete, separable metric space and 
{juc} a family of probability measures defined on X which satisfies the large 
deviation principle with a rate function I( • ). Let u be a continuous map from 
X—* Y, where Y is another complete, separable metric space. If we define Q€ 

on Y by Qe = juc o u~ , then {Q€} satisfies the large deviation principle with 
the rate function J( • ) defined by 

J(y) = 
inf I(x) if y e u(X) 

x:u(x)=y 

oo if y <£ u(X). 

3. Main theorem. The proof of the main theorem will be preceded by 
several lemmas. 

LEMMA 3.1. Let {Ek}^=x be a C.O.N.S. in H^ then {Ek(x) }c
kL\ is a 

sequence of i.i.d. iV(0, 1) random variables. For each N < oo, let 

N 

XN = 2 Ek(x)AEk 
k = \ 

and 

PNJ = Uel,2xN), 
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then {j%€:e \ 0} satisfies the large deviation principle with the rate 
Junction 

-[ 
_ ^ - ' l I A - ' x l l ^ ifx e MPNHJ 

oo ifx <$ \(PNH^) 

where PN denotes the orthogonal projection onto \in{Ek\k = 1, . . . , N). 

Proof. Let N < oo be an arbitrary but fixed and let {ek}^=l be a 
C.O.N.S. in RN, then 

N 

YN = 21 Ek(x)ek 
k = \ 

is A-dimensional, mean-zero Gaussian random vector. For each e > 0, 
let 

vN^ = L(e1/2YN) 

then by Cramer's Theorem (vN€:e \ 0} satisfies the large deviation 
principle with the rate function 

3N(x) = 2~ l<x, x) for x e RN. 

By u let us denote a map from R^ into L^ defined as follows 

/ N \ N 

u[ 2 xkek\ = 2 x*A£*, 

then w is a continuous, one-to-one map from RN onto ACP^T/̂ ), such that 
M(YN) = XN. Let 

^ e = L(c1/2XV), 

since JU,^ = vNiL o u~ then by Proposition 2.2 {/%*.€ \ 0} satisfies the 
large deviation principle with the rate function 

IN(x) = inf JN(>>). 

It is easy to see that 

I oo if x « A ( P ^ ) . 

Remark. For the rest of this paper we will use the following notation 

f2- l | |A- 1 x | | 2
/ i fx G AH, 

^ I oo if x £ A / / ) . 
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For A an arbitrary set by Ac we will denote a complementary set and 

lA,N = i n f hi*)' lA = i n f Ipix), 
x^A X&A 

A8 = {x e L^:3y G ^ , ||JC - j | | ^ 5}. 

LEMMA 3.2. Le/ C be a closed subset of L^ such that C n AH^L* ¥= 0 
//*£/? for 8 > 0 //*£/*£ exists N8 such that for any N ~ M = N$ 

\r ^ I r ^ l r < oo. 

Proof Since C n Â ^ L ^ ¥* 0 then for any 8 > 0 

Q n AHp * 0. 

Let 

A F G C8/2 n.A#M , 

then there exists N such that 

A/^F G Q O Ai^ . 

Since for any M < N 

AP^ c A?,,//, Ç Atf„, 

then for any 5 > 0 there exists A^ such that for N > M ^ N8 

&* csn APM//M c cs n A P ^ e Q n A/f„ 

implying that 

\ r ~ \r = \ r < OO. lQ 8 ^8,N ^8,M 

LEMMA 3.3. (i) The set Kr = {AF:I (AF) ^ r2}, 0 < r < oo is compact 

in Lp 
(ii) IJx) is a lower-semicontinuous function on AH^ with respect to 

|| • \\-norm convergence, i.e., if \\AFn — AF\\ —> 0 as n —-> oo, Fn, F e H 
then 

I^AF) ^ l i m i n f / ^ A F J . 

Proof. First we show that ATr is a compact subset of L^ for any 
0 < r < oo. Let {AFn} c # r be an arbitrary sequence. By the 
Banach-Alaoglu Theorem {Fn} contains a subsequence {Fn} which is 
weakly convergent to Ffrom A~lKr Remark D implies that there exists a 
measurable subset T0, m(T0) = 0 such that for any t e T\T0, £(t) e H^ 
and 

A^(/) = / dt)F„>dp -• / KO** = A^(0. 
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Since 

|A£FW,(/) | S K i /2(/, 0 ||FW,||//M g V ^ i / 2 ( / , /) 

for w a.e. r, and A'1/2(/, t) e L^ then by the Lebesgue Dominated 
Convergence Theorem, A/;,, -» A/7 in L^, proving that Kr is a compact 
subset of L,. 

