ON THE CO-DEDEKINDIAN FINITE p-GROUPS WITH NON-CYCLIC ABELIAN SECOND CENTRE*

ALI-REZA JAMALI

Institute of Mathematics, University for Teacher Education, Tehran 15614, Iran e-mail: jamali@saba.tmu.ac.ir

and HAMID MOUSAVI

Institute for Studies in Theoretical Physics and Mathematics, University for Teacher Education, Tehran 15614, Iran e-mail: hmousavi@iasbs.ac.ir

(Received 11 June, 1999; accepted 26 April 2001)

Abstract. A group G is called *co-Dedekindian* if every subgroup of G is invariant under all central automorphisms of G. In this paper we give some necessary conditions for certain finite p-groups with non-cyclic abelian second centre to be co-Dedekindian. We also classify 3-generator co-Dedekindian finite p-groups which are of class 3, having non-cyclic abelian second centre with $|\Omega_1(G^p)| = p$.

2000 Mathematics Subject Classification. 20E34, 20D15, 20D45.

1. Introduction. Let G be a group, and let Z(G) denote the centre of G. An automorphism α of G is called *central* if $x^{-1}\alpha(x) \in Z(G)$ for each $x \in G$. The set of all central automorphisms of G, denoted by $Aut_c(G)$, is a normal subgroup of the full automorphism group of G. A group G is called *co-Dedekindian* (\mathscr{C} -group for short) if every subgroup of G is invariant under all central automorphisms of G. In [1], Deaconescu and Silberberg give a Dedekind-like structure theorem for the non-nilpotent \mathscr{C} -groups with trivial Frattini subgroup and by reducing the finite nilpotent \mathscr{C} -groups to the case of G-groups they obtain the following theorem.

THEOREM 1.1. Let G be a p-group. If G is a non-abelian \mathscr{C} -group, then $Z_2(G)$ is a Dedekindian group. If $Z_2(G)$ is non-abelian, then $G \cong \mathcal{Q}_8$. If $Z_2(G)$ is cyclic, then $G \cong \mathcal{Q}_{2^n}$, $n \geq 4$, where \mathcal{Q}_{2^n} is the generalized quaternion group of order 2^n .

In [1], the authors notice that non-abelian p-groups with abelian non-cyclic second centre and which are \mathscr{C} -groups do exist. They show that if G is a non-abelian \mathscr{C} -group of order p^4 , with $Z_2(G)$ abelian and non-cyclic, then p=3 and

$$G = \langle a, b \mid a^9 = 1, b^3 = a^6, [a, b]^3 = 1, [a, [a, b]] = a^3, [b, [a, b]] = 1 \rangle.$$

The purpose of this paper is (1) to find some necessary conditions for certain p-groups with abelian non-cyclic second centre to be \mathscr{C} -groups and (2) to classify the

^{*}This research was in part supported by a grant from IPM.

3-generator \mathscr{C} -groups G satisfying these conditions with the additional condition $c\ell(G)=3$.

Finally we show that given any natural number $m \ge 3$, there is a 2-group with abelian non-cyclic second centre which is a \mathscr{C} -group of class m.

Our notation is standard. We refer in particular to [6].

2. General results. In this section we first give some results that will be used later. Throughout the paper G will stand for a finite non-abelian p-group. If $\alpha \in Aut_c(G)$, we shall denote $F_\alpha = \{x \in G | \alpha(x) = x\}$ and $K_\alpha = \langle x^{-1}\alpha(x) | x \in G \rangle$. Also we put $F = \bigcap_{\alpha \in A} F_\alpha$, where $A = Aut_c(G)$, and $K = \langle K_\alpha | \alpha \in Aut_c(G) \rangle$. We now collect some information about the subgroups F and K of G.

Lemma 2.1. Let G be a \mathscr{C} -group.

