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Abstract. A group G is called co-Dedekindian if every subgroup of G is invar-
iant under all central automorphisms of G. In this paper we give some necessary
conditions for certain finite p-groups with non-cyclic abelian second centre to be co-
Dedekindian. We also classify 3-generator co-Dedekindian finite p-groups which are
of class 3, having non-cyclic abelian second centre with j�1ðG

pÞj ¼ p.

2000 Mathematics Subject Classification. 20E34, 20D15, 20D45.

1. Introduction. Let G be a group, and let ZðGÞ denote the centre of G. An
automorphism � of G is called central if x�1�ðxÞ 2 ZðGÞ for each x 2 G. The set of
all central automorphisms of G, denoted by AutcðGÞ, is a normal subgroup of the
full automorphism group of G. A group G is called co-Dedekindian (C -group for
short) if every subgroup of G is invariant under all central automorphisms of G.
In [1], Deaconescu and Silberberg give a Dedekind-like structure theorem for the
non-nilpotent C -groups with trivial Frattini subgroup and by reducing the finite
nilpotent C -groups to the case of p-groups they obtain the following theorem.

Theorem 1.1. Let G be a p-group. If G is a non-abelian C -group, then Z2ðGÞ is a
Dedekindian group. If Z2ðGÞ is non-abelian, then G ffi Q8. If Z2ðGÞ is cyclic, then
G ffi Q2n , n 	 4, where Q2n is the generalized quaternion group of order 2

n.

In [1], the authors notice that non-abelian p-groups with abelian non-cyclic
second centre and which are C -groups do exist. They show that if G is a non-abelian
C -group of order p4, with Z2ðGÞ abelian and non-cyclic, then p ¼ 3 and

G ¼ ha; b j a9 ¼ 1; b3 ¼ a6; ½a; b�3 ¼ 1; ½a; ½a; b�� ¼ a3; ½b; ½a; b�� ¼ 1i:

The purpose of this paper is (1) to find some necessary conditions for certain
p-groups with abelian non-cyclic second centre to be C -groups and (2) to classify the
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3-generator C -groups G satisfying these conditions with the additional condition
c‘ðGÞ ¼ 3.

Finally we show that given any natural number m 	 3, there is a 2-group with
abelian non-cyclic second centre which is a C -group of class m.

Our notation is standard. We refer in particular to [6].

2. General results. In this section we first give some results that will be used
later. Throughout the paper G will stand for a finite non-abelian p-group. If
� 2 AutcðGÞ, we shall denote F� ¼ fx 2 Gj�ðxÞ ¼ xg and K� ¼ hx�1�ðxÞjx 2 Gi. Also
we put F ¼

T
�2A F�, where A ¼ AutcðGÞ, and K ¼ hK�j� 2 AutcðGÞi. We now collect

some information about the subgroups F and K of G.

Lemma 2.1. Let G be a C -group.
(i) �1ðGÞ � F � �ðGÞ;
(ii) if jG : �ðGÞj > jGp \�1ðGÞj, then G is not regular.

Proof. (i) By [1, Lemma 3.1], we have �1ðGÞ � F. Now let M be any maximal
subgroup of G, and let z be an element of order p in M \ ZðGÞ. Let x 62M, and
define � : G! G by �ðximÞ ¼ ximzi, where i 2 f0; 1; :::; p� 1g and m 2M. It is easy
to see that � 2 AutcðGÞ and F� ¼M. Hence F � �ðGÞ.

(ii) Since �1ðGÞ � �ðGÞ, we have �1ðGÞG
p � �ðGÞ<

¼=
G. This shows that

j�1ðGÞjjG
pj � j�ðGÞjjGp \�1ðGÞj < jGj. Hence G is not regular by [6, Chapter 4,

Theorem 3.14(iv)] . &

Proposition 2.2. Let G be a finite non-abelian p-group. If G is a C -group, then
ZðGÞ is cyclic and ZðGÞ � �ðGÞ.

