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STATISTICAL CONCEPTS IN THE THEORY OF
BACTERIAL MUTATION

BY P. ARMITAGE
From, the Medical Research Council's Statistical Research Unit, London School

of Hygiene and Tropical Medicine

(With 7 Figures in the Text)

1. INTRODUCTION

1-1. The statistical approach to the study of bacterial populations subject to
mutation has come into prominence since the publication of Luria & Delbriick's
paper (1943), although mathematical concepts had appeared in work published
before that date (Deskowitz & Shapiro, 1935; Bunting, 1940). Other mathematical
studies on this subject have appeared (Shapiro, 1946; Lea & Coulson, 1949), and
I have recently attempted to survey all this work from a mathematical standpoint
(Armitage, 1952). Luria & Delbriick's methods for estimating mutation rates are
now widely used and advocated (Catcheside, 1951), and it seemed perhaps worth
while to discuss some of the statistical aspects of their and other workers' results,
avoiding as far as possible complicated mathematics. Many of the results presented
here are given without proof; for this, reference may usually be made to the previous
paper (Armitage, 1952).

1-2. In the next section I consider the change in the proportion of mutants during
the long-term growth of a bacterial population. In § 3 the precise meaning of the
term 'mutation rate' is discussed. §§4 and 5 are concerned with the distribution of
the number of mutants in each of a series of replicate cultures, and with methods of
estimating the mutation rate from such a series.

2. DEVELOPMENT OF BACTERIAL POPULATIONS SUBJECT TO MUTATION
2-1. When a culture is in the 'logarithmic' phase of growth (dividing, that is, at

approximately equal intervals, with no deaths), the population size increases
exponentially. If the generation times were all exactly equal the population size
would increase in jumps, taking in turn the values 1, 2, 4, 8, 16, ..., etc. In practice
the moments of fission soon get out of step, and the total population increases fairly
smoothly. As a mathematical model for this simple growth process, we could assume
that, of the N organisms present at some instant t, a proportion adt will divide
during a small interval of time of length dt. In mathematical terms, dN = aNdt.
This leads to the differential equation

dN

which expresses the rate of change, dNjdt, of the population size, N, as a function
of N itself. Since an expression for N as an explicit function of t is required, this
differential equation must be solved, the solution being

N = Noe
ai. (1)
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Here e is the base of natural logarithms, 2-7183 , and No is the initial population
size when t = 0.

2-2. We now introduce the concept of mutation. Let the population at time
t consist of x members of the wild-type X, and y members of the mutant type Y.
Suppose that in a small time interval of length dt a proportion adt of the x wild-type
organisms divide, thus producing axdt new organisms, of which a fraction A are of
the mutant type. Similarly, we may suppose that in the same time interval dt
a proportion bdt of they mutants divide, producing bydt new organisms, of which
a fraction /i are of the wild type. The increases dx and dy in the X and Y populations
are respectively dx = a(l-A)xdt + b/iydt

and dy = b(l—/i)ydt + aXxdt,

which lead to the differential equations

dx ~\
— = a(l-A)x + b/iy,\

d I (2)

Of the four constants appearing in these equations, a and 6 represent the growth rate
of the two strains, while A and /i represent the forward and back mutation rates and
will usually be very small. It will be convenient to refer to A and fi as 'relative
mutation rates' until the definition of a mutation rate has been discussed below.

2-3. The complete solution of (2) is given by Armitage (1952). The solution has
also been discussed by Shapiro (1946); this paper should be read with care as it
contains a number of algebraic errors. It will be sufficient here to point out one or
two features of particular interest when the growth rates are equal (i.e. when a = b).

(a) Suppose a = b. The proportion of mutants in the total population is yj{x + y).
This proportion, which will be denoted here by rjr, changes as the population grows,
and is given by a simple formula

where x0 and y0 are the initial numbers of wild-type and mutant organisms
respectively.

Putting t = oo in (3), we find that ^ approaches a limiting value

depending only on the ratio between the two relative mutation rates A and /i.
Putting t = 0 in (3), we obtain the initial proportion of mutants,

as, of course, would be expected.
Figs. 1 and 2 illustrate the way in which \jr changes with time, according as the

initial proportion i/r0 is less or greater than the limiting value xjr^.
11-2
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(6) In the situation typified by Fig. 1, where fr , equation (3) shows that

ijr therefore approaches its limit i/r^, exponentially. If \oge(xjrx — \[r) were plotted
against t, a straight line with a slope of — a(X +fi) should be obtained.

(c) If the culture is grown from a pure inoculum of the wild type, «/0
 = 0, and

equation (3) now becomes i
$ = T^n-e-a&+m (5)

A+fi
A useful property of equation (5) is that at time 0 the initial gradient, or rate of
increase, of i/r with respect to t is aX. Similarly, in a culture grown purely from the
mutant type, the initial rate of decrease of ifr is a/i (or, more generally, bfi, for these

£
"o
c
O

2.
o

£

Time (t) Time (t)

Fig. 1 Fig. 2

Figs. 1, 2. Change in proportion of mutants with growth of culture, according as
initial proportion ifr0 is less or greater than limiting value V̂oo*

relations hold even when the growth rates a and 6 are unequal). Fig. 3 illustrates the
change in ifr in two cultures, one (̂ 4) grown purely from a wild-type inoculum, the
other (B) purely from a mutant inoculum. The gradients of the two dotted lines
would be respectively aX and b/i.

2-4. These considerations suggest at least the approach to the analysis of long-
term experiments in which the growth of a bacterial population is observed for
a sufficiently long period of time for the proportion of mutants to approach closely
its limiting value ijrx. The length of time required for such experiments will depend
on the growth and mutation rates, but is likely to be a matter of days, or even weeks.
In some of his long-term experiments Stocker (1949) grew cultures of Salmonella
typhi-murium for over 800 generations.

The procedure suggested here is only an outline, as the exact statistical methods
appropriate to such experiments have not yet been worked out. We assume that
observations of the value of ijr are made at different points of time.

https://doi.org/10.1017/S0022172400015606 Published online by Cambridge University Press

https://doi.org/10.1017/S0022172400015606


Statistical theory of bacterial mutation 165

(i) The limiting value rjr^ is estimated empirically.
(ii) Loge (ifrw — i/r) is plotted against t. If there is no appreciable departure from

linearity, equality of growth rates may be tentatively assumed (cf. (6) above). (The
situation when a difference in growth rates can be demonstrated is not considered
here.) A regression line of logc (i/r^ — ty) on <is fitted by the usual statistical technique,
and its slope is taken as an estimate of — a(A+/i). (The natural logarithm of any
number may be obtained by multiplying the logarithm to base 10 by 2-3026.)