- (i) $\Omega_1(G) \leq F \leq \Phi(G)$;
- (ii) if $|G:\Phi(G)| > |G^p \cap \Omega_1(G)|$, then G is not regular.
- *Proof.* (i) By [1, Lemma 3.1], we have $\Omega_1(G) \leq F$. Now let M be any maximal subgroup of G, and let z be an element of order p in $M \cap Z(G)$. Let $x \notin M$, and define $\alpha : G \to G$ by $\alpha(x^i m) = x^i m z^i$, where $i \in \{0, 1, ..., p-1\}$ and $m \in M$. It is easy to see that $\alpha \in Aut_c(G)$ and $F_\alpha = M$. Hence $F \leq \Phi(G)$.
- (ii) Since $\Omega_1(G) \leq \Phi(G)$, we have $\Omega_1(G)G^p \leq \Phi(G) \leq G$. This shows that $|\Omega_1(G)||G^p| \leq |\Phi(G)||G^p \cap \Omega_1(G)| < |G|$. Hence G is not regular by [6, Chapter 4, Theorem 3.14(iv)].

PROPOSITION 2.2. Let G be a finite non-abelian p-group. If G is a \mathscr{C} -group, then Z(G) is cyclic and $Z(G) \leq \Phi(G)$.

Proof. Let M be any maximal subgroup of G and let u be an element of order p in Z(G) and $x \notin M$. By considering the central automorphism α defined in the proof of Lemma 2.1(i), we have $\alpha(x) = xu$. Since G is a \mathscr{C} -group, $u \in \langle x \rangle$. Hence $|\Omega_1(Z(G))| = p$, from which we conclude that Z(G) is cyclic. Next we let g be an element of $G\setminus (F\cup Z(G))$. Since G is a \mathscr{C} -group and $g \notin F$, there is an $l \in \mathbb{N}$ such that $g^{p^l} \neq 1$ and $g^{p^l} \in Z(G)$. We define l_g to be the least positive integer such that $g^{p^{lg}} \in Z(G)$. We then have $g^{p^{lg}} = z^{p^{kg}}$, where z is a generator of Z(G) and k_g is a nonnegative integer. We claim that $l_g > k_g$ for some element g of $G\setminus (F\cup Z(G))$. Denying this assertion, we may write $(g^{-1}z^{p^{kg-l_g}})^{p^{lg}} = 1$. Now as $g^{-1}z^{p^{kg-l_g}} \notin Z(G)$, we must have $g^{-1}z^{p^{kg-l_g}} \in F$: for, put $g^{-1}z^{p^{kg-l_g}} \in F$: for, put $g^{-1}z^{p^{kg-l_g}} \in F$: for, which is contrary to the minimality assumption. Hence $g \in Z(G)F$, showing that $g^{-1}z^{p^{kg-l_g}} \in F$ is cyclic; so is $g^{-1}z^{p^{kg-l_g}} \in F$. It follows that $g^{-1}z^{p^{kg-l_g}} \in F$ is cyclic; so is $g^{-1}z^{p^{kg-l_g}} \in F$, by a similar argument. However, $g^{p^{lg-kg}} \in F$, which implies that $g^{-1}z^{p^{lg-kg}} \in F$.

Lemma 2.3. Let G be a finite non-abelian p-group with $|\Omega_1(G^p)| = p$. If G is a \mathscr{C} -group, then G^p is cyclic. Moreover, if $Z_2(G)$ is non-cyclic and abelian, then p is odd.

Proof. It is clear that if p odd, then G^p is cyclic. Now suppose that p = 2. We have $\Phi(G) = G^2$ and hence $\Omega_1(G) \leq G^2$, by Lemma 2.1(i). It follows that $G \cong \mathcal{Q}_{2^n}$, as

 $|\Omega_1(G^2)| = 2$. Therefore G^2 is cyclic. However, in this case $Z_2(G)$ is cyclic or nonabelian, completing the proof.

THEOREM 2.4. Let G be a finite non-abelian p-group with a non-cyclic abelian second centre $Z_2(G)$. Suppose that $|\Omega_1(G^p)| = p$. If G is a \mathscr{C} -group, then $G^p = Z(G)$ and $Z_2(G) \leq \Phi(G)$.

