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Abstract. A group G is called co-Dedekindian if every subgroup of G is invar-
iant under all central automorphisms of G. In this paper we give some necessary
conditions for certain finite p-groups with non-cyclic abelian second centre to be co-
Dedekindian. We also classify 3-generator co-Dedekindian finite p-groups which are
of class 3, having non-cyclic abelian second centre with |22;(G?)| = p.
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1. Introduction. Let G be a group, and let Z(G) denote the centre of G. An
automorphism « of G is called central if x~'a(x) € Z(G) for each x € G. The set of
all central automorphisms of G, denoted by Aut.(G), is a normal subgroup of the
full automorphism group of G. A group G is called co-Dedekindian (< -group for
short) if every subgroup of G is invariant under all central automorphisms of G.
In [1], Deaconescu and Silberberg give a Dedekind-like structure theorem for the
non-nilpotent ~-groups with trivial Frattini subgroup and by reducing the finite
nilpotent ~-groups to the case of p-groups they obtain the following theorem.

THEOREM 1.1. Let G be a p-group. If G is a non-abelian » -group, then Z»(G) is a
Dedekindian group. If Z>(G) is non-abelian, then G = Qg. If Z>(G) is cyclic, then
G =2 Qo, n >4, where Qi is the generalized quaternion group of order 2".

In [1], the authors notice that non-abelian p-groups with abelian non-cyclic
second centre and which are « -groups do exist. They show that if G is a non-abelian
¢ -group of order p*, with Z>(G) abelian and non-cyclic, then p = 3 and

G=(ab|d =1, b =d [a,b] =1, [a]ab]l=d [b,]a b]]=1).

The purpose of this paper is (1) to find some necessary conditions for certain
p-groups with abelian non-cyclic second centre to be » -groups and (2) to classify the
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3-generator < -groups G satisfying these conditions with the additional condition
cl(G) = 3.

Finally we show that given any natural number m > 3, there is a 2-group with
abelian non-cyclic second centre which is a #-group of class m.

Our notation is standard. We refer in particular to [6].

2. General results. In this section we first give some results that will be used
later. Throughout the paper G will stand for a finite non-abelian p-group. If
o € Aut(G), we shall denote F, = {x € Gla(x) = x} and K, = (x"'a(x)|x € G). Also
we put F =), Fa, where 4 = Aut(G), and K = (Ky|o € Aut.(G)). We now collect
some information about the subgroups F and K of G.

LemMma 2.1. Let G be a « -group.
(i) 1(6) = F = @(G);
(1) |G : ©(G)| > |G? N Q(G)|, then G is not regular.

Proof. (1) By [1, Lemma 3.1], we have 2(G) < F. Now let M be any maximal
subgroup of G, and let z be an element of order p in M N Z(G). Let x ¢ M, and
define o : G — G by a(x'm) = x'mz’, where i € {0, 1, ...,p — 1} and m € M. It is easy
to see that o € Aut.(G) and F, = M. Hence F < ®(G).

(i) Since (G) = ®(G), we have Q(G)G" < ®(G)<G. This shows that
|221(G)||G?| < |®(G)||GP N 21(G)| < |G]. Hence G is not regular by [6, Chapter 4,
Theorem 3.14(iv)] . ]

PROPOSITION 2.2. Let G be a finite non-abelian p-group. If G is a < -group, then
Z(G) is cyclic and Z(G) < ©(G).

Proof. Let M be any maximal subgroup of G and let u be an element of order p
in Z(G) and x ¢ M. By considering the central automorphism « defined in the proof
of Lemma 2.1(1), we have «a(x)=xu. Since G is a v-group, u € (x). Hence
|21(Z(G))| = p, from which we conclude that Z(G) is cyclic. Next we let g be an
element of G\(FU Z(G)). Since G is a ~-group and g ¢ F, there is an / € N such that
g” # 1 and g” € Z(G). We deﬁne [, to be the least positive integer such that
g" € Z(G). We then have g = /' where z is a generator of Z(G) and k, is a non-
negative integer. We claim that /, > k for some element g of G\(F U Z(G)) Denying
this assertion, we may write (gflzl’k” /”)P/” 1. Now as g~ 12/ & Z(G), we must
have g~'z7™ € F: for, put a =g '27*™* and assume a ¢ F: this implies a”*"' €
Z(G) and so g”’gfl € Z(G), which is contrary to the minimality assumption. Hence
g € Z(G)F, showing that G = Z(G)F. 1t follows thdt G/F is cyclic; so is G/O(G),
giving a contradiction. Now /, > k, leads to z7'g? e F, by a similar argument.
However, g’ € &(G), Wthh 1mp11es that z € ®(G). ]

LEmMMA 2.3. Let G be a finite non-abelian p-group with |2,(GP)| =p. If G is a
c-group, then GP is cyclic. Moreover, if Z>(G) is non-cyclic and abelian, then p is
odd.