(iii) The constant a is estimated from the rate of growth of the total population.
If a population growing at rate a increases from No to Nx during an interval of length
«,thenby(l) N^N^,

and

(iv) Estimates of A/(A+/«), a(X+/i) and a having been obtained from (i), (ii) and
(iii) respectively, the three constants a, A and fi can be estimated separately.

2-5. If cultures are grown from pure inocula of the two types, as in Fig. 3, a simple
check on the equality of the growth rates is available. If each growth rate is equal
to a, the initial rates of increase of \[r in the two curves are aX and a/i, as stated above.

o

Time (t)

Fig. 3. Change in proportion of mutants in two cultures: (A) grown from
a wild-type inoculum, (B) from a mutant inoculum.

Their ratio is therefore A//*, and may be compared with ^ / ( l — v̂ oo), which is also
equal to A//* (cf. equation (4)). This is quite a sensitive method for detecting slight
differences in the growth rates; proportionate differences between a and b even of
the order of A and /i appreciably affect the value of rjr^, whereas the initial gradients
are effectively unaltered.

2-6. If the growth rate changed during the course of the experiment, as it would
if growth were interrupted by refrigeration, it would be necessary to measure t in
terms of generations. This is equivalent to giving a fixed value to the growth rate a.
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For, if t is measured by the number of generations, the population size at time t will
be N02K Comparing this expression with equation (1), we have

whence at = t loge 2,

and a = loge 2 = 0-6931.

Luria & Delbriick (1943) use as a time unit the generation time divided by loge 2;
in these units a = 1.

The assumption is made here that the relative mutation rates A and/j are constant,
irrespective of changes in the growth rates a and b. In other words, we assume
constant probabilities of mutation per generation time, rather than absolute time.
This assumption is usually made, but may not be valid when changes of growth rate
depend on the availability of growth factors (Novick & Szilard, 1950).

2-7. Long-term experiments of the type envisaged here are time consuming, and
involve some method of continuous culture in order to prevent overcrowding of the
bacterial population. It is, therefore, not surprising to find only a small number of
such investigations reported in the literature. Deskowitz & Shapiro (1935) studied
variants of Salmonella aertrycke, and found mutation from the 'rough' to the
'smooth', but not from smooth to rough—the reverse of the usual experience.
Bunting (1940, 1946) studied changes in pigmentation of colonies of Serratia
marcescens. Stocker (1949) investigated changes of phase of flagellar antigen in
Salmonella typhi-murium; his Text-fig. 4 may be compared to the theoretical model
illustrated in Fig. 3 of the present paper.

2-8. The effect of phenotypic delay (which is discussed more fully below) will
usually be negligible in long-term experiments. The effect of phenotypic delay of,
say, three generations on situations typified by Figs. 1—3 is merely to shift the
graph to the right by a time interval of three generation lengths; phenotypic delay
of this order of magnitude will usually be small in comparison with the time-span
of the whole experiment.

There may, however, be an important bias in the determination of the initial
rates of increase and decrease of i/rin pure cultures (§§2-3 (c), 2-5), for, in the presence
of phenotypic delay, ijr will remain at 0 or 1 for several generations. Such a bias will
be avoided if these gradients are determined by the usual method of fitting regression
lines of \jr on t, since these lines are not constrained to pass through the origin.

3. THE DEFINITION OF A MUTATION RATE

3-1. The quantities A and /i, which were introduced as mathematical concepts
in §2-2, occur so frequently in the study of this subject that they deserve to be
named. It is clear from the definition of A that this quantity measures in some way
the rate of mutation relative to the rate of growth of the wild-type organisms, and
/i similarly represents the back mutation rate. It is convenient to describe A and
fi as 'relative mutation rates'. Some consideration must now be given to their
interpretation in terms of the life cycle of an individual bacterium.

3-2. Consider a large population of wild-type organisms, growing at a rate a. We
define the generation time, A, to be the length of time required for the population
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size to increase from N to 22V. The generation time is clearly a function of the growth
rate, a. By (1) 2N = NeaA,

whence A = (loge 2)/a = 0-6931/a. (6)

(The results of §2-6 may be verified from equation (6). For, putting a = 0-6931 in
(6), we have A= 1 unit; that is, the time is measured in generations. Similarly,
putting a = 1 in (6), we have A = 0-6931 = loge 2 units; the unit of time is now the
generation time divided by log,, 2.)

If the population is to increase smoothly, the N organisms initially present must
be in different phases of their growth cycle, and will divide at different points of
time throughout A.

3-3 For purposes of illustration it will be convenient to suppose that the mutation
rate is small, so that any mutations taking place during a single generation time do
not materially affect the size of the wild-type population. In § 2-2, A has been defined
in terms of the rate of production of mutant organisms; as the population size
increases by an increment aNdt, the number of mutations occurring is XaNdt,
which can be written XdN, since aNdt = dN, the increment in the total population
size. It follows that the number of mutations expected to occur as the population
increases from Nt to N2 is .Nt

XN ANN1). (7)

Equation (7) relates A to the number of mutations expected during any period of
growth.

The initial population size Nx will frequently be negligible in comparison with the
final population size N2. In such a situation the expected number of mutations is
denoted by m, and equation (7) reduces to

m = \N2, (8)

a relationship of considerable importance (cf. (8a) below).
3-4. The solution to the differential equations (2), special cases of which have

been discussed in §2-3, relates the number of mutants y to be expected at time t to
the relative mutation rate A, and hence (from (7)) to the number of mutations
expected to occur. One of the consequences of the assumptions made at the beginning
of §2-2 is that the size of a mutant clone, at a time t after the mutation, is eat,
provided the growth rates, a and b, are equal. Now this will be true, on the average,
only if mutations occur with equal probability at any point during a division cycle.
The point is illustrated by Fig. 4, which depicts the growth curves for mutant clones
under three different assumptions about the time at which mutations occur:

(a) Mutations occur at any point during the cycle, all points being equally likely. The
curve marked (a) in Fig. 4 illustrates the average growth of mutant clones. The
growth curve in individual cases will vary between the limits (b) and (c).

(b) Mutations occur only at the beginning of a cycle. The mutant cell will not divide
until the end of the first cycle.

(c) Mutations occur only at the end of a cycle. The mutant cell will divide immedi-
ately after the mutation.
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For a given mutation rate A, therefore, the number of mutants to be expected at
time t is less or greater than that given by the model of §2, according as mutations
tend to occur towards the beginning or towards the end of a life cycle.