Proof. By Lemma 2.3, G^p is cyclic and p is odd. Let $G^p = \langle a \rangle$. We first show that $G^p = Z(G)$. The proof is divided into three steps.

Step 1. If $g \in G \setminus \Phi(G)$, then $G^p = \langle g^p \rangle$.

Suppose that $g^p = a^{lp^i}$, where (l,p) = 1 and i is a positive integer. Since $[a^l,g^{-1}] \in [G^p,g^{-1}]$ and $[G^p,g^{-1}]$ is properly contained in G^p , we have $[a^l,g^{-1}] \in \langle a^p \rangle$ and, consequently, $[a^{lp^{i-1}},g^{-1}] \in \langle a^{p^i} \rangle \leq Z(\langle a,g^{-1} \rangle)$. Thus $(a^{lp^{i-1}}g^{-1})^p = a^{lp^i}g^{-p}[a^{lp^i},g^{-1}]^{(p-1)/2} = 1$. We now have $a^{lp^{i-1}}g^{-1} \in \Omega_1(G)$, from which we get $g \in \Phi(G)$, a contradiction.

Step 2. $G^p < Z(G)$.

Suppose that G^p is not contained in Z(G), so that $aZ(G) \neq Z(G)$. For any minimal generating set $\{y_iZ(G)\}$ of G/Z(G), we have $y_i \notin \Phi(G)$ for each i. Hence, by Step 1, $y_i^{pn_i} = a$ for some positive integer n_i . Thus for each i, $y_i^{pn_i}Z(G) = aZ(G)$, contrary to [5, 3.2.10]. Hence $G^p \leq Z(G)$.

Step 3. If $g \in G \setminus \Phi(G)$ then $Z(G) = \langle g^p \rangle$, and hence $G^p = Z(G)$.

If $g^p = z^p$ for some $z \in Z(G)$, then gz^{-1} has order p and so $gz^{-1} \in \Phi(G)$. It follows, by Proposition 2.2, that $g \in \Phi(G)$, a contradiction. Hence $G^p = Z(G)$.

To prove the second part of the theorem, we assume that $x \in Z_2(G) \setminus \Phi(G)$. Thus $y^p = x^{lp}$ for each $y \in G \setminus \Phi(G)$, where (l, p) = 1 (because in view of Step 1, x^p and y^p are generators of G^p .) Hence

$$(vx^{-l})^p = v^p x^{-lp} [x^{-l}, v]^{p(p-1)/2} = [x^{-l}, v^p]^{(p-1)/2} = 1.$$

Therefore $yx^{-l} \in \Phi(G)$, whence $G/\Phi(G)$ is cyclic, a contradiction.

The following result will be used throughout the sequel.

Lemma 2.5. Let G be a metabelian group. If x, y are elements of G and $n \in \mathbb{N}$, then

$$(xy)^n = x^n y^n [y, x]^{n(n-1)/2} [\eta_2, x] [\eta_1, y],$$

for some $\eta_1, \eta_2 \in G'$.

Proof. This is a special case of P. Hall's formula and is easily proved by using the identity xy = yx[x, y].

THEOREM 2.6. Let G be a finite metabelian p-group with a non-cyclic abelian second centre $Z_2(G)$. Suppose that $|\Omega_1(G^p)| = p$. If G is a \mathscr{C} -group, then |Z(G)| = p. Hence $\Phi(G) = G'$ and $Z_2(G)$ is elementary abelian.

Proof. According to Theorem 2.4, $Z(G) = G^p$. We first suppose that there exists an element x in $\Phi(G)$ such that $Z(G) = \langle x^p \rangle$. Then we may choose an element y in $G \setminus \Phi(G)$ with $x^p = y^p$. Since $x \in \Phi(G)$ and $\Phi(G)$ is abelian, we have

$$(yx^{-1})^p = y^p x^{-p} [x^{-1}, y]^{p(p-1)/2} [\eta, y] = [\eta, y],$$

where $\eta \in G'$. It follows that $(yx^{-1})^{p^2} = 1$. Now since $yx^{-1} \notin \Phi(G)$, we see that $(yx^{-1})^p \neq 1$ and $Z(G) = \langle (yx^{-1})^p \rangle$. Hence |Z(G)| = p.