Proof. 1t is clear that if p odd, then G” is cyclic. Now suppose that p =2. We
have ®(G) = G? and hence Q(G) < G*, by Lemma 2.1(i). It follows that G = Q»., as

https://doi.org/10.1017/5S0017089502010145 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089502010145

CO-DEDEKINDIAN FINITE p-GROUPS 3

|21(G?)| = 2. Therefore G* is cyclic. However, in this case Z»(G) is cyclic or non-
abelian, completing the proof. O

THEOREM 2.4. Let G be a finite non-abelian p-group with a non-cyclic abelian
second centre Z,(G). Suppose that |Q(GP)| =p. If G is a 7-group, then GP = Z(G)
and Z,(G) < ©(G).

Proof. By Lemma 2.3, G” is cyclic and p is odd. Let G’ = (a). We first show that
G? = Z(G). The proof is divided into three steps.

Step 1. If g € G\P(G), then G¥ = (g*).

Suppose that g” = a”', where (I,p)=1 and i is a positive integer. Since
[d,g7'] € [GP, g7 '] and [G?, g~ '] is properly contained in G, we have [d/, g7'] € (a”)
and, consequently, [a” ', g ']€ (a’) < Z((a,g7")). Thus (a¥'g7 ') =
av'gra’ g7 P=V/2 = 1. We now have «”'g7! € Q/(G), from which we get
g € ®(G), a contradiction.

Step 2. GP < Z(G).

Suppose that G” is not contained in Z(G), so that aZ(G) # Z(G). For any
minimal generating set {y;Z(G)} of G/Z(G), we have y; € ®(G) for each i. Hence, by
Step 1, " = a for some positive integer n;. Thus for each i, }""Z(G) = aZ(G),
contrary to [5, 3.2.10]. Hence G? < Z(G).

Step 3. If g € G\®(G) then Z(G) = (g”), and hence G = Z(G).

If g” =z’ for some z € Z(G), then gz~! has order p and so gz~' € ®(G). It
follows, by Proposition 2.2, that g € ®(G), a contradiction. Hence G” = Z(G).

To prove the second part of the theorem, we assume that x € Z>(G)\®(G). Thus
y? = x for each y € G\®(G), where (I, p) = 1 (because in view of Step 1, x” and y”
are generators of G”.) Hence

(yx_l)” - ypx—lp[x—l’ y]p(p—l)/Z — [X—l’yp](p—l)/2 = 1.
Therefore yx~' € ®(G), whence G/®(G) is cyclic, a contradiction. O
The following result will be used throughout the sequel.
LEMMA 2.5. Let G be a metabelian group. If x, y are elements of G andn € N, then
o) = XYLy, X1, X ),
for some ny,1m; € G'.

Proof. This is a special case of P. Hall’s formula and is easily proved by using
the identity xy = yx[x, y]. ]

THEOREM 2.6. Let G be a finite metabelian p-group with a non-cyclic abelian second
centre Z(G). Suppose that |2(GP)| = p. If G is a «-group, then |Z(G)| = p. Hence
®(G) = G’ and Z,(G) is elementary abelian.

Proof. According to Theorem 2.4, Z(G) = G”. We first suppose that there exists

an element x in ®(G) such that Z(G) = (x”). Then we may choose an element y in
G\®(G) with x” = y?. Since x € ®(G) and O(G) is abelian, we have
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(yx7 P = pPx Pt p1P D2, y] = [, 1,

where n € G'. It follows that (yx~')?" = 1. Now since yx~! & ®(G), we see that
(yx~? # 1 and Z(G) = ((yx~")?). Hence |Z(G)| = p.