1 2 3 4
Generations after mutation

Fig. 4. Development of mutant clones according as mutations occur (a) with equal frequency
throughout the life-cycle (showing average growth), (b) at the beginning of a cycle, (c) at the
end of a cycle.

Time t + A

Fig. 5. Development of ten organisms during a generation time period,
showing different moments of fission.

3-5. These three hypotheses, (a), (b) and (c), also affect the interpretation of
A in terms of the probability of a mutation during the life cycle of an individual
bacterium. That this is so may be seen from the example illustrated in Fig. 5. For
purposes of illustration we shall suppose that A = 0-1, a very much higher value than
would occur in practice. Fig. 5 shows the development often organisms, dividing
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at different instants during the generation time period, and giving rise to twenty
organisms at the end of the period. From (7), the number of mutations expected
during this period is (01) (20 — 10) = 1. Consider in turn the three hypotheses about
the time at which mutations occur:

(a) Mutations throughout the cycle. The sum of the lengths of all the segments of
life cycles in Fig. 5 is about 14-4 times the generation time. We expect exactly one
mutation during this total 'exposure'. The probability of a mutation during one
life cycle is therefore 1/14-4 = 0-070.

(6) Mutations at the beginning of a cycle. Exactly twenty life cycles start during
our period of observation, and so there are twenty opportunities for mutation. The
probability of a mutation per opportunity is therefore 1/20 = 0-05.

(c) Mutations at the end of a cycle. Ten life cycles end during the observation
period, and the probability of a mutation per opportunity is 1/10 = 0-1.

In general, the probability that a mutation occurs during the life cycle of an
individual organism is 0-693A (= A loge 2), 0-5A, or A, according as mutations occur
(a) with equal probability at all points of the cycle, (b) only at the beginning of the
cycle, or (c) only at the end.

Previous workers have generally used the first value 0-693A, thus implicitly
assuming that mutations occur with equal frequency at all points of the cycle.
Examples are the ' mutation rate per bacterium per division cycle' of Luria &
Delbriick and Newcombe; and the 'mutation rate' used by Stocker. The relative
mutation rate, A, which is appropriate under hypothesis (c), is called by Luria
& Delbriick the ' mutation rate per bacterium per time unit', and by Newcombe the
'mutation rate per bacterial division'.

3-6. The terms 'mutation' and 'mutation rate' refer essentially to genotypic
changes, rather than to the phenotypic changes to which they give rise. If the
phenotypic appearance coincides with the mutation, there is no ambiguity, and the
results of §3-5 may be taken to refer to either phenomenon. In general, however,
the genotypic mutation may be followed by a 'phenotypic delay' of, perhaps,
several generations, and the probability that a phenotypic change occurs during
a life cycle is no longer equal for all organisms.

If, however, mutations occur randomly throughout the cycle, as in assumption
(a) of §3-4, and if the phenotypic delay is so small that the phenotypic appearance
takes place at the end of the cycle, then, in § 3- 4, (a) could refer to genotypic mutations
and (c) to phenotypic appearances. The values of A for genotypes and phenotypes
would differ, for, denoting these values by AG and AP respectively, the probability
of a mutation during an individual life cycle is, from §3-5,

0-693AG = AP.

This relationship can be expressed alternatively by the observation that when each
phenotypic change takes place the population size is always rather larger than when
the mutation occurred; hence AP must be smaller than AG.

We have here a particular case of the general rule, which has often been discussed
in the literature on this subject, that the longer the phenotypic delay, the smaller
the apparent mutation rate (as determined from phenotypic changes).
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4. DISTRIBUTION PROBLEMS

4-1. The theory outlined in § 2 is of the type described by statisticians as ' deter-
ministic ' rather than ' stochastic'; the population sizes x and y at any time t are
determined exactly in terms of the growth rates, mutation rates and initial popula-
tion sizes. In the description of physical phenomena, deterministic relationships
are adequate for most practical purposes, although the 'stochastic', or random,
approach is an essential part of modern theoretical physics. The growth of a bacterial
population subject to mutation is an excellent example of a biological phenomenon
the main feature of which—the occurrence of a mutation— is a random event, and
to which a deterministic theory can provide only a rough approximation.

Consider, for instance, the change in the proportion of mutants, xjr, as illustrated
by Figs. 1-3. In any one culture the value of tjf, if it could be measured accurately
at each point of time, would be found to fluctuate about the theoretical curve.
More precisely, in the situation illustrated by curve A in Fig. 3, the value of rjr in any
one culture might depart appreciable from the curve in the very early stages of the
growth period, and approach ijrx consistently either below or above A. The theoretical
curve may be regarded as an average over a large number of replicate cultures.

Now, in long-term experiments on one culture these fluctuations will probably
not obscure the general trend of the curve, and may even be of less importance than
the sampling errors involved in the estimation of the population sizes. In short-
term experiments, throughout which i/r remains negligibly small, it is of great
importance to examine the random fluctuation in the number of mutants from one
replicate culture to another.

4-2. The first work in which the random fluctuation between replicate cultures
was emphasized was that of Luria & Delbriick (1943) on the resistance of Escherichia
coli, strain B, to bacteriophage. These authors observed the number of resistant
organisms in each of a series of replicate cultures grown for the same length of time.
This number was found to vary considerably from one culture to another, a result
which, as Luria & Delbriick recognized, would be expected if resistance were due to
spontaneous mutation. A few cultures, purely by chance, would experience an early
mutation, and would accumulate very many more mutants than cultures in which
the first mutation occurred later. As a control experiment a single culture was grown
for a certain length of time, at the end of which replicate samples from the culture
were exposed to attack by phage. The numbers of resistant organisms in these
control replicates varied very much less than those in the separate cultures, and in
fact no more than would be expected in a Poisson distribution.

Luria & Delbriick considered that these results supported the mutation theory
for the origin of phage resistance, rather than that of adaptation, arguing that on
the latter theory replicate cultures would be expected to have almost equal numbers
of organisms which were able to adapt themselves to the new environment, as in the
control experiment. These conclusions have been criticized by C. N. Hinshelwood
and his colleagues (Jackson & Hinshelwood, 1950; Dean & Hinshelwood, 1952) on
the grounds that the control experiment is inadequate; on the adaptation theory,
samples from cultures grown separately would be expected to show more variation
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in the proportion of cells able to adapt than samples from the same culture. Ryan
(1952 a), studying the adaptation of Escherichia coli to ability to use lactose, rejects
these criticisms. He concludes 'that no solid evidence for Hinshelwood's theory
exists. This, of course, does not exclude the possibility that in some instances, when
the proper experimental tests have been performed, his theory will provide the best
interpretation. But, before it is accepted in any instance, modern genetic con-
ceptions must be shown clearly not to apply.'