Now suppose that for each $g \in \Phi(G)$, $\langle g^p \rangle$ is a proper subgroup of Z(G). Then, by choosing x, y in $G \setminus \Phi(G)$ with $x^p = y^p$ and $xy^{-1} \notin \Phi(G)$, we have

$$(yx^{-1})^p = [x^{-1}, y]^{p(p-1)/2} [\eta_1, x^{-1}] [\eta_2, y],$$

where $\eta_1, \eta_2 \in G'$. By Theorem 2.4, $(yx^{-1})^p$ is a generator of G^p ; put $a = (yx^{-1})^p$. By our assumption, $[x^{-1}, y]^{p(p-1)/2} = a^{pl}$ for some $l \in \mathbb{N}$. Now since $[\eta_2, x^{-1}]$ and $[\eta_1, y]$ are of order p, we get $a^p = a^{lp^2}$, and so $a^p = 1$. Hence, |Z(G)| = p. Obviously $\Phi(G) = G'$.

For the final part of Theorem, we let $x \in Z_2(G)$. If $x^p \neq 1$, then x^p is a generator of Z(G) and, as before, there is an element y in $G \setminus \Phi(G)$ such that $x^p = y^p$, and so $(yx^{-1})^p = y^p x^{-p} [x^{-1}, y]^{p(p-1)/2} = 1$, because $[x^{-1}, y] \in Z(G)$. Consequently, $yx^{-1} \in \Phi(G)$ and we have $y \in \Phi(G)$, a contradiction.

COROLLARY 2.7. Let G be a finite p-group of class 3 with non-cyclic abelian second centre $Z_2(G)$. Suppose that $|\Omega_1(G^p)| = p$. If G is a \mathscr{C} -group, then

- (i) $Z(G) = G^p \text{ and } |Z(G)| = p$;
- (ii) $\Phi(G) = G' = Z_2(G)$, and $\exp(\Phi(G)) = p$;
- (iii) p = 3.

Proof. In view of Theorem 2.4, $Z(G) = G^p$, and $Z_2(G) \le \Phi(G)$. Since $G' \le Z_2(G)$, we have $G' = \Phi(G) = Z_2(G)$ and |Z(G)| = p. Now G is not regular, by Lemma 2.1(ii) and so $p < c\ell(G) = 3$ using [6, Chapter 4, 3.13(ii)]. Hence p = 3.

- **3.** An application. In this section we classify the finite 3-generator p-groups G that are \mathscr{C} -groups with the following properties:
 - (i) $Z_2(G)$ is abelian and non-cyclic,
 - (ii) $|\Omega_1(G^p)| = p$,
 - (iii) $c\ell(G) = 3$.

There is one family of such groups consisting of four non-isomorphic groups.

We also give an example of a 2-group with abelian non-cyclic second centre and arbitrarily large nilpotency class that is a \mathscr{C} -group.

From now on G will stand for a finite p-group in \mathscr{C} satisfying the conditions (i)–(iii).

LEMMA 3.1. If a, b and c belong to a minimal generating set of G, then

- (i) $\{a,b\} \not\subseteq \mathscr{C}_G([a,b]),$
- (ii) Z(G) intersects $\langle [a, b], [a, c], [b, c] \rangle$ trivially.
- *Proof.* (i) Assume that $\{a,b\} \subseteq \mathscr{C}_G([a,b])$. Then we have $(ab)^3 = a^3b^3$ and $(ab^{-1})^3 = a^3b^{-3}$. Since a^3 and b^3 are generators of Z(G) and |Z(G)| = 3, $a^3 = b^3$ or $a^3 = b^{-3}$. Thus either $(ab)^3 = 1$ or $(ab^{-1})^3 = 1$. Consequently either $ab \in \Phi(G)$ or $ab^{-1} \in \Phi(G)$, a contradiction.
- (ii) Assume that Z(G) intersects $\langle [a, b], [a, c], [b, c] \rangle$ non-trivially. Since G' is elementary abelian, we may suppose that

