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LARGE DEVIATIONS FOR GAUSSIAN STOCHASTIC
PROCESSES WITH SAMPLE PATHS IN ORLICZ
SPACES

ANNA T. LAWNICZAK

1. Introduction. Let X be a complete, separable metric space, and
{nc:e N 0} a family of probability measures on the Borel subsets of X. We
say that {u_:e \y 0} obeys the large deviation principle (LDP) with a rate
function I(-) if there exists a function I(-) from X into [0, oo]
satisfying:

1) 0 =I(x) =coforall x € X,

(i) 1( - ) is lower semicontinuous,

(iii) for each I < oo the set {x:/(x) = 1} is compact set in X,

(iv) for each closed set C € X

limsup € log p(C) = —inf I(x),
€—0 ’ xeC

(v) for each open set U C X

liminf € log p(U) = —inf I(x).
e—0 xelU

It 1s easy to see that if 4 is a Borel set such that

inf0 I(x) = inf I(x) = inf I(x)

x€A x€A XEA
then

lim € log p(4) = —inf I(x)
e—0 - x€A

where A° and 4 are respectively the interior and the closure of the Borel
set A.

Let R denote the real line and for N < oo let (RY, B(RN)) be N-
dimensional vector space with Borel o-algebra B(RY). Let p be a
mean-zero, Gaussian measure on (R", B(RY)) such that the covariance
S is a positive definite matrix. Let p, = po e 172 (ie., p(A) = we 1/ZA)
for any measurable set 4) then by Cramer’s Theorem [5] {u:e \v 0}
satisfies the large deviation principle with the rate function

I(x) =2 Yx, 57'x), x € RV,
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In the case that p is a mean-zero Gaussian measure defined on a separable,
real Banach space {p.:e \v 0} satisfies the LDP. This follows from a
result of Donsker, Varadhan [6] in 1976. The above result for locally
convex, Hausdorff real vector spaces was discussed by Bahadur, Zabell in
1979 [1].

In this paper we are going to prove the large deviation principle for

{uep, = po e 2 e N 0}

where p is a mean-zero, non-degenerate Gaussian measure defined on a
separable, real Orlicz space L, which is not necessarily locally-convex
vector space. The proof of the main result utilizes Cramer’s Theorem for
finite dimensional vector spaces and it bases on the series representation
of Gaussian random elements with values in L, spaces as well as on its
exponential integrability.

The importance of studying the LDP for the sequence {u. e v 0}
defined on some Orlicz space L lies in the fact that the Orlicz space L,
can be considered as a space of sample paths of measurable stochastic
processes. Necessary and sufficient conditions for a measurable Gaussian
stochastic process to have almost all its sample paths in some Orlicz space
L, were established in [2], in terms of the covariance function of the
process.

As an application of the LDP for Orlicz spaces we get an extension of
Kallianpur’s and Oodaira’s (1978), Marlow’s (1973) results concerning
some asymptotic estimates of the probabilities of high level occupation
times for Gaussian stochastic processes with sample paths in Orlicz
spaces.

2. Preliminaries. Let (7, F, m) be an arbitrary o-finite measure space
with o-algebra F and a separable measure m. Let S be the space of
equivalence classes in measure m of all real valued F measurable func-
tions. By ¢ let us denote a continuous, non-negative, non-decreasing
function defined for u = 0 such that:

(1) ¢(u) = 0 if and only if u = 0,

(ii) satisfies the so-called A, condition, i.e., there is a positive constant k
such that for any u, ¢QQu) = ko(u).

For x € § let us define

Ry = |, ot 1x(t) D)

and let L, be the set of all x € § such that Ry(x) < oco. The set L, is a
linear space under the usual addition and scalar multiplication. Moreover
it becomes a complete, separable metric space under the (usually non-
homogeneous) seminorm || - H¢.

llxll, = inf{cic > 0. Ry(c ™ 'x) = c).
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The space (L, || - ]|¢) is called an Orlicz space. In the case that ¢ is a
convex function Ly is a Banach space [11]. The best known examples of
the Orlicz spaces are L,(T, F, m) spaces for 0 = p < oo [11].