Proof. Let M be any maximal subgroup of G and let u be an element of order p
in ZðGÞ and x 62M. By considering the central automorphism � defined in the proof
of Lemma 2.1(i), we have �ðxÞ ¼ xu. Since G is a C -group, u 2 hxi. Hence
j�1ðZðGÞÞj ¼ p, from which we conclude that ZðGÞ is cyclic. Next we let g be an
element of GnðF [ ZðGÞÞ. Since G is a C -group and g 62 F, there is an l 2 N such that
gp
l

6¼ 1 and gp
l

2 ZðGÞ. We define lg to be the least positive integer such that
gp
lg
2 ZðGÞ. We then have gp

lg
¼ zp

kg
, where z is a generator of ZðGÞ and kg is a non-

negative integer. We claim that lg > kg for some element g of GnðF [ ZðGÞÞ. Denying
this assertion, we may write ðg�1zp

kg�lg
Þp
lg
¼ 1. Now as g�1zp

kg�lg
62 ZðGÞ, we must

have g�1zp
kg�lg

2 F : for, put a ¼ g�1zp
kg�lg

and assume a 62 F; this implies ap
lg�1

2

ZðGÞ and so gp
lg�1

2 ZðGÞ, which is contrary to the minimality assumption. Hence
g 2 ZðGÞF, showing that G ¼ ZðGÞF. It follows that G=F is cyclic; so is G=�ðGÞ,
giving a contradiction. Now lg > kg leads to z�1gp

lg�kg
2 F, by a similar argument.

However, gp
lg�kg

2 �ðGÞ, which implies that z 2 �ðGÞ. &

Lemma 2.3. Let G be a finite non-abelian p-group with j�1ðG
pÞj ¼ p. If G is a

C -group, then Gp is cyclic. Moreover, if Z2ðGÞ is non-cyclic and abelian, then p is
odd.

Proof. It is clear that if p odd, then Gp is cyclic. Now suppose that p ¼ 2. We
have �ðGÞ ¼ G2 and hence �1ðGÞ � G

2, by Lemma 2.1(i). It follows that G ffi Q2n , as
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j�1ðG
2Þj ¼ 2. Therefore G2 is cyclic. However, in this case Z2ðGÞ is cyclic or non-

abelian, completing the proof. &

Theorem 2.4. Let G be a finite non-abelian p-group with a non-cyclic abelian
second centre Z2ðGÞ. Suppose that j�1ðG

pÞj ¼ p. If G is a C -group, then Gp ¼ ZðGÞ
and Z2ðGÞ � �ðGÞ.

Proof. By Lemma 2.3, Gp is cyclic and p is odd. Let Gp ¼ hai. We first show that
Gp ¼ ZðGÞ. The proof is divided into three steps.
Step 1. If g 2 Gn�ðGÞ, then Gp ¼ h gpi.
Suppose that gp ¼ alp

i

, where ðl; pÞ ¼ 1 and i is a positive integer. Since
½al; g�1� 2 ½Gp; g�1� and ½Gp; g�1� is properly contained in Gp, we have ½al; g�1� 2 hapi
and, consequently, ½alp

i�1

; g�1� 2 hap
i

i � Zðha; g�1iÞ. Thus ðalp
i�1

g�1Þp ¼

alp
i

g�p½alp
i

; g�1�
ðp�1Þ=2

¼ 1: We now have alp
i�1

g�1 2 �1ðGÞ, from which we get
g 2 �ðGÞ, a contradiction.
Step 2. Gp � ZðGÞ.
Suppose that Gp is not contained in ZðGÞ, so that aZðGÞ 6¼ ZðGÞ. For any

minimal generating set fyiZðGÞg of G=ZðGÞ, we have yi 62 �ðGÞ for each i. Hence, by
Step 1, y

pni
i ¼ a for some positive integer ni. Thus for each i, y

pni
i ZðGÞ ¼ aZðGÞ,

contrary to [5, 3.2.10]. Hence Gp � ZðGÞ.
Step 3. If g 2 Gn�ðGÞ then ZðGÞ ¼ hgpi, and hence Gp ¼ ZðGÞ.
If gp ¼ zp for some z 2 ZðGÞ, then gz�1 has order p and so gz�1 2 �ðGÞ. It

follows, by Proposition 2.2, that g 2 �ðGÞ, a contradiction. Hence Gp ¼ ZðGÞ.
To prove the second part of the theorem, we assume that x 2 Z2ðGÞn�ðGÞ. Thus

yp ¼ xlp for each y 2 Gn�ðGÞ, where ðl; pÞ ¼ 1 (because in view of Step 1, xp and yp

are generators of Gp.) Hence

ðyx�lÞ p ¼ ypx�lp½x�l; y�pðp�1Þ=2 ¼ ½x�l; yp�ðp�1Þ=2
¼ 1:

Therefore yx�l 2 �ðGÞ, whence G=�ðGÞ is cyclic, a contradiction. &

The following result will be used throughout the sequel.

Lemma 2.5. Let G be a metabelian group. If x; y are elements of G and n 2 N, then

ðxyÞn ¼ xnyn½y; x�nðn�1Þ=2
½�2; x�½�1; y�;

for some �1; �2 2 G
0.

Proof. This is a special case of P. Hall’s formula and is easily proved by using
the identity xy ¼ yx½x; y�. &

Theorem 2.6. Let G be a finite metabelian p-group with a non-cyclic abelian second
centre Z2ðGÞ. Suppose that j�1ðG

pÞj ¼ p. If G is a C -group, then jZðGÞj ¼ p. Hence
�ðGÞ ¼ G0 and Z2ðGÞ is elementary abelian.

Proof. According to Theorem 2.4, ZðGÞ ¼ Gp. We first suppose that there exists
an element x in �ðGÞ such that ZðGÞ ¼ hxpi. Then we may choose an element y in
Gn�ðGÞ with xp ¼ yp. Since x 2 �ðGÞ and �ðGÞ is abelian, we have
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ðyx�1Þp ¼ ypx�p½x�1; y� pðp�1Þ=2½�; y� ¼ ½�; y�;

where � 2 G0. It follows that ðyx�1Þp
2

¼ 1. Now since yx�1 62 �ðGÞ, we see that
ðyx�1Þp 6¼ 1 and ZðGÞ ¼ hðyx�1Þpi. Hence jZðGÞj ¼ p.

Now suppose that for each g 2 �ðGÞ, hgpi is a proper subgroup of ZðGÞ. Then,
by choosing x; y in Gn�ðGÞ with xp ¼ yp and xy�1 62 �ðGÞ, we have

ðyx�1Þ p ¼ ½x�1; y�pðp�1Þ=2½�1; x
�1�½�2; y�;

where �1; �2 2 G
0. By Theorem 2.4, ðyx�1Þp is a generator of Gp; put a ¼ ðyx�1Þp. By

our assumption, ½x�1; y�pðp�1Þ=2 ¼ apl for some l 2 N. Now since ½�2; x
�1� and ½�1; y�

are of order p, we get ap ¼ alp
2

, and so ap ¼ 1. Hence, jZðGÞj ¼ p. Obviously
�ðGÞ ¼ G0.

For the final part of Theorem, we let x 2 Z2ðGÞ. If x
p 6¼ 1, then xp is a generator

of ZðGÞ and, as before, there is an element y in Gn�ðGÞ such that xp ¼ yp, and so
ðyx�1Þp ¼ ypx�p½x�1; y�pðp�1Þ=2 ¼ 1, because ½x�1; y� 2 ZðGÞ. Consequently, yx�1 2

�ðGÞ and we have y 2 �ðGÞ, a contradiction. &

Corollary 2.7. Let G be a finite p-group of class 3 with non-cyclic abelian second
centre Z2ðGÞ. Suppose that j�1ðG

pÞj ¼ p. If G is a C -group, then
(i) ZðGÞ ¼ Gp and jZðGÞj ¼ p;
(ii) �ðGÞ ¼ G0 ¼ Z2ðGÞ, and expð�ðGÞÞ ¼ p;
(iii) p ¼ 3.