Refinements of the experimental technique, such as that suggested by Newcombe
(1949), will no doubt resolve this controversy. It may prove that certain types of
bacterial variants arise by mutation, that others are due to adaptation, and that in
some situations both mechanisms are at work. In any event the mathematical
prediction of the distribution of number of mutants in replicate cultures, to be
expected on the mutation theory, is likely to be an important tool in any such
investigations.

4-3. Luria & Delbriick obtained some properties of the theoretical distribution,
and an explicit formula was obtained by Lea & Coulson (1949). Lea & Coulson's
distribution is expressed in terms of only one parameter, TO, the number of mutations
expected during the period of growth. If the final population size, N, is large in
comparison with the initial size, equation (8) shows that

m = XN. (8a)

The probability py, that y mutants are present at time t, is given as the coefficient
of zv in the expansion of the generating function

G(m, z) = e~m exp

In particular po =

(9)
and
The distribution is extremely skew, and cannot easily be illustrated graphically.
Lea & Coulson provide tables of the distribution for certain values of TO up to 15.
For higher values of TO one can use the fact that a transformed variate x> which is

I I ft

denned by y = -, -.— — - 2-02, (10)
yjm — loge TO+ 4-5

is very nearly normally distributed with zero mean and a standard deviation of
unity.

4*4. It may be useful to emphasize here certain assumptions on which the theory
of Luria & Delbriick and of Lea & Coulson rests, some of which may not always be
valid. Assumptions (a)-(f) appear to be the most important.

(a) No deaths take place. I t is doubtful whether this condition has been achieved
in any of the investigations so far reported. A moderate death-rate is not likely to
affect the shape of the distribution appreciably, but the mutation rate will be
over-estimated.

(b) The growth rates of the two types are equal. I t is not known to what extent the
distribution is affected by differential growth rates; estimates of the mutation rate
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from the number of mutants rather than the number of mutations would clearly
be biased.

(c) There is no delay in phenotypic expression. There is strong reason to believe
that this assumption is frequently invalid (Newcombe, 1948). The effect of pheno-
typic delay is to reduce the frequencies of cultures with small numbers of mutants
much more drastically than the frequencies of cultures with high numbers. For in
the latter cultures most of the mutants, being descended from early mutations, will
have achieved phenotypic expression; whereas in cultures with less than, say,
twenty mutants, a phenotypic delay of only a few generations will cause most of
the mutant population to remain undetected. Methods of estimating mutation
rates from the lower end of the distribution will therefore produce lower estimates
than those based on the upper tail of the distribution (cf. §5 below). This tendency
was noticed by Luria & Delbriick.

Dominant mutation Recessive mutation

• Mutant genotype feffiiisa Mutant phenotype

o Normal genotype ( ) Normal phenotype

Fig. 6. 'Dominant ' and 'recessive' mutation in cells with two nuclei (adapted
from Lieb, 1951).

(d) The bacteria are uninucleate. Some consequences of the multinucleate
arrangement of cells have been discussed by Newcombe and Hawirko (1949) and by
Lieb (1951), who distinguish between 'dominant' and 'recessive' mutations. The
two situations are illustrated in Fig. 6, which is adapted from Lieb's Fig. 1.
A dominant mutation in one of the nuclei causes an immediate phenotypic change
(if phenotypic delay is not also present), which continues in half the progeny. For
a recessive mutation the phenotypic change does not take place until all the nuclei
in one of the progeny are of the mutant type; in the example illustrated in Fig. 6,
where the cells have two nuclei, this occurs in the generation following the mutation.

It is convenient to restrict the term 'phenotypic delay' to the uninucleate effect
considered by Newcombe. It is not, therefore, applied to recessive mutation,
although this phenomenon does involve a delay of phenotypic expression. The
essential difference between the two phenomena is that in phenotypic delay in
uninucleate organisms there is no delay in the development of the mutant clone,
but only a temporary failure of the organisms to become phenotypically active. In
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recessive mutation, on the other hand, the development of the mutant clone does
not start for several generations; the effect is exactly the same as if the organisms
were uninucleate and the mutation had occurred one or more generations later
than it actually did.

For a recessive mutation, then, the theoretical distribution is still valid. The
effect of a dominant mutation, however, is to curtail the upper end of the dis-
tribution in relation to the lower end—precisely the opposite effect to that of
phenotypic delay.

(e) The mutation rate is constant. As pointed out in §2-6, this condition may not
always be satisfied.

20

1 2 3
Generations after mutation

Fig. la

1 2 3
Generations after mutation

Fig. 76

Fig. 7. Development of mutant clones in the two derivations of Lea & Coulson's
distribution: (a) with random growth, (6) with deterministic growth.

(/) The growth of mutant clones must approximate to the type shown in Fig. 4,
curve (a). Lea & Coulson obtained their result under two quite different assumptions
about the development of a mutant clone. In their first derivation they regard the
growth as a random phenomenon; the times of division would fluctuate from one
clone to another, but if a very large number of clones were developed in parallel,
the average clone sne at a given time after the mutation would be the exponential
function illustrated by Fig. 4, curve (a). The way in which a typical clone might
develop is shown by the thick line in Fig. 7 (a); the curve (a) of Fig. 4 is given as
a dotted line for comparison.

In Lea & Coulson's second derivation, the growth of the mutant clone is deter-
ministic. The assumed type of growth is depicted by the thick line in Fig. 7 (6); the
size of the clone is always equal to the whole number below the exponential function
e"1 illustrated in Fig. 4, curve (a). The curves (a), (6) and (c) of Fig. 4 are shown in
dotted lines in Fig. l(b).

These two different types of mutant growth, assumed in the two derivations of
Lea & Coulson's distribution, have, then, one important property in common. They
both approximate, in some sense, to the exponential growth of Fig. 4, curve (a)—
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in the first derivation on the average; and, in the second derivation, especially during
the later stages of growth.

Neither of these two growth processes will be exactly realized in practice, but,
provided the growth approximates on the average to the type illustrated in Fig. 4,
curve (a), Lea & Coulson's distribution is not likely to be seriously invalidated on
this account. The mutant clone will grow on the average as in Fig. 4, curve (a) if the
mutations take place with equal probability at any point throughout the cycle
(cf. § 3-4). Under other hypotheses as to the time during the cycle at which mutations
occur, the lower tail of Lea & Coulson's distribution may be seriously affected. For
instance, if hypothesis (c) of § 3-4 is true, the first mutant cell will immediately divide
(as in Fig. 4, curve (c)), and there will be a considerable deficit of cells with one
mutant organism.