Proof of part (ii). Let us denote by {Fn,} a subsequence such that 

liminf I^AFn) = lim //A/;,,). 

Since ||A/;7, — AF|| —> 0 as ri ~> oo, then there exists a subsequence 
{V'} c {«'} and a measurable subset T0, w(r0) = 0 such that for any 
/ e T \ r 0 , £(/) is a q.m.f. and 

{i(t\ F„„> = AfrU) -> A(F(t) = <«/), F) 

where ( • , • > denotes the inner product in H^. Let 

G = lin{É(/):r e ï \ r 0 } 

then G is a dense subset of / / [8] and for any g e G 

(& Fn") ~* (g> F) as «" -> oo. 

Since 

| | / > | | „ F = sup{ <g,/>>:g e G, llgll^ = 1}, 

then for any g G G, | |g | |^ = 1 

lim ||F„..||„ ^ lim <g, F„„> = <g, F>. 

This implies that 

lim \\Fir\\Hii i= sup{ (g, F):g e G, ||g||,/(i = 1} = ||F||, /( i 

proving part (ii) because 

liminf \\F\\„ = lim HFJI,, i? | |F| |„. 

LEMMA 3.4. L<?r C be a closed subset of L^ then \c /» l c ^ 8 \ 0. 

Proof Clearly l r ê l c and l c / as 8 \ 0. Suppose that i r ^k V < \c 

for all 8 > 0. Let tt0 be such that for all n > «0 I' + n~~l < I. Let AFf1 e 
Cw- i be so that 

yA/*,) =g r + , r j <i. 
Since {AF:J^(AF) â 1} is a compact set in L^ (Lemma 3.3) then {A/;,} 
contains a convergent subsequence {Ai;,,} such that AFn> —> A F in 
L^ where AF G C. By the lower semicontinuity of the function / ( • ) 
(Lemma 3.3) 
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/„(AF) ë liminf I(AF„,) ^ V 
n' 

and l c ^ Y which is contradictory unless I c / l c as 8 \ 0. 

LEMMA 3.5. Let U be an open set such that U n AH L<> ¥* 0 then there 
exists Nv such that for any N ^ Nv 

\U^N < oo and \^N \ \u as N —> oo. 

Proof. Since U is an open set, U Pi AH L+ ¥= 0 then 

u n AH * 0. 
r 

Let AF & U D AHp where F is a q.m.f. then there exists NF such that for 
any N > NF 

APNF e U n AHp 

implying that there exists Na such that for any N > Na \(j^N < oo. 
Since for any M < N 

APMH^ £ APNHII Ç A//M 

then 

Let € > 0 be an arbitrary small but fixed and let F be a q.m.f. such that 

AF^ U n KHp \v + € > y A F ) . 

There exists NF such that for N > NF 

APNF ^ U n APxHp and 1</ + c > / / A / y O S 1(AA/ 

implying that l^/V \ 1^ as N —» oo. 

LEMMA 3.6. L^/ £/ />£ a« #/?£« set such that U n AH ¥= 6 then there 
exists 80 > 0 such that for any 8 < 80 

((f/c)«)c n A//M # 0 û/irf l ( ( f / v - \ 1L/ as 8 \ 0. 

Proof Let us observe that ( (£/c')5)
c *s a n increasing sequence of open 

sets as 8 \ 0. If there is no 8 > 0 such that 

( (Uc)sr n A//„ * 0 

then 

y((t/<)s)'n A#„ = 0 

implying that A,?/ ç [/c which is contradictory to the assumption. Since 
( (Uc)8)

c is an increasing sequence of sets then 
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l ( ( t / v \ 1' § lv as 8 \ 0. 

Let £ > 0 be an arbitrary then there exists 

A F e t/ = U ( ( W 

and 80 such that for each 8 < 80 

lv + €> /„(AF) > \{(U%y ^ V 

proving that 1^ = Y. 