Proof. In view of Theorem 2.4, ZðGÞ ¼ Gp, and Z2ðGÞ � �ðGÞ. Since
G0 � Z2ðGÞ, we have G0 ¼ �ðGÞ ¼ Z2ðGÞ and jZðGÞj ¼ p. Now G is not regular, by
Lemma 2.1(ii) and so p � c‘ðGÞ ¼ 3 using [6, Chapter 4, 3.13(ii)]. Hence p ¼ 3. &

3. An application. In this section we classify the finite 3-generator p-groups G
that are C -groups with the following properties:

(i) Z2ðGÞ is abelian and non-cyclic,
(ii) j�1ðG

pÞj ¼ p,
(iii) c‘ðGÞ ¼ 3.
There is one family of such groups consisting of four non-isomorphic groups.
We also give an example of a 2-group with abelian non-cyclic second centre and

arbitrarily large nilpotency class that is a C -group.
From now onGwill stand for a finite p-group in C satisfying the conditions (i)–(iii).

Lemma 3.1. If a; b and c belong to a minimal generating set of G, then
(i) fa; bg 6� C Gð½a; b�Þ,
(ii) ZðGÞ intersects h½a; b�; ½a; c�; ½b; c�i trivially.

Proof. (i) Assume that fa; bg � C Gð½a; b�Þ. Then we have ðabÞ3 ¼ a3b3 and
ðab�1Þ

3
¼ a3b�3. Since a3 and b3 are generators of ZðGÞ and jZðGÞj ¼ 3, a3 ¼ b3 or

a3 ¼ b�3. Thus either ðabÞ3 ¼ 1 or ðab�1Þ
3
¼ 1. Consequently either ab 2 �ðGÞ or

ab�1 2 �ðGÞ, a contradiction.
(ii) Assume that ZðGÞ intersects h½a; b�; ½a; c�; ½b; c�i non-trivially. Since G0 is

elementary abelian, we may suppose that
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½a; b�½a; c�"1 ½b; c�"2 2 ZðGÞ;

for some "i 2 f0;�1g, i ¼ 1; 2. Clearly ð"1; "2Þ 6¼ ð0; 0Þ by (i). If "2 ¼ 0, then
½a; bc
1 � 2 ZðGÞ, because Z2ðGÞ ¼ G

0. This is impossible, since a; bc"1 belong to a
minimal generating set of G. Similarly "1 ¼ 0 is impossible. We now suppose that
"1 6¼ 0 and "2 6¼ 0. If "1 ¼ "2, then ½ab; bc
1 � 2 ZðGÞ. But ab; b and bc
1 belong to a
minimal generating set, contrary to (i). Also if 
1 ¼ �
2, then ½ab�1; bc
1 � 2 ZðGÞ,
again a contradiction. &

In what follows dðGÞ denotes the minimal number of generators of G.

Corollary 3.2. jGj ¼ 34 if dðGÞ ¼ 2, and jGj ¼ 37 if dðGÞ ¼ 3.

Proof. We prove the second part of the Corollary; the first part is established
similarly. Let dðGÞ ¼ 3 and G ¼ ha; b; ci. Since G0 is elementary abelian, we have

G0 ¼ h½a; b�; ½a; c�; ½b; c�i � ZðGÞ;

by Lemma 3.1(ii), so that jG0j ¼ 34. Now G0 ¼ �ðGÞ shows that jGj ¼ 37. &

Lemma 3.3. Let a; b and c be elements of G.
(i) ðabÞ3 ¼ a3b3½a; ½a; b�� ½b; ½a; b���1.
(ii) ðabcÞ3 ¼ a3b3c3½a; x�½a; y�½b; x��1

½b; y��1
½b; z�½c; x��1

½c; y��1
½c; z��1; where x ¼

½a; b�, y ¼ ½a; c� and z ¼ ½b; c�.
(iii) ½b; ½a; c�� ¼ ½a; ½b; c�� ½c; ½a; b��.
(iv) If a and b are elements of a minimal generating set of G such that

½b; ½a; b�� ¼ 1, then b6 ¼ ½a; ½a; b��.