Now suppose that for each g € ®(G), (g”) is a proper subgroup of Z(G). Then,
by choosing x, y in G\®(G) with x* = y? and xy~! & ®(G), we have

(x N =[x 1P D2y, x 7 ina, 3],

where 11, 7, € G'. By Theorem 2.4, (yx~!)” is a generator of G?; put a = (yx~!)?. By
our assumption, [x~!, y]?(?~D/2 = g’ for some / € N. Now since [1,, x!] and [n, ]
are of order p, we get a’ = a?, and so a” = 1. Hence, |Z(G)| = p. Obviously
d(G) =G

For the final part of Theorem, we let x € Z,(G). If X’ # 1, then x” is a generator
of Z(G) and, as before, there is an element y in G\®(G) such that x” = y”, and so
(yx~ NP = yPxP[x~!, y]PP=D/2 = 1, because [x~', y] € Z(G). Consequently, yx~! e
®(G) and we have y € ©(G), a contradiction. O

COROLLARY 2.7. Let G be a finite p-group of class 3 with non-cyclic abelian second
centre Z»(G). Suppose that |2(GP)| = p. If G is a »-group, then
(1) Z(G) = G" and | Z(G)| = p;
(i) ®(G) = G’ = Z>(G), and exp(P(G)) = p;
(iii) p = 3.

Proof. In view of Theorem 2.4, Z(G)=G?, and Z,(G) < ®(G). Since
G’ < Z,(G), we have G’ = ®(G) = Z,(G) and |Z(G)| = p. Now G is not regular, by
Lemma 2.1(ii) and so p < ¢£(G) = 3 using [6, Chapter 4, 3.13(ii)]. Hence p =3. [

3. An application. In this section we classify the finite 3-generator p-groups G

that are ~-groups with the following properties:
(1) Z»(G) is abelian and non-cyclic,

(i) [$21(G")| = p,

(i) c(G)=3.

There is one family of such groups consisting of four non-isomorphic groups.

We also give an example of a 2-group with abelian non-cyclic second centre and
arbitrarily large nilpotency class that is a «-group.

From now on G will stand for a finite p-group in ~ satisfying the conditions (i)—(iii).

LeEmMA 3.1. If a, b and ¢ belong to a minimal generating set of G, then

@) {a, b} € 76(a, b)),
(i) Z(G) intersects ([a, b], [a, ¢, [D, c]) trivially.

Proof. (i) Assume that {a, b} C #g([a, b]). Then we have (ab)’ =da’h’ and
(ab™")} = &3b3. Since @® and b? are generators of Z(G) and |Z(G)| =3, a® = b or
@ = b73. Thus either (ab)® =1 or (ab™')* = 1. Consequently either ab € ®(G) or
ab™! € ®(G), a contradiction.

(i) Assume that Z(G) intersects ([a, b], [a, c], [b, ¢]) non-trivially. Since G’ is
elementary abelian, we may suppose that
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la, b]la, c|°'[b, ] € Z(G),

for some ¢; € {0,+1}, i=1,2. Clearly (e, &) #(0,0) by (1). If & =0, then
[a, bc'] € Z(G), because Z(G) = G'. This is impossible, since a, bc®' belong to a
minimal generating set of G. Similarly &; = 0 is impossible. We now suppose that
g1 #0 and &, #£ 0. If ) = &, then [ab, bc'] € Z(G). But ab, b and bc' belong to a
minimal generating set, contrary to (i). Also if €, = —e,, then [ab~!, bc®'] € Z(G),
again a contradiction. O

In what follows d(G) denotes the minimal number of generators of G.
COROLLARY 3.2. |G| = 3* if d(G) = 2, and |G| = 37 if d(G) = 3.

Proof. We prove the second part of the Corollary; the first part is established
similarly. Let d(G) = 3 and G = {(a, b, ¢). Since G’ is elementary abelian, we have

G = {[a, b, [a, c], [b, c]) x Z(G),
by Lemma 3.1(ii), so that |G’| = 3*. Now G’ = ®(G) shows that |G| = 3. O

LEMMA 3.3. Let a, b and ¢ be elements of G.
(i) (ab)’ = a*b[a, [a, b]] [b, [a, b]] .
(i) (abe)® = @b*A[a, x][a, Y]Ib, x]7'[b, y]7'[b, 2llc, x1 e, v '[e, 217", where x =
[a, D], y =1a, c] and z = [b, c].
(iii) [b,[a, c]] =1a, [b, ]l [c, [a, B]].
(iv) If a and b are elements of a minimal generating set of G such that
[b, [a, b]] = 1, then b® = [a, [a, b]].

Proof. The first two parts are easily checked. (iii) is most conveniently proved by
using the identity ((ab)c)® = (a(bc))’. To prove (iv), we observe that
(ab™") = &3b3[a, [a, b]]”", by (i). Now since (ab)’ and (ab~')’ are generators of
Z(G), (ab)*(ab™")* =1 or (ab)’ = (ab™")*. The former shows that ¢* = 1, which is
impossible. The result is now settled by using the latter. O

PRrROPOSITION 3.4. If d(G) > 3, then G has a minimal generating set containing
three elements a, b and ¢ such that

(1) [as [a7 b]] = 613, [bv [Cl, b]] =1,

(i) [b,[b, c]] = b3, [c,[b,c]] = 1.