$$[a, b][a, c]^{\varepsilon_1}[b, c]^{\varepsilon_2} \in Z(G),$$

for some $\varepsilon_i \in \{0, \pm 1\}$, i = 1, 2. Clearly $(\varepsilon_1, \varepsilon_2) \neq (0, 0)$ by (i). If $\varepsilon_2 = 0$, then $[a, bc^{\epsilon_1}] \in Z(G)$, because $Z_2(G) = G'$. This is impossible, since a, bc^{ε_1} belong to a minimal generating set of G. Similarly $\varepsilon_1 = 0$ is impossible. We now suppose that $\varepsilon_1 \neq 0$ and $\varepsilon_2 \neq 0$. If $\varepsilon_1 = \varepsilon_2$, then $[ab, bc^{\epsilon_1}] \in Z(G)$. But ab, b and bc^{ϵ_1} belong to a minimal generating set, contrary to (i). Also if $\varepsilon_1 = -\varepsilon_2$, then $[ab^{-1}, bc^{\epsilon_1}] \in Z(G)$, again a contradiction.

In what follows d(G) denotes the minimal number of generators of G.

COROLLARY 3.2.
$$|G| = 3^4$$
 if $d(G) = 2$, and $|G| = 3^7$ if $d(G) = 3$.

Proof. We prove the second part of the Corollary; the first part is established similarly. Let d(G) = 3 and $G = \langle a, b, c \rangle$. Since G' is elementary abelian, we have

$$G' = \langle [a, b], [a, c], [b, c] \rangle \times Z(G),$$

by Lemma 3.1(ii), so that $|G'| = 3^4$. Now $G' = \Phi(G)$ shows that $|G| = 3^7$.

LEMMA 3.3. Let a, b and c be elements of G.

- (i) $(ab)^3 = a^3b^3[a, [a, b]][b, [a, b]]^{-1}$.
- (ii) $(abc)^3 = a^3b^3c^3[a, x][a, y][b, x]^{-1}[b, y]^{-1}[b, z][c, x]^{-1}[c, y]^{-1}[c, z]^{-1}$, where x = [a, b], y = [a, c] and z = [b, c].
 - (iii) [b, [a, c]] = [a, [b, c]] [c, [a, b]].
- (iv) If a and b are elements of a minimal generating set of G such that [b, [a, b]] = 1, then $b^6 = [a, [a, b]]$.

Proof. The first two parts are easily checked. (iii) is most conveniently proved by using the identity $((ab)c)^3 = (a(bc))^3$. To prove (iv), we observe that $(ab^{-1})^3 = a^3b^{-3}[a, [a, b]]^{-1}$, by (i). Now since $(ab)^3$ and $(ab^{-1})^3$ are generators of Z(G), $(ab)^3(ab^{-1})^3 = 1$ or $(ab)^3 = (ab^{-1})^3$. The former shows that $a^3 = 1$, which is impossible. The result is now settled by using the latter.

PROPOSITION 3.4. If $d(G) \ge 3$, then G has a minimal generating set containing three elements a, b and c such that

- (i) $[a, [a, b]] = a^3$, [b, [a, b]] = 1,
- (ii) $[b, [b, c]] = b^3, [c, [b, c]] = 1.$

Proof. Suppose that a, b and c are elements of a minimal generating set of G. Without loss of generality, we may assume that $[a, [a, b]] \neq 1$, by Lemma 3.1(i). Since |Z(G)| = 3 and $a^3 \in Z(G)$, it follows that $[a, [a, b]] = a^3$ or a^6 . In the latter case, if we replace b by b^2 , we get $[a, [a, b]] = a^3$, as required. Now if $[b, [a, b]] \neq 1$, then we have

$$[a, [a, b]]^{\varepsilon}[b, [a, b]] = 1,$$

for some $\varepsilon = \pm 1$. Therefore, by setting $b' = a^{\varepsilon}b$, we find that [b', [a, b']] = 1. Here we still have $[a, [a, b']] = a^3$ and consequently (i) holds.