For convenience let us recall some necessary facts concerning probabil-
ity measures on Orlicz spaces (L, B(L,)), where B(L,) denotes Borel
o-algebra of subsets of L.

A. For each probability measure p on (Ly, B(L,) ) one can construct a
measurable stochastic process

§= (i) € T) on(@ 3, P) = (Ly B(Ly. w,

with sample paths in L such that £(x) = x p a.e.; induced measure p; is
equal to p, and for every pair (s, u) or real numbers

&(t, sx = uy) = sé(t, x) = ué(t,y) m X p X pae.

Conversely, each jointly measurable stochastic process (¢, w) defined on
T X Q@ with almost all its sample paths in L, induces an Ly(T, F, m)
valued random element [2].

B. An Lj-valued random element ¢ (or p.m. p on (L, B(L,)) is
Gaussian if for any pair of independent copies of £, X| and X, the random
elements X; + X, and X; — X, are independent; this is equivalent to:
the process § with sample paths in L, is Gaussian if and only if there
exists a measurable subset T;, m(T;) = 0 such that for all finite sets
{t;,....t,} © T\T, the random vectors (&(¢,), ..., &) ) are Gaus-
sian [2].

C. Let § = {£(t):t € T} be a measurable Gaussian stochastic process
and let

6(1) = E&(1), K(s, 1) = E(&s) — 0(s) )&@1) — 6(1) ).

Then for almost every w, &, w) € L, if and only if 6(r) € L, and
K@, 1) e L, If almost all sample paths of the process § belong to
the space Ly then the measure p; induced by § on (L4 B(Ly)) is
Gaussian [2].

D. Let p be a mean-zero, non-degenerate (Gaussian measure on
(L4 B(Ly) ) and let § = {£(t):t € T} be a measurable stochastic process,
such as in A4, inducing the measure p. By 4 there exists a measurable
subset T,, m(T,) = 0 such that for any 1 € T\T,

§t,x £y)=§&tx) =&ty pXpae
Let

H, = Tin{&@):t € T\T)"*".

From [8] it follows that the space H, does not depend on the version of the
stochastic process inducing the measure p and consists of all quasi-
additive measurable functionals (q.m.f.) F defined on (L, B(L,), p) [8].
i.e.,
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H, = {F:F:Ly, — R, measurable, F(x = y)
= F(x) = F(y) p X pae.}
For each F € H, let

AF(-) = [/ﬁ(',X)F(X)M(dX) = [AF()]

where [ - ] denotes the class of functions equivalent in m a.e. In [8] it was
shown that A is a one-to-one map which embeds continuously the space
H, into Ly, and this embedding does not depend on the version of the
stochastic process inducing the measure p.

Let {Ej}f:1 be a C.O.NS. in H, and ¢,(z) = (&), E;), where (-, -)
denotes the inner product in H,, then by (3, 8]

&t x) = 21 Y (DE,(x)
f=

p a.e. in the Ly-seminorm, implying that supp p < AH ﬁ“’.

For the remainder of this paper we assume that there exists for certain
p,0 < p = 1, ap-homogeneous F-norm || - || equivalent to the original one
Il - l4- This class of spaces contains for example all L, 0 < p < o0, spaces
or by [11] spaces Ly for which ¢ satisfies additionally the condition

inf inf{c > 0:2¢(ct) = () } > 0.
0<t<oco
ProrosiTiON 2.1. Let {X,}7° | be a sequence of mean-zero, L,-valued

Gaussian random elements such that X, — 0 in P ( probability) as n — oo,
then

Vhia,Va<a, E exp(azllXHIIZ/”) < o0,
and o, — 00 as n — co.