4-5. The remaining restrictions are perhaps less serious:
(g) N is large, A and i/r are small. These conditions can usually be met without any

difficulty. If \Jr remains small during the experiment the possibility of back-
mutations can be neglected.

(h) The final population sizes in different cultures are equal. This condition will
never be achieved, for even if the growth rate were constant from culture to culture
and the cultures were grown from inocula of exactly one organism, these parent
cells would be in different phases of the division cycle, and, at a given time, would
have generated populations of different sizes. However, these population sizes N, are
likely to vary by a factor of less than 2 about the average. A few numerical investiga-
tions suggest that variations in N of this order of magnitude are unimportant.

Variation in population size will also be caused by random fluctuations in the
generation times, within any one culture, particularly during the early stages of
growth. Lea & Coulson assume deterministic, exponential growth for the wild-type
organisms. The effect of random fluctuations in the generation times is, however,
likely to be considerably less than that, just discussed, of differences in phase of
single parent cells, and can therefore be ignored.

(i) Only one type of mutant is involved. This restriction can be removed, provided
all the other conditions are satisfied—in particular, the different types of mutant
must have the same growth rate. The theory would then still hold, A being inter-
preted as the sum of the individual mutation rates.

(j) The inocula must contain no mutants. This condition may be achieved, at least
to a high degree of probability, by selecting small inocula from a population with
a very low proportion of mutants.

4-6. In view of this rather formidable list of assumptions, each of questionable
validity, it would perhaps be surprising to find in practice any very close agreement
with the theory. There are unfortunately not many published results sufficiently
extensive to permit a searching comparison.

I have elsewhere (Armitage, 1952) examined the observed distributions of Luria
& Delbriick (1943, Exp. 23) and Newcombe (1948, Exps. A-H pooled); these refer
to the resistance of Escherichia coli, strain B, to T1. In Table 1 the distributions are
compared with Lea & Coulson distributions having the same proportions of cultures
with no mutants. In each case the observed distribution has too long an upper tail.
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A similar discrepancy is found in the results of Demerec & Fano (1945) on the same
phenomenon; their distributions are not published in full, but the point is borne out
by their summary of the data.

Table 1. Distribution of Luria & Delbruck (1943, Exp. 23), and Newcombe (1948,
Exps. A-H pooled), on resistance of Escherichia coli, strain B, to phage T\.
Observed distributions compared with those expected on theory of Lea & Goulson
(1949)

No. of cultures with given no. of mutants

of mutants
0
1
2

3-4
5-8
9-16

17-32
33-64
> 6 4

Luria

r
Observed

29
17
4
6
6*
5*
5*
6*
9*

87

& Delbruck
A

Theoretical
29-0
15-9

9-7
10-8

9-2
6-0
3-2
1-6
1-6

87-0

t

Observed
29
29
11
17
16
22
17
28
31

200

Newcombe
A

Theoretical
29-0
27-9
22-8
32-2
34-0
25-5
14-6

7-2
6-6

199-8

* The grouping used here is determined by Lea & Coulson's tables, and differs from that given by
Luria & Delbruck. The frequencies indicated have therefore been estimated by interpolation, and will
probably be slightly inaccurate. The distribution as originally given by Luria & Delbruck is as follows:

No. of No. of No. of No. of
mutants cultures mutants cultures

0
1
2
3
4
5

29
17
4
3
3
2

6-10
11-20
21-50
51-100

101-200
201-500

5
6
7
5
2
4

87

Table 2. Distributions of Luria <Sa Delbruck and Newcombe, fitted by a model
assuming an average phenotypic delay of about four generations

No. of cultures with given no. of mutants

No. of mutants
0-8
9-24

25-40
41-72
73-136

137-264
265-520

>520

Luria &

Observed*
62

8
4
4
4
2
3
0

Delbruck
A

Theoretical
62-0
10-S

4-4
3-9
2-8
1-6
0-9
0-9

Observed
102
30
20
18
10
15
4
1

Newcombe

Theoretical
102-0

34-4
17-2
17-0
13-0

8-0
4-3
4-3

87 87-0 200 200-2

* Observed frequencies estimated from Luria & Delbriick's original table (see footnote to
Table 1).
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Newcombe suggested that these discrepancies were due to phenotypic delay,
which, as stated in §4-4 (c), would have this sort of effect. Table 2 shows that the
general shape of the distribution can be explained by a phenotypic delay, varying for
the different descendants of each mutation, but on the average about four genera-
tions in length. The fitted distributions have been chosen to have the same pro-
portions in the first group as the observed distributions. The method of fitting, and
the rather curious method of grouping adopted, are explained in the earlier
paper.

The distributions shown in Table 2 are too heavily grouped to permit any useful
examination of the lower end of the distribution. For such an examination a more
specific statistical model for phenotypic delay is required. One such model discussed
by Armitage (1952) gave an unsatisfactory fit to the data of Luria & Delbriick and
Newcombe. In this model it was assumed that each member of a mutant clone which,
at the beginning of its life cycle, had not become phenotypically active, had a con-
stant probability, e, of doing so before its moment of fission. The distribution to be
expected on this model is difficult to calculate completely,* but the probabilities of
obtaining 0, 1, 2 and 3 phenotypically active organisms in a culture were obtained.
This 'lower tail' of the theoretical distribution was fitted to each set of data by
equating the observed and theoretical frequencies of cultures with no resistant
organisms. Three different values of e were tried; for each of the two series the fit
was unsatisfactory. In spite of the failure of this particular model for phenotypic
delay, other, possibly more realistic, formulations may be more successful.

Ryan (1952a, b) has reported some experiments on lactose-utilizing mutants in
two strains of E. coli. For one strain the observed distribution of the number of
mutants per culture is fitted quite well by Lea & Coulson's distribution; for the other
strain the fit is unsatisfactory. Ryan refers to a number of other experiments of the
Luria-Delbriick type, which are reported in the literature. Some of these, mostly
with a small number of replicate cultures, provide distributions which agree
reasonably well with Lea & Coulson's result; in others the theoretical distribution is
inadequate.