THEOREM 3.7. Let \i be a mean-zero, non-degenerate Gaussian measure 
defined on (L^, B(L^) ) such that there exists a p-homogeneous F-norm || • ||, 
0 < /? ë 1, equivalent to the original one || • ||^. Le? JU,C = \x o c~ ' , //*<?« 
the family {/i€:e \ 0} satisfies the large deviation principle with the rate 
function J , / ' . / ^ —> [0, oo], defined as follows 

\2-x\\K~xx\\2
H ifx G AffM 

M I oo / / x £ AJ^. 

Proof. Lemma 3.3 implies lower-semicontinuity of the function / and 
the compactness in L^ of the set {x:I (x) = 1} for any 1 > 0. 

Let Xbe an L^-valued random element, generated by | = {£(t):t e T) 
a measurable stochastic process such as in D, inducing the measure /x, then 
h(X) = /x and by D 

N oo 

/x a.e. in L^. Let yl G B(L^) then for e > 0 

jue(,4) = v(t~V1A) = P(e]/2X e ^ ) . 

Upper bound. We want to prove that for an arbitrary closed set C 
in L^ 

(2) limsup e log juc(C) ^ — inf /„(*). 

If C n Â ^ L ^ = 0 then l c = oo and for any € > 0, 

€~ 1 / 2 c n Â2TL* = 0. 

Since 

supp /i ç AJf^ 

then for every e > 0, JUC(C) = 0 proving that (2) is true. 
Let us assume that 
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c n AHU
L* = 0 

and let S > 0 be an arbitary small but fixed, then 

P(el/2X G C) ^ P(el/2XN e Q ) + P( \\el/2(X-XN) \\ ^ 8). 

Let 7] > 0 be an arbitrary small but fixed. By Proposition 2.1 and 
Lemma 3.2 there exists N0 such that for any N > N0 

(aN - V)282/» > lQ J V j ^ 1Q>„ 

and 

p(\\x- xN\\ ^ sr»n) 
^ exp{-(aN - r , ) 2 ^ ^ - 1 } E exp{ (aN - T,)2 | |* - ^ | | 2 / " } 

= exp{-(«„ - ^ ^ ' " C - ' J M , . 

Let N > N0be an arbitrary but fixed and 1{XN) = j % then by Lemma 3.1 
{PN/C \ 0} satisfies the large deviation principle and for sufficiently 
small c > 0 

P(emXN e Q ) â e x p C - c - ' l ^ + r \ ) . 

Therefore for sufficiently small € > 0 

P(imX e C) S e x p t - c - ' l ^ + t"1!,) 

+ exp{- (« ; v - î , ) 2 S 2 / ' ' € - 1 }M i V 

= {1 + A/„ exp e~l[-(aN - i)1^" + \CtJI - V] } 

X e x p C - e - ' l ^ + e-'i,). 

Then 

limsup c log P(el/2X e C) ^ -1CSN + rj 

and by Lemma 3.2 

limsup € log P(el/2X e C) ^ - l c + % 

Since 6 > 0 and TJ > 0 were arbitrarily small then by Lemma 3.4 

limsup € log P(el/2X e C) â - l c 

equivalently 

limsup e log jue(C) ë — inf IJx). 

Lower bound. We want to prove that for an arbitrary open set U 
in L. 
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(3) liminf t log /i€(C/) ^ - i n f IJx). 
«\0 .xe(7 

If [/ n A i / L * = 0 then 1^ = 00 and for any e > 0, 

£~1/2f/ Pi Â Î 7 > = 0. 
r 

Since supp ju ç AH L+, then for each e, ju.€(£/) = 0 proving that (3) is 
true. 

Let us assume that 

U n ~AHn
L* * 0 

then U O A/ / ^ 0 and by Lemma 3.6 there exists 80 such that for any 
8<80 

((Uc)8)
c n AH^fb. 

Let 8 < 80 be arbitrary but fixed then 

P(€1/2X e U)^ P(el/2XN G (( t / c) a) c , lk1/2(X - XN) || < 8) 

^P(el/2XN e ((t/c)*)c) 

+ P ( | | € 1 / 2 ( X - * „ ) | | < S ) - 1 

= P ( € 1 / 2 ^ G ((UC)8Y) 

- P(\\eU2(X - XyV)|| g 8). 