Proof. Let {m;})2, be a sequence of iid. N(0, 1) random variables
and o

G = lin{xnj:x € L,j=1, 2. }inP

then G is a linear, separable, complete metric space which consists of
mean-zero, Ly-valued Gaussian random elements. From [3] it follows that
for each X, there exists an L, valued random element Y, such that ¥, € G
and L(X,) = L(Y,) (where L( -) denotes the distribution of a random
element). By [4] for each Y & G there exists a > 0 such that

E exp(a?||Y|*P) < oo.
Let g:G — R be defined as follows
g(Y) = expl| Y|P — 1,
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and for Y € G
Y], = inf{c™! > 0:E(exp H| Y|P — 1) = ¢ '},

then (G, || - Hg) becomes an Orlicz space in which convergence in || - Hg
seminorm is equivalent to the convergence in probability.

Let{Y}Cc Gand ¥,—0in]|| - || asn—>oothen Y,—0in P as n — oo,
which follows from the fact that HYH — oo and the inequality

M PULI > a)
= exp{— (Y]l = o'} - Eexp{ (Y], ' — o*IVIP7}
= exp{—7(II ), — 0% - {1+ (N, - o7,

where « and e are arbitrary small positive constants.

The inverse implication follows from the closed graph theorem. Since
the convergence in probability is equlvalent to the convergence in [ - [[,
seminorm this implies that ||X, H — oo as n — oo and for any
a < |1X,/I;"

E exp aZHXnIiz/” < o0
which finishes the proof.
For future purposes let us recall the following fact:

ProprosiTioN 2.2 [13]. Let X be a complete, separable metric space and
{1} a family of probability measures defined on X which satisfies the large
deviation principle with a rate function I( - ). Let u be a continuous map from
X — Y, where Y is another complete, separable metric space. If we define Q,
onYby Q,=pou !, then {Q.} satisfies the large deviation principle with
the rate function J( - ) defined by

inf  I(x) ify € u(X)
J(y) — { xxu(x)=y
oo ify & u(X).

3. Main theorem. The proof of the main theorem will be preceded by
several lemmas.

Lemma 3.1. Let {E; };2, be a CON.S. in H, then {Ei(x)};, is a
sequence of i.i.d. N(0, 1) random variables. For each N < oo, let

N
%=§awm

and

Bye = L((l/zXN)’
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then {py € N\ 0} satisfies the large deviation principle with the rate

Sfunction
27NAT X, i x € A(ByH)
It = { o ixe A(PyH,)
where Py denotes the orthogonal projection onto in{E;:k = 1,...,N}.

Proof. Let N < oo be an arbitrary but fixed and let {e,};_, be a
C.O.N.S. in Ry, then

N
Yy = 2 E(x)e;
k=1
is N-dimensional, mean-zero Gaussian random vector. For each ¢ > 0,
let

vye = L€?Yy)

then by Cramer’s Theorem {vy e \ 0} satisfies the large deviation
principle with the rate function

Jy(x) = 27 x, x) forx € RV.
By u let us denote a map from R" into L, defined as follows
N N
u( 2 X/‘.e/\) = 2 XI\AE/‘,
k=1 k=1

then u is a continuous, one-to-one map from R" onto A(PyH,), such that
u(Yy) = Xy. Let

pve = L(e2Xy),

since py , = Vy, O u~ ! then by Proposition 2.2 {1y € N 0} satisfies the
large deviation principle with the rate function

Iy(x) = inf Jy(p).

yiu(y)=x
It is easy to see that
27 AT ], if x € A(PYH,)
In(x) = o
oo if x & A(PyH,).
Remark. For the rest of this paper we will use the following notation
27T, ifx € AH,
Iﬂ(x = "
oo if x & AH#).
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For 4 an arbitrary set by 4 we will denote a complementary set and

I,y = inf Iy(x), 1, = inf I”(x),
x€A4 XEA

As = {x € Ly:3y € A, |lx — yll = 8}.

LemMMA 3.2. Let C be a closed subset of Ly such that C N AHHL*? * @
then for 8 > 0 there exists N such that for any N = M = N

Ie, = IC&N = IC&M < oo.
Proof. Since C N TH,LL‘* # @ then for any § > 0
Cs N AH, # 0.
Let
AF € G5y N AH,
then there exists N such that
APF € Cs N AH,.
Since for any M < N
APyH, © APyH, € AH,
then for any 8 > O there exists N such that for N > M = N
§ # Cs N APyH, < Cs N APyH, S Cs N AH,
implying that
Ie, = IC&N =g, < oo

LemMa 3.3. (i) The set K, = {AF:I,(AF) = r*}, 0 < r < oo is compact
in L.