Proof. The first two parts are easily checked. (iii) is most conveniently proved by
using the identity ððabÞcÞ3 ¼ ðaðbcÞÞ3. To prove (iv), we observe that
ðab�1Þ

3
¼ a3b�3½a; ½a; b���1, by (i). Now since ðabÞ3 and ðab�1Þ

3 are generators of
ZðGÞ, ðabÞ3ðab�1Þ

3
¼ 1 or ðabÞ3 ¼ ðab�1Þ

3. The former shows that a3 ¼ 1, which is
impossible. The result is now settled by using the latter. &

Proposition 3.4. If dðGÞ 	 3, then G has a minimal generating set containing
three elements a; b and c such that

(i) ½a; ½a; b�� ¼ a3; ½b; ½a; b�� ¼ 1,
(ii) ½b; ½b; c�� ¼ b3; ½c; ½b; c�� ¼ 1.

Proof. Suppose that a; b and c are elements of a minimal generating set of G.
Without loss of generality, we may assume that ½a; ½a; b�� 6¼ 1, by Lemma 3.1(i).
Since jZðGÞj ¼ 3 and a3 2 ZðGÞ, it follows that ½a; ½a; b�� ¼ a3 or a6. In the latter case,
if we replace b by b2, we get ½a; ½a; b�� ¼ a3, as required. Now if ½b; ½a; b�� 6¼ 1, then we
have

½a; ½a; b��"½b; ½a; b�� ¼ 1;

for some " ¼ �1. Therefore, by setting b0 ¼ a"b, we find that ½b0; ½a; b0�� ¼ 1. Here we
still have ½a; ½a; b0�� ¼ a3 and consequently (i) holds.
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Now if ½b; ½b; c�� 6¼ 1, then we may repeat the above process to obtain the rela-
tions ½b; ½b; c�� ¼ b3 and ½c; ½b; c�� ¼ 1 for a suitable c. We suppose that ½b; ½b; c�� ¼ 1,
which implies that ½b; ½c"a; b�� ¼ 1 for every " 2 f�1; 0; 1g. Therefore, ½c"a; ½c"a; b�� 6¼ 1
by Lemma 3.1(i) which, together with the assumption ½c; ½c; a�� 6¼ 1, enables us to
perform the above process with a0 ¼ c; b0 ¼ c"a and c0 ¼ b in order to obtain the
desired generators. Hence it suffices to show that ½c; ½c; a�� 6¼ 1. To see this, we con-
sider the central elements ðabcÞ3 and ðabc�1Þ

3. If ðabcÞ3ðabc�1Þ
3
¼ 1 then it follows,

from the relations of (i) and Lemma 3.3, that a3½c; ½a; c�� ¼ 1, which gives us
½c; ½c; a�� 6¼ 1. Now we assume that ðabcÞ3 ¼ ðabc�1Þ

3. Then c3½a; y� ¼ ½b; y�½c; x�, and
hence ðab�1cÞ3 ¼ c6½a; y��1

½c; y��1. If ðab�1cÞ3ðabcÞ3 ¼ 1, then a3½c; ½a; c�� ¼
c3½a; ½a; c��, and hence ½c; ½a; c�� ¼ ðac�1Þ

3
6¼ 1. Also ðab�1cÞ3 ¼ ðabcÞ3 leads to

a3c3½a; ½a; c�� ¼ 1, which shows that ½c; ½a; c�� ¼ ðacÞ�3
6¼ 1, completing the proof. &

Theorem 3.5. Let G be a 3-generator finite p-group of class 3 with non-cyclic
abelian second centre Z2ðGÞ and let j�1ðG

pÞj ¼ p. If G is a C -group, then G is gen-
erated by the elements a; b; c; x; y and z, subject to the following defining relations:
a9 ¼ b9 ¼ c9 ¼ x3 ¼ y3 ¼ z3 ¼ 1; a3 ¼ b6 ¼ c3,
½a3; b� ¼ ½a3; c� ¼ ½x; y� ¼ ½x; z� ¼ ½y; z� ¼ ½b; x� ¼ ½c; z� ¼ 1,
x ¼ ½a; b�; y ¼ ½a; c�; z ¼ ½b; c�,
½c; y� ¼ 1; a3 ¼ ½a; x�; b3 ¼ ½b; z�,
½a; y� ¼ a6ðm�1Þðm�2Þ; ½b; y� ¼ a3ðm�nÞ; ½a; z� ¼ a3ðmþnÞ; ½c; x� ¼ a3n;

where m; n 2 f0; 1; 2g. Furthermore, if we denote the above group G by Gðm; nÞ then
Gð0; 0Þ ffi Gð2; 0Þ, Gð0; 1Þ ffi Gð2; 2Þ; Gð1; 1Þ ffi Gð2; 1Þ and Gð0; 2Þ ffi Gð1; 0Þ ffi Gð1; 2Þ.