Now if $[b, [b, c]] \neq 1$, then we may repeat the above process to obtain the relations $[b, [b, c]] = b^3$ and [c, [b, c]] = 1 for a suitable c. We suppose that [b, [b, c]] = 1, which implies that $[b, [c^\varepsilon a, b]] = 1$ for every $\varepsilon \in \{-1, 0, 1\}$. Therefore, $[c^\varepsilon a, [c^\varepsilon a, b]] \neq 1$ by Lemma 3.1(i) which, together with the assumption $[c, [c, a]] \neq 1$, enables us to perform the above process with a' = c, $b' = c^\varepsilon a$ and c' = b in order to obtain the desired generators. Hence it suffices to show that $[c, [c, a]] \neq 1$. To see this, we consider the central elements $(abc)^3$ and $(abc^{-1})^3$. If $(abc)^3(abc^{-1})^3 = 1$ then it follows, from the relations of (i) and Lemma 3.3, that $a^3[c, [a, c]] = 1$, which gives us $[c, [c, a]] \neq 1$. Now we assume that $(abc)^3 = (abc^{-1})^3$. Then $c^3[a, y] = [b, y][c, x]$, and hence $(ab^{-1}c)^3 = c^6[a, y]^{-1}[c, y]^{-1}$. If $(ab^{-1}c)^3(abc)^3 = 1$, then $a^3[c, [a, c]] = c^3[a, [a, c]]$, and hence $[c, [a, c]] = (ac^{-1})^3 \neq 1$. Also $(ab^{-1}c)^3 = (abc)^3$ leads to $a^3c^3[a, [a, c]] = 1$, which shows that $[c, [a, c]] = (ac)^{-3} \neq 1$, completing the proof. \square

THEOREM 3.5. Let G be a 3-generator finite p-group of class 3 with non-cyclic abelian second centre $Z_2(G)$ and let $|\Omega_1(G^p)| = p$. If G is a \mathscr{C} -group, then G is generated by the elements a, b, c, x, y and z, subject to the following defining relations:

evalued by the elements
$$a, b, c, x, y$$
 and $z,$ subject to the following defining relations:
 $a^9 = b^9 = c^9 = x^3 = y^3 = z^3 = 1, \ a^3 = b^6 = c^3,$
 $[a^3, b] = [a^3, c] = [x, y] = [x, z] = [y, z] = [b, x] = [c, z] = 1,$
 $x = [a, b], \ y = [a, c], \ z = [b, c],$
 $[c, y] = 1, \ a^3 = [a, x], \ b^3 = [b, z],$
 $[a, y] = a^{6(m-1)(m-2)}, \ [b, y] = a^{3(m-n)}, \ [a, z] = a^{3(m+n)}, \ [c, x] = a^{3n},$
where $m, n \in \{0, 1, 2\}$. Furthermore, if we denote the above group G by $G(m, n)$ then $G(0, 0) \cong G(2, 0), G(0, 1) \cong G(2, 2), \ G(1, 1) \cong G(2, 1)$ and $G(0, 2) \cong G(1, 0) \cong G(1, 2).$

Proof. According to Corollary 2.7, G satisfies the conditions (i)–(iii) of the corollary. Now, by Proposition 3.4, we may choose a minimal generating set $\{a, b, c\}$ in such a way that