(i) I(x) is a lower-semicontinuous function on AH, with respect to
| - ||-norm convergence, i.e., if ||AF, — AF|| —>0asn— oo, F, F € H,
then

I(AF) = liminf I (AF).
n—o00

Proof. First we show that K, is a compact subset of Ly for any
0 < r < oo. Let {AFE,} C K, be an arbitrary sequence. By the
Banach-Alaoglu Theorem {F,} contains a subsequence {F,} which is
weakly convergent to F from A~ 'K,. Remark D implies that there exists a
measurable subset T, m(T) = 0 such that for any 1 € T\T;, &) € H,
and

Aek (1) = / §O)E dp — / §O)Fdp. = AgF(1).
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Since
AcF (1) ] = K"t 1) WEAy = V2K, 1)

for m ae. 1, and K%, 1) € L, then by the Lebesgue Dominated
Convergence Theorem, AF, — AF in L, proving that K, is a compact
subset of L.

Proof of part (ii). Let us denote by {F,} a subsequence such that

liminf 1,(AF,) = lim I,(AE,).
n n'
Since |[|[AF, — AF|| — 0 as n” — oo, then there exists a subsequence

{n”} < {n'} and a measurable subset T, m(T;) = 0 such that for any
t € T\T,. &) is a q.m.f. and

(1), By = NeFo(1) = NF(1) = (&), F)
where { -, - ) denotes the inner product in Hﬂ. Let
G = lin{(1):t € T\T,}
then G is a dense subset of H, [8] and for any g € G
(8. Eyy = (g Fy asn’ — oo,
Since
WE Ay, = sup{ (g. E,):g € G.llglly, = 1},
then for any g € G, HgH,,ﬂ = 1]
lim {1E,lly, = lim (g, ) = (g F).
This implies that

li{p ”EI"HH,, = sup{ (g. F)g € G, HgH]/’L =1} = “F”H“

proving part (ii) because

timinf (|Fll,, = lim £, = 11FIl,.
Hn :

LeMMA 3.4. Let C be a closed subset of Ly then le, 7 1cas 6 N 0.
Proof. Clearly I, = I and 1, 7 as 8 \ 0. Suppose ! that e, =1 <l

for all § > 0. Let nO be such that for all n > ng V+n <l "Let AF, €
1 be so that

IAE)=ETV +n ' <L

Since {AF: (AF) = 1} is a compact set in L, (Lemma 3.3) then {AF,}
contains a convergent subsequence {AF,} such that AF, — AF in
L, where AF € C. By the lower semicontinuity of the function 7,(-)
(Lemma 3.3)
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I(AF) = liminf I (AE,) =V

and I~ = I" which is contradictory unless I, 7 1o as 8§ \ 0.

LEMMA 3.5. Let U be an open set such that U N AH}LI“# # @ then there
exists Ny, such that for any N = N,

lyy <oo and lyy N1y as N— oo
Proof. Since U is an open set, U N AHML*?’ # @ then
Un AH, # 0.

Let AF € U N AH, where Fis a q.m.f. then there exists N such that for
any N > Ng

APF € U N AH,

implying that there exists Ny such that for any N > N, 1, < oo.
Since for any M < N

APyH, © APyH, © AH,
then
lyu = lyn = 1y
Let € > 0 be an arbitrary small but fixed and let F be a q.m.f. such that
AF e Un AH, 1, + e> [ (AF).
There exists N such that for N > N,
APyF € Un APyH, and 1, + e> I (APyF) =1,y
implying that I,y \y 1, as N — co.