Let )) > 0 be an arbitrary small but fixed. By Proposition 2.1 and 
Lemma 3.5 there exists A0 such that for any N ^ N0 

(aN - i))282/p - Tj > l((t/<-)8)',tf, 

W V + ^ = ,((£/£")8)
c,̂  

and 

P( \\X - XN\\ ê Se-p/2) â e x p { - ( a ; v - T , ) ^ 2 ^ " 1 } 

X E exp{ («„ - 7,)2||X - ^ | | 2 / " } 

= exp{- ( a y v - ^ C - ' J M , . 

Let N > N0 be arbitrary but fixed and L(XN) = ju^ then by Lemma 3.1 
{p.N/.e \ 0} satisfies the large deviation principle and for sufficiently 
small e 

P(eu2XN e ((Uc)sf) g e x p { - £ - , l ( ( t / C ) ï ) ^ - r ' i , } . 

Then for sufficiently small e 

P(el/2X e I/) 
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= {1 - MN exp « ' [ - ( « „ - V)2S2/P + li(U%f,N + tj] } 

Hence 

liminf e log P(eU2X e U) â - I ( ( ( / V J V " TJ ̂  " W w ' " 2^-

Since 8 > 0 was an arbitrary small then by Lemma 3.6 

liminf € log P(el/2X e t/) > - 1 » - 3T? 

and by going with 17 \ 0 we get 

liminf c log P(emX ^ U) ^ -\u 

equivalently 

liminf e log juc((7) è — inf /„(*). 

COROLLARY 3.8 (Extension of Cramer's Theorem to Orliez spaces L^). 
Let 11 be a mean-zero, non-degenerate Gaussian measure defined on 
(L^, B(L^) ) swc/i //za/ //*ere exists a p-homogeneous F-norm | | * | | , 0 < / ? e l , 
equivalent to the original one || * ||^. Le/ {^:/ = 1} be a sequence of 
independent, L, -valued random elements, each with distribution /x. Se/ 

Srt = 2J xt 

awd /<?/ /in-i Z?e //ze distribution of Sn/n, then {[in\:n 7 00} satisfies the large 
deviation principle with the rate function I 

Proof Since L(Sn/n) — L(X]/\fn) then the proof is an immediate 
consequence of Theorem 3.7 if we take e = n~ . 

COROLLARY 3.9. Let ji be a mean-zero, non-degenerate Gaussian measure 
defined on (L^, B(L^) ) such that there exists a p-homogeneous F-norm || • ||, 
0 < /? = 1, equivalent to the original one \\ • |L. Let 

a = inf{/„(jc):|M| â 1} 

then 0 < a < oo #/?d 

lim R~2\og{i({x:\\R~lx\\ > 1}) = -a. 
R->oo 

Proof The proof follows from Theorem 3.7 and Proposition 8 in [9]. 

As a next application of Theorem 3.7 we get an extension of 
Kallianpur's and Oodaira's (1978), Marlow's (1973) results concerning 
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some asymptotic estimates of the probabilities of high level occupation 
times for Gaussian stochastic processes with sample paths in Orlicz 
spaces. Let 

Dp = { / ( 0 : / ( 0 e L,, m( {/:/(/) > 1} ) > /?}. 

Then for any /? > 0, Z>g is an open set in L^ [9]. 

COROLLARY 3.10. Le/ £ = {£(*)•' G T} be a mean-zero, Gaussian 
stochastic process with almost all sample paths in an Orlicz space L^ such 
that there exists a p-homogeneous F-norm | | - | | , 0 < j p e l , equivalent to the 
original one || • ||^. Let for any ft > 0 

ap = inf{JM(x):x e Jfy), ^ = inff/^x):* e Z^}, 

-ap ê liminf a - 2 log P( (<o:m( {*:£(/, <o) > a) ) > £} ) 
a-»oo 

^ limsup a " 2 log P( {co:m( {/:£(/, <o) > a} ) > £} ) ^ -Ja^. 
a—»oo 

If J1 is a metric space with the measure m such that for any open set U, 
m(U) > 0, the covariance function K(s, t) of the process £ = {£(t)'.t e 7} 
is continuous and for each ft > 0 

m( {s:m( {/:#(.*, /) > 0} ) > £} ) > 0 

then 0 < a o < oo and 

lim a'1 log P( {w:/w( {/:£(/, <o) > a} ) > £} ) = - ^ 
a—*oo 

Proof. This follows from Theorem 3.7 and Theorem 9 in [9]. 

Acknowledgement. The author is thankful to Professor J. Rosinski for 
pointing out to her Proposition 2.1. 
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