Proof. According to Corollary 2.7, G satisfies the conditions (i)–(iii) of the
corollary. Now, by Proposition 3.4, we may choose a minimal generating set fa; b; cg
in such a way that

½a; ½a; b�� ¼ a3; ½b; ½a; b�� ¼ 1; ½b; ½b; c�� ¼ b3; ½c; ½b; c�� ¼ 1:

By Lemma 3.3(iv), we have a3 ¼ b6 ¼ c3. For convenience, we set x ¼ ½a; b�,
y ¼ ½a; c� and z ¼ ½b; c�. We now consider the central elements ðabcÞ3, ðabc�1Þ

3 of G.
We claim that ðabcÞ3 6¼ ðabc�1Þ

3. If this is not the case, in view of Lemma 3.3(iii) and
the above relations, we shall have ½a; y� ¼ ½b; y�½c; x�. Thus ðabcÞ3 ¼ a3½c; y��1, and so
½c; y� 6¼ a3. It follows that ðacÞ3 ¼ ðac�1Þ

3, by Lemma 3.3(i), and hence ½a; y� ¼ c6 6¼ 1.
Now since ðab�1cÞ3 ¼ a6½c; y��1, we find that ðab�1cÞ3ðabcÞ3 ¼ 1, and so ½c; y� ¼ 1.
But ða�1bcÞ3 ¼ ½c; y�, a contradiction. Therefore we must have ðabcÞ3ðabc�1Þ

3
¼ 1. In

this case, ½c; y� ¼ a3 6¼ 1 and hence ðacÞ3 ¼ a3½a; y�. Now we obtain

ða�1bcÞ3 ¼ ½a; y�½b; y�½c; x�:

We first suppose that ða�1bcÞ3ðabcÞ3 ¼ 1. In this case, ½a; y� ¼ 1 and so
½b; y�½c; x� 6¼ 1. As before, exactly one of ½a; z�; ½b; y�; ½c; x� is the identity element
(otherwise, ½b; y� ¼ ½c; x��1 by Lemma 3.3(iv).) Therefore we may assume that

½b; y� ¼ a3ðm�nÞ; ½a; z� ¼ a3ðmþnÞ; ½c; x� ¼ a3n;

where m 2 f1; 2g and n 2 f0; 1; 2g.
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We next suppose that ða�1bcÞ3 ¼ ðabcÞ3. Then ½b; y�½c; x� ¼ 1 and so we have
½a; z� ¼ ½c; x� and ½a; y� 6¼ 1, which implies that ½a; y� ¼ ½c; y� (otherwise ðac�1Þ

3
¼ 1.)

Therefore, in this case the following defining relations are obtained for G:

½b; y� ¼ a�3n; ½a; z� ¼ a3n; ½c; x� ¼ a3n;

where n 2 f0; 1; 2g.
We are now able to write down a single presentation for G in both cases. On the

other hand by using GAP [4], one can easily check that each group Gðm; nÞ is a
C -group of order 37 and that Gð0; 0Þ;Gð0; 1Þ;Gð0; 2Þ and Gð1; 1Þ are the only non-
isomorphic groups among the groups Gðm; nÞ where m; n 2 f0; 1; 2g, as required. &

Deaconescu and Silberberg [1] have proved that a finite p-group with non-
abelian or cyclic second centre is a C -group if and only if G ffi Q2n for some n. It
seems reasonable to ask whether there are finite 2-groups with non-cyclic abelian
second centre that are C -groups. The following example shows that given any posi-
tive integer m 	 3, there exists a finite 2-group G with non-cyclic abelian second
centre that is a C -group of class m.