LEMMA 3.6. Let U be an open set such that U N AH, # @ then there
exists 8, > 0 such that for any § < §,

(U N AH, # 8 and oy Ny asd N0

Proof. Let us observe that ( (U¢)s)¢ is an increasing sequence of open
sets as § Ny 0. If there is no 8 > 0 such that

(U N AH” #* @
then

LSJ((U")B)" N AH, =9

implying that AH, © U‘ which is contradictory to the assumption. Since
((U%g)" is an increasing sequence of sets then
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l((UC)s)( NP =1, asd N0
Let € > 0 be an arbitrary then there exists

AF € U= YU

and § such that for each § < §,
IU + e > IM(AF) > l((Uc)s)c =
proving that 1, = I'.

THEOREM 3.7. Let p be a mean-zero, non-degenerate Gaussian measure
defined on (Lg, B(Ly) ) such that there exists a p-homogeneous F-norm || - ||,
0 < p = 1, equivalent to the original one || - ||,. Let p, = p o € V2 then
the family {p.:e \ 0} satisfies the large deviation principle with the rate
Junction I, I,:Ly — [0, o0], defined as follows

27 NAT I, ifx € AH,

I(x) = g

o if x & AH,.

Proof. Lemma 3.3 implies lower-semicontinuity of the function /, and
the compactness in Ly of the set {x:/,(x) = 1} for any 1 > 0.

Let X be an L¢-valued random element, generated by § = {&(¢):r € T}
a measurable stochastic process such as in D, inducing the measure p, then
L(X) = pand by D

N o
Xy = 2 4E —> X yE = X
i1 j=1

pae.in Ly, Let 4 € B(L,) then for e > 0
p(A) = pe”?4) = P("?X € 4).

Upper bound. We want to prove that for an arbitrary closed set C
in L
b

(2) limsup € log p(C) = —inf 1,(x).
eNO xeC

IfC N A_H,LL‘P = @ then I = oo and for any € > 0,
e V2cn THf“’ = 0.

Since
supp p © AH,

then for every € > 0, u(C) = 0 proving that (2) is true.
Let us assume that
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CnAH" =19
and let 8§ > 0 be an arbitary small but fixed, then
P(?x € C) = P("?Xxy € C) + P(ll2(X—Xy) || Z 6).

Let 7 > 0 be an arbitrary small but fixed. By Proposition 2.1 and
Lemma 3.2 there exists N such that for any N > N,

(ay — )7 > le,n, = len
and
P(IIX — Xyl = 8772
= exp{—(ay — M)*8*P '} E exp{ (ay — MIX — XylI*7}
= exp{—(ay — n)282/pe~l}MN.

Let N > N, be an arbitrary but fixed and L{Xy) = p then by Lemma 3.1
{uy € N 0} satisfies the large deviation principle and for sufficiently
small € > 0

P(?Xy € Cp) = exp(—¢ I,
Therefore for sufficiently small € > 0
P(E?X € C) = exp(—¢ I, + € ')
+ exp{—(ay — n)282/"5_1} My
= {1+ Myexpe [—(ay — 87 + 1, — ]}

M e ).

X exp(~e~llC8N + c‘ln).
Then

limsup € log P(¢/’X € C) = ~l., + 1
eNO N

and by Lemma 3.2

limsup € log P(e"?X € C) = —1, + 1.
eNO

Since 8 > 0 and n > 0 were arbitrarily small then by Lemma 3.4

limsup € log P(¢'/?X € C) = —I,
eNO

equivalently
limsup € log p(C) = —inf I”(x).
eNO xeC

Lower bound. We want to prove that for an arbitrary open set U
in Ly
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(3) liminf € log p(U) = —inf [,(x).
eNO x€U

If UN AHPLL‘f> = @ then 1, = oo and for any € > 0,
e *UnKH" = 0.

Since supp p € AH”L% then for each ¢, p(U) = 0 proving that (3) is
true.
Let us assume that

Un AR + 0

then U N AH, # 0 and by Lemma 3.6 there exists §, such that for any
8§ < 3§,

((U)s) N AH, # 6.
Let 8 < §,, be arbitrary but fixed then
P('?X € U) = P(7Xy € (U, lle3(X — X)) || < 8)
= P(*Xy € (U)y))
+ P(lle (X — X1l < 8) —1
= P('*Xy € (UD)")
— P([l*(X — X) [l = 8).