$$[a, [a, b]] = a^3, [b, [a, b]] = 1, [b, [b, c]] = b^3, [c, [b, c]] = 1.$$

By Lemma 3.3(iv), we have $a^3=b^6=c^3$. For convenience, we set x=[a,b], y=[a,c] and z=[b,c]. We now consider the central elements $(abc)^3$, $(abc^{-1})^3$ of G. We claim that $(abc)^3 \neq (abc^{-1})^3$. If this is not the case, in view of Lemma 3.3(iii) and the above relations, we shall have [a,y]=[b,y][c,x]. Thus $(abc)^3=a^3[c,y]^{-1}$, and so $[c,y]\neq a^3$. It follows that $(ac)^3=(ac^{-1})^3$, by Lemma 3.3(i), and hence $[a,y]=c^6\neq 1$. Now since $(ab^{-1}c)^3=a^6[c,y]^{-1}$, we find that $(ab^{-1}c)^3(abc)^3=1$, and so [c,y]=1. But $(a^{-1}bc)^3=[c,y]$, a contradiction. Therefore we must have $(abc)^3(abc^{-1})^3=1$. In this case, $[c,y]=a^3\neq 1$ and hence $(ac)^3=a^3[a,y]$. Now we obtain

$$(a^{-1}bc)^3 = [a, y][b, y][c, x].$$

We first suppose that $(a^{-1}bc)^3(abc)^3 = 1$. In this case, [a, y] = 1 and so $[b, y][c, x] \neq 1$. As before, exactly one of [a, z], [b, y], [c, x] is the identity element (otherwise, $[b, y] = [c, x]^{-1}$ by Lemma 3.3(iv).) Therefore we may assume that

$$[b, y] = a^{3(m-n)}, [a, z] = a^{3(m+n)}, [c, x] = a^{3n},$$

where $m \in \{1, 2\}$ and $n \in \{0, 1, 2\}$.

We next suppose that $(a^{-1}bc)^3 = (abc)^3$. Then [b, y][c, x] = 1 and so we have [a, z] = [c, x] and $[a, y] \neq 1$, which implies that [a, y] = [c, y] (otherwise $(ac^{-1})^3 = 1$.) Therefore, in this case the following defining relations are obtained for G:

$$[b, y] = a^{-3n}, [a, z] = a^{3n}, [c, x] = a^{3n},$$

where $n \in \{0, 1, 2\}$.

We are now able to write down a single presentation for G in both cases. On the other hand by using GAP [4], one can easily check that each group G(m, n) is a \mathscr{C} -group of order 3^7 and that G(0,0), G(0,1), G(0,2) and G(1,1) are the only non-isomorphic groups among the groups G(m,n) where $m, n \in \{0,1,2\}$, as required. \square

Deaconescu and Silberberg [1] have proved that a finite p-group with non-abelian or cyclic second centre is a \mathscr{C} -group if and only if $G \cong \mathcal{Q}_{2^n}$ for some n. It seems reasonable to ask whether there are finite 2-groups with non-cyclic abelian second centre that are \mathscr{C} -groups. The following example shows that given any positive integer $m \geq 3$, there exists a finite 2-group G with non-cyclic abelian second centre that is a \mathscr{C} -group of class m.

Example. Let n be a positive integer, and let

$$G_n = \langle a, b \mid b^4 = 1, b^2 = a^{2^{n+1}}, b^{-1}a^2b = a^{-2}, [a, b]^{2^n} = 1 \rangle.$$

It is easy to check that the following relations hold in G_n :

$$[a, b]^b = [a, b]^{-1}, [a, b]^a = a^{-4}[a, b]^{-1}, [a^2, [a, b]] = 1.$$

Taking $x = a^2$, y = [a, b], and $L = \langle x, y \rangle$, we observe that L is an abelian subgroup of G_n with $|G_n : L| = 4$. Using the procedure described in [3], a presentation on the generators x and y is obtained for L as follows:

$$L = \langle x, y \mid x^{2^{n+1}} = y^{2^n} = [x, y] = 1 \rangle$$
.

Hence G_n is of order 2^{2n+3} , $|a| = 2^{n+2}$ and |b| = 4. Next we put $H = \langle a^4, [a, b] \rangle$ and see that H is an abelian normal subgroup of G_n and that $|G_n: H| = 8$. As G_n/H is abelian and $|G_n/G'_n| = 8$, we have $G'_n = H$. Now by considering the normal subgroup $K = \langle a^2 \rangle$ of G_n , we find that

$$G_n/K = \langle \overline{a}, \overline{b} \mid \overline{a}^2 = \overline{b}^2 = 1, [\overline{a}, \overline{b}]^{2^n} = 1 \rangle \cong D_{2^{n+2}},$$

where $\overline{g} = Kg$ for any $g \in G_n$.