Proof. Suppose that a, b and ¢ are elements of a minimal generating set of G.
Without loss of generality, we may assume that [q, [@, b]] # 1, by Lemma 3.1(i).
Since | Z(G)| = 3 and &* € Z(G), it follows that [a, [a, b]] = a® or a®. In the latter case,
if we replace b by b%, we get [a, [a, b]] = &°, as required. Now if [b, [, b]] # 1, then we
have

[a. [a, DIF[D. [a, b]) = 1,

for some ¢ = +1. Therefore, by setting b’ = a®b, we find that [b’, [a, b']] = 1. Here we
still have [a, [a, b']] = @ and consequently (i) holds.
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Now if [b, [b, c]] # 1, then we may repeat the above process to obtain the rela-
tions [b, [b, ¢]] = b* and [c, [b, c]] = 1 for a suitable c. We suppose that [b, [, c]] = 1,
which implies that [b, [¢°a, b]] = 1 forevery € € {—1, 0, 1}. Therefore, [¢®a, [c°a, b]] # 1
by Lemma 3.1(i) which, together with the assumption [c, [c, a]] # 1, enables us to
perform the above process with ¢’ = ¢, b’ = ¢fa and ¢’ = b in order to obtain the
desired generators. Hence it suffices to show that [c, [¢, a]] # 1. To see this, we con-
sider the central elements (abc)® and (abe™)’. If (abe)’(abe™")? = 1 then it follows,
from the relations of (i) and Lemma 3.3, that &’[c,[a, c]] =1, which gives us
[c, [c, a]] # 1. Now we assume that (abc)® = (abe™'). Then 3[a, y] = [b, y][c, x], and
hence (ab~'¢)® = ®la, y] e, ' If (ab~'¢)’(abe)®* =1, then [, [a, c]] =
Ala,[a, ¢]], and hence [c,[a, c]] = (ac™')’ # 1. Also (ab~'¢)® = (abc)® leads to
a3c3a, [a, ]] = 1, which shows that [¢, [a, ¢]] = (ac)~> # 1, completing the proof. [J

THEOREM 3.5. Let G be a 3-generator finite p-group of class 3 with non-cyclic
abelian second centre Z>(G) and let |2(GP)| = p. If G is a <-group, then G is gen-
erated by the elements a, b, ¢, x, y and z, subject to the following defining relations:

a9:b9:c9:x3:y3:z3: 1, @ =b°=¢3,

[ b]=[a =[x,y =[x,z = [y, 2l = [b,x] = [¢e, 2] = L,

x=la,b]l, y=la,c], z=1[b, ],

[e.yl=1, &® =a,x], b*=][b,z],

[a’ y] — aé(mfl)(mfZ), [b, y] — a3(mfn)’ [a’ Z] — a3(m+n)7 [C, )C] — 613",
where m,n € {0, 1, 2}. Furthermore, if we denote the above group G by G(m, n) then
G(0,0) =2 G(2,0),G(0,1) =2 G(2,2), G(1,1) = G(2,1)and G(0,2) = G(1,0) =2 G(1, 2).

Proof. According to Corollary 2.7, G satisfies the conditions (i)—(iii) of the
corollary. Now, by Proposition 3.4, we may choose a minimal generating set {a, b, ¢}
in such a way that

la,[a,b]] = d’, [b,[a.b]l=1, [b.[b,c]] =0 [c.[b,c]]=1.

By Lemma 3.3(iv), we have «® = b =c*. For convenience, we set x = [a, b],
y =[a, ] and z = [b, ¢]. We now consider the central elements (abc)’, (abe™")* of G.
We claim that (abc)® # (abe™")*. If this is not the case, in view of Lemma 3.3(iii) and
the above relations, we shall have [a, y] = [b, y][c, x]. Thus (abc)® = @’[c, y]™", and so
[c, y] # . Tt follows that (ac)® = (ac™")?, by Lemma 3.3(i), and hence [a, y] = ¢® # 1.
Now since (ab~'¢)® = af[c, ™', we find that (ab~'¢)*(abc)® =1, and so [c¢, y] = 1.
But (¢~'b¢)® =[c, y], a contradiction. Therefore we must have (abc)*(abc™')* = 1. In
this case, [¢, y] = @® # 1 and hence (ac)’ = @’[a, y]. Now we obtain

(a_lbc)3 = [(1, y][bv y][(,‘, X].