An adequate experimental agreement, even on a large series of observations, with
Lea & Coulson's or any other mathematical theory does not necessarily confirm the
assumptions on which that theory rests. For example, phenotypic delay and
a multinucleate structure with dominant mutant exert opposite types of disturbance
on Lea & Coulson's distribution; if both these factors were operating together one
might get a spurious agreement between theory and practice. Conversely, as Ryan
points out, a discrepancy between Lea & Coulson's result and any experimental
distribution does not immediately disprove the hypothesis of mutation. It is to be
hoped that mathematical workers in this field will continue to explore the con-
sequences of alternative models suggested by the experimenters. Meanwhile it
would be of the utmost value if experimental workers could investigate the effect
on the distribution of varying some of the experimental factors, such as the length
of growth of the replicate cultures.

* An alternative formulation of this model by Kendall (1952, 1953) is likely to prove more
flexible.
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5. ESTIMATION OF MUTATION RATE FROM REPLICATE CULTURES

5-1. In the Luria-Delbriick type of experiment C replicate cultures are grown
from small inocula to about the same size, N. In each culture the number of mutants,
y, is determined. The theoretical distribution of y has been discussed in §4; on the
assumptions stated there, the distribution depends on only one parameter, m, the
number of mutations expected on the average in cultures growing to a size N.
Equation (8a) shows the relation between m, N, and A (the relative mutation rate).

The problem of estimating A from an observed distribution of y in a series of
C cultures has been much discussed in the literature, particularly by Luria &
Delbriick, Lea & Coulson, and Armitage. The procedure in general is to estimate
m by one of a number of alternative methods, and then to use equation (8a) to
estimate A. If the ' mutation rate per bacterium per division cycle' is required, on
the assumption that mutations occur at all points of the division cycle, the estimate
of A must be multiplied by loge 2 = 0-693 (cf. §3-5).

In some experiments it may be possible to observe directly the number of
mutations occurring in each culture (Ryan, 1952a, b). These numbers should follow
a Poisson distribution, and their average provides an estimate of m. This estimate
will tend to be too low if phenotypic delay is present; if the cells have a multinucleate
arrangement with dominant mutation, the mutation rate estimated by (8a) will
tend to be too high, since we shall be estimating the mutation rate per cell, rather
than per nucleus.

In most experiments, however, the problem is to estimate m, and hence A, from
the distribution of y. The seven principal methods so far proposed are described
below. They are arranged not in order of efficiency, but in approximate order of
sensitivity to two sorts of departure from the ideal conditions of §§4-4 and 4-5—
phenotypic delay, and multinucleate arrangement with dominant mutation. The
order, in fact, reflects roughly the relative dependence of each method on the lower or
the upper portion of the distribution. The relative efficiencies of some of these methods
have been discussed by Lea & Coulson and (more briefly) by Armitage. The results
stated by these authors should be regarded with some reserve as they refer (a) to large
values of C, and (b) to the ideal conditions of §§4-4 and 4-5. It may be possible,
and preferable, to use formulae for sampling errors which are less dependent than
those of Lea & Coulson on the exact validity of their distribution (cf. §5-2 below.)

Of the methods described below, no. 1 considerably underestimates m in the
presence of phenotypic delay, numbers 2, 3 and 4 do so to a rather less extent, and
numbers 5, 6 and 7 are affected only slightly. If the cells are multinucleate with
dominant mutation, the estimate of A from equation (8a) will tend to be too high
by method 1, rather less so by methods 2, 3 and 4, and will be hardly affected by
methods 5, 6 and 7. Recessive mutation produces in itself no disturbance: the
estimate of A given by any of the methods should be a valid estimate of the relative
mutation rate per nucleus.

Method 1. From the proportion of cultures with no mutants. This is one of Luria
& Delbriick's original methods. From equation (9),

m=-logep0.
J. Hygiene 12
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The observed proportion of cultures with no mutants, p0, is substituted forp0 in this
equation, to give the estimate mx of TO. Under the ideal conditions this method is
highly efficient for TO < 0-5, and quite satisfactory for TO < 1.

Method 2. Maximum likelihood. This is the most efficient method under the ideal
conditions. It is described fully by Lea & Coulson, who give tables to facilitate
its use.

Method 3. From the equation 2% = 0. Details are given by Lea & Coulson. Under
the ideal conditions this method is fairly efficient for values of TO greater than
about 3.

Method 4. From the median, r. The C values of y are arranged in order, and the
J(C + l)th observation, r, is called the median. (If C is an even number, the median
is taken half-way between the \Cth. and {\C+ l)th observations.) If all the y's were
transformed into ;\;'s by equation (10), the median of the %'s should, on the average,
be 0, since x is normally distributed with zero mean. Hence an estimate m4 of TO is
obtained by the equation 11-6

—A ^ 2*02 = 0,
r/m4 — loge ra4 + 4-5

whence r/rh^ — loge TO4 = 1-24.
Lea & Coulson provide a table for the estimation of TO by this method, and show that
under the ideal conditions it is fairly efficient for values of TO greater than about
3, but less so than method 3.

Method 5. From the upper quartile. The upper quartile, q, is denned as the §(O +1 )th
observation when the y's are arranged in increasing order. If C + 1 is not divisible
by 4, interpolation between adjacent values is necessary (as in the example below).

By a similar argument to that used for the median, the estimate m5 of TO is obtained
by the equation q\^ _ loge ^ 5 = 4-09. (11)
Table 3 below shows the value of m5 corresponding to different values of q. Under
the ideal conditions this method is less efficient than method 4.

Method 6. From the mean, y. Luria & Delbriick recognized that an estimate of
m obtained by equating y to the theoretical mean would usually be too low; very
rarely a culture would experience a particularly early mutation, and the estimate
would be very much too high. They proposed a method of estimating m from y,
which was intended to correct for this skewness in the distribution of y. Their
estimate m'6 is obtained by solving the equation

In the previous paper I have shown that this method will over-estimate the mutation
rate considerably more than half the time. I therefore suggested a method which
is just as likely to under-estimate TO as to over-estimate it. This consists in solving
the equation y = m6 loge (3-46CTO6).

However, any method based on the mean is very inaccurate owing to the tremendous
sampling fluctuations in the mean, and the suggested method appears to have no
advantage over that based on the quartile.

Method 7. From the maximum value, ym. This method was proposed by Newcombe
(1948), and uses only the highest value of y in the series, and the mean y. The
estimate m7 of TO is given by ^ = ^
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There is probably less to be said in favour of this method than for any of the others,
as its accuracy does not increase as the number of cultures C is increased.