Hence $Z(G_n/K) = \langle K[a,b]^{2^{n-1}} \rangle$, and we see that if $z \in Z(G_n) \backslash K$ then $z = k[a,b]^{2^{n-1}}$, where $k \in K$ (because $Z(G_n)K/K \leq Z(G_n/K)$). Therefore,

$$1 = [a, z] = [a, [a, b]^{2^{n-1}}] = [a, [a, b]]^{2^{n-1}} = a^{2^{n+1}}[a, b]^{2^n} = b^2.$$

Since $b^2 \neq 1$, we get $Z(G_n) \leq K$. Now we suppose that z is a generator of $Z(G_n)$, and $z = (a^2)^i$. Then $(a^2)^i = (a^{2i})^b = a^{-2i}$, and hence $(a^4)^i = 1$, which shows that $i = 2^n$. It follows that $z = a^{2^{n+1}} = b^2$, and $Z(G_n) \leq G'_n$.

Finally we show that $c\ell(G_n) = n + 2$. Obviously $\Gamma_2(G_n) = H$. Now since H is abelian, $\Gamma_3(G_n) = [G_n, H] = \langle a^4, [a, b]^2 \rangle$. Inductively one can show that $\Gamma_i(G_n) = \langle a^{2^{i-1}}, [a, b]^{2^{i-2}} \rangle$ for $i \geq 3$. Hence $\Gamma_{n+2}(G_n) = \langle b^2 \rangle$ and $\Gamma_{n+3}(G_n) = 1$, proving that $c\ell(G_n) = n + 2$. Also, since $\Gamma_{n+1}(G_n) \leq Z_2(G_n)$, we see that $Z_2(G_n)$ has a subgroup of type $\mathbb{Z}_2 \times \mathbb{Z}_4$. In fact an easy calculation within G_n shows that $Z_2(G_n) \cong \mathbb{Z}_2 \times \mathbb{Z}_4$. Now using the relation $ba^2b^{-1} = a^{-2}$, we observe that for each w in $G_n \setminus \Omega_1(G_n)$, w^2 has one of the following forms: b^2 , $(ab)^2$, $(ba)^2$, and a^l , where l is an even positive integer. On the other hand, by using $(ab)^2 = a^2b^2[a, b]$, we get $(ab)^{2^{n+1}} = a^{2^{n+1}} = b^2$, from which we conclude that $b^2 \in \langle w \rangle$. Hence, if α is a central automorphism of G_n , then $\alpha(w) = wb^{2m} \in \langle w \rangle$, where $m \in \{0, 1\}$. Also α fixes $\Omega_1(G_n)$ elementwise. This proves that G_n is a \mathscr{C} -group.

It is worth noting that $Aut_c(G_n) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ by [2]. In fact, $Aut_c(G_n) = \langle \alpha, \beta \rangle$, where $\alpha(a) = a$, $\alpha(b) = b^{-1}$ and $\beta(a) = ab^2$, $\beta(b) = b$.

REFERENCES

- 1. M. Deaconescu and G. Silberberg, Finite co-Dedekindian groups, *Glasgow Math. J.* 38 (1996), 163–169.
- **2.** A. Jamali and H. Mousavi, On the central automorphism group of finite *p*-groups, *Algebra Colloquium* **9** No. 1 (2002), 7–14.
- **3.** J. Neubüser, An elementary introduction to coset table methods in computational group theory, *Group-St. Andrews 1981*, London Math. Soc Lecture Note Series No. **71** (Cambridge University Press, 1982).
- **4.** M. Schönert *et al.*, *GAP-Group, Algorithms and Programming*, Lehrstuhl D für Mathematik, RWTH (Aachen, 1993).
 - 5. W. R. Scott, Group theory (Prentice-Hall, 1964).
 - 6. M. Suzuki, Group theory II (Springer-Verlag, 1986).