We first suppose that (a~'be)’(abe)® =1. In this case, [a,y]=1 and so
[b, ¥llc, x] # 1. As before, exactly one of [a, z], [b, y], [c, x] is the identity element
(otherwise, [b, y] = [¢, x]”! by Lemma 3.3(iv).) Therefore we may assume that

[b, y] = a3(m—n)7 [a, z] — a3(m+ﬂ)’ [c, x] — a3”,

where m € {1,2} and n € {0, 1, 2}.
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We next suppose that (¢~'b¢)® = (abe)®. Then [b, y][c,x] =1 and so we have
[a, z] = [c, x] and [a, y] # 1, which implies that [a, y] = [¢, y] (otherwise (ac™")® = 1.)
Therefore, in this case the following defining relations are obtained for G:

3n’ [ 3n’

b.yl=a", [a,z2] =a, [c,x]=a
where n € {0, 1, 2}.

We are now able to write down a single presentation for G in both cases. On the
other hand by using GAP [4], one can easily check that each group G(m,n) is a
<-group of order 37 and that G(0, 0), G(0, 1), G(0, 2) and G(1, 1) are the only non-
isomorphic groups among the groups G(m, n) where m, n € {0, 1, 2}, as required. []

Deaconescu and Silberberg [1] have proved that a finite p-group with non-
abelian or cyclic second centre is a ~-group if and only if G =2 Q. for some n. It
seems reasonable to ask whether there are finite 2-groups with non-cyclic abelian
second centre that are ~-groups. The following example shows that given any posi-
tive integer m > 3, there exists a finite 2-group G with non-cyclic abelian second
centre that is a ~-group of class m.

ExAMPLE. Let n be a positive integer, and let
G,=<ab| b =10 = a2”+1,b’1a2b =a 2, [a, b]2” =1>.
It is easy to check that the following relations hold in G,:
[a,b) =[a,b]7", [a,b]* = a *[a, b]”", [ [a, b]] = L.

Taking x = a*>, y =[a, b], and L =< x, y >, we observe that L is an abelian sub-
group of G, with |G, : L| = 4. Using the procedure described in [3], a presentation
on the generators x and y is obtained for L as follows:

2u+l

L=<x,y|¥ =y"=[xyl=1>.

Hence G, is of order 2"3, |a| = 2"*? and |b| = 4. Next we put H =< a*,[a, b] >
and see that H is an abelian normal subgroup of G, and that |G, : H| = 8. As G,,/H
is abelian and |G,/G),| = 8, we have G/, = H. Now by considering the normal sub-
group K =< a* > of G, we find that

Gy K=<ab|@=b =1, [ab] =1 > Dy,
where g = Kg for any g € G,. ]
Hence IZ(G,Y/K) =< K[a, b >, and we see that if ze Z(G,)\K then
z=kl[a, b, where k € K (because Z(G,)K/K < Z(G,/K)). Therefore,
1=[a, 7 =[a [a b 1= [a [0 b =a (o, b =1
Since b* # 1, we get Z(G,) < K. Now we suppose that z is a generator of Z(G,),

and z = (a*)". Then (&*)' = (a¥)” = a2, and hence (a*)' =1, which shows that
i = 2. It follows that z = ¢*"' = %, and Z(G,) < G...
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Finally we show that ¢f(G,) = n+ 2. Obviously I';(G,) = H. Now since H is
abelian, T3(G,) =[G, H] =< d*, [a, b}* >. Inductively one can show that
(G, =< a2, [a, 1)]2'72 > for i> 3. Hence I',4»(G,) =< b*>> and T,3(G,) =1,
proving that ¢£(G,) = n+ 2. Also, since I',,11(G,) < Z>(G,), we see that Z,(G,) has a
subgroup of type Z, x Z4. In fact an easy calculation within G, shows that
Z>(G,) = 7, x Z4. Now using the relation ha’h~' = a2, we observe that for each w
in G,\1(G,), w* has one of the following forms: b2, (ab)?, (ba)*, and a/, where [ is an
even positive integer. On the other hand, by using (ab)* = a*b*[a, b], we get
(ab)*" = a*"" = b2, from which we conclude that »*> e< w >. Hence, if « is a cen-
tral automorphism of G,, then a(w) = wb*”" e< w >, where m € {0, 1}. Also « fixes
Q1(G,) elementwise. This proves that G,, is a ~-group.

It is worth noting that Aut.(G,) = Z, x Z, by [2]. In fact, Aut.(G,) = {(«, B),
where a(a) = a, a(b) = b~" and B(a) = ab*, B(b) = b. ]
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