5-2. Of the seven methods described above, the first four are affected more than
the others by phenotypic delay and dominant mutation. Of the last three, which
are based predominantly on the upper end of the distribution, method 5 is the most
accurate. There would appear, therefore, to be strong reasons for estimating m from
the upper quartile q, by equation (11), except in experiments in which m is less than
about 3 or 4. (For smaller values of m the theoretical basis of equation (11) is
unreliable; furthermore, as m decreases the method becomes increasingly affected
by phenotypic delay and dominant mutation.)

Table 3. Estimate, m, of expected number of mutations, in terms of upper
quartile, q, of observed distribution of numbers of mutants

1
0

10
20
30
40
50

60
70
80
90

100

110
120
130
140
150

160
170
180
190
200

0

—

2-07
3-70
5-22
6-68
8-09

9-47
10-82
1215
13-45
14-75

16-03
17-29
18-54
19-79
21-02

22-25
23-46
24-67
25-87
27-07

1

0-33

2-25
3-86
5-37
6-82
8-23

9-60
10-95
12-28
13-58
14-88

16-15
17-42
18-67
19-91
21-14

22-37
23-58
24-79
25-99

2

0-57

2-41
4-01
5-52
6-96
8-37

9-74
11-08
12-41
13-71
1500

16-28
17-54
18-79
20-04
21-27

22-49
23-71
24-91
26-11

3
0-78

2-58
4 1 7
5-67
7 1 1
8-51

9-87
11-22
12-54
13-84
15-13

16-41
17-67
18-92
20-16
21-39

22-61
23-83
25-03
26-23

4

0-98

2-75
4-32
5-81
7-25
8-64

10-01
11-35
12-67
13-97
15-26

16-53
17-79
19-04
20-28
21-51

22-73
23-95
25-15
26-35

5

1-18

2-91
4-47
5-96
7-39
8-78

10-15
11-48
12-80
1410
15-39

16-66
17-92
1917
20-41
21-63

22-86
24-07
25-27
26-47

6

1-36

3-07
4-63
6-10
7-53
8-92

10-28
11-62
12-93
14-23
15-52

16-79
18-04
19-29
20-53
21-76

22-98
2419
25-39
26-59

7

1-55

3-23
4-78
6-25
7-67
9 0 6

10-41
11-75
1306
14-36
15-64

16-91
18-17
19-42
20-65
21-88

2310
24-31
25-51
26-71

8

1-73

3-39
4-93
6-39
7-81
9-19

10-55
11-88
1319
14-49
15-77

1704
18-29
19-54
20-78
22-00

23-22
24-43
25-63
26-83

9
1-90

3-55
5-07
6-54
7-95
9-33

10-68
1201
13-32
14-62
15-90

17-16
18-42
19-66
20-90
22-12

23-34
24-55
25-75
26-95

Table 3 enables the estimate m (from which we now drop the suffix) to be obtained
readily for any value of q up to 200. As an example, consider Newcombe's Exp. A,
in which ^=3-1 x 108. The numbers of mutants in the twenty-five cultures, when
arranged in order, are:

0 3 13 36 60
0 3 14 37 140
0 4 27 43 160
1 8 30 48 231
1 9 35 55 447

The upper quartile is the (3 x 26)/4th, i.e. the 19Jth observation, which we take as
half-way between the 19th and the 20th. Thus

q = |(48 + 55) = 51-5.
12-2
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Interpolating in Table 3 for q = 51-5, we find
m = 8-30.

Finally, our estimate of A is, from equation (8a),
m 8-30 o r 7 1A „
— = = 2-7 x 10~8

N 3-1 x 108 *
(The result given in Table 3 of Armitage( 1952) is 2-6 x 10~8. The slight discrepancy
is due to the use of a different, and less satisfactory, definition of a sample quartile
in the calculations summarized in Table 3 of the earlier paper.) On the assumption
that mutations take place with equal frequency at all points of the cycle, the
'mutation rate per bacterium per division cycle' is estimated as

(2-7 x 10-8) (0-693) = 1-9 x lO"8.
The standard error of the estimate m given by (11) may be calculated by the

method used by Lea & Coulson for the median (pp. 278-9 of their paper). The result is
S.E. (m) = 7— ; r—TF, •

v ' (5-l+logem)VC
Substituting the estimated value m for m in this equation, and making use of (11),
this formula becomes 8-7w2

^ (12)
This derivation depends, however, on the validity of the normal transformation

(10). In view of the possibility of disturbing factors like phenotypic delay, and of the
doubtful relevance of the standard error unless C is very large, an alternative
approach is desirable. It is possible to calculate confidence limits for the expected
upper quartile, which do not depend upon any assumptions about the form of the
distribution. Table 4 may be used for the 95 % level of confidence (which corresponds,
in the earlier method, to taking + 1-96 times the standard error on either side of m).
The limits for q obtained by using Table 4 will include the true quartile in about
95 % of the cases.

The use of Table 4 may be illustrated on the data (Newcombe's Exp. A) given
earlier. The quantities tabulated in Table 4 are the ranks of the members of the
sample (when put in ascending order) which are to be used as confidence limits. In
our example, C = 25, and the ranks for the limits are 14-8 and 23-2. Interpolating
between the 14th and 15th, and between the 23rd and 24th members of the sample,
we find the limits for the quartile to be 34-Oand 174-2. From Table 3 these correspond
to m = 5-81 and 23-97, respectively. Finally, the limits for the relative mutation
rate, A, are 5-81 , 23-97

and3-1 xlO8 3-1 xlO8

= 1-9 x 10-8 and 7-7 x 10-8.
The limits for TO, obtained from equation (12) by taking + 1-96 S.E. (m) on either

side of TO, are 4-4 and 12-2. The fact that these limits are considerably closer together
than the values 5-8 and 24-0, which were obtained from Table 4, does not, of course,
justify the first method. Indeed, the asymmetry of the limits obtained from
Table 4 suggests that the use of symmetrical limits based on (12) involves too crude
an approximation.

The theoretical basis of Table 4 is explained in the Appendix.
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Table 4. Ranks of members of sample to be used as 95% confidence
limits for upper quartile

No. of replicate
cultures, C

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29

Rank for

Lower limit
5-2
5-8
6-4
7-0
7-7
8-3
8-9
9-6

10-2
10-9

11-5
12-2
12-8
13-5
14-2
14-8
15-5
16-2
16-8
17-5

A
1

Upper limit
—

1 3 0
13-8
14-7
15-6
16-4
17-3
18-1

19-0
19-8
20-7
21-5
22-4
23-2
24-0
24-9
25-7
26-5

No. of replicate
cultures, C

30
31
32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47
48
49

t

Rank for
A

Lower limit Upper limit
18-2
18-8
19-5
20-2
20-9
21-5
22-2
22-9
23-6
24-3

24-9
25-6
26-3
27-0
27-7
28-4
29-0
29-7
30-4
31-1

27-4
28-2
29-0
29-8
30-7
31-5
32-3
33-1
33-9
34-8

35-6
36-4
37-2
38-0
38-8
39-7
40-5
41-3
42-1
42-9

50 31-8 43-7

For C > 50, use the following approximations:
Rank for lower limit =0-75(7- 0-849 JC + 0-5.
Rank for upper limit = 0-75C +0-849 VC + 0-5.