Example. Let n be a positive integer, and let

Gn ¼< a; b j b4 ¼ 1; b2 ¼ a2
nþ1

; b�1a2b ¼ a�2; ½a; b�2
n

¼ 1 > :

It is easy to check that the following relations hold in Gn:

½a; b�b ¼ ½a; b��1; ½a; b�a ¼ a�4½a; b��1; ½a2; ½a; b�� ¼ 1:

Taking x ¼ a2; y ¼ ½a; b�, and L ¼< x; y >, we observe that L is an abelian sub-
group of Gn with jGn : Lj ¼ 4. Using the procedure described in [3], a presentation
on the generators x and y is obtained for L as follows:

L ¼< x; y j x2
nþ1

¼ y2
n

¼ ½x; y� ¼ 1 > :

Hence Gn is of order 22nþ3, jaj ¼ 2nþ2 and jbj ¼ 4. Next we put H ¼< a4; ½a; b� >
and see that H is an abelian normal subgroup of Gn and that jGn : Hj ¼ 8. As Gn=H
is abelian and jGn=G

0
nj ¼ 8, we have G0

n ¼ H. Now by considering the normal sub-
group K ¼< a2 > of Gn, we find that

Gn=K ¼< a; b j a2 ¼ b
2
¼ 1; ½a; b�2

n

¼ 1 >ffi D2nþ2 ;

where g ¼ Kg for any g 2 Gn.
Hence ZðGn=KÞ ¼< K½a; b�2

n�1

>, and we see that if z 2 ZðGnÞnK then
z ¼ k½a; b�2

n�1

, where k 2 K (because ZðGnÞK=K � ZðGn=KÞÞ. Therefore,

1 ¼ ½a; z� ¼ ½a; ½a; b�2
n�1

� ¼ ½a; ½a; b��2
n�1

¼ a2
nþ1

½a; b�2
n

¼ b2:

Since b2 6¼ 1, we get ZðGnÞ � K. Now we suppose that z is a generator of ZðGnÞ,
and z ¼ ða2Þi. Then ða2Þi ¼ ða2iÞb ¼ a�2i, and hence ða4Þi ¼ 1, which shows that
i ¼ 2n. It follows that z ¼ a2

nþ1

¼ b2, and ZðGnÞ � G
0
n.
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Finally we show that c‘ðGnÞ ¼ nþ 2. Obviously �2ðGnÞ ¼ H. Now since H is
abelian, �3ðGnÞ ¼ ½Gn;H� ¼< a4; ½a; b�2 >. Inductively one can show that
�iðGnÞ ¼< a2

i�1

; ½a; b�2
i�2

> for i 	 3. Hence �nþ2ðGnÞ ¼< b2 > and �nþ3ðGnÞ ¼ 1,
proving that c‘ðGnÞ ¼ nþ 2. Also, since �nþ1ðGnÞ � Z2ðGnÞ, we see that Z2ðGnÞ has a
subgroup of type Z2 � Z4. In fact an easy calculation within Gn shows that
Z2ðGnÞ ffi Z2 � Z4. Now using the relation ba2b�1 ¼ a�2, we observe that for each w
in Gnn�1ðGnÞ, w

2 has one of the following forms: b2; ðabÞ2; ðbaÞ2, and al, where l is an
even positive integer. On the other hand, by using ðabÞ2 ¼ a2b2½a; b�, we get
ðabÞ2

nþ1

¼ a2
nþ1

¼ b2, from which we conclude that b2 2< w >. Hence, if � is a cen-
tral automorphism of Gn, then �ðwÞ ¼ wb2m 2< w >, where m 2 f0; 1g. Also � fixes
�1ðGnÞ elementwise. This proves that Gn is a C -group.

It is worth noting that AutcðGnÞ ffi Z2 � Z2 by [2]. In fact, AutcðGnÞ ¼ h�; �i,
where �ðaÞ ¼ a; �ðbÞ ¼ b�1 and �ðaÞ ¼ ab2; �ðbÞ ¼ b. &
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