Let » > 0 be an arbitrary small but fixed. By Proposition 2.1 and
Lemma 3.5 there exists N, such that for any N = N,

242/
(ay — )67 —n > l((UL-)B)(‘N,

Loy T 1 = woyn
and

PCIIX — Xyll

v

66_”/2) = exp{—(ay — n)zé‘z/”e_'}
E exp{ (ay — n’IIX — X\I[*""}
— exp(—(ay — 077"y My,

Let N > N, be arbitrary but fixed and L(X,) = py then by Lemma 3.1
{un€ N 0} satisfies the large deviation principle and for sufficiently
small €

P(e?Xy € ((U)y)") = exp{—€ 'l yeryon — € n}.
Then for sufficiently small €

P('*x € U)

X

— - 202/p_— 1
= exp{—€ L yenw — € M} — exp{—(ay — )’ '} My
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—1
= {1 — Myexpe '[—(ay — n)?6*7 + Lwon T 1)
-1 —1
X exp{-—e l((U()s)(N - € 7]}
Hence

P 1/2
llilgf elog P(e "X € U) 2 —lyepyon =1 = —l oy — 20

Since § > 0 was an arbitrary small then by Lemma 3.6

liminf € log P('/*X € U) = —1, — 3¢
eNO

and by going with n \y 0 we get

liminf € log P(¢'*X € U) = —1,,
e\ 0

equivalently

liminf € log u(U) = —inf 1,(x).
eNO xel

CororLARY 3.8 (Extension of Cramer’s Theorem to Orlicz spaces Ly).
Let p be a mean-zero, non-degenerate Gaussian measure defined on
(Lg, B(Ly) ) such that there exists a p-homogeneous F-norm || - ||,0 <p = 1,
equivalent to the original one || - ||,. Let {X;:i = 1} be a sequence of
independent, L -valued random elements, each with distribution p.. Set

n
S, =2 X,
i=1

and let -1 be the distribution of S, /n, then {u,-1:n 7 00} satisfies the large
deviation principle with the rate function 1,

Proof. Since 1(S,/n) = L(X,/\/n) then the proof is an immediate
consequence of Theorem 3.7 if we take e = n

CoOROLLARY 3.9. Let p be a mean-zero, non-degenerate Gaussian measure
defined on (L, B(Ly) ) such that there exists a p-homogeneous F-norm || - ||,
0 < p = 1, equivalent to the original one || - l|¢. Let

a = inf{I#(x):HxH = 1}
then 0 < a < oo and

lim R 2log w( {x:[|[R™'x|| > 1}) = —a.

R—0c0
Proof. The proof follows from Theorem 3.7 and Proposition 8 in [9].

As a next application of Theorem 3.7 we get an extension of
Kallianpur’s and Oodaira’s (1978), Marlow’s (1973) results concerning
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some asymptotic estimates of the probabilities of high level occupation
times for Gaussian stochastic processes with sample paths in Orlicz
spaces. Let

Dg = {f()f(t) € Ly, m({t:f(t) > 1}) > B}.
Then for any B > 0, Dy is an open set in L, [9].

CoroLLaRrY 3.10. Let § = {&(t):t € T} be a mean-zero, Gaussian
stochastic process with almost all sample paths in an Orlicz space L, such
that there exists a p-homogeneous F-norm || - ||, 0 < p = 1, equivalent to the
original one || - ||,. Let for any B > 0

ag = inf{l(x):x € Dg}, ag = inf{l(x):x &€ 53},
then

—ag = liminf a2 log P({w:m( {£:4t, ©) > a}) > B})
=< limsup a2 log P( {w:m( {t:£(t, w) > a}) > B}) = —ag.

If T is a metric space with the measure m such that for any open set U,
m(U) > 0, the covariance function K(s, t) of the process § = {&(¢):t € T}
is continuous and for each 8 > 0

m({ssm({t:K(s,t) >0})>B8})>0
then 0 < ag < oo and

lim o 2 log P({w:m( {1:£(t, &) > a}) > B}) = —ag

a—>00
Proof. This follows from Theorem 3.7 and Theorem 9 in [9].
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