6. NOTATION

The notation used in this paper differs somewhat from that of the previous paper.
In particular, it seemed desirable to introduce simpler symbols for the two relative
mutation rates, A and /i, and for the two growth rates, a and b, than were used
previously. It also seemed convenient to denote the upper quartile of a series of
observations by q, rather than I. The following table shows the relation between
the main symbols used here, and those used in my previous paper (A), by Luria
& Delbriick (LD), by Shapiro (S), and by Lea & Coulson (LC).

Present

a + 9

LD

(Unity)

S

a + tn

LC

b
C
m
N

q
r
X

y
A
/*
X

b+h
c
m
Nt

I

X

y
9l(a + g)
h/(b+h)

X

c
m

.

.
a
.

c + b

x + y

X,S,P
y,r,R

ml(a + m)
b/(c + b)

.

.
N
m
n
.

r

a/fi
.
X
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SUMMARY

This paper is a short exposition of the mathematical and statistical theory of the
growth of bacterial populations subject to mutation.

A mathematical model for the long-term development of a mixed population with
two types of organism is proposed. The proportion of organisms which are of the
mutant type eventually approaches an asymptotic value, which is independent of
the initial composition of the population. A procedure is outlined for estimating
the forward and backward mutation rates from a long-term experiment.

The exact interpretation of the constants representing mutation rates requires
some assumption about the point of time, during an individual life cycle, at which
mutations occur. The usual assumption is that mutations can occur with equal
frequency at all instants during the cycle.

In short-term experiments, in which the proportion of mutants is at all times
negligible, it is important to consider the variation between the numbers of mutants
developing in replicate cultures. The theoretical distribution of Lea & Coulson may
be disturbed by the failure of any one of a number of assumptions; the effects of
such disturbances are considered in some detail.

Various methods of estimating the mutation rate from an observed series of
replicate cultures are examined. Two of the main sources of disturbance of the
theoretical distribution may be delay of phenotypic expression, and the existence
of multinucleate cells with dominant mutation. These factors affect particularly the
lower tail of the distribution, and it is suggested that a fairly safe procedure may be
to estimate the mutation rate from the upper quartile of the observed distribution.
Tables 3 and 4 enable the estimate of the mutation rate, together with 95 % con-
fidence limits, to be readily calculated.

I am indebted to Dr Forrest Fulton and Mr D. G. Kendall for many valuable
suggestions on the presentation of this paper; to Miss Irene Allen for her help in the
computation of Tables 3 and 4; and to Mrs M. G. Young for drawing the figures.

APPENDIX: CONFIDENCE LIMITS FOR THE UPPER QUARTILE

Suppose that, in successive samples, each of C observations drawn at random from
some population and arranged in ascending order of magnitude, the &jth and &2th
members of each sample are used as lower and upper confidence limits for the upper
quartile of the population.

The probability that the population upper quartile is less than the lower limit,
defined in this way, is the probability that less than kx observations out of C fall
below the upper quartile of the population. This is the sum of the first kt terms of
the binomial expansion (0-25 + 0-75)c

(0-75)+ ... + ( ° \ (0-25f-ki+1 (0-75)*!-1

This partial sum of the binomial expansion may be written, in terms of the incom-

plete beta-function, as J^Q-j^ + i^).
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Similarly, the probability that the population upper quartile exceeds the upper
limit, denned as the k2th member of the sample, is the probability that at least k2

observations out of C fall below the population upper quartile. This probability is
the sum of all except the first k2 terms of the binomial expansion (0-25 + 0-75)°,

= io.75(&a, C-& 2 +l ) .

Now, if it were possible to choose integers kx and k2 such that

/0.25(<?-£i+l,&i) = 4 7 5 f e C - &2+l) = 0-025, (13)

these limits would define a central confidence interval for the upper quartile, with
confidence coefficient 0-95, independently of any assumption about the functional
form of the distribution. The values of kx and k2 satisfying (13) (which are the lower
and upper limits tabulated in Table 4) are, however, not integers. A similar difficulty
arises in the theory of confidence limits for parameters of discrete distributions, and
more than one approach has been suggested. The solution proposed here is that a rank
of, say, 13-8, should be interpreted by linear interpolation between the observations
whose ranks are 13 and 14. The resulting limits will not have a confidence coefficient
of exactly 0-95, but the discrepancy will probably be small.

The existence of distribution-free confidence intervals for population pereentiles
appears to have been first noted by Thompson (1936). A table for obtaining con-
fidence intervals for the median is given by Nair (1940). It is analogous to the present
Table 4, except that the ranks are given as integers, so that the confidence coefficient
is always greater than 0-95.

The entries in Table 4 were obtained by inverse interpolation in tables of the
cumulative binomial distribution (National Bureau of Standards, 1950), and
checked by inverse interpolation in the tables of the incomplete beta-function
(Pearson, 1934). For C<13, the upper limit cannot be calculated: there is a
probability greater than 0-025 that the extreme member of the sample falls below
the upper quartile of the distribution.

Neither set of tables referred to above permits the extension of Table 4 beyond
C = 50. For C > 50, satisfactory approximations to kx and k2 are provided by the
following formulae (based on the normal approximation to the binomial distribution):

kx = 0- 75C - 0- 849 JC + 0- 5,

&2 = 0-75(7 +0-849 VC +0-5.

For C = 50, for example, these formulae give the approximate values
^ = 32-0, &2 = 44-0,

as compared with the correct values (from Table 4),
^=31-8, &2=43-7.

Table 4 may also prove of value in other problems, in which confidence intervals
for the lower quartile are required. For a given sample size, C, the quantities kt and
&2 are read from Table 4. Lower and upper 95 % confidence limits for the lower
quartile are then provided by the members of the sample whose ranks are respectively
O — &2 + l and C — ^+l, the observations being arranged in ascending order.
Fractional ranks are, as before, interpreted by linear interpolation between adjacent
members of the sample.
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